1
|
Duerksen J, Lopez RCT, Tappia PS, Ramjiawan B, Mansouri B. Efficacy of biomarkers and imaging techniques for the diagnosis of traumatic brain injury: challenges and opportunities. Mol Cell Biochem 2025; 480:2797-2814. [PMID: 39656395 DOI: 10.1007/s11010-024-05176-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/25/2024] [Indexed: 05/03/2025]
Abstract
Concussion is a pervasive health issue in the present day. Increased prevalence in recent years has indicated a need to improve the current understanding of minor traumatic brain injury (mTBI). Effort has been devoted to understanding the underlying pathophysiology of TBIs, but some mechanisms remain unknown. Potentially lethal secondary effects of concussion include second impact syndrome and chronic traumatic encephalopathy (CTE), introducing long-term considerations for the management of mTBI. Post-concussion syndrome is another long-term consequence of concussion and may be influenced by both neuroinflammation and hormonal imbalances resulting from head trauma. Genetically mutated apolipoprotein E may also contribute to the severity and persistence of concussion symptoms, perhaps even acting as a risk factor for CTE. As it stands, the diagnosis of concussion is nuanced, depending primarily on subjective diagnostic tools that incorporate patient-reported symptoms and neurocognitive tests. Diagnostic tools provide some assistance in concussion diagnosis, but still lack accuracy and inherently leave room for uncertainty. To mitigate some of this uncertainty, considerable research has been devoted to the development of methods to diagnose concussions objectively. Biomarkers such as S100 calcium binding protein B (S100B), glial fibrillary acidic protein (GFAP), neurofilament light protein (Nf-L), interleukin-6 (IL-6) and microRNAs (miRNAs) as well as imaging techniques including diffusion tensor imaging (DTI) and blood-oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI) show great promise in this regard. This review aims to compile the relevant literature in these areas in the hopes of being used as a reference point for future research regarding concussions.
Collapse
Affiliation(s)
- James Duerksen
- Asper Clinical Research Institute and Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada
| | - Rhea Carina T Lopez
- Asper Clinical Research Institute and Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada
| | - Paramjit S Tappia
- Asper Clinical Research Institute and Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada.
| | - Bram Ramjiawan
- Asper Clinical Research Institute and Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Behzad Mansouri
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
2
|
Kim JH, Jeong HG, Hyeon SJ, Park U, Oh WJ, Hwang J, Lim HH, Ko PW, Lee HW, Lee WH, Ryu H, Suk K. Crosstalk between lipocalin-2 and IL-6 in traumatic brain injury: Closely related biomarkers. Exp Neurol 2025; 385:115092. [PMID: 39637963 DOI: 10.1016/j.expneurol.2024.115092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/19/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Clinical biomarkers are crucial for diagnosing and predicting outcomes in patients with traumatic brain injury (TBI). In this study, we performed an unbiased analysis of plasma proteins in acute TBI patients using bead-based multiplex assays and identified a strong positive correlation between LCN2 and IL-6 levels. Based on these findings, we hypothesized that LCN2 and IL-6 are closely related circulating biomarkers for TBI. Our previous and current studies demonstrate that the expression of LCN2, IL-6, and its receptors is upregulated in patients with chronic traumatic encephalopathy, in mouse models of traumatic and ischemic injury, and in an in vitro scratch injury model. Lcn2-deficiency reduced the injury-induced expression of IL-6 and its receptors in both animal and scratch injury models. These results suggest an augmented LCN2-dependent IL-6 signaling in the injured brain. As both LCN2 and IL-6 are secreted proinflammatory mediators, we further explored the possibility of cross-regulation between LCN2 and IL-6. In cultured glial cells, treatment with recombinant LCN2 protein enhanced the microglial expression of IL-6, while IL-6 protein treatment increased astrocytic LCN2 expression. Moreover, IL-6 expression and release were elevated in LCN2-overexpressing transgenic mice. Mechanistically, IL-6 enhanced astrocytic LCN2 expression through STAT3 signaling, while LCN2 upregulated microglial IL-6 expression through the NF-κB pathway. Taken together, our results suggest an important role of the LCN2-IL-6 axis in amplifying neuroinflammation through a positive feedback loop in secondary brain injury conditions. Finally, this study implies the utility of LCN2 and IL-6 as closely related biomarkers for TBI diagnosis and prognosis.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Han-Gil Jeong
- Division of Neurocritical Care, Department of Neurosurgery and Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si 13620, Republic of Korea
| | - Seung Jae Hyeon
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Uiyeol Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Won-Jong Oh
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea
| | - Junmo Hwang
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea
| | - Hyun-Ho Lim
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Pan-Woo Ko
- Department of Neurology, Kyungpook National University School of Medicine, Daegu 41404, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Kyungpook National University School of Medicine, Daegu 41404, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Hoon Ryu
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Veterans Affairs Boston Healthcare System, Boston, MA 02130, United States; Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, United States.
