1
|
Xie S, Li Y, Suo Y, Wang Z, Zhang B, Li J, Huang J, Wang Y, Ma C, Lin D, Ma T, Shao Y. Effect of Organic, Nano, and Inorganic Zinc Sources on Growth Performance, Antioxidant Function, and Intestinal Health of Young Broilers. Biol Trace Elem Res 2025; 203:2776-2786. [PMID: 39122963 DOI: 10.1007/s12011-024-04341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The study aimed to determine the effects of different zinc sources on growth performance, antioxidant function, and intestinal health of broilers. In total, 240 Ross 308 male broilers with similar weight were randomly assigned to 4 treatments, including zinc sulfate, methionine zinc (Zn-Met), glycine zinc (Zn-Gly), and nano-zinc oxide (ZnO-NPs), with 80 mg zinc/kg diet supplementation. The experiment lasted for 21 days. Results showed dietary supplemental Zn-Gly and Zn-Met increased average daily gain during 1-14 days (P = 0.011), and Zn-Gly, Zn-Met, and ZnO-NP supplementation decreased the ratio of feed to gain during 1-21 days (P = 0.003) compared to zinc sulfate. ZnO-NPs supplementation tended to increase total SOD activity (P = 0.068) and had higher serum IgA content and lower MDA level than the other three groups (P < 0.05). Compared with zinc sulfate, Zn-Met and ZnO-NP supplementation decreased TNF-α mRNA expression (P = 0.048). However, serum biochemical indices, intestinal morphology, and mRNA expressions of tight junction proteins were not affected by different zinc sources (P > 0.05). A differential trend was observed in the beta diversity of bacterial communities among four groups (P = 0.082). The LEfSe analysis showed that bacterial genera Blautia, Ruminococcaceae, Clostridia, Anaerostipes, Eubacterium_ventriosum, Merdibacter, and Oscillospira were enriched in the ZnSO4 group, and the genera Eubacterium_hallii and Anaerotruncus were enriched in the Zn-Gly group. The genera UCG-009 and UCG010 were enriched in ZnO-NPs and Zn-Met groups, respectively. It should be stated dietary supplemental Zn-Met improved growth performance, ZnO-NPs promoted IgA production and reduced occurrences of oxidative stress and inflammation, and different zinc sources enriched different jejunal bacteria genera.
Collapse
Affiliation(s)
- Shuxian Xie
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100090, China
| | - Yipu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Hebei University of Engineering, Handan, Hebei Province, 056038, P. R. China
| | - Yanrui Suo
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Hebei University of Engineering, Handan, Hebei Province, 056038, P. R. China
| | - Zheng Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Bo Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jianguo Huang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yalei Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chunjian Ma
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Dongmei Lin
- Hebei University of Engineering, Handan, Hebei Province, 056038, P. R. China
| | - Tenghe Ma
- Hebei University of Engineering, Handan, Hebei Province, 056038, P. R. China
| | - Yuxin Shao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
2
|
Turpin W, Lee SH, Croitoru K. Gut Microbiome Signature in Predisease Phase of Inflammatory Bowel Disease: Prediction to Pathogenesis to Prevention. Gastroenterology 2025; 168:902-913. [PMID: 39914464 DOI: 10.1053/j.gastro.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 03/23/2025]
Abstract
Advances in understanding the pathogenesis of inflammatory bowel disease (IBD) point toward a key role of the gut microbiome. We review the data describing the changes in the gut microbiome from IBD case-control studies and compare these findings with emerging data from studies of the preclinical phase of IBD. What is apparent is that assessing changes in the composition and function of the gut microbiome during the preclinical phase helps address confounding factors, such as disease activity and drug therapy, which can directly influence the gut microbiome. Understanding these changes in the predisease phase provides a means of predicting IBD in high-risk populations and offers insights into possible mechanisms involved in disease pathogenesis. Finally, we discuss strategies to use this information to design interventions aimed at modulating the microbiome as a means of preventing or delaying the onset of IBD.
