1
|
Madelung CF, Løkkegaard A, Fuglsang SA, Marques MM, Boer VO, Madsen KH, Hejl AM, Meder D, Siebner HR. High-resolution mapping of substantia nigra in Parkinson's disease using 7 tesla magnetic resonance imaging. NPJ Parkinsons Dis 2025; 11:113. [PMID: 40328786 PMCID: PMC12056087 DOI: 10.1038/s41531-025-00972-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 04/19/2025] [Indexed: 05/08/2025] Open
Abstract
Parkinson's disease causes a progressive loss of dopaminergic neurons and iron accumulation in the substantia nigra pars compacta. Using ultra-high field magnetic resonance imaging (MRI) at 7 tesla in 43 Parkinson's patients and 24 healthy controls, we analyzed the voxel-wise pattern of structural disintegration of dopamine neurons with neuromelanin-sensitive MRI, along with assessing iron accumulation using R2* and quantitative susceptibility mapping (QSM). We also explored correlations between these measures and the severity of residual motor symptoms in the on-medication state and other clinical variables. Differences were most notable in the nigrosomes within the pars compacta, with patients showing reduced neuromelanin signals and increased QSM values. Severity and asymmetry of motor symptoms correlated with higher R2* and QSM values in nigrosome N1. Thus, ultra-high field MRI provides high-resolution maps of various aspects of the underlying neurodegenerative process which reflect individual motor impairment in Parkinson's disease.
Collapse
Affiliation(s)
- Christopher F Madelung
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Annemette Løkkegaard
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren A Fuglsang
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Marta M Marques
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Vincent O Boer
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Vaccarino F, Quattrocchi CC, Parillo M. Susceptibility-Weighted Imaging (SWI): Technical Aspects and Applications in Brain MRI for Neurodegenerative Disorders. Bioengineering (Basel) 2025; 12:473. [PMID: 40428092 PMCID: PMC12109288 DOI: 10.3390/bioengineering12050473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) sequence sensitive to substances that alter the local magnetic field, such as calcium and iron, allowing phase information to distinguish between them. SWI is a 3D gradient-echo sequence with high spatial resolution that leverages both phase and magnitude effects. The interaction of paramagnetic (such as hemosiderin and deoxyhemoglobin), diamagnetic (including calcifications and minerals), and ferromagnetic substances with the local magnetic field distorts it, leading to signal changes. Neurodegenerative diseases are typically characterized by the progressive loss of neurons and their supporting cells within the neurovascular unit. This cellular decline is associated with a corresponding deterioration of both cognitive and motor abilities. Many neurodegenerative disorders are associated with increased iron accumulation or microhemorrhages in various brain regions, making SWI a valuable diagnostic tool in clinical practice. Suggestive SWI findings are known in Parkinson's disease, Lewy body dementia, atypical parkinsonian syndromes, multiple sclerosis, cerebral amyloid angiopathy, amyotrophic lateral sclerosis, hereditary ataxias, Huntington's disease, neurodegeneration with brain iron accumulation, and chronic traumatic encephalopathy. This review will assist radiologists in understanding the technical framework of SWI sequences for a correct interpretation of currently established MRI findings and for its potential future clinical applications.
Collapse
Affiliation(s)
- Federica Vaccarino
- Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, 38123 Trento, Italy; (C.C.Q.); (M.P.)
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Carlo Cosimo Quattrocchi
- Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, 38123 Trento, Italy; (C.C.Q.); (M.P.)
- Centre for Medical Sciences-CISMed, University of Trento, 38122 Trento, Italy
| | - Marco Parillo
- Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, 38123 Trento, Italy; (C.C.Q.); (M.P.)
| |
Collapse
|
3
|
de Vries E, Hagbohm C, Ouellette R, Granberg T. Clinical 7 Tesla magnetic resonance imaging: Impact and patient value in neurological disorders. J Intern Med 2025; 297:244-261. [PMID: 39775908 PMCID: PMC11846079 DOI: 10.1111/joim.20059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Magnetic resonance imaging (MRI) is a cornerstone of non-invasive diagnostics and treatment monitoring, particularly for diseases of the central nervous system. Although 1.5- and 3 Tesla (T) field strengths remain the clinical standard, the advent of 7 T MRI represents a transformative step forward, offering superior spatial resolution, contrast, and sensitivity for visualizing neuroanatomy, metabolism, and function. Recent innovations, including parallel transmission and deep learning-based reconstruction, have resolved many prior technical challenges of 7 T MRI, enabling its routine clinical use. This review examines the diagnostic impact, patient value, and practical considerations of 7 T MRI, emphasizing its role in facilitating earlier diagnoses and improving care in conditions, such as amyotrophic lateral sclerosis (ALS), epilepsy, multiple sclerosis (MS), dementia, parkinsonism, tumors, and vascular diseases. Based on insights from over 1200 clinical scans with a second-generation 7 T system, the review highlights disease-specific biomarkers such as the motor band sign in ALS and the new diagnostic markers in MS, the central vein sign, and paramagnetic rim lesions. The unparalleled ability of 7 T MRI to study neurological diseases ex vivo at ultra-high resolution is also explored, offering new opportunities to understand pathophysiology and identify novel treatment targets. Additionally, the review provides a clinical perspective on patient handling and safety considerations, addressing challenges and practicalities associated with clinical 7 T MRI. By bridging research and clinical practice, 7 T MRI has the potential to redefine neuroimaging and advance the understanding and management of complex neurological disorders.
Collapse
Affiliation(s)
- Elisabeth de Vries
- Department of NeuroradiologyKarolinska University HospitalStockholmSweden
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Caroline Hagbohm
- Department of NeuroradiologyKarolinska University HospitalStockholmSweden
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Russell Ouellette
- Department of NeuroradiologyKarolinska University HospitalStockholmSweden
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Tobias Granberg
- Department of NeuroradiologyKarolinska University HospitalStockholmSweden
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| |
Collapse
|
4
|
Tseriotis V, Eleftheriadou K, Mavridis T, Konstantis G, Falkenburger B, Arnaoutoglou M. Is the Swallow Tail Sign a Useful Imaging Biomarker in Clinical Neurology? A Systematic Review. Mov Disord Clin Pract 2025; 12:134-147. [PMID: 39688317 PMCID: PMC11802665 DOI: 10.1002/mdc3.14304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 11/01/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Loss of dorsolateral nigral hyperintensity (DNH) in iron-sensitive sequences of Magnetic Resonance Imaging (MRI), also described as "swallow tail sign" (STS) loss, has shown promising diagnostic value in Parkinson's Disease (PD) and Atypical Parkinsonian Syndromes (APS). OBJECTIVE To conduct a bibliometric analysis on substantia nigra MRI and a systematic review on the clinical utility of STS visual assessment on Susceptibility-Weighted Imaging in various clinical entities. METHODS VOSviewer's keyword co-occurrence network was employed using Web of Science (WOS). Complying with the PRISMA statement, we searched MEDLINE, WOS, SCOPUS, ProQuest and Google Scholar for peer-reviewed studies conducted in vivo, excluding quantitative imaging techniques. RESULTS DNH is a relatively novel parameter in substantia nigra MRI literature. Our SWI-focused review included 42 studies (3281 patients). Diagnostic accuracy of STS loss for PD/APS differentiation from controls and for Lewy Body Dementia differentiation from other dementias was 47.8-98.5% and 76-90%, respectively, with poorer capacity, however, in delineating PD from APS. STS evaluation in idiopathic REM sleep behavior disorder, a sign of prodromal PD, was typically concordant with nuclear scans, identifying subjects with high conversion risk. Iron deposition can affect STS in Multiple Sclerosis and STS loss in Amyotrophic Lateral Sclerosis is linked with multisystem degeneration, with poorer prognosis. In healthy individuals iron-induced microvessel changes are suspected for false positive results. CONCLUSION STS assessment exhibits potential in different settings, with a possibly intermediate role in the diagnostic work-up of various conditions. Its clinical utility should be explored further, through standardized MRI protocols on larger cohorts.