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu 41940, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
3
|
Migdady I, Gusdon AM, Everett AD, Cho SM. Blood and cerebrospinal fluid biomarkers in disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:165-181. [PMID: 39986720 DOI: 10.1016/b978-0-443-13408-1.00006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
The study of blood and cerebrospinal fluid biomarkers is a promising and rapidly advancing field in the research of disorders of consciousness (DoC). The use of advanced biochemical and analytic techniques in biomarker research has improved our ability to identify new biomarkers that can aid in the diagnosis, prognosis, and treatment of patients with brain injury. However, the use of biomarkers in clinical practice is limited by several challenges, including the lack of standardization in test and research methodologies. Despite this, identifying the most promising biomarkers and supporting their findings with strong evidence can improve their clinical utility. This chapter discusses the most promising biomarkers for DoC, which fall into four categories: neuronal, glial, inflammatory, and metabolic biomarkers. Understanding the role of each category in DoC can provide valuable insights into the mechanisms of brain injury and inform the development of more effective diagnostic and treatment strategies. By integrating biomarker research with clinical practice, we can improve our understanding of DoC and provide better care for these patients.
Collapse
Affiliation(s)
- Ibrahim Migdady
- Departments of Neurology, Medicine and Neurosurgery, Division of Critical Care Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Aaron M Gusdon
- Department of Neurosurgery, McGovern Medical School at UTHealth Houston, Houston, TX, United States
| | - Allen D Everett
- Division of Pediatric Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Sung-Min Cho
- Departments of Neurology, Neurosurgery, Surgery, and Anesthesia/Critical Care, Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
4
|
Dehbozorgi M, Maghsoudi MR, Rajai S, Mohammadi I, Nejad AR, Rafiei MA, Soltani S, Shafiee A, Bakhtiyari M. Depression after traumatic brain injury: A systematic review and Meta-analysis. Am J Emerg Med 2024; 86:21-29. [PMID: 39305697 DOI: 10.1016/j.ajem.2024.08.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/17/2024] [Accepted: 08/24/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) afflicts 69 million individuals annually, resulting in numerous neuropsychiatric sequelae. Here, we investigate the possible relation between TBI and depression. METHODS an online database search of Pubmed, Scopus, and Web of Science was conducted on November 3rd, 2023 for observational studies investigating post-TBI depressive symptoms incidence or comparing the prevalence of depressive symptoms between TBI and non-TBI individuals. RESULTS a total of 43 studies were included in our review, 15 of which reported novel cases of depressive symptomology post-TBI and 34 of which compared depressive symptoms in TBI participants with non-TBI participants. Our meta-analysis showed an incidence of 13 % among 724,842 TBI participants, and a relative risk of 2.10 when comparing 106,083 TBI patients to 323,666 non-TBI controls. 11 of the 43 included studies were deemed as having a high risk of bias. Sensitivity analysis showed our findings to be robust and no publication bias was detected using Egger's regression test. CONCLUSION Individuals suffering from TBI are almost twice as likely to develop depressive symptomology compared to non-TBI individuals.