Collapse
Affiliation(s)
- Williams Turpin
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sun-Ho Lee
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kenneth Croitoru
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Hong MG, Song EJ, Yoon HJ, Chung WH, Seo HY, Kim D, Lee D, Seo JG, Lee H, Kim SI, Kim GJ, Kim KN, Lee SN, Kim KS, Nam YD. Clade-specific extracellular vesicles from Akkermansia muciniphila mediate competitive colonization via direct inhibition and immune stimulation. Nat Commun 2025; 16:2708. [PMID: 40108178 PMCID: PMC11923206 DOI: 10.1038/s41467-025-57631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
Akkermansia muciniphila, a promising candidate for next-generation probiotics, exhibits significant genomic diversity, classified into several distinct clades (AmI to AmIV). Notably, a single Akkermansia clade tends to predominate within individual hosts, with co-occurrence of different clades being rare. The mechanisms driving such clade-specific exclusion remain unclear. Here, we show that extracellular vesicles (EVs) derived from AmII clade inhibit the growth of clade I (AmI), conferring a competitive advantage to AmII. Moreover, we observe clade-specific immunoglobulin A (IgA) responses, where AmII clade-specific IgAs, induced by EVs from AmII, facilitate niche occupancy and competitive exclusion of AmI. These findings provide insights into the competitive dynamics of A. muciniphila clades and suggest that future personalized microbiome interventions could be optimized by considering the clade composition of A. muciniphila in individual hosts.
Collapse
Affiliation(s)
- Moon-Gi Hong
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si, Republic of Korea
| | - Eun-Ji Song
- Research Group of Personalized Diet, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hye Jin Yoon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Won-Hyong Chung
- Research Group of Personalized Diet, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hae Yeong Seo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dohak Kim
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si, Republic of Korea
| | - Dokyung Lee
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si, Republic of Korea
| | - Jae-Gu Seo
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si, Republic of Korea
| | - Hayoung Lee
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seung Il Kim
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Gwang Joong Kim
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Republic of Korea
| | - Kil-Nam Kim
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Republic of Korea
| | - Sang-Nam Lee
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si, Republic of Korea.
| | - Kwang Soon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
4
|
Kelly C, Sartor RB, Rawls JF. Early subclinical stages of the inflammatory bowel diseases: insights from human and animal studies. Am J Physiol Gastrointest Liver Physiol 2025; 328:G17-G31. [PMID: 39499254 PMCID: PMC11901386 DOI: 10.1152/ajpgi.00252.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/07/2024]
Abstract
The inflammatory bowel diseases (IBD) occur in genetically susceptible individuals that mount inappropriate immune responses to their microbiota leading to chronic intestinal inflammation. The natural history of IBD progression begins with early subclinical stages of disease that occur before clinical diagnosis. Improved understanding of those early subclinical stages could lead to new or improved strategies for IBD diagnosis, prognostication, or prevention. Here, we review our current understanding of the early subclinical stages of IBD in humans including studies from first-degree relatives of patients with IBD and members of the general population who go on to develop IBD. We also discuss representative mouse models of IBD that can be used to investigate disease dynamics and host-microbiota relationships during these early stages. In particular, we underscore how mouse models of IBD that develop disease later in life with variable penetrance may present valuable opportunities to discern early subclinical mechanisms of disease before histological inflammation and other severe symptoms become apparent.
Collapse
Affiliation(s)
- Cecelia Kelly
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, United States
| | - R Balfour Sartor
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
5
|
Zakerska-Banaszak O, Zuraszek-Szymanska J, Eder P, Ladziak K, Slomski R, Skrzypczak-Zielinska M. The Role of Host Genetics and Intestinal Microbiota and Metabolome as a New Insight into IBD Pathogenesis. Int J Mol Sci 2024; 25:9589. [PMID: 39273536 PMCID: PMC11394875 DOI: 10.3390/ijms25179589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an incurable, chronic disorder of the gastrointestinal tract whose incidence increases every year. Scientific research constantly delivers new information about the disease and its multivariate, complex etiology. Nevertheless, full discovery and understanding of the complete mechanism of IBD pathogenesis still pose a significant challenge to today's science. Recent studies have unanimously confirmed the association of gut microbial dysbiosis with IBD and its contribution to the regulation of the inflammatory process. It transpires that the altered composition of pathogenic and commensal bacteria is not only characteristic of disturbed intestinal homeostasis in IBD, but also of viruses, parasites, and fungi, which are active in the intestine. The crucial function of the microbial metabolome in the human body is altered, which causes a wide range of effects on the host, thus providing a basis for the disease. On the other hand, human genomic and functional research has revealed more loci that play an essential role in gut homeostasis regulation, the immune response, and intestinal epithelial function. This review aims to organize and summarize the currently available knowledge concerning the role and interaction of crucial factors associated with IBD pathogenesis, notably, host genetic composition, intestinal microbiota and metabolome, and immune regulation.
