1
|
Roy KK, Mehta DK, Das R. Reevaluating Alzheimer's disease treatment: Can phytochemicals bridge the therapeutic Gap? Neuroscience 2025; 575:1-18. [PMID: 40216186 DOI: 10.1016/j.neuroscience.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
Alzheimer's disease (AD) is a growing neurological disorder giving impact cognition and memory, posing a global health challenge with over 55 million individuals affected. It is the 7th foremost cause of dying worldwide, and its pervasiveness is expected to twofold in each five years, reaching 115 million by 2050. AD is characterized by neurofibrillary tangles, senile plaques, and oxidative stress, leading to synaptic failure and cognitive decline. Currently, there is no cure, and available FDA-approved drugs provide only symptomatic relief. The disease progresses through five phases- mild cognitive impairment (MCI), very severe, severe, moderate and mild AD. Research on AD focuses on various neurodegenerative pathways, including inflammation, oxidative stress, genetic factors, environmental variables, and amyloid-beta accumulation. Existing FDA-accepted drugs, like rivastigmine, memantine, galantamine, and donepezil, primarily address early symptoms but have limitations, including side effects and high costs. In this context, phytochemicals from plants, such as resveratrol, huperzine, quercetin, galantamine, and rosmarinic acid, show promise as potential treatments for AD and overcome the challenges and limitation of conventional treatment. These natural substances are being investigated for their ability to lower the risk of AD safely. However, there is a lack of comprehensive knowledge about their application, necessitating further research and clinical trials to explore their potential benefits and limitations. This review serves as an essential reference for advancing future studies on Alzheimer's disease. By thoroughly analyzing neurodegenerative pathways, addressing drug limitations, and highlighting the potential of phytochemicals, we establish a strong foundation for developing innovative therapeutic strategies. Closing the knowledge gap related to the use of phytochemicals in Alzheimer's management is not just important; it is critical for creating novel and more effective treatments for this challenging neurological condition.
Collapse
Affiliation(s)
- Kishor Kumar Roy
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Dinesh Kumar Mehta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Rina Das
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India.
| |
Collapse
|
2
|
Shardell M, Chen C. Genetic geroscience and Alzheimer's disease: The pleiotropy is the point! J Alzheimers Dis 2025; 104:1001-1005. [PMID: 40026006 DOI: 10.1177/13872877251321182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Geroscience aims to understand how the biology of aging serves as a shared contributor to multiple age-related health conditions. Genetic variants that influence multiple traits are said to exert pleiotropic effects. The study by Pan and colleagues applied a modern statistical model to identify genetic variants with potentially pleiotropic effects by assessing their joint association with Alzheimer's disease and related dementias and another age-related comorbidity (e.g., coronary heart disease, hyperlipidemia, cancer). Motivated by Pan and colleagues, this commentary introduces the concept of genetic geroscience as a paradigm for identifying genetic variants with potentially pleotropic effects on multiple age-related health conditions.
Collapse
Affiliation(s)
- Michelle Shardell
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chixiang Chen
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Perks CM, Barker RM, Alhadrami M, Alkahtani O, Gill E, Grishaw M, Harland AJ, Henley P, Li H, O’Sullivan E, Stone G, Su X, Kehoe PG. Curious Dichotomies of Apolipoprotein E Function in Alzheimer's Disease and Cancer-One Explanatory Mechanism of Inverse Disease Associations? Genes (Basel) 2025; 16:331. [PMID: 40149482 PMCID: PMC11942319 DOI: 10.3390/genes16030331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
An apparent "inverse" relationship exists between two seemingly unconnected conditions, Alzheimer's disease (AD) and cancer, despite sharing similar risk factors, like increased age and obesity. AD is associated with amyloid beta (Aβ) plaques and neurofibrillary tau tangles that cause neural degeneration; cancer, in contrast, is characterized by enhanced cell survival and proliferation. Apolipoprotein E (ApoE) is the main lipoprotein found in the central nervous system and via its high affinity with lipoprotein receptors plays a critical role in cholesterol transport and uptake. ApoE has 3 protein isoforms, ApoE E2, ApoE E3, and ApoE E4, respectively encoded for by 3 allelic variants of APOE (ε2, ε3, and ε4). This review examines the characteristics and function of ApoE described in both AD and cancer to assimilate evidence for its potential contribution to mechanisms that may underly the reported inverse association between the two conditions. Of the genetic risk factors relevant to most cases of AD, the most well-known with the strongest contribution to risk is APOE, specifically the ε4 variant, whereas for cancer risk, APOE has not featured as a significant genetic contributor to risk. However, at the protein level in both conditions, ApoE contributes to disease pathology via affecting lipid physiology and transport. In AD, Aβ-dependent and -independent interactions have been suggested, whereas in cancer, ApoE plays a role in immunoregulation. Understanding the mechanism of action of ApoE in these diametrically opposed diseases may enable differential targeting of therapeutics to provide a beneficial outcome for both.
Collapse
Affiliation(s)
- Claire M. Perks
- Cancer Endocrinology Group, Bristol Medical School, Learning & Research Building, Level 2, Southmead Hospital, Bristol BS10 5NB, UK; (R.M.B.); (M.A.); (O.A.); (E.G.); (A.J.H.); (H.L.); (X.S.)
| | - Rachel M. Barker
- Cancer Endocrinology Group, Bristol Medical School, Learning & Research Building, Level 2, Southmead Hospital, Bristol BS10 5NB, UK; (R.M.B.); (M.A.); (O.A.); (E.G.); (A.J.H.); (H.L.); (X.S.)
| | - Mai Alhadrami
- Cancer Endocrinology Group, Bristol Medical School, Learning & Research Building, Level 2, Southmead Hospital, Bristol BS10 5NB, UK; (R.M.B.); (M.A.); (O.A.); (E.G.); (A.J.H.); (H.L.); (X.S.)
| | - Omar Alkahtani
- Cancer Endocrinology Group, Bristol Medical School, Learning & Research Building, Level 2, Southmead Hospital, Bristol BS10 5NB, UK; (R.M.B.); (M.A.); (O.A.); (E.G.); (A.J.H.); (H.L.); (X.S.)
| | - Emily Gill
- Cancer Endocrinology Group, Bristol Medical School, Learning & Research Building, Level 2, Southmead Hospital, Bristol BS10 5NB, UK; (R.M.B.); (M.A.); (O.A.); (E.G.); (A.J.H.); (H.L.); (X.S.)
| | - Mary Grishaw
- Cerebrovascular and Dementia Research Group, Bristol Medical School, Learning & Research Building, Level 2, Southmead Hospital, Bristol BS10 5NB, UK; (M.G.); (P.H.); (E.O.); (G.S.)
| | - Abigail J. Harland
- Cancer Endocrinology Group, Bristol Medical School, Learning & Research Building, Level 2, Southmead Hospital, Bristol BS10 5NB, UK; (R.M.B.); (M.A.); (O.A.); (E.G.); (A.J.H.); (H.L.); (X.S.)
| | - Peter Henley
- Cerebrovascular and Dementia Research Group, Bristol Medical School, Learning & Research Building, Level 2, Southmead Hospital, Bristol BS10 5NB, UK; (M.G.); (P.H.); (E.O.); (G.S.)
| | - Haonan Li
- Cancer Endocrinology Group, Bristol Medical School, Learning & Research Building, Level 2, Southmead Hospital, Bristol BS10 5NB, UK; (R.M.B.); (M.A.); (O.A.); (E.G.); (A.J.H.); (H.L.); (X.S.)
| | - Ellie O’Sullivan
- Cerebrovascular and Dementia Research Group, Bristol Medical School, Learning & Research Building, Level 2, Southmead Hospital, Bristol BS10 5NB, UK; (M.G.); (P.H.); (E.O.); (G.S.)
| | - Gideon Stone
- Cerebrovascular and Dementia Research Group, Bristol Medical School, Learning & Research Building, Level 2, Southmead Hospital, Bristol BS10 5NB, UK; (M.G.); (P.H.); (E.O.); (G.S.)
| | - Xiaoyu Su
- Cancer Endocrinology Group, Bristol Medical School, Learning & Research Building, Level 2, Southmead Hospital, Bristol BS10 5NB, UK; (R.M.B.); (M.A.); (O.A.); (E.G.); (A.J.H.); (H.L.); (X.S.)
| | - Patrick G. Kehoe
- Cerebrovascular and Dementia Research Group, Bristol Medical School, Learning & Research Building, Level 2, Southmead Hospital, Bristol BS10 5NB, UK; (M.G.); (P.H.); (E.O.); (G.S.)
| |
Collapse
|
4
|
Li X, Liu C, Li W, Qi G, Dai Y, Gu C, Sun Y, Zhou W, Ciliberto VC, Liang J, Kumar S U, Guan D, Hu Z, Zheng H, Liu Z, Chen H, Wan Y, Sun Z. Multi-omics delineate growth factor network underlying exercise effects in an Alzheimer's mouse model. Alzheimers Dement 2025; 21:e70024. [PMID: 40156268 PMCID: PMC11953571 DOI: 10.1002/alz.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION Physical exercise is a primary defense against age-related cognitive decline and Alzheimer's disease (AD). METHODS We conducted single-nucleus transcriptomic and chromatin accessibility analyses (snRNA-seq and snATAC-seq) on the hippocampus of mice carrying mutations in the amyloid precursor protein gene (APPNL-G-F) following prolonged voluntary wheel-running exercise. RESULTS Exercise mitigates amyloid-induced changes in transcriptome and chromatin accessibility through cell type-specific regulatory networks converging on growth factor signaling, particularly the epidermal growth factor receptor (EGFR) signaling. The beneficial effects of exercise on neurocognition can be blocked by pharmacological inhibition of EGFR and its downstream PI3K signaling. Exercise leads to elevated levels of heparin-binding EGF (HB-EGF), and intranasal administration of HB-EGF enhances memory function in sedentary APPNL-G-F mice. DISCUSSION These findings offer a panoramic delineation of cell type-specific hippocampal transcriptional networks activated by exercise and suggest EGFR signaling as a druggable contributor to exercise-induced memory enhancement to combat AD-related cognitive decline. HIGHLIGHTS snRNA-seq and snATAC-seq analysis of APPNL-G-F mice after prolonged wheel-running. Exercise counteracts amyloid-induced transcriptomic and accessibility changes. Networks converge on the activation of EGFR and insulin signaling. Pharmacological inhibition of EGFR and PI3K blocked cognitive benefits of exercise. Intranasal HB-EGF administration enhances memory in sedentary APPNL-G-F mice.
Collapse
Affiliation(s)
- Xin Li
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Chaozhong Liu
- Department of PediatricsJan and Dan Duncan Neurological Research Institute, Baylor College of MedicineHoustonTexasUSA
- Jan and Dan Duncan Neurologic Research InstituteTexas Children's HospitalHoustonTexasUSA
- Graduate School of Biomedical Sciences, Program in Quantitative & Computational BiosciencesBaylor College of MedicineHoustonTexasUSA
| | - Wenbo Li
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Guantong Qi
- Jan and Dan Duncan Neurologic Research InstituteTexas Children's HospitalHoustonTexasUSA
- Graduate School of Biomedical Sciences, Program in GeneticsBaylor College of MedicineHoustonTexasUSA
| | - Yanwan Dai
- Department of PediatricsJan and Dan Duncan Neurological Research Institute, Baylor College of MedicineHoustonTexasUSA
| | - Chaohao Gu
- Department of PediatricsJan and Dan Duncan Neurological Research Institute, Baylor College of MedicineHoustonTexasUSA
- Jan and Dan Duncan Neurologic Research InstituteTexas Children's HospitalHoustonTexasUSA
- Graduate School of Biomedical Sciences, Program in Quantitative & Computational BiosciencesBaylor College of MedicineHoustonTexasUSA
| | - Yuxiang Sun
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Wenjun Zhou
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Veronica C. Ciliberto
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Jing Liang
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Peking University Health Science CenterBeijingChina
| | - Udhaya Kumar S
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Dongyin Guan
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Zhaoyong Hu
- Department of Medicine – NephrologyBaylor College of MedicineHoustonTexasUSA
| | - Hui Zheng
- Huffington Center on AgingBaylor College of MedicineHoustonTexasUSA
| | - Zhandong Liu
- Department of PediatricsJan and Dan Duncan Neurological Research Institute, Baylor College of MedicineHoustonTexasUSA
- Jan and Dan Duncan Neurologic Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hu Chen
- Department of PediatricsJan and Dan Duncan Neurological Research Institute, Baylor College of MedicineHoustonTexasUSA
- Jan and Dan Duncan Neurologic Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Ying‐Wooi Wan
- Department of PediatricsJan and Dan Duncan Neurological Research Institute, Baylor College of MedicineHoustonTexasUSA
- Jan and Dan Duncan Neurologic Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Zheng Sun
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
- Huffington Center on AgingBaylor College of MedicineHoustonTexasUSA
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
5
|
Bao F, Yu L, Zhang X, Mu Q. Bidirectional association between breast cancer and dementia: a systematic review and meta-analysis of observational studies. PeerJ 2025; 13:e18888. [PMID: 39902325 PMCID: PMC11789662 DOI: 10.7717/peerj.18888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/31/2024] [Indexed: 02/05/2025] Open
Abstract
Background Cognitive decline following cancer treatment can vary from mild cognitive impairment to severe dementia. However, there is inconsistent evidence regarding the relationship between breast cancer survivors and their risk of developing dementia. This meta-analysis aims to consolidate observational studies to explore the bidirectional association between breast cancer and dementia risk. Methods We conducted a comprehensive search using medical subject headings (MeSH) and keywords across PubMed, Cochrane Library, and Embase databases to identify cohort, case-control, and cross-sectional studies examining the link between breast cancer and dementia risk. Statistical analysis was performed using Stata version 14.0, with a random effects model employed to account for heterogeneity. Publication bias was assessed using funnel plots and Egger's test. Results This meta-analysis included 13 studies with a total of 346,051 participants, up to June 20, 2024. Of these, seven studies investigated the risk of dementia among patients with breast cancer, revealing a lower risk [OR = 0.56, 95% CI [0.27-1.18], I2 = 99.1%, P = 0.128]. Similarly, seven studies explored the risk of breast cancer in individuals with dementia, showing a lower risk as well [OR = 0.79, 95% CI [0.51-1.22], I2 = 94.5%, P = 0.290]. Conclusion Our findings indicate that breast cancer is less likely to lead to dementia and that dementia is similarly low associated with risk of breast cancer. These insights are crucial for clinicians in guiding the prevention and monitoring of neurodegenerative conditions in patients with breast cancer.