Collapse
Affiliation(s)
- Masoud Dehbozorgi
- The Faculty of Medicine, RWTH Aachen University, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | | | - Shahryar Rajai
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ida Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aida Rezaei Nejad
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Rafiei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sana Soltani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Shafiee
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Mahmood Bakhtiyari
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
5
|
Huang H, Fu G, Lu S, Chen S, Huo J, Ran Y, Xiao C, Chen J, Pi D, Zhou F, Dang H, Liu C, Fu YQ. Plasma profiles of inflammatory cytokines in children with moderate to severe traumatic brain injury: a prospective cohort study. Eur J Pediatr 2024; 183:3359-3368. [PMID: 38748253 DOI: 10.1007/s00431-024-05604-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 07/23/2024]
Abstract
The role of inflammatory cytokines in children with moderate to severe TBI (m-sTBI) is still incompletely understood. We aimed to investigate the associations between early plasma expression profiles of inflammatory cytokines and clinical outcomes in children with m-sTBI. We prospectively recruited children admitted to the intensive care unit (ICU) of a tertiary pediatric hospital due to m-sTBI from November 2022 to May 2023. Plasma interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17A, interferon (IFN)-α, IFN-γ and tumor necrosis factor (TNF)-α concentrations were detected by flow cytometry on admission and on days 5 to 7. The primary outcome was in-hospital mortality. The secondary outcome was the 6-month functional outcome assessed by the Glasgow Outcome Scale Extended-Pediatrics (GOS-E Peds) score, dichotomized as favorable (1-4) or unfavorable (5-8). Fifty patients and 20 healthy controls were enrolled. Baseline IL-6, IL-8 and IL-10 levels were significantly higher in TBI patients than in healthy controls. Twelve patients died in the hospital. Compared with survivors, nonsurvivors had significantly increased baseline IL-6 and IL-8 levels. Baseline IL-5, IL-6 and IL-8 levels were also significantly greater in children with unfavorable versus favorable outcomes. The area under the receiver operating characteristic curve (AUC) of the IL-6 and IL-8 levels and motor Glasgow Coma Scale (GCS) score for predicting in-hospital mortality was 0.706, 0.754, and 0.776, respectively. Baseline IL-1β, IL-2, IL-4, IL-10, IL-12p70, IL-17A, IFN-γ, IFN-α and TNF-α levels were not associated with in-hospital mortality or an unfavorable 6-month outcome. On days 5 to 7, the IL-6 and IL-8 levels were significantly decreased in survivors but increased in nonsurvivors compared to their respective baselines. CONCLUSION After m-sTBI, the plasma profiles of inflammatory cytokines are markedly altered in children. The trends of IL-6 and IL-8 expression vary among m-sTBI children with different outcomes. Elevated plasma IL-6 and IL-8 levels are related to in-hospital mortality and unfavorable 6-month outcomes. TRIAL REGISTRATION This trial was registered in the Chinese Clinical Trial Registry (Registration number: ChiCTR2200065505). Registered November 7, 2022. WHAT IS KNOWN • Inflammation is an important secondary physiological response to TBI. WHAT IS NEW • The plasma profiles of inflammatory cytokines are markedly altered in children with m-sTBI. Elevated IL-6 and IL-8 levels are related to mortality and unfavorable outcomes.
Collapse
Affiliation(s)
- Haixin Huang
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Guo Fu
- Center for Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Siwei Lu
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Song Chen
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Junming Huo
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Yunni Ran
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Changxue Xiao
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Jian Chen
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Dandan Pi
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Fang Zhou
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Hongxing Dang
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Chengjun Liu
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Yue-Qiang Fu
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.
| |
Collapse
|
6
|
Beard K, Gauff AK, Pennington AM, Marion DW, Smith J, Sloley S. Biofluid, Imaging, Physiological, and Functional Biomarkers of Mild Traumatic Brain Injury and Subconcussive Head Impacts. J Neurotrauma 2024. [PMID: 38943278 DOI: 10.1089/neu.2024.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024] Open
Abstract
Post-concussive symptoms are frequently reported by individuals who sustain mild traumatic brain injuries (mTBIs) and subconcussive head impacts, even when evidence of intracranial pathology is lacking. Current strategies used to evaluate head injuries, which primarily rely on self-report, have a limited ability to predict the incidence, severity, and duration of post-concussive symptoms that will develop in an individual patient. In addition, these self-report measures have little association with the underlying mechanisms of pathology that may contribute to persisting symptoms, impeding advancement in precision treatment for TBI. Emerging evidence suggests that biofluid, imaging, physiological, and functional biomarkers associated with mTBI and subconcussive head impacts may address these shortcomings by providing more objective measures of injury severity and underlying pathology. Interest in the use of biomarker data has rapidly accelerated, which is reflected by the recent efforts of organizations such as the National Institute of Neurological Disorders and Stroke and the National Academies of Sciences, Engineering, and Medicine to prioritize the collection of biomarker data during TBI characterization in acute-care settings. Thus, this review aims to describe recent progress in the identification and development of biomarkers of mTBI and subconcussive head impacts and to discuss important considerations for the implementation of these biomarkers in clinical practice.