Collapse
Affiliation(s)
| | | | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Karolina Ladziak
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Ryszard Slomski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | | |
Collapse
|
6
|
Minea H, Singeap AM, Minea M, Juncu S, Muzica C, Sfarti CV, Girleanu I, Chiriac S, Miftode ID, Stanciu C, Trifan A. The Contribution of Genetic and Epigenetic Factors: An Emerging Concept in the Assessment and Prognosis of Inflammatory Bowel Diseases. Int J Mol Sci 2024; 25:8420. [PMID: 39125988 PMCID: PMC11313574 DOI: 10.3390/ijms25158420] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) represents heterogeneous and relapsing intestinal conditions with a severe impact on the quality of life of individuals and a continuously increasing prevalence. In recent years, the development of sequencing technology has provided new means of exploring the complex pathogenesis of IBD. An ideal solution is represented by the approach of precision medicine that investigates multiple cellular and molecular interactions, which are tools that perform a holistic, systematic, and impartial analysis of the genomic, transcriptomic, proteomic, metabolomic, and microbiomics sets. Hence, it has led to the orientation of current research towards the identification of new biomarkers that could be successfully used in the management of IBD patients. Multi-omics explores the dimension of variation in the characteristics of these diseases, offering the advantage of understanding the cellular and molecular mechanisms that affect intestinal homeostasis for a much better prediction of disease development and choice of treatment. This review focuses on the progress made in the field of prognostic and predictive biomarkers, highlighting the limitations, challenges, and also the opportunities associated with the application of genomics and epigenomics technologies in clinical practice.
Collapse
Affiliation(s)
- Horia Minea
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Ana-Maria Singeap
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Manuela Minea
- Department of Microbiology, The National Institute of Public Health, 700464 Iasi, Romania;
| | - Simona Juncu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Cristina Muzica
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Catalin Victor Sfarti
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Irina Girleanu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Stefan Chiriac
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Ioana Diandra Miftode
- Department of Radiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Radiology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Carol Stanciu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Anca Trifan
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| |
Collapse
|
7
|
Lopes EW, Turpin W, Croitoru K, Colombel JF, Torres J. Prediction and Prevention of Inflammatory Bowel Disease. Clin Gastroenterol Hepatol 2024:S1542-3565(24)00597-4. [PMID: 38996831 DOI: 10.1016/j.cgh.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 07/14/2024]
Affiliation(s)
- Emily W Lopes
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Williams Turpin
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Croitoru
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jean-Frederic Colombel
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joana Torres
- Division of Gastrenterology, Hospital da Luz, Lisboa, Portugal; Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal; Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
8
|
Wu P, Li W, Xie Y, Guan W, Yang S, Li J, Zhao Y. An insight into the gut microbiota after Schistosoma japonicum eggs immunization in an experimental ulcerative colitis model. FASEB J 2024; 38:e23721. [PMID: 38822662 DOI: 10.1096/fj.202302576rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Schistosome infection and schistosome-derived products have been implicated in the prevention and alleviation of inflammatory bowel disease by manipulating the host immune response, whereas the role of gut microbiota in this protective effect remains poorly understood. In this study, we found that the intraperitoneal immunization with Schistosoma japonicum eggs prior to dextran sulfate sodium (DSS) application significantly ameliorated the symptoms of DSS-induced acute colitis, which was characterized by higher body weight, lower disease activity index score and macroscopic inflammatory scores. We demonstrated that the immunomodulatory effects of S. japonicum eggs were accompanied by an influence on gut microbiota composition, abundance, and diversity, which increased the abundance of genus Turicibacter, family Erysipelotrichaceae, phylum Firmicutes, and decreased the abundance of genus Odoribacter, family Marinifilaceae, order Bacteroidales, class Bacteroidia, phylum Bacteroidota. In addition, Lactobacillus was identified as a biomarker that distinguishes healthy control mice from DSS-induced colitis mice. The present study revealed the importance of the gut microbiota in S. japonicum eggs exerting protective effects in an experimental ulcerative colitis (UC) model, providing an alternative strategy for the discovery of UC prevention and treatment drugs.