Collapse
Affiliation(s)
- Fuxing Bao
- Department of Ultrasound, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot, Inner Mongolia, China
| | - Liang Yu
- Department of Ultrasound, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot, Inner Mongolia, China
| | - Xiaolei Zhang
- Department of Ultrasound, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot, Inner Mongolia, China
| | - Qier Mu
- Department of Ultrasound, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
6
|
Hosseininasab SSM, Ebrahimi R, Yaghoobpoor S, Kazemi K, Khakpour Y, Hajibeygi R, Mohamadkhani A, Fathi M, Vakili K, Tavasol A, Tutunchian Z, Fazel T, Fathi M, Hajiesmaeili M. Alzheimer's disease and infectious agents: a comprehensive review of pathogenic mechanisms and microRNA roles. Front Neurosci 2025; 18:1513095. [PMID: 39840010 PMCID: PMC11747386 DOI: 10.3389/fnins.2024.1513095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Alzheimer's Disease (AD) is the most prevalent type of dementia and is characterized by the presence of senile plaques and neurofibrillary tangles. There are various theories concerning the causes of AD, but the connection between viral and bacterial infections and their potential role in the pathogenesis of AD has become a fascinating area of research for the field. Various viruses such as Herpes simplex virus 1 (HSV-1), Epstein-Barr virus (EBV), Cytomegalovirus (CMV), influenza viruses, and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), as well as bacteria such as Chlamydia pneumoniae (CP), Helicobacter pylori (HP), Porphyromonas gingivalis (P. gingivalis), Spirochetes and eukaryotic unicellular parasites (e.g., Toxoplasma gondii), have been linked to AD due to their ability to activate the immune system, induce inflammation and increase oxidative stress, thereby leading to cognitive decline and AD. In addition, microRNAs (miRNAs) might play a crucial role in the pathogenesis mechanisms of these pathogens since they are utilized to target various protein-coding genes, allowing for immune evasion, maintaining latency, and suppressing cellular signaling molecules. Also, they can regulate gene expression in human cells. This article provides an overview of the association between AD and various infectious agents, with a focus on the mechanisms by which these pathogens may be related to the pathogenesis of AD. These findings suggest important areas for further research to be explored in future studies.
Collapse
Affiliation(s)
- Seyyed Sam Mehdi Hosseininasab
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiarash Kazemi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Khakpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramtin Hajibeygi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Tavasol
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Tutunchian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tara Fazel
- Student Research Committee, School of International Campus, Guilan University of Medical Sciences, Tehran, Iran
| | - Mohammad Fathi
- Department of Anesthesiology, Critical Care Quality Improvement Research Center, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Bandaru M, Sultana OF, Islam MA, Rainier A, Reddy PH. Rlip76 in ageing and Alzheimer's disease: Focus on oxidative stress and mitochondrial mechanisms. Ageing Res Rev 2025; 103:102600. [PMID: 39617058 DOI: 10.1016/j.arr.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
RLIP76 (Rlip), a stress-responsive protein, plays a multifaceted role in cellular function. This protein acts primarily as a glutathione-electrophile conjugate (GS-E) transporter, crucial for detoxifying hazardous compounds and converting them into mercapturic acids. RLIP76 also modulates cytoskeletal motility and membrane plasticity through its role in the Ral-signaling pathway, interacting with RalA and RalB, key small GTPases involved in growth and metastasis. Beyond its ATP-dependent transport functions in various tissues, RLIP76 also demonstrates GTPase Activating Protein (GAP) activity towards Rac1 and Cdc42, with a preference for Ral-GTP over Ral-GDP. Its functions span critical physiological processes including membrane dynamics, oxidative stress response, and mitochondrial dynamics. The protein's widespread expression and evolutionary conservation underscore its significance. Our lab discovered that Rlip interacts with Alzheimer's disease (AD) proteins, amyloid beta and phosphorylated and induce oxidative stress, mitochondrial dysfnction and synaptic damage in AD. Our in vitro studies revealed that overexpression of Rlip reduces mitochondrial abnormalities. Further, our in vivo studies (Rlip+/- mice) revealed that a partial reduction of Rlip in mice (Rlip+/-), leads to mitochondrial abnormalities, elevated oxidative stress, and cognitive deficits resembling late-onset AD, emphasizing the protein's crucial role in neuronal health and disease. Finally, we discuss the experimental cross-breedings of overexpression of mice Rlip TG/TG or Rlip + /- mice with Alzheimer's disease models - earlyonset 5XFAD, late-onset APPKI and Tau transgenic mice, providing new insights into RLIP76's role in AD progression and development. This review summarizes RLIP76's structure, function, and cellular pathways, highlighting its implications in AD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Alvir Rainier
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
8
|
Puerta R, Cano A, García-González P, García-Gutiérrez F, Capdevila M, de Rojas I, Olivé C, Blázquez-Folch J, Sotolongo-Grau O, Miguel A, Montrreal L, Martino-Adami P, Khan A, Orellana A, Sung YJ, Frikke-Schmidt R, Marchant N, Lambert JC, Rosende-Roca M, Alegret M, Fernández MV, Marquié M, Valero S, Tárraga L, Cruchaga C, Ramírez A, Boada M, Smets B, Cabrera-Socorro A, Ruiz A. Head-to-Head Comparison of Aptamer- and Antibody-Based Proteomic Platforms in Human Cerebrospinal Fluid Samples from a Real-World Memory Clinic Cohort. Int J Mol Sci 2024; 26:286. [PMID: 39796148 PMCID: PMC11720409 DOI: 10.3390/ijms26010286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
High-throughput proteomic platforms are crucial to identify novel Alzheimer's disease (AD) biomarkers and pathways. In this study, we evaluated the reproducibility and reliability of aptamer-based (SomaScan® 7k) and antibody-based (Olink® Explore 3k) proteomic platforms in cerebrospinal fluid (CSF) samples from the Ace Alzheimer Center Barcelona real-world cohort. Intra- and inter-platform reproducibility were evaluated through correlations between two independent SomaScan® assays analyzing the same samples, and between SomaScan® and Olink® results. Association analyses were performed between proteomic measures, CSF biological traits, sample demographics, and AD endophenotypes. Our 12-category metric of reproducibility combining correlation analyses identified 2428 highly reproducible SomaScan CSF measures, with over 600 proteins well reproduced on another proteomic platform. The association analyses among AD clinical phenotypes revealed that the significant associations mainly involved reproducible proteins. The validation of reproducibility in these novel proteomics platforms, measured using this scarce biomaterial, is essential for accurate analysis and proper interpretation of innovative results. This classification metric could enhance confidence in multiplexed proteomic platforms and improve the design of future panels.
Collapse
Affiliation(s)
- Raquel Puerta
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- PhD Program in Biotecnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Amanda Cano
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Pablo García-González
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Fernando García-Gutiérrez
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
| | - Maria Capdevila
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Clàudia Olivé
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
| | - Josep Blázquez-Folch
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
| | - Oscar Sotolongo-Grau
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
| | - Andrea Miguel
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
| | - Laura Montrreal
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
| | - Pamela Martino-Adami
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (P.M.-A.); (A.R.)
| | - Asif Khan
- Janssen Pharmaceutica NV, a Johnson & Johnson Company, 2340 Beerse, Belgium; (A.K.); (B.S.); (A.C.-S.)
| | - Adelina Orellana
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Yun Ju Sung
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63108, USA; (Y.J.S.); (C.C.)
- Hope Center for Neurological Disorders, Washington University, St. Louis, MO 63110, USA
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Natalie Marchant
- Division of Psychiatry, University College London, London W1T 7NK, UK;
| | - Jean Charles Lambert
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Université de Lille, F-59000 Lille, France;
- Institut Pasteur de Lille, Inserm U1167, CHU de Lille, LabEx DISTALZ, Université de Lille, F-59000 Lille, France
| | - Maitée Rosende-Roca
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
| | - Montserrat Alegret
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Maria Victoria Fernández
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Sergi Valero
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Lluís Tárraga
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Carlos Cruchaga
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63108, USA; (Y.J.S.); (C.C.)
- Hope Center for Neurological Disorders, Washington University, St. Louis, MO 63110, USA
| | - Alfredo Ramírez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (P.M.-A.); (A.R.)
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, Medical Faculty, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department of Psychiatry and Glenn, Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX 78229, USA
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Mercè Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Bart Smets
- Janssen Pharmaceutica NV, a Johnson & Johnson Company, 2340 Beerse, Belgium; (A.K.); (B.S.); (A.C.-S.)
| | - Alfredo Cabrera-Socorro
- Janssen Pharmaceutica NV, a Johnson & Johnson Company, 2340 Beerse, Belgium; (A.K.); (B.S.); (A.C.-S.)
| | - Agustín Ruiz
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain; (R.P.); (A.C.); (P.G.-G.); (F.G.-G.); (M.C.); (I.d.R.); (C.O.); (J.B.-F.); (O.S.-G.); (A.M.); (L.M.); (A.O.); (M.R.-R.); (M.A.); (M.V.F.); (M.M.); (S.V.); (L.T.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, 28029 Madrid, Spain
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX 77204, USA
| |
Collapse
|
9
|
Barker RM, Chambers A, Kehoe PG, Rowe E, Perks CM. Untangling the role of tau in sex hormone responsive cancers: lessons learnt from Alzheimer's disease. Clin Sci (Lond) 2024; 138:1357-1369. [PMID: 39469929 PMCID: PMC11522895 DOI: 10.1042/cs20230317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/20/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Tubulin associated unit has been extensively studied in neurodegenerative diseases including Alzheimer's disease (AD), whereby its hyperphosphorylation and accumulation contributes to disease pathogenesis. Tau is abundantly expressed in the central nervous system but is also present in non-neuronal tissues and in tumours including sex hormone responsive cancers such as breast and prostate. Curiously, hormonal effects on tau also exist in an AD context from numerous studies on menopause, hormone replacement therapy, and androgen deprivation therapy. Despite sharing some risk factors, most importantly advancing age, there are numerous reports from population studies of, currently poorly explained inverse associations between cancer and Alzheimer's disease. We previously reviewed important components of the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) signalling pathway and their differential modulation in relation to the two diseases. Similarly, receptor tyrosine kinases, estrogen receptor and androgen receptor have all been implicated in the pathogenesis of both cancer and AD. In this review, we focus on tau and its effects in hormone responsive cancer in terms of development, progression, and treatment and in relation to sex hormones and PI3K/Akt signalling molecules including IRS-1, PTEN, Pin1, and p53.
Collapse
Affiliation(s)
- Rachel M. Barker
- Cancer Endocrinology Group, Learning & Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK
| | - Alfie Chambers
- Cancer Endocrinology Group, Learning & Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK
| | - Patrick G. Kehoe
- Department of Urology, Bristol Urological Institute, Southmead Hospital, Bristol BS10 5NB, UK
| | - Edward Rowe
- Dementia Research Group, Learning & Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK
| | - Claire M. Perks
- Cancer Endocrinology Group, Learning & Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK
| |
Collapse
|
10
|
Shardell M, Rathbun AM, Gruber-Baldini A, Ryan AS, Guralnik J, Kapogiannis D, Simonsick EM. The inverse association between cancer history and incident cognitive impairment: Addressing attrition bias. Alzheimers Dement 2024; 20:7902-7912. [PMID: 39324538 PMCID: PMC11567823 DOI: 10.1002/alz.14268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Cancer is inversely associated with cognitive impairment. Whether this is due to statistical handling of attrition (death and censoring) is unknown. METHODS We quantified associations between cancer history and incident cognitive impairment among Health, Aging, and Body Composition Study participants without baseline cognitive impairment or stroke (n = 2604) using multiple competing-risks models and their corresponding estimands: cause-specific, subdistribution, and marginal hazards, plus composite-outcome (cognitive impairment or all-cause mortality) hazards. All-cause mortality was also modeled. RESULTS After covariate adjustment (demographics, apolipoprotein E ε4, lifestyle, health conditions), cause-specific and marginal hazard ratios (HRs) were similar to each other (≈ 0.84; P values < 0.05). The subdistribution HR was 0.764 (95% confidence interval [CI] = 0.645-0.906), and composite-outcome Cox model HR was 1.149 (95% CI = 1.016-1.299). Cancer history was positively associated with all-cause mortality (HR = 1.813; 95% CI = 1.525-2.156). DISCUSSION Cause-specific, subdistribution, and marginal hazards models produced inverse associations between cancer and cognitive impairment. Competing risk models answer slightly different questions, and estimand choice influenced findings here. HIGHLIGHTS Cancer history is inversely associated with incident cognitive impairment. Findings were robust to handling of competing risks of death. All models also addressed possible informative censoring bias. Cancer history was associated with 16% lower hazard of cognitive impairment. Cancer history was associated with 81% higher all-cause mortality hazard.