Collapse
Affiliation(s)
- Vasilis‐Spyridon Tseriotis
- Department of NeurologyAgios Pavlos General Hospital of ThessalonikiThessalonikiGreece
- Laboratory of Clinical PharmacologyAristotle University of ThessalonikiThessalonikiGreece
| | - Kyriaki Eleftheriadou
- Department of NeurologyAgios Pavlos General Hospital of ThessalonikiThessalonikiGreece
| | - Theodoros Mavridis
- Department of NeurologyTallaght University Hospital (TUH)/The Adelaide and Meath Hospital, Dublin, Incorporating the National Children's Hospital (AMNCH)DublinIreland
| | - Georgios Konstantis
- Laboratory of Clinical PharmacologyAristotle University of ThessalonikiThessalonikiGreece
| | - Bjoern Falkenburger
- Department of Neurology, University Hospital and Faculty of Medicine Carl Gustav CarusTechnische Universität DresdenDresdenGermany
| | - Marianthi Arnaoutoglou
- 1st Department of NeurologyUniversity Hospital AHEPA, Faculty of Medicine Aristotle University of ThessalonikiThessalonikiGreece
| |
Collapse
|
5
|
Jo S, Suh CH, Lee S, Lee J, Yoon M, Heo H, Shim WH, Kim SJ, Kim EY, Chung SJ. Susceptibility map-weighted MRI can distinguish tremor-dominant Parkinson's disease from essential tremor. Sci Rep 2025; 15:823. [PMID: 39755717 PMCID: PMC11700172 DOI: 10.1038/s41598-024-81089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/25/2024] [Indexed: 01/06/2025] Open
Abstract
Distinguishing between Parkinson's disease (PD) and essential tremor (ET) can be challenging sometimes. Although positron emission tomography can confirm PD diagnosis, its application is limited by high cost and exposure to radioactive isotopes. Patients with PD exhibit loss of the dorsal nigral hyperintensity on brain magnetic resonance imaging (MRI). Novel MRI-based approaches, including susceptibility map-weighted imaging (SMwI), allow visualization of the dorsal nigral hyperintensity at an increased resolution. Herein, we investigated the diagnostic accuracy of dorsal nigral hyperintensity evaluation on SMwI for distinguishing tremor-dominant PD from ET. Consecutive patients with tremor who underwent SMwI and were diagnosed with tremor-dominant PD or ET between July 2021 and July 2022 were enrolled. The dorsal nigral hyperintensity loss on SMwI was compared between the PD and ET groups. All 143 patients (100%) with tremor-dominant PD showed unilateral or bilateral dorsal nigral hyperintensity loss. Among 136 patients with ET, 131 (96.3%) exhibited an intact dorsal nigral hyperintensity, while 5 (3.7%) showed unilateral/bilateral dorsal nigral hyperintensity loss. SMwI discriminated between tremor-dominant PD and ET with a sensitivity and specificity of 100% and 96.3%, respectively. 18F-FP-CIT PET revealed normal findings in 4/5 patients with ET who had false-positive results on SMwI. These results indicate that dorsal nigral hyperintensity loss on SMwI could differentiate between tremor-dominant PD and ET with high accuracy.
Collapse
Affiliation(s)
- Sungyang Jo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Chong Hyun Suh
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Sangjin Lee
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jihyun Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - MyungKi Yoon
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hwon Heo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Woo Hyun Shim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Joon Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eung Yeop Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
6
|
Özütemiz C, White M, Elvendahl W, Eryaman Y, Marjańska M, Metzger GJ, Patriat R, Kulesa J, Harel N, Watanabe Y, Grant A, Genovese G, Cayci Z. Use of a Commercial 7-T MRI Scanner for Clinical Brain Imaging: Indications, Protocols, Challenges, and Solutions-A Single-Center Experience. AJR Am J Roentgenol 2023; 221:788-804. [PMID: 37377363 PMCID: PMC10825876 DOI: 10.2214/ajr.23.29342] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The first commercially available 7-T MRI scanner (Magnetom Terra) was approved by the FDA in 2017 for clinical imaging of the brain and knee. After initial protocol development and sequence optimization efforts in volunteers, the 7-T system, in combination with an FDA-approved 1-channel transmit/32-channel receive array head coil, can now be routinely used for clinical brain MRI examinations. The ultrahigh field strength of 7-T MRI has the advantages of improved spatial resolution, increased SNR, and increased CNR but also introduces an array of new technical challenges. The purpose of this article is to describe an institutional experience with the use of the commercially available 7-T MRI scanner for routine clinical brain imaging. Specific clinical indications for which 7-T MRI may be useful for brain imaging include brain tumor evaluation with possible perfusion imaging and/or spectroscopy, radiotherapy planning; evaluation of multiple sclerosis and other demyelinating diseases, evaluation of Parkinson disease and guidance of deep brain stimulator placement, high-detail intracranial MRA and vessel wall imaging, evaluation of pituitary pathology, and evaluation of epilepsy. Detailed protocols, including sequence parameters, for these various indications are presented, and implementation challenges (including artifacts, safety, and side effects) and potential solutions are explored.
Collapse
Affiliation(s)
- Can Özütemiz
- Department of Radiology, University of Minnesota, 420 Delaware St SE, MMC 292, Minneapolis, MN 55455
| | - Matthew White
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Wendy Elvendahl
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Rémi Patriat
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Jeramy Kulesa
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Yoichi Watanabe
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN
| | - Andrea Grant
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Guglielmo Genovese
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Zuzan Cayci
- Department of Radiology, University of Minnesota, 420 Delaware St SE, MMC 292, Minneapolis, MN 55455
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
7
|
Seginer A, Schmidt R. Messing up to clean up: Semi-randomized frequency selective space-filling curves to suppress physiological signal fluctuations in MRI. Magn Reson Med 2023; 90:2275-2289. [PMID: 37448104 DOI: 10.1002/mrm.29790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
PURPOSE Rapid 3D steady-state sequences are widely used but are also known to be sensitive to semi-periodic physiological signal fluctuations due to, for example, cardiac pulsation, breathing, and eye/eyelids movement. This semi-periodicity results in repeating artifacts in the image whose intensity depends on the scan parameters. The purpose of this study is to design a reordering of the 2D phase encodes (within the 3D acquisition) that reduces these artifacts. METHODS A randomized order of the phase encodes can suppress repeating artifact but may also introduce its own apparent noise, for example, in cases of slow subject movement or gradual changes in eddy currents. In a new design a semi-randomized space-filling curve is generated by scrambling the local order of the phase encodes to achieve a controlled frequency selective effect, that is, eliminating artifacts above a chosen (fluctuation) frequency threshold while leaving lower frequencies untouched, thus overcoming the limitations of a randomized order. The method was characterized in simulations and substantiated by human brain imaging at 7 T using two steady-state gradient echo variants that suffer from pulsation, either near blood vessels or near the ventricles. RESULTS The simulations with a point source show that the maximum artifact intensity can be reduced by factors of 10-50 depending on the scan parameters. In human scanning, the new approach drastically reduced physiologically induced artifacts and was superior in this regard to both full randomization and a generalized Hilbert curve, another semi-randomized approach. CONCLUSION The phase-encodes reordering presented here effectively removes artifacts arising from local fluctuations.