Collapse
Affiliation(s)
- Peng Wu
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Wenhao Li
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Yiting Xie
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Wei Guan
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Shuguo Yang
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Jian Li
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Yanqing Zhao
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
9
|
Wei X, Li N, Wu X, Cao G, Qiao H, Wang J, Hao R. The preventive effect of Glycyrrhiza polysaccharide on lipopolysaccharide-induced acute colitis in mice by modulating gut microbial communities. Int J Biol Macromol 2023; 239:124199. [PMID: 36972824 DOI: 10.1016/j.ijbiomac.2023.124199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Acute colitis is characterised by an unpredictable onset and causes intestinal flora imbalance together with microbial migration, which leads to complex parenteral diseases. Dexamethasone, a classic drug, has side effects, so it is necessary to use natural products without side effects to prevent enteritis. Glycyrrhiza polysaccharide (GPS) is an α-d-pyranoid polysaccharide with anti-inflammatory effects; however, its anti-inflammatory mechanism in the colon remains unknown. This study investigated whether GPS reduces the lipopolysaccharide (LPS)-induced inflammatory response in acute colitis. The results revealed that GPS attenuated the upregulation of tumour necrosis factor-α, interleukin (IL)-1β, and IL-6 in the serum and colon tissues and significantly reduced the malondialdehyde content in colon tissues. In addition, the 400 mg/kg GPS group showed higher relative expressions of occludin, claudin-1, and zona occludens-1 in colon tissues and lower concentrations of diamine oxidase, D-lactate, and endotoxin in the serum than the LPS group did, indicating that GPS improved the physical and chemical barrier functions of colon tissues. GPS increased the abundance of beneficial bacteria, such as Lactobacillus, Bacteroides, and Akkermansia, whereas pathogenic bacteria, such as Oscillospira and Ruminococcus were inhibited. Our findings indicate that GPS can effectively prevent LPS-induced acute colitis and exert beneficial effects on the intestinal health.
Collapse
Affiliation(s)
- Xinxin Wei
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Na Li
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030012, China
| | - Xiaoying Wu
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030012, China
| | - Guidong Cao
- Shanxi Ruixiang Bio Pharmaceutical Co., Ltd, Taiyuan 030032, China
| | - Hongping Qiao
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030012, China
| | - Jing Wang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Ruirong Hao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
10
|
Rodríguez-Lago I, Blackwell J, Mateos B, Marigorta UM, Barreiro-de Acosta M, Pollok R. Recent Advances and Potential Multi-Omics Approaches in the Early Phases of Inflammatory Bowel Disease. J Clin Med 2023; 12:jcm12103418. [PMID: 37240524 DOI: 10.3390/jcm12103418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammatory bowel disease leads to debilitating gastrointestinal symptoms and reduced quality of life, resulting in a significant burden on healthcare utilization and costs. Despite substantial advancements in diagnosis and treatment, there may still be considerable delays in diagnosing some patients. To reduce disease progression before the full disease spectrum appears and improve prognostic outcomes, several strategies have concentrated on early intervention and prevention. Recent evidence shows that initial immune response changes and endoscopic lesions may exist for years before diagnosis, implying the existence of a preclinical phase of inflammatory bowel disease comparable to findings in other immune-mediated disorders. In this review, we highlight the most relevant findings regarding preclinical inflammatory bowel disease and the prospective role of novel omics techniques in this field.