Collapse
Affiliation(s)
- Michelle Shardell
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alan M Rathbun
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ann Gruber-Baldini
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alice S Ryan
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Medicine, Baltimore VAMC, University of Maryland School of Medicine, Geriatric Research, Education and Clinical Center (GRECC), VA Maryland Health Care System, Baltimore, Maryland, USA
| | - Jack Guralnik
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dimitrios Kapogiannis
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Eleanor M Simonsick
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Huang LW, Shi Y, Boscardin WJ, Steinman MA. Cognitive Trajectories in Older Adults Diagnosed With Hematologic Malignant Neoplasms. JAMA Netw Open 2024; 7:e2431057. [PMID: 39212987 PMCID: PMC11365001 DOI: 10.1001/jamanetworkopen.2024.31057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Importance More people are surviving long-term after diagnosis with hematologic malignant neoplasm (HMN), yet there are limited data on cancer-related cognitive impairment in people with HMN. Better understanding cognitive outcomes after HMN in older adults is important for patient counseling and management. Objective To model cognitive trajectories and rates of cognitive decline before and after HMN diagnosis in older adults compared with a matched noncancer cohort. Design, Setting, and Participants In this population-based cohort study, older adults from the Health and Retirement Study (HRS) diagnosed with HMN between 1998 and 2016 after age 65 years were matched 1:3 to participants without cancer from the same HRS wave using propensity scores incorporating variables relevant to cognition. Cognitive trajectories were modeled with piecewise linear splines, and rates of cognitive decline before, during, and after diagnosis were compared in the 2 groups. Data were analyzed from April 2022 to April 2024. Exposures HMN diagnosis by Medicare diagnosis codes. Main Outcomes and Measures Cognitive function was assessed by the Langa-Weir cognitive summary score from 1992 to 2020. Sociodemographic and health-related variables relevant to cognition were incorporated into propensity scores. Results At baseline, there were 668 participants in the HMN cohort (mean [SD] age, 76.8 [7.6] years; 343 [51.3%] male; 72 [10.8%] Black, 33 [4.9%] Hispanic, and 585 [87.6%] White) and 1994 participants in the control cohort (mean [SD] age, 76.5 [7.3] years; 1020 [51.2%] male; 226 [11.3%] Black, 91 [4.6%] Hispanic, and 1726 [86.6%] White). The HMN cohort consisted predominantly of more indolent diagnoses, and only 96 patients (14.4%) received chemotherapy. Before and in the 2 years around the time of diagnosis, the HMN and control cohorts had similar rates of cognitive decline. At 1 year postdiagnosis and beyond, the rate of cognitive decline was slower in the HMN cohort (-0.18; 95% CI, -0.23 to -0.14) than in the control group (-0.24; 95% CI, -0.26 to -0.23) (P = .02), but this difference was no longer significant after accounting for the competing risk of death (HMN group, -0.27; 95% CI, -0.34 to -0.19; control group, -0.30; 95% CI, -0.33 to -0.27; P = .48). Conclusions and Relevance In this cohort study of older adults, the HMN and matched noncancer control cohorts had similar rates of cognitive decline before, during, and after diagnosis after accounting for the competing risk of death.
Collapse
Affiliation(s)
- Li-Wen Huang
- Division of Hematology/Oncology, Department of Medicine, San Francisco Veterans Affairs Medical Center, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco
| | - Ying Shi
- Division of Geriatrics, University of California San Francisco
- San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - W. John Boscardin
- Division of Geriatrics, University of California San Francisco
- San Francisco Veterans Affairs Health Care System, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Michael A. Steinman
- Division of Geriatrics, University of California San Francisco
- San Francisco Veterans Affairs Health Care System, San Francisco, California
| |
Collapse
|
12
|
Sepúlveda-Lara A, Sepúlveda P, Marzuca-Nassr GN. Resistance Exercise Training as a New Trend in Alzheimer's Disease Research: From Molecular Mechanisms to Prevention. Int J Mol Sci 2024; 25:7084. [PMID: 39000191 PMCID: PMC11241132 DOI: 10.3390/ijms25137084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease is a pathology characterized by the progressive loss of neuronal connections, which leads to gray matter atrophy in the brain. Alzheimer's disease is the most prevalent type of dementia and has been classified into two types, early onset, which has been associated with genetic factors, and late onset, which has been associated with environmental factors. One of the greatest challenges regarding Alzheimer's disease is the high economic cost involved, which is why the number of studies aimed at prevention and treatment have increased. One possible approach is the use of resistance exercise training, given that it has been shown to have neuroprotective effects associated with Alzheimer's disease, such as increasing cortical and hippocampal volume, improving neuroplasticity, and promoting cognitive function throughout the life cycle. However, how resistance exercise training specifically prevents or ameliorates Alzheimer's disease has not been fully characterized. Therefore, the aim of this review was to identify the molecular basis by which resistance exercise training could prevent or treat Alzheimer's disease.
Collapse
Affiliation(s)
- Alexis Sepúlveda-Lara
- Doctorado en Ciencias mención Biología Celular y Molecular Aplicada, Facultad de Ciencias Agropecuarias, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Paulina Sepúlveda
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Gabriel Nasri Marzuca-Nassr
- Departamento de Ciencias de la Rehabilitación, Facultad de Medicina, Universidad de la Frontera, Temuco 4811230, Chile
| |
Collapse
|
13
|
Lee HJ, Choi HJ, Jeong YJ, Na YH, Hong JT, Han JM, Hoe HS, Lim KH. Developing theragnostics for Alzheimer's disease: Insights from cancer treatment. Int J Biol Macromol 2024; 269:131925. [PMID: 38685540 DOI: 10.1016/j.ijbiomac.2024.131925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The prevalence of Alzheimer's disease (AD) and its associated economic and societal burdens are on the rise, but there are no curative treatments for AD. Interestingly, this neurodegenerative disease shares several biological and pathophysiological features with cancer, including cell-cycle dysregulation, angiogenesis, mitochondrial dysfunction, protein misfolding, and DNA damage. However, the genetic factors contributing to the overlap in biological processes between cancer and AD have not been actively studied. In this review, we discuss the shared biological features of cancer and AD, the molecular targets of anticancer drugs, and therapeutic approaches. First, we outline the common biological features of cancer and AD. Second, we describe several anticancer drugs, their molecular targets, and their effects on AD pathology. Finally, we discuss how protein-protein interactions (PPIs), receptor inhibition, immunotherapy, and gene therapy can be exploited for the cure and management of both cancer and AD. Collectively, this review provides insights for the development of AD theragnostics based on cancer drugs and molecular targets.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Hee-Jeong Choi
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Yoo Joo Jeong
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yoon-Hee Na
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Ji Min Han
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| | - Hyang-Sook Hoe
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.
| | - Key-Hwan Lim
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| |
Collapse
|
14
|
Huang J, Deng A, Bai Y, Li C, Shang H. Alzheimer's disease and oral manifestations: a bi-directional Mendelian randomization study. Front Neurol 2024; 15:1391625. [PMID: 38817545 PMCID: PMC11138153 DOI: 10.3389/fneur.2024.1391625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Background Epidemiological studies have provided evidence suggesting an association between Alzheimer's disease (AD) and various oral manifestations. However, conflicting conclusions have been drawn, and whether a causal association truly exists remains unclear. Methods In order to investigate the potential causal association between AD and prevalent oral diseases, we conducted a bi-directional two-sample Mendelian randomization analysis based on summary statistics from genome-wide association studies of AD (N = 63,926), as well as mouth ulcer (N = 461,103), oral cavity cancer (N = 4,151), and periodontal disease (N = 527,652). Results We identified that one standard increase in the risk of AD was causally associated with a reduced risk of oral cavity cancer (OR = 0.76, 95% CI: 0.63-0.92, p = 3.73 × 10-3). In the opposite direction, oral conditions were not causally associated with risk of AD. Conclusion The present findings contributed to a better understanding of the correlation between AD and oral conditions, specifically oral cavity cancer. These results also identified new avenues for exploring the underlying mechanisms of oral cavity cancer.
Collapse
Affiliation(s)
- Jingxuan Huang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Deng
- Department of Neurology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
- Outpatient Department, West China Hospital, Sichuan University, Chengdu, China
| | - Yunshuang Bai
- Department of Neurology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
- Outpatient Department, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Li X, Liu C, Li W, Dai Y, Gu C, Zhou W, Ciliberto VC, Liang J, Udhaya KS, Guan D, Hu Z, Zheng H, Chen H, Liu Z, Wan YW, Sun Z. Multi-omics delineate growth factor network underlying exercise effects in an Alzheimer's mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592289. [PMID: 38746443 PMCID: PMC11092636 DOI: 10.1101/2024.05.02.592289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Physical exercise represents a primary defense against age-related cognitive decline and neurodegenerative disorders like Alzheimer's disease (AD). To impartially investigate the underlying mechanisms, we conducted single-nucleus transcriptomic and chromatin accessibility analyses (snRNA-seq and ATAC-seq) on the hippocampus of mice carrying AD-linked NL-G-F mutations in the amyloid precursor protein gene (APPNL-G-F) following prolonged voluntary wheel-running exercise. Our study reveals that exercise mitigates amyloid-induced changes in both transcriptomic expression and chromatin accessibility through cell type-specific transcriptional regulatory networks. These networks converge on the activation of growth factor signaling pathways, particularly the epidermal growth factor receptor (EGFR) and insulin signaling, correlating with an increased proportion of immature dentate granule cells and oligodendrocytes. Notably, the beneficial effects of exercise on neurocognitive functions can be blocked by pharmacological inhibition of EGFR and the downstream phosphoinositide 3-kinases (PI3K). Furthermore, exercise leads to elevated levels of heparin-binding EGF (HB-EGF) in the blood, and intranasal administration of HB-EGF enhances memory function in sedentary APPNL-G-F mice. These findings offer a panoramic delineation of cell type-specific hippocampal transcriptional networks activated by exercise and suggest EGF-related growth factor signaling as a druggable contributor to exercise-induced memory enhancement, thereby suggesting therapeutic avenues for combatting AD-related cognitive decline.
Collapse
Affiliation(s)
- Xin Li
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chaozhong Liu
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wenbo Li
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yanwan Dai
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chaohao Gu
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wenjun Zhou
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Veronica C. Ciliberto
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jing Liang
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Kumar. S Udhaya
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Dongyin Guan
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhaoyong Hu
- Department of Medicine – Nephrology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hu Chen
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhandong Liu
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ying-Wooi Wan
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zheng Sun
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas77030, USA
| |
Collapse
|
16
|
Ma L, Low YLC, Zhuo Y, Chu C, Wang Y, Fowler CJ, Tan ECK, Masters CL, Jin L, Pan Y. Exploring the association between cancer and cognitive impairment in the Australian Imaging Biomarkers and Lifestyle (AIBL) study. Sci Rep 2024; 14:4364. [PMID: 38388558 PMCID: PMC10884016 DOI: 10.1038/s41598-024-54875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
An inverse association between cancer and Alzheimer's disease (AD) has been demonstrated; however, the association between cancer and mild cognitive impairment (MCI), and the association between cancer and cognitive decline are yet to be clarified. The AIBL dataset was used to address these knowledge gaps. The crude and adjusted odds ratios for MCI/AD and cognitive decline were compared between participants with/without cancer (referred to as C+ and C- participants). A 37% reduction in odds for AD was observed in C+ participants compared to C- participants after adjusting for all confounders. The overall risk for MCI and AD in C+ participants was reduced by 27% and 31%, respectively. The odds of cognitive decline from MCI to AD was reduced by 59% in C+ participants after adjusting for all confounders. The risk of cognitive decline from MCI to AD was halved in C+ participants. The estimated mean change in Clinical Dementia Rating-Sum of boxes (CDR-SOB) score per year was 0.23 units/year higher in C- participants than in C+ participants. Overall, an inverse association between cancer and MCI/AD was observed in AIBL, which is in line with previous reports. Importantly, an inverse association between cancer and cognitive decline has also been identified.