Collapse
Affiliation(s)
- Amir Seginer
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
| | - Rita Schmidt
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Welton T, Hartono S, Shih YC, Schwarz ST, Xing Y, Tan EK, Auer DP, Harel N, Chan LL. Ultra-high-field 7T MRI in Parkinson's disease: ready for clinical use?-a narrative review. Quant Imaging Med Surg 2023; 13:7607-7620. [PMID: 37969629 PMCID: PMC10644128 DOI: 10.21037/qims-23-509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/15/2023] [Indexed: 11/17/2023]
Abstract
Background and Objective The maturation of ultra-high-field magnetic resonance imaging (MRI) [≥7 Tesla (7T)] has improved our capability to depict and characterise brain structures efficiently, with better signal-to-noise ratio (SNR) and spatial resolution. We evaluated whether these improvements benefit the clinical detection and management of Parkinson's disease (PD). Methods We performed a literature search in March 2023 in PubMed (MEDLINE), EMBASE and Google Scholar for articles on "7T MRI" AND "Parkinson*", written in English, published between inception and 1st March, 2023, which we synthesised in narrative form. Key Content and Findings In deep-brain stimulation (DBS) surgical planning, early studies show that 7T MRI can distinguish anatomical substructures, and that this results in reduced adverse effects. In other areas, while there is strong evidence for improved accuracy and precision of 7T MRI-based measurements for PD, there is limited evidence for meaningful clinical translation. In particular, neuromelanin-iron complex quantification and visualisation in midbrain nuclei is enhanced, enabling depiction of nigrosomes 1-5, improved morphometry and vastly improved radiological assessments; however, studies on the related clinical outcomes, diagnosis, subtyping, differentiation of atypical parkinsonisms, and monitoring of treatment response using 7T MRI are lacking. Moreover, improvements in clinical utility must be great enough to justify the additional costs. Conclusions Together, current evidence supports feasible future clinical implementation of 7T MRI for PD. Future impacts to clinical decision making for diagnosis, differentiation, and monitoring of progression or treatment response are likely; however, to achieve this, further longitudinal studies using 7T MRI are needed in prodromal, early-stage PD and parkinsonism cohorts focusing on clinical translational potential.
Collapse
Affiliation(s)
- Thomas Welton
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Septian Hartono
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore
| | - Yao-Chia Shih
- Duke-NUS Medical School, Singapore, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore
- Graduate Institute of Medicine, Yuan Ze University and National Taiwan University, Taipei
| | - Stefan T. Schwarz
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Radiology, Cardiff and Vale University Health Board, Cardiff, Wales, UK
| | - Yue Xing
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Eng-King Tan
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Dorothee P. Auer
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Ling-Ling Chan
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
9
|
Maiti B, Perlmutter JS. Imaging in Movement Disorders. Continuum (Minneap Minn) 2023; 29:194-218. [PMID: 36795878 DOI: 10.1212/con.0000000000001210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
OBJECTIVE This article reviews commonly used imaging modalities in movement disorders, particularly parkinsonism. The review includes the diagnostic utility, role in differential diagnosis, reflection of pathophysiology, and limitations of neuroimaging in the setting of movement disorders. It also introduces promising new imaging modalities and describes the current status of research. LATEST DEVELOPMENTS Iron-sensitive MRI sequences and neuromelanin-sensitive MRI can be used to directly assess the integrity of nigral dopaminergic neurons and thus may reflect disease pathology and progression throughout the full range of severity in Parkinson disease (PD). The striatal uptake of presynaptic radiotracers in their terminal axons as currently assessed using clinically approved positron emission tomography (PET) or single-photon emission computed tomography (SPECT) imaging correlates with nigral pathology and disease severity only in early PD. Cholinergic PET, using radiotracers that target the presynaptic vesicular acetylcholine transporter, constitutes a substantial advance and may provide crucial insights into the pathophysiology of clinical symptoms such as dementia, freezing, and falls. ESSENTIAL POINTS In the absence of valid, direct, objective biomarkers of intracellular misfolded α-synuclein, PD remains a clinical diagnosis. The clinical utility of PET- or SPECT-based striatal measures is currently limited given their lack of specificity and inability to reflect nigral pathology in moderate to severe PD. These scans may be more sensitive than clinical examination to detect nigrostriatal deficiency that occurs in multiple parkinsonian syndromes and may still be recommended for clinical use in the future to identify prodromal PD if and when disease-modifying treatments become available. Multimodal imaging to evaluate underlying nigral pathology and its functional consequences may hold the key to future advances.
Collapse
|
10
|
Lancione M, Donatelli G, Del Prete E, Campese N, Frosini D, Cencini M, Costagli M, Biagi L, Lucchi G, Tosetti M, Godani M, Arnaldi D, Terzaghi M, Provini F, Pacchetti C, Cortelli P, Bonanni E, Ceravolo R, Cosottini M. Evaluation of iron overload in nigrosome 1 via quantitative susceptibility mapping as a progression biomarker in prodromal stages of synucleinopathies. Neuroimage 2022; 260:119454. [PMID: 35810938 DOI: 10.1016/j.neuroimage.2022.119454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/17/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022] Open
Abstract
Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is a prodromal stage of α-synucleinopathies, such as Parkinson's disease (PD), which are characterized by the loss of dopaminergic neurons in substantia nigra, associated with abnormal iron load. The assessment of presymptomatic biomarkers predicting the onset of neurodegenerative disorders is critical for monitoring early signs, screening patients for neuroprotective clinical trials and understanding the causal relationship between iron accumulation processes and disease development. Here, we used Quantitative Susceptibility Mapping (QSM) and 7T MRI to quantify iron deposition in Nigrosome 1 (N1) in early PD (ePD) patients, iRBD patients and healthy controls and investigated group differences and correlation with disease progression. We evaluated the radiological appearance of N1 and analyzed its iron content in 35 ePD, 30 iRBD patients and 14 healthy controls via T2*-weighted sequences and susceptibility (χ) maps. N1 regions of interest (ROIs) were manually drawn on control subjects and warped onto a study-specific template to obtain probabilistic N1 ROIs. For each subject the N1 with the highest mean χ was considered for statistical analysis. The appearance of N1 was rated pathological in 45% of iRBD patients. ePD patients showed increased N1 χ compared to iRBD patients and HC but no correlation with disease duration, indicating that iron load remains stable during the early stages of disease progression. Although no difference was reported in iron content between iRBD and HC, N1 χ in the iRBD group increases as the disease evolves. QSM can reveal temporal changes in N1 iron content and its quantification may represent a valuable presymptomatic biomarker to assess neurodegeneration in the prodromal stages of PD.
Collapse
Affiliation(s)
- Marta Lancione
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | - Graziella Donatelli
- Imago7 Research Foundation, Pisa, Italy; Neuroradiology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.
| | - Eleonora Del Prete
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicole Campese
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Frosini
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Cencini
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | - Mauro Costagli
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Laura Biagi
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | - Giacomo Lucchi
- Neuroradiology Unit, Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Michela Tosetti
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | | | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Terzaghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Federica Provini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Clinica Neurologica Rete Metropolitana, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Clinica Neurologica Rete Metropolitana, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Enrica Bonanni
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mirco Cosottini
- Neuroradiology Unit, Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Okada T, Fujimoto K, Fushimi Y, Akasaka T, Thuy DHD, Shima A, Sawamoto N, Oishi N, Zhang Z, Funaki T, Nakamoto Y, Murai T, Miyamoto S, Takahashi R, Isa T. Neuroimaging at 7 Tesla: a pictorial narrative review. Quant Imaging Med Surg 2022; 12:3406-3435. [PMID: 35655840 PMCID: PMC9131333 DOI: 10.21037/qims-21-969] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/05/2022] [Indexed: 01/26/2024]
Abstract
Neuroimaging using the 7-Tesla (7T) human magnetic resonance (MR) system is rapidly gaining popularity after being approved for clinical use in the European Union and the USA. This trend is the same for functional MR imaging (MRI). The primary advantages of 7T over lower magnetic fields are its higher signal-to-noise and contrast-to-noise ratios, which provide high-resolution acquisitions and better contrast, making it easier to detect lesions and structural changes in brain disorders. Another advantage is the capability to measure a greater number of neurochemicals by virtue of the increased spectral resolution. Many structural and functional studies using 7T have been conducted to visualize details in the white matter and layers of the cortex and hippocampus, the subnucleus or regions of the putamen, the globus pallidus, thalamus and substantia nigra, and in small structures, such as the subthalamic nucleus, habenula, perforating arteries, and the perivascular space, that are difficult to observe at lower magnetic field strengths. The target disorders for 7T neuroimaging range from tumoral diseases to vascular, neurodegenerative, and psychiatric disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, major depressive disorder, and schizophrenia. MR spectroscopy has also been used for research because of its increased chemical shift that separates overlapping peaks and resolves neurochemicals more effectively at 7T than a lower magnetic field. This paper presents a narrative review of these topics and an illustrative presentation of images obtained at 7T. We expect 7T neuroimaging to provide a new imaging biomarker of various brain disorders.