Collapse
Affiliation(s)
- Kryshawna Beard
- General Dynamics Information Technology Fairfax, Falls Church, Virginia, USA
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| | - Amina K Gauff
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Xynergie Federal, LLC, San Juan, United States Minor Outlying Islands
| | - Ashley M Pennington
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Xynergie Federal, LLC, San Juan, United States Minor Outlying Islands
| | - Donald W Marion
- General Dynamics Information Technology Fairfax, Falls Church, Virginia, USA
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| | - Johanna Smith
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| | - Stephanie Sloley
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| |
Collapse
|
7
|
Alanazi N, Fitzgerald M, Hume P, Hellewell S, Horncastle A, Anyaegbu C, Papini MG, Hargreaves N, Halicki M, Entwistle I, Hind K, Chazot P. Concussion-Related Biomarker Variations in Retired Rugby Players and Implications for Neurodegenerative Disease Risk: The UK Rugby Health Study. Int J Mol Sci 2024; 25:7811. [PMID: 39063053 PMCID: PMC11276902 DOI: 10.3390/ijms25147811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The health and well-being of retired rugby union and league players, particularly regarding the long-term effects of concussions, are of major concern. Concussion has been identified as a major risk factor for neurodegenerative diseases, such as Alzheimer's and Amyotrophic Lateral Sclerosis (ALS), in athletes engaged in contact sports. This study aimed to assess differences in specific biomarkers between UK-based retired rugby players with a history of concussion and a non-contact sports group, focusing on biomarkers associated with Alzheimer's, ALS, and CTE. We randomly selected a sample of male retired rugby or non-contact sport athletes (n = 56). The mean age was 41.84 ± 6.44, and the mean years since retirement from the sport was 7.76 ± 6.69 for participants with a history of substantial concussions (>5 concussions in their career) (n = 30). The mean age was 45.75 ± 11.52, and the mean years since retirement was 6.75 ± 4.64 for the healthy controls (n = 26). Serum biomarkers (t-tau, RBP-4, SAA, Nf-L, and retinol), plasma cytokines, and biomarkers associated with serum-derived exosomes (Aβ42, p-tau181, p-tau217, and p-tau231) were analyzed using validated commercial ELISA assays. The results of the selected biomarkers were compared between the two groups. Biomarkers including t-tau and p-tau181 were significantly elevated in the history of the substantial concussion group compared to the non-contact sports group (t-tau: p < 0.01; p-tau181: p < 0.05). Although between-group differences in p-tau217, p-tau231, SAA, Nf-L, retinol, and Aβ42 were not significantly different, there was a trend for higher levels of Aβ42, p-tau217, and p-tau231 in the concussed group. Interestingly, the serum-derived exosome sizes were significantly larger (p < 0.01), and serum RBP-4 levels were significantly reduced (p < 0.05) in the highly concussed group. These findings indicate that retired athletes with a history of multiple concussions during their careers have altered serum measurements of exosome size, t-tau, p-tau181, and RBP-4. These biomarkers should be explored further for the prediction of future neurodegenerative outcomes, including ALS, in those with a history of concussion.
Collapse
Affiliation(s)
- Norah Alanazi
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (M.F.); (S.H.); (M.G.P.)
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
| | - Patria Hume
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, AUT Millennium, 17 Antares Place, Mairangi Bay, Private Bag 92006, Auckland 1142, New Zealand;
- Traumatic Brain Injury Network (TBIN), Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Technology and Policy Laboratory, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Sarah Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (M.F.); (S.H.); (M.G.P.)
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| | - Alex Horncastle
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (M.F.); (S.H.); (M.G.P.)
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| | - Melissa G. Papini
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (M.F.); (S.H.); (M.G.P.)