Collapse
Affiliation(s)
- Liwei Ma
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yi Ling Clare Low
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yuanhao Zhuo
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Chenyin Chu
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yihan Wang
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Christopher J Fowler
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Edwin C K Tan
- The University of Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Liang Jin
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - Yijun Pan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
17
|
Wen J, Nasrallah IM, Abdulkadir A, Satterthwaite TD, Yang Z, Erus G, Robert-Fitzgerald T, Singh A, Sotiras A, Boquet-Pujadas A, Mamourian E, Doshi J, Cui Y, Srinivasan D, Skampardoni I, Chen J, Hwang G, Bergman M, Bao J, Veturi Y, Zhou Z, Yang S, Dazzan P, Kahn RS, Schnack HG, Zanetti MV, Meisenzahl E, Busatto GF, Crespo-Facorro B, Pantelis C, Wood SJ, Zhuo C, Shinohara RT, Gur RC, Gur RE, Koutsouleris N, Wolf DH, Saykin AJ, Ritchie MD, Shen L, Thompson PM, Colliot O, Wittfeld K, Grabe HJ, Tosun D, Bilgel M, An Y, Marcus DS, LaMontagne P, Heckbert SR, Austin TR, Launer LJ, Espeland M, Masters CL, Maruff P, Fripp J, Johnson SC, Morris JC, Albert MS, Bryan RN, Resnick SM, Fan Y, Habes M, Wolk D, Shou H, Davatzikos C. Genomic loci influence patterns of structural covariance in the human brain. Proc Natl Acad Sci U S A 2023; 120:e2300842120. [PMID: 38127979 PMCID: PMC10756284 DOI: 10.1073/pnas.2300842120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.
Collapse
Affiliation(s)
- Junhao Wen
- Laboratory of AI and Biomedical Science, Department of Neurology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ilya M. Nasrallah
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Radiology, University of Pennsylvania, Philadelphia, PA19104
| | - Ahmed Abdulkadir
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Theodore D. Satterthwaite
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Zhijian Yang
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Guray Erus
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Timothy Robert-Fitzgerald
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ashish Singh
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Aristeidis Sotiras
- Department of Radiology, Washington University School of Medicine, St. Louis, MO63110
| | - Aleix Boquet-Pujadas
- Biomedical Imaging Group, Department of Biomedical Engineering, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
| | - Elizabeth Mamourian
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Jimit Doshi
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Yuhan Cui
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Dhivya Srinivasan
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ioanna Skampardoni
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Jiong Chen
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Gyujoon Hwang
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Mark Bergman
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Jingxuan Bao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA19104
| | - Yogasudha Veturi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Zhen Zhou
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Shu Yang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA19104
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, LondonWC2R 2LS, United Kingdom
| | - Rene S. Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Hugo G. Schnack
- Department of Psychiatry, University Medical Center Utrecht, Utrecht 3584 CX Ut, Netherlands
| | - Marcus V. Zanetti
- Institute of Psychiatry, Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo05508-070, Brazil
| | - Eva Meisenzahl
- Department of Psychiatry and Psychotherapy, Heinrich Heine University, Düsseldorf40204, Germany
| | - Geraldo F. Busatto
- Institute of Psychiatry, Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo05508-070, Brazil
| | - Benedicto Crespo-Facorro
- Hospital Universitario Virgen del Rocio, School of Medicine, University of Sevilla,Sevilla41004, Spain
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Stephen J. Wood
- Orygen and the Centre for Youth Mental Health, Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Chuanjun Zhuo
- Key Laboratory of Real Tine Tracing of Brain Circuits in Psychiatry and Neurology, Department of Psychiatry, Tianjin Medical University, Tianjin300070, China
| | - Russell T. Shinohara
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Raquel E. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich 80539, Germany
| | - Daniel H. Wolf
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Andrew J. Saykin
- Indiana Alzheimer’s Disease Research Center, Department of Radiology, Indiana University School of Medicine, Indianapolis, IN46202-3082
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA19104
| | - Paul M. Thompson
- Imaging Genetics Center, Department of Neurology, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Olivier Colliot
- Institut du Cerveau, Sorbonne Université, Paris75013, France
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, German Center for Neurodegenerative Diseases, University Medicine Greifswald, Greifswald17475, Germany
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, German Center for Neurodegenerative Diseases, University Medicine Greifswald, Greifswald17475, Germany
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore21224, MD
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore21224, MD
| | - Daniel S. Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO63110
| | - Pamela LaMontagne
- Department of Radiology, Washington University School of Medicine, St. Louis, MO63110
| | - Susan R. Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA98195
| | - Thomas R. Austin
- Department of Epidemiology, University of Washington, Seattle, WA98195
| | - Lenore J. Launer
- Neuroepidemiology Section, Intramural Research Program, National Institute on Aging, Washington, MD20817
| | - Mark Espeland
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Divisions of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC27101
| | - Colin L. Masters
- Florey Institute of Neuroscience and Mental Health, Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC3010, Australia
| | - Paul Maruff
- Florey Institute of Neuroscience and Mental Health, Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC3010, Australia
| | - Jurgen Fripp
- Health and Biosecurity, Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD4029, Australia
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Institute, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI53792
| | - John C. Morris
- Knight Alzheimer Disease Research Center, Department of Neurology, Washington University in St. Louis, St. Louis, MO63110
| | - Marilyn S. Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - R. Nick Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA19104
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore21224, MD
| | - Yong Fan
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Mohamad Habes
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| | - David Wolk
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Neurology, University of Pennsylvania, Philadelphia, PA19104
| | - Haochang Shou
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Christos Davatzikos
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
18
|
Shafi O, Siddiqui G, Jaffry HA. The benign nature and rare occurrence of cardiac myxoma as a possible consequence of the limited cardiac proliferative/ regenerative potential: a systematic review. BMC Cancer 2023; 23:1245. [PMID: 38110859 PMCID: PMC10726542 DOI: 10.1186/s12885-023-11723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| | - Hassam A Jaffry
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
19
|
Yang H, Qin Q, Wang M, Yin Y, Li R, Tang Y. Crosstalk between peripheral immunity and central nervous system in Alzheimer's disease. Cell Immunol 2023; 391-392:104743. [PMID: 37451918 DOI: 10.1016/j.cellimm.2023.104743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
The significance of peripheral immunity in the pathogenesis and progression of Alzheimer's diseases (AD) has been recognized. Brain-infiltrated peripheral immune components transporting across the blood-brain barrier (BBB) may reshape the central immune environment. However, mechanisms of how these components open the BBB for AD occurrence and development and correlations between peripheral and central immunity have not been fully explored. Herein, we formulate a hypothesis whereby peripheral immunity as a critical factor allows AD to progress. Peripheral central immune cell crosstalk is associated with early AD pathology and related risk factors. The damaged BBB permits peripheral immune cells to enter the central immune system to deprive its immune privilege promoting the progression toward developing AD. This review summarizes the influences of risk factors on peripheral immunity, alongside their functions, highlighting the concept of peripheral and central immunity as an integrated system in AD pathogenesis, which has received scant attention before.
Collapse
Affiliation(s)
- Hanchen Yang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Meng Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yunsi Yin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ruiyang Li
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.
| |
Collapse
|
20
|
Maiese K. Innovative therapeutic strategies for cardiovascular disease. EXCLI JOURNAL 2023; 22:690-715. [PMID: 37593239 PMCID: PMC10427777 DOI: 10.17179/excli2023-6306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
As a significant non-communicable disease, cardiovascular disease is the leading cause of death for both men and women, comprises almost twenty percent of deaths in most racial and ethnic groups, can affect greater than twenty-five million individuals worldwide over the age of twenty, and impacts global economies with far-reaching financial challenges. Multiple factors can affect the onset of cardiovascular disease that include high serum cholesterol levels, elevated blood pressure, tobacco consumption and secondhand smoke exposure, poor nutrition, physical inactivity, obesity, and concurrent diabetes mellitus. Yet, addressing any of these factors cannot completely eliminate the onset or progression of cardiovascular disorders. Novel strategies are necessary to target underlying cardiovascular disease mechanisms. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), a histone deacetylase, can limit cardiovascular injury, assist with stem cell development, oversee metabolic homeostasis through nicotinamide adenine dinucleotide (NAD+) pathways, foster trophic factor protection, and control cell senescence through the modulation of telomere function. Intimately tied to SIRT1 pathways are mammalian forkhead transcription factors (FoxOs) which can modulate cardiac disease to reduce oxidative stress, repair microcirculation disturbances, and reduce atherogenesis through pathways of autophagy, apoptosis, and ferroptosis. AMP activated protein kinase (AMPK) also is critical among these pathways for the oversight of cardiac cellular metabolism, insulin sensitivity, mitochondrial function, inflammation, and the susceptibility to viral infections such as severe acute respiratory syndrome coronavirus that can impact cardiovascular disease. Yet, the relationship among these pathways is both intricate and complex and requires detailed insight to successfully translate these pathways into clinical care for cardiovascular disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
21
|
Yao Z, Dong H, Zhu J, Du L, Luo Y, Liu Q, Liu S, Lin Y, Wang L, Wang S, Wei W, Zhang K, Huang Q, Yu X, Zhao W, Xu H, Qiu X, Pan Y, Huang X, Jim Yeung SC, Zhang D, Zhang H. Age-related decline in hippocampal tyrosine phosphatase PTPRO is a mechanistic factor in chemotherapy-related cognitive impairment. JCI Insight 2023; 8:e166306. [PMID: 37485875 PMCID: PMC10443805 DOI: 10.1172/jci.insight.166306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
Chemotherapy-related cognitive impairment (CRCI) or "chemo brain" is a devastating neurotoxic sequela of cancer-related treatments, especially for the elderly individuals. Here we show that PTPRO, a tyrosine phosphatase, is highly enriched in the hippocampus, and its level is tightly associated with neurocognitive function but declined significantly during aging. To understand the protective role of PTPRO in CRCI, a mouse model was generated by treating Ptpro-/- female mice with doxorubicin (DOX) because Ptpro-/- female mice are more vulnerable to DOX, showing cognitive impairments and neurodegeneration. By analyzing PTPRO substrates that are neurocognition-associated tyrosine kinases, we found that SRC and EPHA4 are highly phosphorylated/activated in the hippocampi of Ptpro-/- female mice, with increased sensitivity to DOX-induced CRCI. On the other hand, restoration of PTPRO in the hippocampal CA3 region significantly ameliorate CRCI in Ptpro-/- female mice. In addition, we found that the plant alkaloid berberine (BBR) is capable of ameliorating CRCI in aged female mice by upregulating hippocampal PTPRO. Mechanistically, BBR upregulates PTPRO by downregulating miR-25-3p, which directly targeted PTPRO. These findings collectively demonstrate the protective role of hippocampal PTPRO against CRCI.
Collapse
Affiliation(s)
- Zhimeng Yao
- Department of Urology Surgery, and
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Hongmei Dong
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jianlin Zhu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Liang Du
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yichen Luo
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Qing Liu
- Department of Pathology, The First People‘s Hospital of Foshan, Foshan, Guangdong, China
| | - Shixin Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
| | - Yusheng Lin
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Graduate School, Shantou University Medical College, Shantou, Guangdong, China
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lu Wang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Shuhong Wang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Wei Wei
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Keke Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | | | - Xiaojun Yu
- National Key Disciplines, Department of Forensic and Pathology, and
| | - Weijiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, China
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Haiyun Xu
- Shantou University Mental Health Center
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofu Qiu
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
- Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China
| | - Xingxu Huang
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine and Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dianzheng Zhang
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Hao Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, and Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10:871. [PMID: 37508898 PMCID: PMC10376413 DOI: 10.3390/bioengineering10070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Almost three million individuals suffer from multiple sclerosis (MS) throughout the world, a demyelinating disease in the nervous system with increased prevalence over the last five decades, and is now being recognized as one significant etiology of cognitive loss and dementia. Presently, disease modifying therapies can limit the rate of relapse and potentially reduce brain volume loss in patients with MS, but unfortunately cannot prevent disease progression or the onset of cognitive disability. Innovative strategies are therefore required to address areas of inflammation, immune cell activation, and cell survival that involve novel pathways of programmed cell death, mammalian forkhead transcription factors (FoxOs), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and associated pathways with the apolipoprotein E (APOE-ε4) gene and severe acute respiratory syndrome coronavirus (SARS-CoV-2). These pathways are intertwined at multiple levels and can involve metabolic oversight with cellular metabolism dependent upon nicotinamide adenine dinucleotide (NAD+). Insight into the mechanisms of these pathways can provide new avenues of discovery for the therapeutic treatment of dementia and loss in cognition that occurs during MS.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
23
|
Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther 2023; 8:248. [PMID: 37386015 PMCID: PMC10310781 DOI: 10.1038/s41392-023-01484-7] [Citation(s) in RCA: 341] [Impact Index Per Article: 170.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
Amyloid β protein (Aβ) is the main component of neuritic plaques in Alzheimer's disease (AD), and its accumulation has been considered as the molecular driver of Alzheimer's pathogenesis and progression. Aβ has been the prime target for the development of AD therapy. However, the repeated failures of Aβ-targeted clinical trials have cast considerable doubt on the amyloid cascade hypothesis and whether the development of Alzheimer's drug has followed the correct course. However, the recent successes of Aβ targeted trials have assuaged those doubts. In this review, we discussed the evolution of the amyloid cascade hypothesis over the last 30 years and summarized its application in Alzheimer's diagnosis and modification. In particular, we extensively discussed the pitfalls, promises and important unanswered questions regarding the current anti-Aβ therapy, as well as strategies for further study and development of more feasible Aβ-targeted approaches in the optimization of AD prevention and treatment.