Collapse
Affiliation(s)
- Tomohisa Okada
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Fujimoto
- Department of Real World Data Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Thai Akasaka
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dinh H. D. Thuy
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Shima
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Oishi
- Medial Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Zhilin Zhang
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Funaki
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Isa
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Gupta R, Kumar G, Kumar S, Thakur B, Tiwari R, Verma AK. The Swallow Tail Sign of Substantia Nigra: A Case–Control Study to Establish Its Role in Diagnosis of Parkinson Disease on 3T MRI. J Neurosci Rural Pract 2022; 13:181-185. [PMID: 35694067 PMCID: PMC9187389 DOI: 10.1055/s-0041-1740578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Abstract
Background and Objectives The loss of swallow tail sign (STS) has been studied for the diagnosis of Parkinson's disease (PD). The study aims to establish the role of STS on high-resolution 3D susceptibility-weighted images (SWI) on 3T MRI in clinically diagnosed cases of PD and compare with control population.
Methods and Materials Forty-five patients with clinically diagnosed PD and Parkinson plus syndrome (PPS) formed the study group and were compared with 45 controls without any neurological disease and normal brain magnetic resonance imaging (MRI). Presence or absence of STS was studied on 1-mm thick axial 3D SWI images in bilateral substantia nigra by two radiologists independently, followed by consensus reading. Bilateral absent, unilateral absent, and faintly present STS were considered as absent STS and predicted PD or PPS, and bilateral presence was considered as a positive STS, and was assessed keeping the clinical diagnosis as the gold standard.
Results The sensitivity of the absent STS was 75.55%, specificity 97.77%, positive predictive value 97.14%, negative predictive value 80% and accuracy 86.66%, in the diagnosis of PD or PPS, with odd ratio of 132 (confidence interval 15.97–1098.75). Kappa coefficient was 0.80 (p < 0.001) for both inter- and intrarater agreement, suggesting high reproducibility for the detection of STS.
Conclusions Absence of the STS is a good predictor of degeneration of the nigrosome 1 in the substantia nigra in the PD or PPS patients; hence, it can act as a useful marker of these diseases.
Collapse
Affiliation(s)
- Ruchi Gupta
- Department of Radiodiagnosis, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Gunjan Kumar
- Department of Neuromedicine, Patna Medical College and Hospital, Patna, Bihar, India
| | - Subhash Kumar
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Patna, Bihar, India
| | - Bhaskar Thakur
- Division of Biostatistics and Epidemiology, Texas Tech Health Science Center, El Paso, Texas, United States
| | - Richa Tiwari
- Department of Radiodiagnosis, Shaikh-Ul-Hind Maulana Mahmood Hasan Medical College, Saharanpur, Uttar Pradesh, India
| | - Amit Kumar Verma
- Department of Radiodiagnosis, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
13
|
Maeker E, Maeker-Poquet B. Syndromes extrapyramidaux induits par les médicaments. NPG NEUROLOGIE - PSYCHIATRIE - GÉRIATRIE 2022; 22:25-34. [DOI: 10.1016/j.npg.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Prasuhn J, Strautz R, Lemmer F, Dreischmeier S, Kasten M, Hanssen H, Heldmann M, Brüggemann N. Neuroimaging Correlates of Substantia Nigra Hyperechogenicity in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1191-1200. [PMID: 35180131 DOI: 10.3233/jpd-213000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Degeneration of dopaminergic neurons within the brainstem substantia nigra (SN) is both a pathological hallmark of Parkinson's disease (PD) and a major contributor to symptom expression. Therefore, non-invasive evaluation of the SN is critical for diagnosis and evaluation of disease progression. Hyperechogenicity (HE+) on midbrain transcranial sonography (TCS) supports the clinically established diagnosis of PD. Further, postmortem studies suggest involvement of neuromelanin (NM) loss and iron deposition in nigral neurodegeneration and HE+ emergence. However, the associations between HE+ and signs of nigral NM loss and iron deposition revealed by magnetic resonance imaging (MRI) have not been examined. OBJECTIVE To elucidate the magnetic resonance- (MR-) morphological representation of the HE+ by NM-weighted (NMI) and susceptibility-weighted MRI (SWI). METHODS Thirty-four PD patients and 29 healthy controls (HCs) received TCS followed by NMI and SWI. From MR images, two independent raters manually identified the SN, placed seeds in non-SN midbrain areas, and performed semi-automated SN segmentation with different thresholds based on seed mean values and standard deviations. Masks of the SN were then used to extract mean area, mean signal intensity, maximal signal area, maximum signal (for NMI), and minimum signal (for SWI). RESULTS There were no significant differences in NMI- and SWI-based parameters between patients and HCs, and no significant associations between HE+ extent and NMI- or SWI-based parameters. CONCLUSION HE+ on TCS appears unrelated to PD pathology revealed by NMI and SWI. Thus, TCS and MRI parameters should be considered complementary, and the pathophysiological correlates of the HE+ require further study.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Robert Strautz
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Felicitas Lemmer
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Shalida Dreischmeier
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- Department of Psychiatry, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Henrike Hanssen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
15
|
Haller S, Davidsson A, Tisell A, Ochoa-Figueroa M, Georgiopoulos C. MRI of nigrosome-1: A potential triage tool for patients with suspected parkinsonism. J Neuroimaging 2021; 32:273-278. [PMID: 34724281 DOI: 10.1111/jon.12944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Susceptibility-weighted imaging (SWI) of nigrosome-1 is an emerging and clinically applicable imaging marker for parkinsonism, which can be derived from routinely performed brain MRI. The purpose of the study was to assess whether SWI can be used as a triage tool for more efficient selection of subsequent Dopamine Transporter Scan (DaTSCAN) single-photon emission computed tomography (SPECT). METHODS We examined 72 consecutive patients with suspected parkinsonism with both DaTSCAN SPECT and SWI (48 in Philips Ingenia, 24 in GE Signa). Additionally, we examined 24 healthy controls with SWI (14 in Philips Ingenia, 10 in GE Signa). Diagnostic performance of SWI and DaTSCAN SPECT was assessed on the basis of clinical diagnosis, in terms of sensitivity, specificity, and diagnostic accuracy. RESULTS A total of 54 parkinsonism patients (69 years ± 9, 32 men), 18 nonparkinsonism patients (69.4 years ± 9, 10 men), and 24 healthy controls (62 years ± 8, 10 men) were recruited. SWI had a specificity of 92% and a sensitivity of 74%, whereas DaTSCAN SPECT had 83% and 94%, respectively. By preselecting patients with abnormal or inconclusive SWI, the diagnostic performance of DaTSCAN SPECT improved (specificity 100%, sensitivity 95%). Scans from Philips were associated with significantly lower image quality compared to GE (p < .001). The experienced rater outperformed the less experienced one in diagnostic accuracy (82% vs. 68%). CONCLUSIONS SWI can be used as triage tool because normal SWI can in most cases rule out parkinsonism. However, the performance of SWI depends on acquisition parameters and rater's experience.