Collapse
Affiliation(s)
- Iago Rodríguez-Lago
- Gastroenterology Department, Hospital Universitario de Galdakao, 48960 Galdakao, Spain
- Biocruces Bizkaia Health Research Institute, 48960 Galdakao, Spain
- Deusto University, 48007 Bilbao, Spain
| | | | - Beatriz Mateos
- Integrative Genomics Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Urko M Marigorta
- Integrative Genomics Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Sciences, 48009 Bilbao, Spain
| | - Manuel Barreiro-de Acosta
- Gastroenterology Department, Hospital Clínico Universitario de Santiago, 15706 Santiago de Compostela, Spain
| | - Richard Pollok
- Gastroenterology Department, St George's University of London, London SW17 0RE, UK
| |
Collapse
|
11
|
Wei R, Su Z, Mackenzie GG. Chlorogenic acid combined with epigallocatechin-3-gallate mitigates D-galactose-induced gut aging in mice. Food Funct 2023; 14:2684-2697. [PMID: 36752162 DOI: 10.1039/d2fo03306b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Chlorogenic acid (CGA) and epigallocatechin-3-gallate (EGCG) are major polyphenolic constituents of coffee and green tea with beneficial health properties. In this study, we evaluated the gut protecting effect of CGA and EGCG, alone or in combination, on D-galactose-induced aging mice. CGA plus EGCG more effectively improved the cognition deficits and protected the gut barrier function, compared with the agents alone. Specifically, CGA plus EGCG prevented the D-galactose mediated reactive oxygen species accumulation by increasing the total antioxidant capacity, reducing the levels of malondialdehyde, and suppressing the activity of the antioxidant enzymes superoxide dismutase and catalase. In addition, supplementation of CGA and EGCG suppressed gut inflammation by reducing the levels of the proinflammatory cytokines TNFα, IFNγ, IL-1β and IL-6. Moreover, CGA and EGCG modulated the gut microbiome altered by D-galactose. For instance, CGA plus EGCG restored the Firmicutes/Bacteroidetes ratio of the aging mice to control levels. Furthermore, CGA plus EGCG decreased the abundance of Lactobacillaceae, Erysipelotrichaceae, and Deferribacteraceae, while increased the abundance of Lachnospiraceae, Muribaculaceae, and Rikenellaceae, at the family level. In conclusion, CGA in combination with EGCG ameliorated the gut alterations induced by aging, in part, through antioxidant and anti-inflammatory effects, along with its gut microbiota modulatory capacity.
Collapse
Affiliation(s)
- Ran Wei
- Department of Tea Science, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| | - Zhucheng Su
- Department of Tea Science, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| | - Gerardo G Mackenzie
- Department of Nutrition, University of California, Davis, California, 95616, USA.
| |
Collapse
|
12
|
Genetic and Epigenetic Etiology of Inflammatory Bowel Disease: An Update. Genes (Basel) 2022; 13:genes13122388. [PMID: 36553655 PMCID: PMC9778199 DOI: 10.3390/genes13122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease with periods of exacerbation and remission of the disease. The etiology of IBD is not fully understood. Many studies point to the presence of genetic, immunological, environmental, and microbiological factors and the interactions between them in the occurrence of IBD. The review looks at genetic factors in the context of both IBD predisposition and pharmacogenetics.
Collapse
|
13
|
Dietary Supplementation with Black Raspberries Altered the Gut Microbiome Composition in a Mouse Model of Colitis-Associated Colorectal Cancer, although with Differing Effects for a Healthy versus a Western Basal Diet. Nutrients 2022; 14:nu14245270. [PMID: 36558431 PMCID: PMC9786988 DOI: 10.3390/nu14245270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Black raspberries (BRB) are rich in anthocyanins with purported anti-inflammatory properties. However, it is not known whether dietary supplementation would ameliorate Western-diet enhanced gut inflammation and colon tumorigenesis. We employed a mouse model of colitis-associated colorectal cancer (CAC) to determine the effects of dietary supplementation with 5 to 10% (w/w) whole, freeze-dried BRB in male C57BL/6J mice fed either a standard healthy diet (AIN93G) or the total Western diet (TWD). In a pilot study, BRB suppressed colitis and colon tumorigenesis while also shifting the composition of the fecal microbiome in favor of taxa with purported health benefits, including Bifidobacterium pseudolongum. In a follow-up experiment using a 2 × 2 factorial design with AIN and TWD basal diets with and without 10% (w/w) BRB, supplementation with BRB reduced tumor multiplicity and increased colon length, irrespective of the basal diet, but it did not apparently affect colitis symptoms, colon inflammation or mucosal injury based on histopathological findings. However, BRB intake increased alpha diversity, altered beta diversity and changed the relative abundance of Erysipelotrichaceae, Bifidobacteriaceae, Streptococcaceae, Rikenellaceae, Ruminococcaceae and Akkermansiaceae, among others, of the fecal microbiome. Notably, changes in microbiome profiles were inconsistent with respect to the basal diet consumed. Overall, these studies provide equivocal evidence for in vivo anti-inflammatory effects of BRB on colitis and colon tumorigenesis; yet, BRB supplementation led to dynamic changes in the fecal microbiome composition over the course of disease development.