Collapse
Affiliation(s)
- Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Huaqiu Chen
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| |
Collapse
|
24
|
Koul B, Farooq U, Yadav D, Song M. Phytochemicals: A Promising Alternative for the Prevention of Alzheimer's Disease. Life (Basel) 2023; 13:life13040999. [PMID: 37109528 PMCID: PMC10144079 DOI: 10.3390/life13040999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that worsens with ageing and affects memory and cognitive function. Presently more than 55 million individuals are affected by AD all over the world, and it is a leading cause of death in old age. The main purpose of this paper is to review the phytochemical constituents of different plants that are used for the treatment of AD. A thorough and organized review of the existing literature was conducted, and the data under the different sections were found using a computerized bibliographic search through the use of databases such as PubMed, Web of Science, Google Scholar, Scopus, CAB Abstracts, MEDLINE, EMBASE, INMEDPLAN, NATTS, and numerous other websites. Around 360 papers were screened, and, out of that, 258 papers were selected on the basis of keywords and relevant information that needed to be included in this review. A total of 55 plants belonging to different families have been reported to possess different bioactive compounds (galantamine, curcumin, silymarin, and many more) that play a significant role in the treatment of AD. These plants possess anti-inflammatory, antioxidant, anticholinesterase, and anti-amyloid properties and are safe for consumption. This paper focuses on the taxonomic details of the plants, the mode of action of their phytochemicals, their safety, future prospects, limitations, and sustainability criteria for the effective treatment of AD.
Collapse
Affiliation(s)
- Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Usma Farooq
- Department of Botany, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Dhananjay Yadav
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
25
|
Yu X, Liu MM, Zheng CY, Liu YT, Wang Z, Wang ZY. Telomerase reverse transcriptase and neurodegenerative diseases. Front Immunol 2023; 14:1165632. [PMID: 37063844 PMCID: PMC10091515 DOI: 10.3389/fimmu.2023.1165632] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Neurodegenerative diseases (NDs) are chronic conditions that result in progressive damage to the nervous system, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and Amyotrophic lateral sclerosis (ALS). Age is a major risk factor for NDs. Telomere shortening is a biological marker of cellular aging, and telomerase reverse transcriptase (TERT) has been shown to slow down this process by maintaining telomere length. The blood-brain barrier (BBB) makes the brain a unique immune organ, and while the number of T cells present in the central nervous system is limited, they play an important role in NDs. Research suggests that NDs can be influenced by modulating peripheral T cell immune responses, and that TERT may play a significant role in T cell senescence and NDs. This review focuses on the current state of research on TERT in NDs and explores the potential connections between TERT, T cells, and NDs. Further studies on aging and telomeres may provide valuable insights for developing therapeutic strategies for age-related diseases.
Collapse
|
26
|
Xia W, Gao Z, Jiang X, Jiang L, Qin Y, Zhang D, Tian P, Wang W, Zhang Q, Zhang R, Zhang N, Xu S. Alzheimer's risk factor FERMT2 promotes the progression of colorectal carcinoma via Wnt/β-catenin signaling pathway and contributes to the negative correlation between Alzheimer and cancer. PLoS One 2022; 17:e0278774. [PMID: 36480537 PMCID: PMC9731493 DOI: 10.1371/journal.pone.0278774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence from epidemiological studies indicate that Alzheimer's disease (AD) has a negative relationship with the incidence of cancers. Whether the Alzheimer's genetic risk factor, named as fermitin family homolog-2 (FERMT2), plays a pivotal part in the progressive process of colorectal carcinoma (CRC) yet remains unclear. This study revealed that FERMT2 was upregulated in CRC tissues which predicted an unfavorable outcome of CRC using the PrognoScan web tool. FERMT2 was co-expressed with a variety of genes have been linked with CRC occurrence and implicated in the infiltration of immune cell in CRC tissues. Overexpressing FERMT2 promoted CRC progression with upregulation of Wnt/β-catenin signaling. Knockdown of FERMT2 suppressed the cell multiplication, colony formation rate, migration and invasion, along with the epithelial to mesenchymal transition (EMT) with downregulation Wnt/β-catenin proteins in cells of CRC, while overexpressing β-catenin reversed the inhibitory effects of silencing FERMT2 on the migration or invasion of CRC cells. Furthermore, Aβ1-42 treated HT22 cells induced downregulation of FERMT2 and inhibited the migration, invasion and EMT in co-cultured CT26 cells through Wnt/β-catenin signaling. Our results revealed that the downregulated FERMT2 gene during AD is prominently activated in CRC, which promotes its progression via Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Wenzhen Xia
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhaoyu Gao
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Hebei International Joint Research Center for Brain Science, Shijiazhuang, Hebei, China,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, Hebei, China
| | - Xia Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Key Laboratory for Colorectal Cancer Precision Diagnosis and Treatment of Hebei Province, Shijiazhuang, Hebei, China
| | - Lei Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Hebei International Joint Research Center for Brain Science, Shijiazhuang, Hebei, China,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, Hebei, China
| | - Yushi Qin
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Di Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pei Tian
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wanchang Wang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qi Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Hebei International Joint Research Center for Brain Science, Shijiazhuang, Hebei, China,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, Hebei, China
| | - Nan Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Hebei International Joint Research Center for Brain Science, Shijiazhuang, Hebei, China,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, Hebei, China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Hebei International Joint Research Center for Brain Science, Shijiazhuang, Hebei, China,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, Hebei, China,* E-mail:
| |
Collapse
|
27
|
Valentine D, Teerlink CC, Farnham JM, Rowe K, Kaddas H, Tschanz J, Kauwe JSK, Cannon-Albright LA. Comorbidity and Cancer Disease Rates among Those at High-Risk for Alzheimer's Disease: A Population Database Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192416419. [PMID: 36554301 PMCID: PMC9778263 DOI: 10.3390/ijerph192416419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 06/10/2023]
Abstract
(1) Importance: Alzheimer's disease (AD) is complex and only partially understood. Analyzing the relationship between other more treatable or preventable diseases and AD may help in the prevention and the eventual development of treatments for AD. Risk estimation in a high-risk population, rather than a population already affected with AD, may reduce some bias in risk estimates. (2) Objective: To examine the rates of various comorbidities and cancers in individuals at high-risk for AD, but without a clinical diagnosis, relative to individuals from the same population with normal AD risk. (3) Design, Setting, and Participants: We conducted a study using data from the Utah Population Database (UPDB). The UPDB contains linked data from the Utah Cancer Registry, Utah death certificates, the Intermountain Health patient population, and the University of Utah Health patient population. Subjects were selected based on the availability of ancestral data, linked health information, and self-reported biometrics. (4) Results: In total, 75,877 participants who were estimated to be at high risk for AD based on family history, but who did not have an active AD diagnosis, were analyzed. A lower incidence of diabetes (RR = 0.95, 95% CI [0.92,0.97], p < 0.001), hypertension (RR = 0.97, 95% CI [0.95,0.99], p < 0.001), and heart disease (RR = 0.95, 95% CI [0.93,0.98], p < 0.001) was found. There was no difference in rates of cerebrovascular disease or other forms of dementia. Of the 15 types of cancer analyzed: breast (RR = 1.23, 95% CI [1.16, 1.30], p < 0.001); colorectal (RR = 1.30, 95% CI [1.21, 1.39], p < 0.001); kidney (RR = 1.49, 95% CI (1.29, 1.72), p < 0.001); lung (RR = 1.25, 95% CI [1.13, 1.37], p < 0.001); non-Hodgkin's Lymphoma (RR = 1.29, 95% CI [1.15, 1.44], p < 0.001); pancreas (RR = 1.34, 95% CI [1.16, 1.55], p < 0.001); stomach (RR = 1.59, 95% CI [1.36, 1.86], p < 0.001); and bladder (RR = 1.40, 95% CI [1.25, 1.56], p < 0.001), cancers were observed in significant excess among individuals at high-risk for AD after correction for multiple testing. (5) Conclusions and Relevance: Since age is the greatest risk factor for the development of AD, individuals who reach more advanced ages are at increased risk of developing AD. Consistent with this, people with fewer comorbidities earlier in life are more likely to reach an age where AD becomes a larger risk. Our findings show that individuals at high risk for AD have a decreased incidence of various other diseases. This is further supported by our finding that our high-risk group was also found to have an increased incidence of various cancers, which also increase in risk with age. There is the possibility that a more meaningful or etiological relationship exists among these various comorbidities. Further research into the etiological relationship between AD and these comorbidities may elucidate these possible interactions.
Collapse
Affiliation(s)
- David Valentine
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Craig C. Teerlink
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - James M. Farnham
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Kerry Rowe
- National Oncology Program, Veterans Administration, Durham, NC 27705, USA
| | - Heydon Kaddas
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - JoAnn Tschanz
- Department of Psychology, Utah State University, Logan, UT 84322, USA
| | - John S. K. Kauwe
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Lisa A. Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| |
Collapse
|
28
|
Hao Y, Xie B, Fu X, Xu R, Yang Y. New Insights into lncRNAs in Aβ Cascade Hypothesis of Alzheimer's Disease. Biomolecules 2022; 12:biom12121802. [PMID: 36551230 PMCID: PMC9775548 DOI: 10.3390/biom12121802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, but its pathogenesis is not fully understood, and effective drugs to treat or reverse the progression of the disease are lacking. Long noncoding RNAs (lncRNAs) are abnormally expressed and deregulated in AD and are closely related to the occurrence and development of AD. In addition, the high tissue specificity and spatiotemporal specificity make lncRNAs particularly attractive as diagnostic biomarkers and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in AD is essential for developing new treatment strategies. In this review, we discuss the unique regulatory functions of lncRNAs in AD, ranging from Aβ production to clearance, with a focus on their interaction with critical molecules. Additionally, we highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets in AD and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Yitong Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Bo Xie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaoshu Fu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Rong Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
- Correspondence:
| |
Collapse
|
29
|
Li S, Wu L, Ma M, Yang L, Qin C. MicroRNA-668-3p regulates oxidative stress and cell damage induced by Aβ1-42 by targeting the OXR1/p53-p21 axis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:928. [PMID: 36172098 PMCID: PMC9511202 DOI: 10.21037/atm-22-3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022]
Abstract
Background Alzheimer’s disease (AD) is the most common type of dementia in old age and has become a serious social and medical problem threatening human health. We aimed to explore the mechanisms underlying AD development by screening for microRNAs (miRNAs) that affect AD progression and examining their role in AD development. Methods Hematoxylin-eosin (HE) staining, immunohistochemistry, and immunofluorescence (IF) were used to analyze the characteristics of the hippocampus, neuron cell separation, and related protein expression in mice. We used Gene Expression Omnibus (GEO) data analysis to screen miRNAs and mRNAs that affect AD progression, and quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blot analysis to determine changes in miRNA and mRNA levels before and after amyloid β (Aβ)1-42 induction. In addition, we used luciferase analysis to examine miRNA and mRNA binding and the effect of miRNA/mRNA interaction on neuronal cell proliferation. Apoptosis and reactive oxygen species (ROS) levels were examined using Cell Counting Kit-8 analysis and flow cytometry (FCM), respectively. The enzyme-linked immunosorbent assay was used to analyze changes in neuronal cell-secreted oxidative stress-related protein levels through miRNA/mRNA interaction. Results Oxidative stress levels were significantly increased in the AD mouse model. GEO data analysis revealed 67 dysregulated miRNAs, and miR-668-3p was identified as a potential therapeutic target for AD. We found that the AD and Aβ1-42-induced models showed an increase in miR-668-3p and a decrease in oxidation resistance 1 (OXR1) expression. The luciferase analysis results revealed that miR-668-3p may play a role in AD development by targeting OXR1 and promoting intracellular oxidative stress by activating p53-p21 signaling. The final rescue experiment also confirmed that Aβ1-42-induction decreased cell proliferation, increased apoptosis, increased cell cycle arrest, and promoted oxidative stress. Tenovin-1 (TEN) enhanced the effect of Aβ1-42, and the miR-668-3p inhibitor partially alleviated it, although the effect of the miR-668-3p inhibitor was weakened by TEN. Conclusions MiR-668-3p negatively regulated OXR1 expression by targeting OXR1, affecting p53-p21 protein signaling, and regulating cell damage and oxidative stress induced by Aβ1-42. Therefore, miR-668-3p may be a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Shengyu Li
- Department of Neurology, Wuming Hospital of Guangxi Medical University, Nanning, China.,Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lishuo Wu
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Neurology, The First People's Hospital of Nanning, Nanning, China
| | - Meigang Ma
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Longxiu Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
30
|
Yamato K, Ikeda A, Endo M, Filomeno R, Kiyohara K, Inada K, Nishimura K, Tanigawa T. An association between cancer type and delirium incidence in Japanese elderly patients: A retrospective longitudinal study. Cancer Med 2022; 12:2407-2416. [PMID: 35880545 PMCID: PMC9939101 DOI: 10.1002/cam4.5069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/03/2022] [Accepted: 07/12/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE There is not a known elevated prevalence of delirium in older adult cancer patients. However, it is unknown if the incidence of delirium varies by cancer type among older adult patients. Therefore, this study aimed to examine the association between the incidence of delirium and cancer type among older adult patients using a Japanese hospital-based administrative claims database. METHODS A total of 76,868 patients over 65 years of age or older, first diagnosed with cancer on an initial date of hospitalization between April 2008 and December 2019, were included in this retrospective longitudinal study. Delirium was defined by the World Health Organization's International Statistical Classification of Diseases and Related Health Problems (ICD-10) codes or antipsychotic medication use. Cox proportional hazard models were performed to estimate the risk of delirium incidence according to 22 cancer types during the one-year hospitalization period. RESULTS The incidence rates of delirium were 17.1% for men and 15.3% for women. Compared to gastric cancer, the risk of delirium was significantly higher for pancreatic cancer (HR: 1.26, 95% CI: 1.11-1.42 for men; HR: 1.27, 95% CI: 1.11-1.45 for women), leukemia (HR: 1.24, 95% CI: 1.09-1.41 for men; HR: 1.20, 95% CI: 1.03-1.41 for women), and oropharyngeal cancer (HR: 1.30, 95% CI: 1.10-1.54 for men; HR: 1.32; 95% CI: 1.02-1.72 for women) after adjusting for age, initial hospitalization year, antipsychotic medications, and surgery. CONCLUSIONS As compared to gastric cancer, patients with pancreatic cancer, leukemia, oropharyngeal cancer were found to have a higher risk of developing delirium. Our study findings suggested that the risk of delirium incidence may vary by cancer type.