Collapse
Affiliation(s)
- Sven Haller
- CIMC - Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland.,Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anette Davidsson
- Department of Clinical Physiology, Linköping University, Linköping, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Anders Tisell
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Department of Medical Radiation Physics, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Miguel Ochoa-Figueroa
- Department of Clinical Physiology, Linköping University, Linköping, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Radiology, Linköping University, Linköping, Sweden
| | - Charalampos Georgiopoulos
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Radiology, Linköping University, Linköping, Sweden
| |
Collapse
|
16
|
Düzel E, Costagli M, Donatelli G, Speck O, Cosottini M. Studying Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis with 7-T magnetic resonance. Eur Radiol Exp 2021; 5:36. [PMID: 34435242 PMCID: PMC8387546 DOI: 10.1186/s41747-021-00221-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Ultra-high-field (UHF) magnetic resonance (MR) scanners, that is, equipment operating at static magnetic field of 7 tesla (7 T) and above, enable the acquisition of data with greatly improved signal-to-noise ratio with respect to conventional MR systems (e.g., scanners operating at 1.5 T and 3 T). The change in tissue relaxation times at UHF offers the opportunity to improve tissue contrast and depict features that were previously inaccessible. These potential advantages come, however, at a cost: in the majority of UHF-MR clinical protocols, potential drawbacks may include signal inhomogeneity, geometrical distortions, artifacts introduced by patient respiration, cardiac cycle, and motion. This article reviews the 7 T MR literature reporting the recent studies on the most widespread neurodegenerative diseases: Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Emrah Düzel
- Otto-von-Guericke University Magdeburg, Magdeburg, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany. .,University College London, London, UK.
| | - Mauro Costagli
- IRCCS Stella Maris, Pisa, Italy.,University of Genoa, Genova, Italy
| | - Graziella Donatelli
- Fondazione Imago 7, Pisa, Italy.,Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Oliver Speck
- Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Mirco Cosottini
- Azienda Ospedaliero Universitaria Pisana, Pisa, Italy.,University of Pisa, Pisa, Italy
| |
Collapse
|
17
|
Prasuhn J, Neumann A, Strautz R, Dreischmeier S, Lemmer F, Hanssen H, Heldmann M, Schramm P, Brüggemann N. Clinical MR imaging in Parkinson's disease: How useful is the swallow tail sign? Brain Behav 2021; 11:e02202. [PMID: 34032020 PMCID: PMC8323030 DOI: 10.1002/brb3.2202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 05/11/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND With conventional MRI, no Parkinson's disease (PD)-specific abnormalities can be detected. However, there is a critical need for accompanying neuroimaging markers to guide the diagnosis. With high-resolution susceptibility-weighted MRI (SWI) sequences, the imaging of nigrosome-1 (N1) is possible. The so-called swallow tail sign (STS) has been proposed as a suitable neuroimaging marker for the diagnosis of PD. OBJECTIVES To investigate whether the absence of the STS can be applied for distinguishing PD patients from healthy controls (HCs). METHODS SWI images of 44 PD patients and 50 age- and gender-matched HCs were investigated using a 3T MRI scanner. Two trained neuroradiologists blind-rated the images and evaluated whether the STS was absent (1) on one side or (2) both sides of the participant's midbrain. RESULTS Our results confirmed good interrater reliability comparable to previously published studies. However, we did not identify any group differences between PD patients and HCs. Measures of diagnostic values revealed overall poor diagnostic performance. CONCLUSIONS Even though previously stated, our study does not confirm the potential use of the STS as a supportive neuroimaging marker for PD in a clinical setting. In conclusion, there is a critical need for improvements in N1-targeted MRI sequences and the development of advanced segmentation algorithms.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Alexander Neumann
- Department of Neuroradiology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Robert Strautz
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Shalida Dreischmeier
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Felicitas Lemmer
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Henrike Hanssen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Peter Schramm
- Department of Neuroradiology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
18
|
Feraco P, Gagliardo C, La Tona G, Bruno E, D’angelo C, Marrale M, Del Poggio A, Malaguti MC, Geraci L, Baschi R, Petralia B, Midiri M, Monastero R. Imaging of Substantia Nigra in Parkinson's Disease: A Narrative Review. Brain Sci 2021; 11:brainsci11060769. [PMID: 34207681 PMCID: PMC8230134 DOI: 10.3390/brainsci11060769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder, characterized by motor and non-motor symptoms due to the degeneration of the pars compacta of the substantia nigra (SNc) with dopaminergic denervation of the striatum. Although the diagnosis of PD is principally based on a clinical assessment, great efforts have been expended over the past two decades to evaluate reliable biomarkers for PD. Among these biomarkers, magnetic resonance imaging (MRI)-based biomarkers may play a key role. Conventional MRI sequences are considered by many in the field to have low sensitivity, while advanced pulse sequences and ultra-high-field MRI techniques have brought many advantages, particularly regarding the study of brainstem and subcortical structures. Nowadays, nigrosome imaging, neuromelanine-sensitive sequences, iron-sensitive sequences, and advanced diffusion weighted imaging techniques afford new insights to the non-invasive study of the SNc. The use of these imaging methods, alone or in combination, may also help to discriminate PD patients from control patients, in addition to discriminating atypical parkinsonian syndromes (PS). A total of 92 articles were identified from an extensive review of the literature on PubMed in order to ascertain the-state-of-the-art of MRI techniques, as applied to the study of SNc in PD patients, as well as their potential future applications as imaging biomarkers of disease. Whilst none of these MRI-imaging biomarkers could be successfully validated for routine clinical practice, in achieving high levels of accuracy and reproducibility in the diagnosis of PD, a multimodal MRI-PD protocol may assist neuroradiologists and clinicians in the early and differential diagnosis of a wide spectrum of neurodegenerative disorders.
Collapse
Affiliation(s)
- Paola Feraco
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via S. Giacomo 14, 40138 Bologna, Italy;
- Neuroradiology Unit, S. Chiara Hospital, 38122 Trento, Italy;
| | - Cesare Gagliardo
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.L.T.); (E.B.); (C.D.); (M.M.)
- Correspondence:
| | - Giuseppe La Tona
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.L.T.); (E.B.); (C.D.); (M.M.)
| | - Eleonora Bruno
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.L.T.); (E.B.); (C.D.); (M.M.)
| | - Costanza D’angelo
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.L.T.); (E.B.); (C.D.); (M.M.)
| | - Maurizio Marrale
- Department of Physics and Chemistry, University of Palermo, 90128 Palermo, Italy;
| | - Anna Del Poggio
- Department of Neuroradiology and CERMAC, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, 20132 Milan, Italy;
| | | | - Laura Geraci
- Diagnostic and Interventional Neuroradiology Unit, A.R.N.A.S. Civico-Di Cristina-Benfratelli, 90127 Palermo, Italy;
| | - Roberta Baschi
- Section of Neurology, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.B.); (R.M.)
| | | | - Massimo Midiri
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.L.T.); (E.B.); (C.D.); (M.M.)
| | - Roberto Monastero
- Section of Neurology, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.B.); (R.M.)
| |
Collapse
|
19
|
Ren Q, Wang Y, Leng S, Nan X, Zhang B, Shuai X, Zhang J, Xia X, Li Y, Ge Y, Meng X, Zhao C. Substantia Nigra Radiomics Feature Extraction of Parkinson's Disease Based on Magnitude Images of Susceptibility-Weighted Imaging. Front Neurosci 2021; 15:646617. [PMID: 34135726 PMCID: PMC8200854 DOI: 10.3389/fnins.2021.646617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background It is reported that radiomic features extracted from quantitative susceptibility mapping (QSM) had promising clinical value for the diagnosis of Parkinson's disease (PD). We aimed to explore the usefulness of radiomics features based on magnitude images to distinguish PD from non-PD controls. Methods We retrospectively recruited PD patients and controls who underwent brain 3.0T MR including susceptibility-weighted imaging (SWI). A total of 396 radiomics features were extracted from the SN of 95 PD patients and 95 non-PD controls based on SWI. Intra-/inter-observer correlation coefficients (ICCs) were applied to measure the observer agreement for the radiomic feature extraction. Then the patients were randomly grouped into training and validation sets in a ratio of 7:3. In the training set, the maximum correlation minimum redundancy algorithm (mRMR) and the least absolute shrinkage and selection operator (LASSO) were conducted to filter and choose the optimized subset of features, and a radiomics signature was constructed. Moreover, radiomics signatures were constructed by different machine learning models. Area under the ROC curves (AUCs) were applied to evaluate the predictive performance of the models. Then correlation analysis was performed to evaluate the correlation between the optimized features and clinical factors. Results The intro-observer CC ranged from 0.82 to 1.0, and the inter-observer CC ranged from 0.77 to 0.99. The LASSO logistic regression model showed good prediction efficacy in the training set [AUC = 0.82, 95% confidence interval (CI, 0.74-0.88)] and the validation set [AUC = 0.81, 95% CI (0.68-0.91)]. One radiomic feature showed a moderate negative correlation with Hoehn-Yahr stage (r = -0.49, P = 0.012). Conclusion Radiomic predictive features based on SWI magnitude images could reflect the Hoehn-Yahr stage of PD to some extent.