Collapse
|
14
|
Agrawal M, Allin KH, Petralia F, Colombel JF, Jess T. Multiomics to elucidate inflammatory bowel disease risk factors and pathways. Nat Rev Gastroenterol Hepatol 2022; 19:399-409. [PMID: 35301463 PMCID: PMC9214275 DOI: 10.1038/s41575-022-00593-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated disease of the intestinal tract, with complex pathophysiology involving genetic, environmental, microbiome, immunological and potentially other factors. Epidemiological data have provided important insights into risk factors associated with IBD, but are limited by confounding, biases and data quality, especially when pertaining to risk factors in early life. Multiomics platforms provide granular high-throughput data on numerous variables simultaneously and can be leveraged to characterize molecular pathways and risk factors for chronic diseases, such as IBD. Herein, we describe omics platforms that can advance our understanding of IBD risk factors and pathways, and available omics data on IBD and other relevant diseases. We highlight knowledge gaps and emphasize the importance of birth, at-risk and pre-diagnostic cohorts, and neonatal blood spots in omics analyses in IBD. Finally, we discuss network analysis, a powerful bioinformatics tool to assemble high-throughput data and derive clinical relevance.
Collapse
Affiliation(s)
- Manasi Agrawal
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark.
| | - Kristine H Allin
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
15
|
Fox BE, Vilander A, Abdo Z, Dean GA. NOD2 signaling in CD11c + cells is critical for humoral immune responses during oral vaccination and maintaining the gut microbiome. Sci Rep 2022; 12:8491. [PMID: 35589853 PMCID: PMC9119386 DOI: 10.1038/s41598-022-12469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Nucleotide-binding oligomerization domain containing 2 (NOD2) is a critical regulator of immune responses within the gastrointestinal tract. This innate immune receptor is expressed by several cell types, including both hematopoietic and nonhematopoietic cells within the gastrointestinal tract. Vaccination targeting the gastrointestinal mucosal immune system is especially difficult due to both physical and mechanistic barriers to reaching inductive sites. The use of lactic acid bacteria is appealing due to their ability to persist within harsh conditions, expression of selected adjuvants, and manufacturing advantages. Recombinant Lactobacillus acidophilus (rLA) has shown great promise in activating the mucosal immune response with minimal impacts on the resident microbiome. To better classify the kinetics of mucosal vaccination with rLA, we utilized mice harboring knockouts of NOD2 expression specifically within CD11c + cells. The results presented here show that NOD2 signaling in CD11c + cells is necessary for mounting a humoral immune response against exogenous antigens expressed by rLA. Additionally, disruption of NOD2 signaling in these cells results in an altered bacterial microbiome profile in both control mice and mice receiving L. acidophilus strain NCK1895 and vaccine strain LaOVA.