Collapse
Affiliation(s)
- Kentaro Yamato
- Department of Public Health, Graduate School of MedicineJuntendo UniversityTokyoJapan
| | - Ai Ikeda
- Department of Public Health, Graduate School of MedicineJuntendo UniversityTokyoJapan,Faculty of International Liberal ArtsJuntendo UniversityTokyoJapan
| | - Motoki Endo
- Department of Public Health, Graduate School of MedicineJuntendo UniversityTokyoJapan
| | - Ronald Filomeno
- Department of Public Health, Graduate School of MedicineJuntendo UniversityTokyoJapan
| | - Kosuke Kiyohara
- Department of Food ScienceOtsuma Women's UniversityTokyoJapan
| | - Ken Inada
- Department of PsychiatryTokyo Women's Medical UniversityTokyoJapan
| | | | - Takeshi Tanigawa
- Department of Public Health, Graduate School of MedicineJuntendo UniversityTokyoJapan
| |
Collapse
|
31
|
Shafi O, Siddiqui G. Tracing the origins of glioblastoma by investigating the role of gliogenic and related neurogenic genes/signaling pathways in GBM development: a systematic review. World J Surg Oncol 2022; 20:146. [PMID: 35538578 PMCID: PMC9087910 DOI: 10.1186/s12957-022-02602-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/15/2022] [Indexed: 02/16/2023] Open
Abstract
Background Glioblastoma is one of the most aggressive tumors. The etiology and the factors determining its onset are not yet entirely known. This study investigates the origins of GBM, and for this purpose, it focuses primarily on developmental gliogenic processes. It also focuses on the impact of the related neurogenic developmental processes in glioblastoma oncogenesis. It also addresses why glial cells are at more risk of tumor development compared to neurons. Methods Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving glioblastoma, gliogenesis, neurogenesis, stemness, neural stem cells, gliogenic signaling and pathways, neurogenic signaling and pathways, and astrocytogenic genes. Results The origin of GBM is dependent on dysregulation in multiple genes and pathways that accumulatively converge the cells towards oncogenesis. There are multiple layers of steps in glioblastoma oncogenesis including the failure of cell fate-specific genes to keep the cells differentiated in their specific cell types such as p300, BMP, HOPX, and NRSF/REST. There are genes and signaling pathways that are involved in differentiation and also contribute to GBM such as FGFR3, JAK-STAT, and hey1. The genes that contribute to differentiation processes but also contribute to stemness in GBM include notch, Sox9, Sox4, c-myc gene overrides p300, and then GFAP, leading to upregulation of nestin, SHH, NF-κB, and others. GBM mutations pathologically impact the cell circuitry such as the interaction between Sox2 and JAK-STAT pathway, resulting in GBM development and progression. Conclusion Glioblastoma originates when the gene expression of key gliogenic genes and signaling pathways become dysregulated. This study identifies key gliogenic genes having the ability to control oncogenesis in glioblastoma cells, including p300, BMP, PAX6, HOPX, NRSF/REST, LIF, and TGF beta. It also identifies key neurogenic genes having the ability to control oncogenesis including PAX6, neurogenins including Ngn1, NeuroD1, NeuroD4, Numb, NKX6-1 Ebf, Myt1, and ASCL1. This study also postulates how aging contributes to the onset of glioblastoma by dysregulating the gene expression of NF-κB, REST/NRSF, ERK, AKT, EGFR, and others.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
32
|
Jeong H, Shin H, Hong S, Kim Y. Physiological Roles of Monomeric Amyloid-β and Implications for Alzheimer's Disease Therapeutics. Exp Neurobiol 2022; 31:65-88. [PMID: 35673997 PMCID: PMC9194638 DOI: 10.5607/en22004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) progressively inflicts impairment of synaptic functions with notable deposition of amyloid-β (Aβ) as senile plaques within the extracellular space of the brain. Accordingly, therapeutic directions for AD have focused on clearing Aβ plaques or preventing amyloidogenesis based on the amyloid cascade hypothesis. However, the emerging evidence suggests that Aβ serves biological roles, which include suppressing microbial infections, regulating synaptic plasticity, promoting recovery after brain injury, sealing leaks in the blood-brain barrier, and possibly inhibiting the proliferation of cancer cells. More importantly, these functions were found in in vitro and in vivo investigations in a hormetic manner, that is to be neuroprotective at low concentrations and pathological at high concentrations. We herein summarize the physiological roles of monomeric Aβ and current Aβ-directed therapies in clinical trials. Based on the evidence, we propose that novel therapeutics targeting Aβ should selectively target Aβ in neurotoxic forms such as oligomers while retaining monomeric Aβ in order to preserve the physiological functions of Aβ monomers.
Collapse
Affiliation(s)
- Hyomin Jeong
- Division of Integrated Science and Engineering, Underwood International College, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Heewon Shin
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Seungpyo Hong
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - YoungSoo Kim
- Division of Integrated Science and Engineering, Underwood International College, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
33
|
Role of Presenilin-1 in Aggressive Human Melanoma. Int J Mol Sci 2022; 23:ijms23094904. [PMID: 35563300 PMCID: PMC9099829 DOI: 10.3390/ijms23094904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022] Open
Abstract
Presenilin-1 (PS-1), a component of the gamma (γ)-secretase catalytic complex, has been implicated in Alzheimer’s disease (AD) and in tumorigenesis. Interestingly, AD risk is inversely related to melanoma, suggesting that AD-related factors, such as PS-1, may affect melanomagenesis. PS-1 has been shown to reduce Wnt activity by promoting degradation of beta-catenin (β-catenin), an important Wnt signaling partner. Since Wnt is known to enhance progression of different cancers, including melanoma, we hypothesized that PS-1 could affect Wnt-associated melanoma aggressiveness. Western blot results showed that aggressive melanoma cells expressed significantly lower levels of both PS-1 and phosphorylated-β-catenin (P-β-catenin) than nonaggressive melanoma cells. Immunohistochemistry of human melanoma samples showed significantly reduced staining for PS-1 in advanced stage melanoma compared with early stage melanoma. Furthermore, γ-secretase inhibitor (GSI) treatment of aggressive melanoma cells was followed by significant increases in PS-1 and P-β-catenin levels, suggesting impaired Wnt signaling activity as PS-1 expression increased. Finally, a significant reduction in cell migration was associated with the higher levels of PS-1 and P-β-catenin in the GSI-treated aggressive melanoma cells. We demonstrate for the first time that PS-1 levels can be used to assess melanoma aggressiveness and suggest that by enhancing PS-1 expression, Wnt-dependent melanoma progression may be reduced
Collapse
|
34
|
Fehsel K, Christl J. Comorbidity of osteoporosis and Alzheimer's disease: Is `AKT `-ing on cellular glucose uptake the missing link? Ageing Res Rev 2022; 76:101592. [PMID: 35192961 DOI: 10.1016/j.arr.2022.101592] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Osteoporosis and Alzheimer's disease (AD) are both degenerative diseases. Osteoporosis often proceeds cognitive deficits, and multiple studies have revealed common triggers that lead to energy deficits in brain and bone. Risk factors for osteoporosis and AD, such as obesity, type 2 diabetes, aging, chemotherapy, vitamin deficiency, alcohol abuse, and apolipoprotein Eε4 and/or Il-6 gene variants, reduce cellular glucose uptake, and protective factors, such as estrogen, insulin, exercise, mammalian target of rapamycin inhibitors, hydrogen sulfide, and most phytochemicals, increase uptake. Glucose uptake is a fine-tuned process that depends on an abundance of glucose transporters (Gluts) on the cell surface. Gluts are stored in vesicles under the plasma membrane, and protective factors cause these vesicles to fuse with the membrane, resulting in presentation of Gluts on the cell surface. This translocation depends mainly on AKT kinase signaling and can be affected by a range of factors. Reduced AKT kinase signaling results in intracellular glucose deprivation, which causes endoplasmic reticulum stress and iron depletion, leading to activation of HIF-1α, the transcription factor necessary for higher Glut expression. The link between diseases and aging is a topic of growing interest. Here, we show that diseases that affect the same biochemical pathways tend to co-occur, which may explain why osteoporosis and/or diabetes are often associated with AD.
Collapse
|
35
|
Liu YP, Wu X, Meng JH, Xing JX, Xuan JF, Xia X, Yao J, Wang BJ. The effect of human GRIN1 gene 5' functional region on gene expression regulation in vitro. Gene 2022; 808:145973. [PMID: 34592350 DOI: 10.1016/j.gene.2021.145973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Abnormal expression of ionotropic glutamate receptor NMDA type subunit 1, the key subunit of the NMDA receptor, may be related to many neuropsychiatric disorders. In this study, we explored the functional sequence of the 5' regulatory region of the human GRIN1 gene and discussed the transcription factors that may regulate gene expression. MATERIALS AND METHODS Twelve recombinant pGL3 vectors with gradually truncated fragment lengths were constructed, transfected into HEK-293, U87, and SK-N-SH cell lines, and analyzed through the luciferase reporter gene assay. JASPAR database is used to predict transcription factors. RESULTS In SK-N-SH and U87 cell lines, regions from -337 to -159 bp, -704 to -556 bp inhibited gene expression, while -556 to -337 bp upregulated gene expression. In HEK-293 and U87 cell lines, the expression of fragment -1703 to + 188 bp was significantly increased compared to adjacent fragments -1539 to + 188 bp and -1843 to + 188 bp. The protein expressions of fragments -2162 to + 188 bp and -2025 to + 188 bp, -1539 to + 188 bp and -1215 to + 188 bp, -1215 to + 188 bp and -1066 to + 188 bp were significantly different in HEK-293 and SK-N-SH cells. According to the predictions of the JASPAR database, the transcription factors REST, EGR1, and CREB1/HIC2 may bind the DNA sequences of GRIN1 gene from the -337 to -159, -556 to -337, and -704 to -556, respectively. In addition, zinc finger transcription factors may regulate the expression of other differentially expressed fragments. CONCLUSIONS Abnormal transcription regulation in the proximal promoter region of GRIN1 (-704 to + 188 bp) may be involved in the course of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Yong-Ping Liu
- School of Forensic Medicine, China Medical University, Shenyang 110122, China; Department of Clinic Pathology, Weifang Medical University, Weifang 261053, China.
| | - Xue Wu
- School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| | - Jing-Hua Meng
- School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| | - Jia-Xin Xing
- School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| | - Jin-Feng Xuan
- School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| | - Xi Xia
- School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| |
Collapse
|
36
|
Chen SJ, Bi YH, Zhang LH. Systematic analysis of the potential off-target activities of osimertinib by computational target fishing. Anticancer Drugs 2022; 33:e434-e443. [PMID: 34459459 DOI: 10.1097/cad.0000000000001229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Osimertinib is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor used to treat non-small cell lung cancer. However, its off-targets are obscure, and systematic analysis of off-target activities remains to be performed. Here, we identified the off-targets of osimertinib using PharmMapper and DRAR-CPI and analyzed the intersected targets using the GeneMANIA and DAVID servers. A drug-target-pathway network was constructed to visualize the associations. The results showed that osimertinib is associated with 31 off-targets, 40 Kyoto Encyclopedia of Genes and Genomes pathways, and 9 diseases. Network analysis revealed that the targets were involved in cancer and other physiological processes. In addition to EGFR, molecular docking analysis showed that seven proteins, namely Janus kinase 3, peroxisome proliferator-activated receptor alpha, renin, mitogen-activated protein kinases, lymphocyte-specific protein tyrosine kinase, cell division protein kinase 2 and proto-oncogene tyrosine-protein kinase Src, could also be potential targets of osimertinib. In conclusion, osimertinib is predicted to target multiple proteins and pathways, resulting in the formation of an action network via which it exerts systematic pharmacological effects.