Collapse
Affiliation(s)
- Qingguo Ren
- Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yihua Wang
- Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Shanshan Leng
- Radiology, Qingdao Municipal Hospital, Qingdao, China
| | - Xiaomin Nan
- Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Bin Zhang
- Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xinyan Shuai
- Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jianyuan Zhang
- Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaona Xia
- Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Ye Li
- Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | | | - Xiangshui Meng
- Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Cuiping Zhao
- Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
20
|
Lazarus C, Weiss P, El Gueddari L, Mauconduit F, Massire A, Ripart M, Vignaud A, Ciuciu P. 3D variable-density SPARKLING trajectories for high-resolution T2*-weighted magnetic resonance imaging. NMR IN BIOMEDICINE 2020; 33:e4349. [PMID: 32613699 DOI: 10.1002/nbm.4349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 04/28/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
We have recently proposed a new optimization algorithm called SPARKLING (Spreading Projection Algorithm for Rapid K-space sampLING) to design efficient compressive sampling patterns for magnetic resonance imaging (MRI). This method has a few advantages over conventional non-Cartesian trajectories such as radial lines or spirals: i) it allows to sample the k-space along any arbitrary density while the other two are restricted to radial densities and ii) it optimizes the gradient waveforms for a given readout time. Here, we introduce an extension of the SPARKLING method for 3D imaging by considering both stacks-of-SPARKLING and fully 3D SPARKLING trajectories. Our method allowed to achieve an isotropic resolution of 600 μm in just 45 seconds for T2∗-weighted ex vivo brain imaging at 7 Tesla over a field-of-view of 200 × 200 × 140 mm3 . Preliminary in vivo human brain data shows that a stack-of-SPARKLING is less subject to off-resonance artifacts than a stack-of-spirals.
Collapse
Affiliation(s)
- Carole Lazarus
- CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette cedex, 91191, France
- Université Paris-Saclay, France
- INRIA, Parietal, Palaiseau, 91120, France
| | - Pierre Weiss
- ITAV USR3505 CNRS, Toulouse, 31000, France
- IMT UMR 5219 CNRS, Toulouse, 31400, France
- Université de Toulouse, France
| | - Loubna El Gueddari
- CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette cedex, 91191, France
- Université Paris-Saclay, France
- INRIA, Parietal, Palaiseau, 91120, France
| | | | - Aurélien Massire
- CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette cedex, 91191, France
| | - Mathilde Ripart
- CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette cedex, 91191, France
- Université Paris-Saclay, France
| | - Alexandre Vignaud
- CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette cedex, 91191, France
- Université Paris-Saclay, France
| | - Philippe Ciuciu
- CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette cedex, 91191, France
- Université Paris-Saclay, France
- INRIA, Parietal, Palaiseau, 91120, France
| |
Collapse
|
21
|
Diagnostic accuracy of the appearance of Nigrosome-1 on magnetic resonance imaging in Parkinson's disease: A systematic review and meta-analysis. Parkinsonism Relat Disord 2020; 78:12-20. [DOI: 10.1016/j.parkreldis.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/04/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
|
22
|
Weber CE, Ebert A, Platten M, Gass A, Eisele P. Susceptibility‐Weighted 3T MRI of the Swallow Tail Sign in Multiple Sclerosis: A Case Control Study. J Neuroimaging 2020; 30:766-768. [DOI: 10.1111/jon.12775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/01/2022] Open
Affiliation(s)
- Claudia E. Weber
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN) University of Heidelberg Mannheim Germany
| | - Anne Ebert
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN) University of Heidelberg Mannheim Germany
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN) University of Heidelberg Mannheim Germany
| | - Achim Gass
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN) University of Heidelberg Mannheim Germany
| | - Philipp Eisele
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN) University of Heidelberg Mannheim Germany
| |
Collapse
|
23
|
Abstract
Radiology signs have long been described in ways that communicate the imagery around us to enhance our cognitive perception. Here, we describe the use and limitations of 10 such signs in neuroradiology, divided into three groups. The first are signs that are reliable for a specific diagnosis, such as the Medusa head sign indicating a developmental venous anomaly, or a racing car sign in agenesis of corpus callosum. The second group of signs helps us to diagnose rare conditions, such as the onion skin sign in Balo's concentric sclerosis. The third group is of unreliable signs that may lead clinicians astray. For example, the absence of a swallow-tail sign in Parkinson's disease or the presence of a hummingbird sign and Mickey Mouse sign in progressive supranuclear palsy. The appropriate use of these signs in clinical practice is essential.
Collapse
Affiliation(s)
- Inna Page
- Radiology Department, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Frank Gaillard
- Radiology Department, The Royal Melbourne Hospital, Melbourne, Victoria, Australia .,Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Wolters AF, Heijmans M, Michielse S, Leentjens AFG, Postma AA, Jansen JFA, Ivanov D, Duits AA, Temel Y, Kuijf ML. The TRACK-PD study: protocol of a longitudinal ultra-high field imaging study in Parkinson's disease. BMC Neurol 2020; 20:292. [PMID: 32758176 PMCID: PMC7409458 DOI: 10.1186/s12883-020-01874-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The diagnosis of Parkinson's Disease (PD) remains a challenge and is currently based on the assessment of clinical symptoms. PD is also a heterogeneous disease with great variability in symptoms, disease course, and response to therapy. There is a general need for a better understanding of this heterogeneity and the interlinked long-term changes in brain function and structure in PD. Over the past years there is increasing interest in the value of new paradigms in Magnetic Resonance Imaging (MRI) and the potential of ultra-high field strength imaging in the diagnostic work-up of PD. With this multimodal 7 T MRI study, our objectives are: 1) To identify distinctive MRI characteristics in PD patients and to create a diagnostic tool based on these differences. 2) To correlate MRI characteristics to clinical phenotype, genetics and progression of symptoms. 3) To detect future imaging biomarkers for disease progression that could be valuable for the evaluation of new therapies. METHODS The TRACK-PD study is a longitudinal observational study in a cohort of 130 recently diagnosed (≤ 3 years after diagnosis) PD patients and 60 age-matched healthy controls (HC). A 7 T MRI of the brain will be performed at baseline and repeated after 2 and 4 years. Complete assessment of motor, cognitive, neuropsychiatric and autonomic symptoms will be performed at baseline and follow-up visits with wearable sensors, validated questionnaires and rating scales. At baseline a blood DNA sample will also be collected. DISCUSSION This is the first longitudinal, observational, 7 T MRI study in PD patients. With this study, an important contribution can be made to the improvement of the current diagnostic process in PD. Moreover, this study will be able to provide valuable information related to the different clinical phenotypes of PD and their correlating MRI characteristics. The long-term aim of this study is to better understand PD and develop new biomarkers for disease progression which may help new therapy development. Eventually, this may lead to predictive models for individual PD patients and towards personalized medicine in the future. TRIAL REGISTRATION Dutch Trial Register, NL7558 . Registered March 11, 2019.
Collapse
Affiliation(s)
- A F Wolters
- Department of Neurology, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.
- School for Mental Health and Neuroscience, EURON, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - M Heijmans
- School for Mental Health and Neuroscience, EURON, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - S Michielse
- School for Mental Health and Neuroscience, EURON, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - A F G Leentjens
- School for Mental Health and Neuroscience, EURON, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Psychiatry, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - A A Postma
- School for Mental Health and Neuroscience, EURON, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - J F A Jansen
- School for Mental Health and Neuroscience, EURON, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - D Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - A A Duits
- School for Mental Health and Neuroscience, EURON, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Medical Psychology, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Y Temel
- School for Mental Health and Neuroscience, EURON, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - M L Kuijf
- Department of Neurology, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, EURON, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
25
|
Powell A, Gallur L, Koopowitz L, Hayes MW. Parkinsonism in the psychiatric setting: an update on clinical differentiation and management. BMJ Neurol Open 2020; 2:e000034. [PMID: 33681781 PMCID: PMC7871718 DOI: 10.1136/bmjno-2019-000034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 11/18/2022] Open
Abstract
Parkinsonism is seen frequently in patients with psychiatric conditions. Drug-induced parkinsonism (DIP) is the second most common cause of parkinsonism in the general population after Parkinson’s disease (PD) but a range of rarer aetiologies, some of them reversible, should also be considered in patients of all ages. DIP is more common in older patients, as are neurodegenerative diseases that may produce parkinsonism and it is relatively more likely that drug exposure could be unmasking an underlying process in this population. There is an extensive literature on differentiating DIP from PD but clinical features can be indistinguishable and many proposed investigations are not readily available. Aside from cessation of the responsible medication, there is no clear consensus on treatment strategies or duration of treatment. Practically, a delicate balance must be achieved between ameliorating parkinsonism and avoiding recurrent psychosis. Long-term prognosis in the setting of DIP remains unclear. We review the features that may differentiate DIP from other causes of parkinsonism in patients with psychiatric illness, provide an update on relevant investigations and discuss management strategies. The use of atypical antipsychotics for a broad range of indications highlights the ongoing relevance of DIP.