Collapse
Affiliation(s)
- B E Fox
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| | - A Vilander
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Z Abdo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| | - G A Dean
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
16
|
Sharma A, Szymczak S, Rühlemann M, Freitag-Wolf S, Knecht C, Enderle J, Schreiber S, Franke A, Lieb W, Krawczak M, Dempfle A. Linkage analysis identifies novel genetic modifiers of microbiome traits in families with inflammatory bowel disease. Gut Microbes 2022; 14:2024415. [PMID: 35129060 PMCID: PMC8820822 DOI: 10.1080/19490976.2021.2024415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dysbiosis of the gut microbiome is a hallmark of inflammatory bowel disease (IBD) and both, IBD risk and microbiome composition, have been found to be associated with genetic variation. Using data from families of IBD patients, we examined the association between genetic and microbiome similarity in a specific IBD context, followed by a genome-wide quantitative trait locus (QTL) linkage analysis of various microbiome traits using the same data. SNP genotypes as well as gut microbiome and phenotype data were obtained from the Kiel IBD family cohort (IBD-KC). The IBD-KC is an ongoing prospective study in Germany currently comprising 256 families with 455 IBD patients and 575 first- and second-degree relatives. Initially focusing upon known IBD risk loci, we noted a statistically significant (FDR<0.05) association between genetic similarity at SNP rs11741861 and overall microbiome dissimilarity among pairs of relatives discordant for IBD. In a genome-wide QTL analysis, 12 chromosomal regions were found to be linked to the abundance of one of seven microbial genera, namely Barnesiella (chromosome 4, region spanning 10.34 cM), Clostridium_XIVa (chr4, 3.86 cM; chr14, two regions spanning 7.05 and 13.02 cM respectively), Pseudoflavonifractor (chr7, 12.80 cM) Parasutterella (chr14, 8.26 cM), Ruminococcus (chr16, two overlapping regions spanning 8.01 and 16.87 cM, respectively), Roseburia (chr19, 7.99 cM), and Odoribacter (chr22, three regions spanning 0.89, 5.57 and 1.71 cM, respectively), as well as the Shannon index of α diversity (chr3, 1.47 cM). Our study thus shows that, in families of IBD patients, pairwise genetic similarity for at least one IBD risk locus is associated with overall microbiome dissimilarity among discordant pairs of relatives, and that hitherto unknown genetic modifiers of microbiome traits are located in at least 12 human genomic regions.
Collapse
Affiliation(s)
- Arunabh Sharma
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Silke Szymczak
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Carolin Knecht
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Janna Enderle
- Institute of Epidemiology, Kiel University, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany,Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Kiel University, Kiel, Germany
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany,CONTACT Astrid Dempfle Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| |
Collapse
|
17
|
Liang M, Liu J, Chen W, He Y, Kahaer M, Li R, Tian T, Liu Y, Bai B, Cui Y, Yang S, Xiong W, Ma Y, Zhang B, Sun Y. Diagnostic model for predicting hyperuricemia based on alterations of the gut microbiome in individuals with different serum uric acid levels. Front Endocrinol (Lausanne) 2022; 13:925119. [PMID: 36237183 PMCID: PMC9553226 DOI: 10.3389/fendo.2022.925119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND We aimed to assess the differences in the gut microbiome among participants with different uric acid levels (hyperuricemia [HUA] patients, low serum uric acid [LSU] patients, and controls with normal levels) and to develop a model to predict HUA based on microbial biomarkers. METHODS We sequenced the V3-V4 variable region of the 16S rDNA gene in 168 fecal samples from HUA patients (n=50), LSU patients (n=61), and controls (n=57). We then analyzed the differences in the gut microbiome between these groups. To identify gut microbial biomarkers, the 107 HUA patients and controls were randomly divided (2:1) into development and validation groups and 10-fold cross-validation of a random forest model was performed. We then established three diagnostic models: a clinical model, microbial biomarker model, and combined model. RESULTS The gut microbial α diversity, in terms of the Shannon and Simpson indices, was decreased in LSU and HUA patients compared to controls, but only the decreases in the HUA group were significant (P=0.0029 and P=0.013, respectively). The phylum Proteobacteria (P<0.001) and genus Bacteroides (P=0.02) were significantly increased in HUA patients compared to controls, while the genus Ruminococcaceae_Ruminococcus was decreased (P=0.02). Twelve microbial biomarkers were identified. The area under the curve (AUC) for these biomarkers in the development group was 84.9% (P<0.001). Notably, an AUC of 89.1% (P<0.001) was achieved by combining the microbial biomarkers and clinical factors. CONCLUSIONS The combined model is a reliable tool for predicting HUA and could be used to assist in the clinical evaluation of patients and prevention of HUA.