Collapse
Affiliation(s)
- Shao-Jun Chen
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo
| | - Yan-Hua Bi
- The Children's Hospital, Zhejiang University School of Medicine, National clinical research center for child health, Hangzhou
| | - Li-Hua Zhang
- Department of Food Science, Faculty of Food Science, Zhejiang Pharmaceutical College, Ningbo, China
| |
Collapse
|
37
|
Amiri M, Jafari S, Kurd M, Mohamadpour H, Khayati M, Ghobadinezhad F, Tavallaei O, Derakhshankhah H, Sadegh Malvajerd S, Izadi Z. Engineered Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as New Generations of Blood-Brain Barrier Transmitters. ACS Chem Neurosci 2021; 12:4475-4490. [PMID: 34841846 DOI: 10.1021/acschemneuro.1c00540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) is considered as the most challenging barrier in brain drug delivery. Indeed, there is a definite link between the BBB integrity defects and central nervous systems (CNS) disorders, such as neurodegenerative diseases and brain cancers, increasing concerns in the contemporary era because of the inability of most therapeutic approaches. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have already been identified as having several advantages in facilitating the transportation of hydrophilic and hydrophobic agents across the BBB. This review first explains BBB functions and its challenges in brain drug delivery, followed by a brief description of nanoparticle-based drug delivery for brain diseases. A detailed presentation of recent progressions in optimizing SLNs and NLCs for controlled release drug delivery, gene therapy, targeted drug delivery, and diagnosis of neurodegenerative diseases and brain cancers is approached. Finally, the problems, challenges, and future perspectives in optimizing these carriers for potential clinical application were described briefly.
Collapse
Affiliation(s)
- Mahtab Amiri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Masoumeh Kurd
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, Tehran 15469-13111, Iran
| | - Hamed Mohamadpour
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Maryam Khayati
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Farbod Ghobadinezhad
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Student’s Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Omid Tavallaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Soroor Sadegh Malvajerd
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| |
Collapse
|
38
|
Tea polyphenols improve the memory in aging ovariectomized rats by regulating brain glucose metabolism in vivo and in vitro. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
39
|
Razani E, Pourbagheri-Sigaroodi A, Safaroghli-Azar A, Zoghi A, Shanaki-Bavarsad M, Bashash D. The PI3K/Akt signaling axis in Alzheimer's disease: a valuable target to stimulate or suppress? Cell Stress Chaperones 2021; 26:871-887. [PMID: 34386944 PMCID: PMC8578535 DOI: 10.1007/s12192-021-01231-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Among the long list of age-related complications, Alzheimer's disease (AD) has the most dreadful impact on the quality of life due to its devastating effects on memory and cognitive abilities. Although a plausible correlation between the phosphatidylinositol 3-kinase (PI3K) signaling and different processes involved in neurodegeneration has been evidenced, few articles reviewed the task. The current review aims to unravel the mechanisms by which the PI3K pathway plays pro-survival roles in normal conditions, and also to discuss the original data obtained from international research laboratories on this topic. Responses to questions on how alterations of the PI3K/Akt signaling pathway affect Tau phosphorylation and the amyloid cascade are given. In addition, we provide a general overview of the association between oxidative stress, neuroinflammation, alterations of insulin signaling, and altered autophagy with aberrant activation of this axis in the AD brain. The last section provides a special focus on the therapeutic possibility of the PI3K/Akt/mTOR modulators, either categorized as chemicals or herbals, in AD. In conclusion, determining the correct timing for the administration of the drugs seems to be one of the most important factors in the success of these agents. Also, the role of the PI3K/Akt signaling axis in the progression or repression of AD widely depends on the context of the cells; generally speaking, while PI3K/Akt activation in neurons and neural stem cells is favorable, its activation in microglia cells may be harmful.
Collapse
Affiliation(s)
- Elham Razani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahita Zoghi
- Department of Neurology, School of Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Shanaki-Bavarsad
- Institute of Neuroscience, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Wu C, Bradley J, Li Y, Wu L, Deng HW. A gene-level methylome-wide association analysis identifies novel Alzheimer's disease genes. Bioinformatics 2021; 37:1933–1940. [PMID: 33523132 PMCID: PMC8337007 DOI: 10.1093/bioinformatics/btab045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/31/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Transcriptome-wide association studies (TWAS) have successfully facilitated the discovery of novel genetic risk loci for many complex traits, including late-onset Alzheimer's disease (AD). However, most existing TWAS methods rely only on gene expression and ignore epigenetic modification (i.e., DNA methylation) and functional regulatory information (i.e., enhancer-promoter interactions), both of which contribute significantly to the genetic basis of AD. RESULTS We develop a novel gene-level association testing method that integrates genetically regulated DNA methylation and enhancer-target gene pairs with genome-wide association study (GWAS) summary results. Through simulations, we show that our approach, referred to as the CMO (cross methylome omnibus) test, yielded well controlled type I error rates and achieved much higher statistical power than competing methods under a wide range of scenarios. Furthermore, compared with TWAS, CMO identified an average of 124% more associations when analyzing several brain imaging-related GWAS results. By analyzing to date the largest AD GWAS of 71,880 cases and 383,378 controls, CMO identified six novel loci for AD, which have been ignored by competing methods. AVAILABILITY Software: https://github.com/ChongWuLab/CMO. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chong Wu
- Department of Statistics, Florida State University
| | | | - Yanming Li
- Department of Biostatistics & Data Science, University of Kansas Medical Center
| | - Lang Wu
- Population Sciences in the Pacific Program, University of Hawaii Cancer center
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine
| |
Collapse
|
41
|
Song C, Zhang Y, Cheng L, Shi M, Li X, Zhang L, Zhao H. Tea polyphenols ameliorates memory decline in aging model rats by inhibiting brain TLR4/NF-κB inflammatory signaling pathway caused by intestinal flora dysbiosis. Exp Gerontol 2021; 153:111476. [PMID: 34265410 DOI: 10.1016/j.exger.2021.111476] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022]
Abstract
AIMS Tea is a rich source of pharmacologically active molecules that has been suggested to provide a variety of health benefits. However, its mechanism of action in aging-related intestinal flora dysbiosis mediated neuroinflammation is still unclear. This study aimed to explore whether tea polyphenols (TP) can improve memory by regulating intestinal flora mediated neuroinflammation in aging model rats. METHODS Ovariectomy (OVX) combined with D-galactose injection was used to establish aging rats related to menopause. The rats were divided into Sham control group, Aging model group, TP 75 mg/kg, 150 mg/kg, 300 mg/kg groups and VE group. After 12 weeks of intervention, the shuttle box test and Y maze test were used to check the memory of rats. The composition of intestinal flora was assessed by 16S rRNA sequencing technology. HE staining and ELISA were used to detect intestinal epithelial morphology and permeability, respectively. TLR4/NF-κB inflammation pathway related indicators were investigated by western blot, and the microglia activation in rat hippocampal tissue was checked by immunofluorescence. RESULTS In the shuttle box test and the Y maze test, compared with the Sham control group, the memory of Aging model rats was significantly declined. It was observed that the intestinal flora of Aging model rats was dysbiosis, the permeability of the intestinal epithelium was increased. Further experimental results showed that the expression of TLR4/NF-κB inflammatory pathway related proteins in the hippocampus were increased, and the excessive activation of microglia was observed. The beneficial effects of TP intervention have been found to prevent memory decline and significantly improve brain inflammation induced by intestinal flora dysbiosis, and TP 300 mg/kg showed a more obvious advantage than TP 75 mg/kg. TP 300 mg/kg can significantly improve the behavior of rats, improve the composition and diversity of the intestinal flora, and the shape and function of the intestinal epithelium. By reversing the increased expression levels of TLR4, IRAK, p-IκBα and nuclear NF-κB p65 proteins in the hippocampus of Aging model rats, the activation of microglia in the CA1, CA3 and Dentate gyrus (DG) sub-regions of the hippocampus can be inhibited. CONCLUSION TP inhibits the brain TLR4/NF-κB inflammatory signal pathway caused by the dysbiosis of intestinal flora, which may be one of the mechanisms to improve the memory decline in aging model rats.
Collapse
Affiliation(s)
- Chenmeng Song
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yusen Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Le Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Mengqian Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Xuemin Li
- Center for Disease Control and Prevention in Shanxi Province, Taiyuan, Shanxi 030012, PR China
| | - Luping Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Haifeng Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| |
Collapse
|
42
|
Aliperti V, Skonieczna J, Cerase A. Long Non-Coding RNA (lncRNA) Roles in Cell Biology, Neurodevelopment and Neurological Disorders. Noncoding RNA 2021; 7:36. [PMID: 34204536 PMCID: PMC8293397 DOI: 10.3390/ncrna7020036] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023] Open
Abstract
Development is a complex process regulated both by genetic and epigenetic and environmental clues. Recently, long non-coding RNAs (lncRNAs) have emerged as key regulators of gene expression in several tissues including the brain. Altered expression of lncRNAs has been linked to several neurodegenerative, neurodevelopmental and mental disorders. The identification and characterization of lncRNAs that are deregulated or mutated in neurodevelopmental and mental health diseases are fundamental to understanding the complex transcriptional processes in brain function. Crucially, lncRNAs can be exploited as a novel target for treating neurological disorders. In our review, we first summarize the recent advances in our understanding of lncRNA functions in the context of cell biology and then discussing their association with selected neuronal development and neurological disorders.
Collapse
Affiliation(s)
- Vincenza Aliperti
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Justyna Skonieczna
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - Andrea Cerase
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| |
Collapse
|
43
|
Ancidoni A, Bacigalupo I, Remoli G, Lacorte E, Piscopo P, Sarti G, Corbo M, Vanacore N, Canevelli M. Anticancer drugs repurposed for Alzheimer's disease: a systematic review. ALZHEIMERS RESEARCH & THERAPY 2021; 13:96. [PMID: 33952306 PMCID: PMC8101105 DOI: 10.1186/s13195-021-00831-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
Background The relationship between cancer and dementia is triggering growing research interest. Several preclinical studies have provided the biological rationale for the repurposing of specific anticancer agents in Alzheimer’s disease (AD), and a growing number of research protocols are testing their efficacy and safety/tolerability in patients with AD. Methods The aim of the present systematic review was to provide an overview on the repurposing of approved anticancer drugs in clinical trials for AD by considering both ongoing and completed research protocols in all phases. In parallel, a systematic literature review was conducted on PubMed, ISI Web, and the Cochrane Library to identify published clinical studies on repurposed anticancer agents in AD. Results Based on a structured search on the ClinicalTrials.gov and the EudraCT databases, we identified 13 clinical trials testing 11 different approved anticancer agents (five tyrosine kinase inhibitors, two retinoid X receptor agonists, two immunomodulatory agents, one histone deacetylase inhibitor, and one monoclonal antibody) in the AD continuum. The systematic literature search led to the identification of five published studies (one phase I, three phase II, and one phase IIb/III) reporting the effects of antitumoral treatments in patients with mild cognitive impairment or AD dementia. The clinical findings and the methodological characteristics of these studies are described and discussed. Conclusion Anticancer agents are triggering growing interest in the context of repurposed therapies in AD. Several clinical trials are underway, and data are expected to be available in the near future. To date, data emerging from published clinical studies are controversial. The promising results emerging from preclinical studies and identified research protocols should be confirmed and extended by larger, adequately designed, and high-quality clinical trials.
Collapse
Affiliation(s)
- Antonio Ancidoni
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy.
| | - Ilaria Bacigalupo
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy
| | - Giulia Remoli
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy
| | - Eleonora Lacorte
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy
| | - Paola Piscopo
- Department of Neuroscience, Italian National Institute of Health, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Giulia Sarti
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Via Dezza 48, 20144, Milan, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy
| | - Marco Canevelli
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy.,Department of Human Neuroscience, Sapienza University, Rome, Italy
| |
Collapse
|
44
|
Yang Q, Zhang Y, Zhang L, Li X, Dong R, Song C, Cheng L, Shi M, Zhao H. Combination of tea polyphenols and proanthocyanidins prevents menopause-related memory decline in rats via increased hippocampal synaptic plasticity by inhibiting p38 MAPK and TNF-α pathway. Nutr Neurosci 2021; 25:1909-1927. [PMID: 33871312 DOI: 10.1080/1028415x.2021.1913929] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Many studies have examined the beneficial effects of tea polyphenols (TP) and proanthocyanidins (PC) on the memory impairment in different animal models. However, the combined effects of them on synaptic, memory dysfunction and molecular mechanisms have been poorly studied, especially in the menopause-related memory decline in rats. METHODS In this rat study, TP and PC were used to investigate their protective effects on memory decline caused by inflammation. We characterized the learning and memory abilities, synaptic plasticity, AMPAR, phosphorylation of the p38 protein, TNF-ɑ, structural synaptic plasticity-related indicators in the hippocampus. RESULTS The results showed that deficits of learning and memory in OVX + D-gal rats, which was accompanied by dendrites and synaptic morphology damage, and increased expression of Aβ1-42 and inflammation. The beneficial effects of TP and PC treatment were found to prevent memory loss and significantly improve synaptic structure and functional plasticity. TP+PC combination shows more obvious advantages than intervention alone. TP and PC treatment improved behavioral performance, the hippocampal LTP damage and the shape and number of dendrites, dendritic spines and synapses, reduced the burden of Aβ and decreased the inflammation in hippocampus. In addition, TP and PC treatment decreased the expressions of Iba-1, TNF-α, TNFR1, and TRAF2. CONCLUSIONS These results provided a novel evidence TP combined with PC inhibits p38 MAPK pathway, suppresses the inflammation in hippocampus, and increase the externalization of AMPAR, which may be one of the mechanisms to improve synaptic plasticity and memory in the menopause-related memory decline rats.