Collapse
Affiliation(s)
- Alice Powell
- Department of Neurology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Lara Gallur
- Department of Psychiatry, Northern Adelaide Local Health Network, Adelaide, South Australia, Australia.,School of Medicine, Discipline of Psychiatry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Leslie Koopowitz
- School of Medicine, Discipline of Psychiatry, The University of Adelaide, Adelaide, South Australia, Australia.,Brain Injury Rehabilitation Unit, Hampstead Rehabilitation Centre, Adelaide, South Australia, Australia
| | - Michael William Hayes
- Department of Neurology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Cheng Z, He N, Huang P, Li Y, Tang R, Sethi SK, Ghassaban K, Yerramsetty KK, Palutla VK, Chen S, Yan F, Haacke EM. Imaging the Nigrosome 1 in the substantia nigra using susceptibility weighted imaging and quantitative susceptibility mapping: An application to Parkinson's disease. Neuroimage Clin 2019; 25:102103. [PMID: 31869769 PMCID: PMC6933220 DOI: 10.1016/j.nicl.2019.102103] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/14/2019] [Accepted: 11/18/2019] [Indexed: 10/31/2022]
Abstract
Parkinson's disease (PD) is a clinically heterogeneous chronic progressive neuro-degenerative disease with loss of dopaminergic neurons in the nigrosome 1 (N1) territory of the substantia nigra pars compacta (SNpc). To date, there has been a major effort to identify changes in the N1 territory by monitoring increases of iron in the SNpc. However, there is no standard protocol being used to visualize or characterize the N1 territory. Therefore, the purpose of this study was to create a robust high quality, rapid imaging protocol, determine a slice by slice characterization of the appearance of N1 (the "N1 sign") and evaluate the loss of the N1 sign in order to differentiate healthy controls (HCs) from patients with PD. Firstly, one group of 10 HCs was used to determine the choice of imaging parameters. Secondly, another group of 80 HCs was used to characterize the appearance of the N1 sign and train the raters. In this step, the magnitude, susceptibility weighted images (SWI), quantitative susceptibility maps (QSM) and true SWI (tSWI) images were all reviewed using data from a 3D gradient recalled echo sequence. A resolution of 0.67 mm × 0.67 mm × 1.34 mm was chosen based on the ability to cover all the basal ganglia, midbrain and dentate nucleus with good signal-to-noise with echo times of 11 ms and 20 ms. Thirdly, 80 Parkinsonism and related disorders patients [idiopathic Parkinson's disease (IPD): 57; atypical parkinsonian syndromes (APs): 14; essential tremor (ET): 9] and one additional group of 80 age-matched HCs were blindly analyzed for the presence or absence of the N1 sign for a differential diagnosis. From the first group of 80 HCs, all of the 76 (100%) cases (4 were excluded due to motion artifacts) showed the N1 sign in one form or another after reviewing the first 5 caudal slices of the SN. For the second group of 80 HCs, 78 (97.5%) showed the N1 sign in at least 2 slices. Of the 80 Parkinsonism and related disorders patients, 32 (56.1%, 32/57) IPD and 6 (42.9%, 6/14) APs showed a bilateral loss of the N1 sign, 12 (21.1%, 12/57) IPD and 6 (42.9%, 6/14) APs showed the N1 sign unilaterally and 13 (22.8%, 13/57) IPD and 2 (14.2%, 2/14) APs showed the N1 sign bilaterally. Also, all 9 (100%, 9/9) ET patients showed the N1 sign bilaterally. The mean total structure and mean high susceptibility region for the SN for both IPD and APs patients with bilateral loss of N1 were higher than those of the HCs (p < 0.002). In conclusion, the N1 sign can be consistently visualized using tSWI with a resolution of at least 0.67 mm × 0.67 mm × 1.34 mm and can be seen in 95% of HCs.
Collapse
Affiliation(s)
- Zenghui Cheng
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Pei Huang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Rongbiao Tang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Sean K. Sethi
- Magnetic Resonance Innovations, Inc, 30200 Telegraph Road, Bingham Farms, MI, 48025, USA
- Department of Radiology, Wayne State University, 42 W. Warren Ave. Detroit, MI, 48202, USA
| | - Kiarash Ghassaban
- Department of Radiology, Wayne State University, 42 W. Warren Ave. Detroit, MI, 48202, USA
- Department of Biomedical Engineering, Wayne State University, 42 W. Warren Ave. Detroit, MI, 48202, USA
| | - Kiran Kumar Yerramsetty
- MR Medical Imaging Innovations India Pvt. Ltd, Flat No.401, Plot No.397, SAI HOUSE, Ayyappa Society, Madhapur, Hyderabad, Telangana, 500081, India
| | - Vinay Kumar Palutla
- MR Medical Imaging Innovations India Pvt. Ltd, Flat No.401, Plot No.397, SAI HOUSE, Ayyappa Society, Madhapur, Hyderabad, Telangana, 500081, India
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - E. Mark Haacke
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Magnetic Resonance Innovations, Inc, 30200 Telegraph Road, Bingham Farms, MI, 48025, USA
- Department of Radiology, Wayne State University, 42 W. Warren Ave. Detroit, MI, 48202, USA
- Department of Biomedical Engineering, Wayne State University, 42 W. Warren Ave. Detroit, MI, 48202, USA
| |
Collapse
|
27
|
Cheng Z, Zhang J, He N, Li Y, Wen Y, Xu H, Tang R, Jin Z, Haacke EM, Yan F, Qian D. Radiomic Features of the Nigrosome-1 Region of the Substantia Nigra: Using Quantitative Susceptibility Mapping to Assist the Diagnosis of Idiopathic Parkinson's Disease. Front Aging Neurosci 2019; 11:167. [PMID: 31379555 PMCID: PMC6648885 DOI: 10.3389/fnagi.2019.00167] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/17/2019] [Indexed: 01/06/2023] Open
Abstract
Introduction: The loss of nigrosome-1, which is also referred to as the swallow tail sign (STS) in T2*-weighted iron-sensitive magnetic resonance imaging (MRI), has recently emerged as a new biomarker for idiopathic Parkinson's disease (IPD). However, consistent recognition of the STS is difficult due to individual variations and different imaging parameters. Radiomics might have the potential to overcome these shortcomings. Therefore, we chose to explore whether radiomic features of nigrosome-1 of substantia nigra (SN) based on quantitative susceptibility mapping (QSM) could help to differentiate IPD patients from healthy controls (HCs). Methods: Three-dimensional multi-echo gradient-recalled echo images (0.86 × 0.86 × 1.00 mm3) were obtained at 3.0-T MRI for QSM in 87 IPD patients and 77 HCs. Regions of interest (ROIs) of the SN below the red nucleus were manually drawn on both sides, and subsequently, volumes of interest (VOIs) were segmented (these ROIs included four 1-mm slices). Then, 105 radiomic features (including 18 first-order features, 13 shape features, and 74 texture features) of bilateral VOIs in the two groups were extracted. Forty features were selected according to the ensemble feature selection method, which combined analysis of variance, random forest, and recursive feature elimination. The selected features were further utilized to distinguish IPD patients from HC using the SVM classifier with 10 rounds of 3-fold cross-validation. Finally, the representative features were analyzed using an unpaired t-test with Bonferroni correction and correlated with the UPDRS-III scores. Results: The classification results from SVM were as follows: area under curve (AUC): 0.96 ± 0.02; accuracy: 0.88 ± 0.03; sensitivity: 0.89 ± 0.06; and specificity: 0.87 ± 0.07. Five representative features were selected to show their detailed difference between IPD patients and HCs: 10th percentile and median in IPD patients were higher than those in HCs (all p < 0.00125), while Gray Level Run Length Matrix (GLRLM)-Long Run Low Gray Level Emphasis, Gray Level Size Zone Matrix (GLSZM)-Gray Level Non-Uniformity, and volume (all p < 0.00125) in IPD patients were lower than those in HCs. The 10th percentile was positively correlated with UPDRS-III score (r = 0.35, p = 0.001). Conclusion: Radiomic features of the nigrosome-1 region of SN based on QSM could be useful in the diagnosis of IPD and could serve as a surrogate marker for the STS.