Collapse
Affiliation(s)
- Meiting Liang
- Departent of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Department of Pathology, School of Basic Medical Sciences, XinJiang Second Medical College, Karamay, China
| | - Jingkun Liu
- Department of Oncology, The First Affiliated Hospital of XinJiang Medical University, Urumqi, China
| | - Wujin Chen
- Department of Morphological Center, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Yi He
- Departent of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Department of Pathology, School of Basic Medical Sciences, XinJiang Second Medical College, Karamay, China
| | - Mayina Kahaer
- Departent of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Rui Li
- Department of Human Parasitology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Tingting Tian
- Departent of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Yezhou Liu
- Departent of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Bing Bai
- Departent of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Yuena Cui
- Departent of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Shanshan Yang
- Department of Clinical Laboratory, Xinjiang Medical University Affiliated Fifth People’s Hospital, Urumqi, China
| | - Wenjuan Xiong
- Department of Clinical Laboratory, Xinjiang Medical University Affiliated Fifth People’s Hospital, Urumqi, China
| | - Yan Ma
- Department of Clinical Laboratory, Xinjiang Medical University Affiliated Second People’s Hospital, Urumqi, China
| | - Bei Zhang
- Departent of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Yuping Sun
- Departent of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Key Laboratory of Xinjiang Uygur Autonomous Region, Laboratory of Molecular Biology of Endemic Diseases, Urumqi, China
- *Correspondence: Yuping Sun,
| |
Collapse
|
18
|
Liu X, Zhao K, Jing N, Kong Q, Yang X. Epigallocatechin Gallate (EGCG) Promotes the Immune Function of Ileum in High Fat Diet Fed Mice by Regulating Gut Microbiome Profiling and Immunoglobulin Production. Front Nutr 2021; 8:720439. [PMID: 34616764 PMCID: PMC8488439 DOI: 10.3389/fnut.2021.720439] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 01/24/2023] Open
Abstract
This study aimed to investigate the regulatory effect of epigallocatechin gallate (EGCG) on the composition of the gut microbiome, the transcriptomic profiling of ileum, and their interplay in high fat diet (HFD) induced obese mice. Intragastric administration of EGCG to C57BL/6J mice for 14 consecutive weeks remarkably decreased HFD induced excessive fat deposition (p < 0.001), and the increment of serum TG, TC, HDL-C (p < 0.05), as well as improved glucose tolerance (p < 0.001). EGCG shifted the gut microbiota mainly by elevating the relative abundance of Parasutterrlla, Bacteroides, and Akkermansia (p < 0.01), decreasing that of norank_f_Erysipelotrichaceae, unclassified_f_Ruminococcaceae, Anaerotruncus, Roseburia, norank_Lachnospiraceae, and Lachnospiraceae_UCG_006 (p < 0.01) at the genus level. In addition, EGCG affected the transcriptomic profiling of ileum, and the differentially expressed (DE) genes after HFD or/and EGCG treatment were mostly enriched in the immune reaction of ileum, such as the GO term of “immune effector process” and “phagocytosis, recognition.” Furthermore, the KEGG category of “immune diseases,” “immune system,” and “infection diseases: bacterial” were commonly enriched by the DE genes of the two treatments. Among those DE genes, 16 immunoglobulins heavy chain variable region encoded genes (Ighvs) and other immunity-related genes, such as complement component 2 (C2), interferon-induced transmembrane protein 1 (Iftm1), polymeric immunoglobulin receptor (pigR), and alanyl aminopeptidase (Anpep), were highly correlated with the shifted microbes in the gut (p < 0.05, absolute r > 0.5). Overall, the results suggested that EGCG ameliorated the HFD induced metabolic disorder mainly by regulating gut microbiome profiling and the immunoglobulin production of ileum, while the genes expressed in the ileum, especially Ighvs, C2, Iftm1, pigR, and Anpep, might play important roles in coordinating the immunity of mice regarding the gut microbes and the host interactions.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.,Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Fresh-keeping, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Ke Zhao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.,Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Fresh-keeping, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Nana Jing
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Fresh-keeping, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Qingjun Kong
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Fresh-keeping, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Fresh-keeping, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|