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| | - Natasha Hargreaves
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| | - Michal Halicki
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| | - Ian Entwistle
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
- Wolfson Research Institute for Health and Wellbeing, Durham University, Durham TS17 6BH, UK
| | - Karen Hind
- Wolfson Research Institute for Health and Wellbeing, Durham University, Durham TS17 6BH, UK
| | - Paul Chazot
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| |
Collapse
|
8
|
Yamamoto EA, Koike S, Luther M, Dennis L, Lim MM, Raskind M, Pagulayan K, Iliff J, Peskind E, Piantino JA. Perivascular Space Burden and Cerebrospinal Fluid Biomarkers in US Veterans With Blast-Related Mild Traumatic Brain Injury. J Neurotrauma 2024; 41:1565-1577. [PMID: 38185848 PMCID: PMC11564836 DOI: 10.1089/neu.2023.0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Blast-related mild traumatic brain injury (mTBI) is recognized as the "signature injury" of the Iraq and Afghanistan wars. Sleep disruption, mTBI, and neuroinflammation have been individually linked to cerebral perivascular space (PVS) dilatation. Dilated PVSs are putative markers of impaired cerebrospinal fluid (CSF) and interstitial fluid exchange, which plays an important role in removing cerebral waste. The aim of this cross-sectional, retrospective study was to define associations between biomarkers of inflammation and MRI-visible PVS (MV-PVS) burden in Veterans after blast-related mTBI (blast-mTBI) and controls. The CSF and plasma inflammatory biomarker concentrations were compared between blast-mTBI and control groups and correlated with MV-PVS volume and number per white matter cm3. Multiple regression analyses were performed with inflammatory biomarkers as predictors and MV-PVS burden as the outcome. Correction for multiple comparisons was performed using the Banjamini-Hochberg method with a false discovery rate of 0.05. There were no group-wise differences in MV-PVS burden between Veterans with blast-mTBI and controls. Greater MV-PVS burden was significantly associated with higher concentrations of several proinflammatory biomarkers from CSF (i.e., eotaxin, MCP-1, IL-6, IL-8) and plasma (i.e., MCP-4, IL-13) in the blast-mTBI group only. After controlling for sleep time and symptoms of post-traumatic stress disorder, temporal MV-PVS burden remained significantly associated with higher CSF markers of inflammation in the blast-mTBI group only. These data support an association between central, rather than peripheral, neuroinflammation and MV-PVS burden in Veterans with blast-mTBI independent of sleep. Future studies should continue to explore the role of blast-mTBI related central inflammation in MV-PVS development, as well as investigate the impact of subclinical exposures on MV-PVS burden.
Collapse
Affiliation(s)
- Erin A. Yamamoto
- Department of Neurological Surgery, Division of Child Neurology, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, Oregon, USA
| | - Seiji Koike
- Biostatistics and Design Program, Division of Child Neurology, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, Oregon, USA
| | - Madison Luther
- Department of Pediatrics, Division of Child Neurology, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, Oregon, USA
| | - Laura Dennis
- Department of Pediatrics, Division of Child Neurology, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, Oregon, USA
| | - Miranda M. Lim
- Veterans Affairs VISN20 Northwest MIRECC, VA Portland Health Care System, Portland, Oregon, USA
- Oregon Alzheimer's Disease Research Center, Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Veterans Affairs (V.A.) Northwest (VISN 20) Mental Illness, Research, Education, and Clinical Center (MIRECC), Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Murray Raskind
- Veterans Affairs (V.A.) Northwest (VISN 20) Mental Illness, Research, Education, and Clinical Center (MIRECC), Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kathleen Pagulayan
- Veterans Affairs (V.A.) Northwest (VISN 20) Mental Illness, Research, Education, and Clinical Center (MIRECC), Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jeffrey Iliff
- Veterans Affairs (V.A.) Northwest (VISN 20) Mental Illness, Research, Education, and Clinical Center (MIRECC), Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elaine Peskind
- Veterans Affairs (V.A.) Northwest (VISN 20) Mental Illness, Research, Education, and Clinical Center (MIRECC), Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Juan A. Piantino
- Department of Pediatrics, Division of Child Neurology, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
9
|
Visser K, de Koning ME, Ciubotariu D, Kok MGJ, Sibeijn-Kuiper AJ, Bourgonje AR, van Goor H, van der Naalt J, van der Horn HJ. An exploratory study on the association between blood-based biomarkers and subacute neurometabolic changes following mild traumatic brain injury. J Neurol 2024; 271:1985-1998. [PMID: 38157029 DOI: 10.1007/s00415-023-12146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND OBJECTIVES Blood-based biomarkers and advanced neuroimaging modalities such as magnetic resonance spectroscopy (MRS) or diffusion tensor imaging (DTI) have enhanced our understanding of the pathophysiology of mild traumatic brain injury (mTBI). However, there is limited published data on how blood biomarkers relate to neuroimaging biomarkers post-mTBI. METHODS To investigate this, 30 patients with mTBI and 21 healthy controls were enrolled. Data was collected at two timepoints postinjury: acute, < 24 h, (blood) and subacute, four-to-six weeks, (blood and imaging). Interleukin (IL) 6 and 10 (inflammation), free thiols (systemic oxidative stress) and neurofilament light (NF-L) (axonal injury) were quantified in plasma. The neurometabolites total N-acetyl aspartate (tNAA) (neuronal energetics), Myo-Inositol (Ins) and total Choline (tCh) (inflammation) and, Glutathione (GSH, oxidative stress) were quantified using MRS. RESULTS Concentrations of IL-6 and IL-10 were significantly elevated in the acute phase post-mTBI, while NF-L was elevated only in the subacute phase. Total NAA was lowered in patients with mTBI, although this difference was only nominally significant (uncorrected P < 0.05). Within the patient group, acute IL-6 and subacute tNAA levels were negatively associated (r = - 0.46, uncorrected-P = 0.01), albeit not at a threshold corrected for multiple testing (corrected-P = 0.17). When age was added as a covariate a significant increase in correlation magnitude was observed (ρ = - 0.54, corrected-P = 0.03). CONCLUSION This study demonstrates potential associations between the intensity of the inflammatory response in the acute phase post-mTBI and neurometabolic perturbations in the subacute phase. Future studies should assess the longitudinal dynamics of blood-based and imaging biomarkers after injury.