Collapse
Affiliation(s)
- Zenghui Cheng
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiping Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaofeng Wen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hongmin Xu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongbiao Tang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijia Jin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - E Mark Haacke
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dahong Qian
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Mantri S, Morley JF, Siderowf AD. The importance of preclinical diagnostics in Parkinson disease. Parkinsonism Relat Disord 2019; 64:20-28. [DOI: 10.1016/j.parkreldis.2018.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/02/2018] [Accepted: 09/08/2018] [Indexed: 01/21/2023]
|
29
|
Prange S, Metereau E, Thobois S. Structural Imaging in Parkinson’s Disease: New Developments. Curr Neurol Neurosci Rep 2019; 19:50. [DOI: 10.1007/s11910-019-0964-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Najdenovska E, Tuleasca C, Jorge J, Maeder P, Marques JP, Roine T, Gallichan D, Thiran JP, Levivier M, Bach Cuadra M. Comparison of MRI-based automated segmentation methods and functional neurosurgery targeting with direct visualization of the Ventro-intermediate thalamic nucleus at 7T. Sci Rep 2019; 9:1119. [PMID: 30718634 PMCID: PMC6361927 DOI: 10.1038/s41598-018-37825-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022] Open
Abstract
The ventro-intermediate nucleus (Vim), as part of the motor thalamic nuclei, is a commonly used target in functional stereotactic neurosurgery for treatment of drug-resistant tremor. As it cannot be directly visualized on routinely used magnetic resonance imaging (MRI), its clinical targeting is performed using indirect methods. Recent literature suggests that the Vim can be directly visualized on susceptibility-weighted imaging (SWI) acquired at 7 T. Our work aims to assess the distinguishable Vim on 7 T SWI in both healthy-population and patients and, using it as a reference, to compare it with: (1) The clinical targeting, (2) The automated parcellation of thalamic subparts based on 3 T diffusion MRI (dMRI), and (3) The multi-atlas segmentation techniques. In 95.2% of the data, the manual outline was adjacent to the inferior lateral border of the dMRI-based motor-nuclei group, while in 77.8% of the involved cases, its ventral part enclosed the Guiot points. Moreover, the late MRI signature in the patients was always observed in the anterior part of the manual delineation and it overlapped with the multi-atlas outline. Overall, our study provides new insight on Vim discrimination through MRI and imply novel strategies for its automated segmentation, thereby opening new perspectives for standardizing the clinical targeting.
Collapse
Affiliation(s)
- Elena Najdenovska
- Centre d'Imagerie BioMédicale (CIBM), University of Lausanne (UNIL), Lausanne, Switzerland. .,Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| | - Constantin Tuleasca
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland.,Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland.,Sorbonne Université, Faculté de Médecine, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital Bicêtre, Service de Neurochirurgie, Le Kremlin Bicêtre, France
| | - João Jorge
- Centre d'Imagerie BioMédicale (CIBM), University of Lausanne (UNIL), Lausanne, Switzerland.,Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philippe Maeder
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - José P Marques
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Timo Roine
- Centre d'Imagerie BioMédicale (CIBM), University of Lausanne (UNIL), Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - Daniel Gallichan
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Jean-Philippe Thiran
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marc Levivier
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Meritxell Bach Cuadra
- Centre d'Imagerie BioMédicale (CIBM), University of Lausanne (UNIL), Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
31
|
Kau T, Hametner S, Endmayr V, Deistung A, Prihoda M, Haimburger E, Menard C, Haider T, Höftberger R, Robinson S, Reichenbach JR, Lassmann H, Traxler H, Trattnig S, Grabner G. Microvessels may Confound the “Swallow Tail Sign” in Normal Aged Midbrains: A Postmortem 7 T SW-MRI Study. J Neuroimaging 2018; 29:65-69. [DOI: 10.1111/jon.12576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Thomas Kau
- Department of Radiologic Technology; Carinthia University of Applied Sciences; Klagenfurt Austria
- Institute of Radiology; Villach General Hospital; Villach Austria
| | - Simon Hametner
- Center for Brain Research; Medical University of Vienna; Vienna Austria
| | - Verena Endmayr
- Center for Brain Research; Medical University of Vienna; Vienna Austria
| | - Andreas Deistung
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology; Jena University Hospital-Friedrich Schiller-University; Jena Germany
- Section of Experimental Neurology, Department of Neurology; Essen University Hospital; Essen Germany
| | - Max Prihoda
- Department of Radiologic Technology; Carinthia University of Applied Sciences; Klagenfurt Austria
| | - Evelin Haimburger
- Department of Radiologic Technology; Carinthia University of Applied Sciences; Klagenfurt Austria
| | - Christian Menard
- Department of Medical Engineering; Carinthia University of Applied Sciences; Klagenfurt Austria
| | - Thomas Haider
- Department of Orthopedics and Trauma Surgery; Medical University of Vienna; Vienna Austria
| | - Romana Höftberger
- Institute of Neurology; Medical University of Vienna; Vienna Austria
| | - Simon Robinson
- Department of Biomedical Imaging and Image-guided Therapy, High Field Magnetic Resonance Centre; Medical University of Vienna; Vienna Austria
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology; Jena University Hospital-Friedrich Schiller-University; Jena Germany
| | - Hans Lassmann
- Center for Brain Research; Medical University of Vienna; Vienna Austria
| | - Hannes Traxler
- Center of Anatomy and Cell Biology; Medical University of Vienna; Vienna Austria
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image-guided Therapy, High Field Magnetic Resonance Centre; Medical University of Vienna; Vienna Austria
| | - Günther Grabner
- Department of Biomedical Imaging and Image-guided Therapy, High Field Magnetic Resonance Centre; Medical University of Vienna; Vienna Austria
- Institute for Applied Research on Ageing; Carinthia University of Applied Sciences; Klagenfurt Austria
| |
Collapse
|
32
|
Keuken MC, Isaacs BR, Trampel R, van der Zwaag W, Forstmann BU. Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging. Brain Topogr 2018; 31:513-545. [PMID: 29497874 PMCID: PMC5999196 DOI: 10.1007/s10548-018-0638-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Abstract
With the recent increased availability of ultra-high field (UHF) magnetic resonance imaging (MRI), substantial progress has been made in visualizing the human brain, which can now be done in extraordinary detail. This review provides an extensive overview of the use of UHF MRI in visualizing the human subcortex for both healthy and patient populations. The high inter-subject variability in size and location of subcortical structures limits the usability of atlases in the midbrain. Fortunately, the combined results of this review indicate that a large number of subcortical areas can be visualized in individual space using UHF MRI. Current limitations and potential solutions of UHF MRI for visualizing the subcortex are also discussed.
Collapse
Affiliation(s)
- M C Keuken
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands.
- Cognitive Psychology Unit, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.
| | - B R Isaacs
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands
- Maastricht University Medical Center, Maastricht, The Netherlands
| | - R Trampel
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - B U Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Present and Future of Ultra-High Field MRI in Neurodegenerative Disorders. Curr Neurol Neurosci Rep 2018; 18:31. [DOI: 10.1007/s11910-018-0841-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
|