Collapse
Affiliation(s)
- Qian Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yusen Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Luping Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xuemin Li
- Center for Disease Control and Prevention in Shanxi Province, Taiyuan, People's Republic of China
| | - Ruirui Dong
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Chenmeng Song
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Le Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mengqian Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Haifeng Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
45
|
Chamberlain JD, Rouanet A, Dubois B, Pasquier F, Hanon O, Gabelle A, Ceccaldi M, Krolak-Salmon P, Béjot Y, Godefroy O, Wallon D, Gentric A, Chêne G, Dufouil C. Investigating the association between cancer and the risk of dementia: Results from the Memento cohort. Alzheimers Dement 2021; 17:1415-1421. [PMID: 33656287 PMCID: PMC8518910 DOI: 10.1002/alz.12308] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 12/21/2022]
Abstract
Introduction Studies on the association of cancer and risk of dementia are inconclusive due to result heterogeneity and concerns of survivor bias and unmeasured confounding. Methods This study uses data from the Memento cohort, a French multicenter cohort following persons with either mild or isolated cognitive complaints for a median of 5 years. Illness‐death models (IDMs) were used to estimate transition‐specific hazard ratios (HRs) and 95% confidence intervals (CIs) for incident cancer in relation to dementia from time since study entry. Results The analytical sample (N = 2258) excluded 65 individuals without follow‐up information. At the end of follow‐up, 286 individuals were diagnosed with dementia, 166 with incident cancer, and 95 died. Incident cancer was associated with a reduced risk of dementia (HR = 0.58, 95% CI = 0.35‐0.97), with a corresponding E‐value of 2.84 (lower CI = 1.21). Discussion This study supports a protective relationship between incident cancer and dementia, encouraging further investigations to understand potential underlying mechanisms.
Collapse
Affiliation(s)
- Jonviea D Chamberlain
- Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Inserm, Bordeaux, France.,CIC1401-EC, Inserm, Bordeaux, France
| | - Anaïs Rouanet
- Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Inserm, Bordeaux, France
| | - Bruno Dubois
- Sorbonne Université, AP-HP, Hôpital de la Pitié-Salpêtrière, Boulevard de l'hôpital, Paris, France
| | | | - Olivier Hanon
- EA 4468, Université de Paris, Geriatric department Broca hospital, APHP, Paris, France
| | - Audrey Gabelle
- Centre Mémoire Ressources Recherche Département de Neurologie CHU Gui de Chauliac, Montpellier, France
| | - Mathieu Ceccaldi
- Ouest CHU Timone APHM & Aix Marseille Univ INSERM INS Inst Neurosci Syst, CMMR PACA, Marseille, France
| | | | - Yannick Béjot
- Department of Neurology and Memory Resource and Research Center of Dijon, EA7460, University Hospital of Dijon, University of Burgundy, Dijon, France
| | - Olivier Godefroy
- Neurology Department, Amiens University Hospital, Amiens, France
| | - David Wallon
- Functional Neurosciences Lab (UR UPJV4559), Centre Universitaire de Recherche en Santé, Normandie Univ, UNIROUEN, Department of Neurology and CNR-MAJ, Inserm U1245 and Rouen University Hospital, Rouen, France
| | | | - Geneviève Chêne
- CIC1401-EC, Inserm, Bordeaux, France.,Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Carole Dufouil
- CIC1401-EC, Inserm, Bordeaux, France.,Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | | |
Collapse
|
46
|
Moorthy H, Govindaraju T. Dendrimer Architectonics to Treat Cancer and Neurodegenerative Diseases with Implications in Theranostics and Personalized Medicine. ACS APPLIED BIO MATERIALS 2021; 4:1115-1139. [PMID: 35014470 DOI: 10.1021/acsabm.0c01319] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Integration of diagnostic and therapeutic functions in a single platform namely theranostics has become a cornerstone for personalized medicine. Theranostics platform facilitates noninvasive detection and treatment while allowing the monitoring of disease progression and therapeutic efficacy in case of chronic conditions of cancer and Alzheimer's disease (AD). Theranostic tools function by themselves or with the aid of carrier, viz. liposomes, micelles, polymers, or dendrimers. The dendrimer architectures (DA) are well-characterized molecular nanoobjects with a large number of terminal functional groups to enhance solubility and offer multivalency and multifunctional properties. Various noninvasive diagnostic tools like magnetic resonance imaging (MRI), computed tomography (CT), gamma scintigraphy, and optical techniques have been accomplished utilizing DAs for simultaneous imaging and drug delivery. Obstacles in the formulation design, drug loading, payload delivery, biocompatibility, overcoming cellular membrane and blood-brain barrier (BBB), and systemic circulation remain a bottleneck in translational efforts. This review focuses on the diagnostic, therapeutic and theranostic potential of DA-based nanocarriers in treating cancer and neurodegenerative disorders like AD and Parkinson's disease (PD), among others. In view of the inverse relationship between cancer and AD, designing suitable DA-based theranostic nanodrug with high selectivity has tremendous implications in personalized medicine to treat cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, Karnataka 560064, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
47
|
Rahman MH, Rana HK, Peng S, Hu X, Chen C, Quinn JMW, Moni MA. Bioinformatics and machine learning methodologies to identify the effects of central nervous system disorders on glioblastoma progression. Brief Bioinform 2021; 22:6066369. [PMID: 33406529 DOI: 10.1093/bib/bbaa365] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/25/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a common malignant brain tumor which often presents as a comorbidity with central nervous system (CNS) disorders. Both CNS disorders and GBM cells release glutamate and show an abnormality, but differ in cellular behavior. So, their etiology is not well understood, nor is it clear how CNS disorders influence GBM behavior or growth. This led us to employ a quantitative analytical framework to unravel shared differentially expressed genes (DEGs) and cell signaling pathways that could link CNS disorders and GBM using datasets acquired from the Gene Expression Omnibus database (GEO) and The Cancer Genome Atlas (TCGA) datasets where normal tissue and disease-affected tissue were examined. After identifying DEGs, we identified disease-gene association networks and signaling pathways and performed gene ontology (GO) analyses as well as hub protein identifications to predict the roles of these DEGs. We expanded our study to determine the significant genes that may play a role in GBM progression and the survival of the GBM patients by exploiting clinical and genetic factors using the Cox Proportional Hazard Model and the Kaplan-Meier estimator. In this study, 177 DEGs with 129 upregulated and 48 downregulated genes were identified. Our findings indicate new ways that CNS disorders may influence the incidence of GBM progression, growth or establishment and may also function as biomarkers for GBM prognosis and potential targets for therapies. Our comparison with gold standard databases also provides further proof to support the connection of our identified biomarkers in the pathology underlying the GBM progression.
Collapse
Affiliation(s)
- Md Habibur Rahman
- Institute of Automation Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100190, China.,Department of Computer Science and Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Humayan Kabir Rana
- Department of Computer Science and Engineering, Green University of Bangladesh, Bangladesh
| | - Silong Peng
- Institute of Automation Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiyuan Hu
- Institute of Automation Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100190, China
| | - Chen Chen
- Institute of Automation Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100190, China
| | - Julian M W Quinn
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,The Surgical Education and Research Training Institute, Royal North Shore Hospital, Sydney, Australia
| | - Mohammad Ali Moni
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,WHO Collaborating Centre on eHealth, School of Public Health and Community Medicine, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| |
Collapse
|
48
|
Abstract
The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling New York, New York, NY, USA
| |
Collapse
|
49
|
Chen D, Hao S, Xu J. Revisiting the Relationship Between Alzheimer's Disease and Cancer With a circRNA Perspective. Front Cell Dev Biol 2021; 9:647197. [PMID: 33777952 PMCID: PMC7991802 DOI: 10.3389/fcell.2021.647197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Increasing evidence indicates an association between the incidence of Alzheimer's disease (AD) and cancer development. Despite advances being made by comparisons from epidemiological studies, common pathways and molecular mechanisms, little is known about the identities of the circular RNAs (circRNAs) involved in the development and progression of these two pathologies and their possible correlations. The aim of this study was to explore the circRNA relationship between AD and cancer. MATERIALS AND METHODS In this investigation, circRNAs that were significantly dysregulated in AD or associated with AD diagnosis, clinical dementia severity, and neuropathological severity, were examined in a large panel of 28 cancer types. On the basis of shared abnormal circRNAs in AD and cancers, we constructed a circRNA-micro RNA (miRNA)-messenger RNA (mRNA) network by leveraging experimentally identified miRNA-circRNA and miRNA-mRNA interactions from crosslinking-immunoprecipitation sequencing data. RESULTS An inverse correlation of expression pattern was found in acute myeloid leukemia, juvenile myelomonocytic leukemia, renal cell carcinoma, and myelofibrosis. CircRNAs associated with AD diagnosis and clinical severity demonstrated negative correlation in more cancer types. Notably, differentially expressed candidate circRNAs in temporal lobe epilepsy were not associated with any cancers. Gene Ontology and KEGG pathway analysis suggested the circRNA-regulated genes are significantly associated with interleukin-12-mediated signaling and viral response. CircPICALM, circRTN4 and circMAN2A1 are the hub nodes in the circRNA-miRNA-target network. CONCLUSION Our results indicated the relevance of inflammation signaling as a common pathogenesis shared by cancer and AD and provided novel insight for therapeutics targeting circRNAs.
Collapse
Affiliation(s)
- Danze Chen
- Computational Systems Biology Lab, Shantou University Medical College (SUMC), Shantou, China
| | - Shijia Hao
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College (SUMC), Shantou, China
| | - Jianzhen Xu
- Computational Systems Biology Lab, Shantou University Medical College (SUMC), Shantou, China
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College (SUMC), Shantou, China
- *Correspondence: Jianzhen Xu,
| |
Collapse
|
50
|
Kachuri L, Francis SS, Morrison ML, Wendt GA, Bossé Y, Cavazos TB, Rashkin SR, Ziv E, Witte JS. The landscape of host genetic factors involved in immune response to common viral infections. Genome Med 2020; 12:93. [PMID: 33109261 PMCID: PMC7590248 DOI: 10.1186/s13073-020-00790-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/07/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Humans and viruses have co-evolved for millennia resulting in a complex host genetic architecture. Understanding the genetic mechanisms of immune response to viral infection provides insight into disease etiology and therapeutic opportunities. METHODS We conducted a comprehensive study including genome-wide and transcriptome-wide association analyses to identify genetic loci associated with immunoglobulin G antibody response to 28 antigens for 16 viruses using serological data from 7924 European ancestry participants in the UK Biobank cohort. RESULTS Signals in human leukocyte antigen (HLA) class II region dominated the landscape of viral antibody response, with 40 independent loci and 14 independent classical alleles, 7 of which exhibited pleiotropic effects across viral families. We identified specific amino acid (AA) residues that are associated with seroreactivity, the strongest associations presented in a range of AA positions within DRβ1 at positions 11, 13, 71, and 74 for Epstein-Barr virus (EBV), Varicella zoster virus (VZV), human herpesvirus 7, (HHV7), and Merkel cell polyomavirus (MCV). Genome-wide association analyses discovered 7 novel genetic loci outside the HLA associated with viral antibody response (P < 5.0 × 10-8), including FUT2 (19q13.33) for human polyomavirus BK (BKV), STING1 (5q31.2) for MCV, and CXCR5 (11q23.3) and TBKBP1 (17q21.32) for HHV7. Transcriptome-wide association analyses identified 114 genes associated with response to viral infection, 12 outside of the HLA region, including ECSCR: P = 5.0 × 10-15 (MCV), NTN5: P = 1.1 × 10-9 (BKV), and P2RY13: P = 1.1 × 10-8 EBV nuclear antigen. We also demonstrated pleiotropy between viral response genes and complex diseases, from autoimmune disorders to cancer to neurodegenerative and psychiatric conditions. CONCLUSIONS Our study confirms the importance of the HLA region in host response to viral infection and elucidates novel genetic determinants beyond the HLA that contribute to host-virus interaction.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Stephen S Francis
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| | - Maike L Morrison
- Department of Biology, Stanford University, Stanford, CA, USA
- Summer Research Training Program, Graduate Division, University of California San Francisco, San Francisco, CA, USA
- Department of Mathematics, The University of Texas, Austin, TX, USA
| | - George A Wendt
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Yohan Bossé
- Department of Molecular Medicine, Université Laval, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
| | - Taylor B Cavazos
- Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, CA, USA
| | - Sara R Rashkin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elad Ziv
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|