Collapse
Affiliation(s)
- Koen Visser
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Myrthe E de Koning
- Department of Neurology, Medisch Spectrum Twente, Koningstraat 1, 7512 KZ, Enschede, The Netherlands
| | - Diana Ciubotariu
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Marius G J Kok
- Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Anita J Sibeijn-Kuiper
- Department of Neuroscience, BCN Neuroimaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Harm Jan van der Horn
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
10
|
Simpson E, Reiter JL, Ren J, Zhang Z, Nudelman KN, Riggen LD, Menser MD, Harezlak J, Foroud TM, Saykin AJ, Brooks A, Cameron KL, Duma SM, McGinty G, Rowson S, Svoboda SJ, Broglio SP, McCrea MA, Pasquina PF, McAllister TW, Liu Y. Gene Expression Alterations in Peripheral Blood Following Sport-Related Concussion in a Prospective Cohort of Collegiate Athletes: A Concussion Assessment, Research and Education (CARE) Consortium Study. Sports Med 2024; 54:1021-1032. [PMID: 37938533 PMCID: PMC11632067 DOI: 10.1007/s40279-023-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Molecular-based approaches to understanding concussion pathophysiology provide complex biological information that can advance concussion research and identify potential diagnostic and/or prognostic biomarkers of injury. OBJECTIVE The aim of this study was to identify gene expression changes in peripheral blood that are initiated following concussion and are relevant to concussion response and recovery. METHODS We analyzed whole blood transcriptomes in a large cohort of concussed and control collegiate athletes who were participating in the multicenter prospective cohort Concussion Assessment, Research, and Education (CARE) Consortium study. Blood samples were collected from collegiate athletes at preseason (baseline), within 6 h of concussion injury, and at four additional prescribed time points spanning 24 h to 6 months post-injury. RNA sequencing was performed on samples from 230 concussed, 130 contact control, and 102 non-contact control athletes. Differential gene expression and deconvolution analysis were performed at each time point relative to baseline. RESULTS Cytokine and immune response signaling pathways were activated immediately after concussion, but at later time points these pathways appeared to be suppressed relative to the contact control group. We also found that the proportion of neutrophils increased and natural killer cells decreased in the blood following concussion. CONCLUSIONS Transcriptome signatures in the blood reflect the known pathophysiology of concussion and may be useful for defining the immediate biological response and the time course for recovery. In addition, the identified immune response pathways and changes in immune cell type proportions following a concussion may inform future treatment strategies.
Collapse
Affiliation(s)
- Edward Simpson
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jill L Reiter
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 410 W 10 St, Suite 5000, Indianapolis, IN, 46202, USA
| | - Jie Ren
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhiqi Zhang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kelly N Nudelman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 410 W 10 St, Suite 5000, Indianapolis, IN, 46202, USA
| | - Larry D Riggen
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael D Menser
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 410 W 10 St, Suite 5000, Indianapolis, IN, 46202, USA
| | - Andrew J Saykin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 410 W 10 St, Suite 5000, Indianapolis, IN, 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alison Brooks
- Department of Orthopedics, University of Wisconsin, Madison, WI, USA
| | - Kenneth L Cameron
- Department of Orthopaedic Surgery, Keller Army Community Hospital, United States Military Academy, West Point, NY, USA
- Department of Physical Medicine and Rehabilitation, Uniformed Services University, Bethesda, MD, USA
| | - Stefan M Duma
- Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA, USA
| | - Gerald McGinty
- United States Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Steven Rowson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Steven J Svoboda
- Department of Orthopaedic Surgery, Keller Army Community Hospital, United States Military Academy, West Point, NY, USA
| | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, USA
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Paul F Pasquina
- Physical Medicine and Rehabilitation Training, Walter Reed Army Medical Center, Washington, DC, USA
| | - Thomas W McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yunlong Liu
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 410 W 10 St, Suite 5000, Indianapolis, IN, 46202, USA.
| |
Collapse
|
11
|
Amlerova Z, Chmelova M, Anderova M, Vargova L. Reactive gliosis in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2024; 18:1335849. [PMID: 38481632 PMCID: PMC10933082 DOI: 10.3389/fncel.2024.1335849] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the most common pathological conditions impacting the central nervous system (CNS). A neurological deficit associated with TBI results from a complex of pathogenetic mechanisms including glutamate excitotoxicity, inflammation, demyelination, programmed cell death, or the development of edema. The critical components contributing to CNS response, damage control, and regeneration after TBI are glial cells-in reaction to tissue damage, their activation, hypertrophy, and proliferation occur, followed by the formation of a glial scar. The glial scar creates a barrier in damaged tissue and helps protect the CNS in the acute phase post-injury. However, this process prevents complete tissue recovery in the late/chronic phase by producing permanent scarring, which significantly impacts brain function. Various glial cell types participate in the scar formation, but this process is mostly attributed to reactive astrocytes and microglia, which play important roles in several brain pathologies. Novel technologies including whole-genome transcriptomic and epigenomic analyses, and unbiased proteomics, show that both astrocytes and microglia represent groups of heterogenic cell subpopulations with different genomic and functional characteristics, that are responsible for their role in neurodegeneration, neuroprotection and regeneration. Depending on the representation of distinct glia subpopulations, the tissue damage as well as the regenerative processes or delayed neurodegeneration after TBI may thus differ in nearby or remote areas or in different brain structures. This review summarizes TBI as a complex process, where the resultant effect is severity-, region- and time-dependent and determined by the model of the CNS injury and the distance of the explored area from the lesion site. Here, we also discuss findings concerning intercellular signaling, long-term impacts of TBI and the possibilities of novel therapeutical approaches. We believe that a comprehensive study with an emphasis on glial cells, involved in tissue post-injury processes, may be helpful for further research of TBI and be the decisive factor when choosing a TBI model.
Collapse
Affiliation(s)
- Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
12
|
Meier TB, Huber DL, Goeckner BD, Gill JM, Pasquina P, Broglio SP, McAllister TW, Harezlak J, McCrea MA. Association of Blood Biomarkers of Inflammation With Acute Concussion in Collegiate Athletes and Military Service Academy Cadets. Neurology 2024; 102:e207991. [PMID: 38165315 PMCID: PMC11407501 DOI: 10.1212/wnl.0000000000207991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/20/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The objective was to characterize the acute effects of concussion (a subset of mild traumatic brain injury) on serum interleukin (IL)-6 and IL-1 receptor antagonist (RA) and 5 additional inflammatory markers in athletes and military service academy members from the Concussion Assessment, Research, and Education Consortium and to determine whether these markers aid in discrimination of concussed participants from controls. METHODS Athletes and cadets with concussion and matched controls provided blood at baseline and postinjury visits between January 2015 and March 2020. Linear models investigated changes in inflammatory markers measured using Meso Scale Discovery assays across time points (baseline and 0-12, 12-36, 36-60 hours). Subanalyses were conducted in participants split by sex and injury population. Logistic regression analyses tested whether acute levels of IL-6 and IL-1RA improved discrimination of concussed participants relative to brain injury markers (glial fibrillary acidic protein, tau, neurofilament light, ubiquitin c-terminal hydrolase-L1) or clinical data (Sport Concussion Assessment Tool-Third Edition, Standardized Assessment of Concussion, Balance Error Scoring System). RESULTS Participants with concussion (total, N = 422) had elevated IL-6 and IL-1RA at 0-12 hours vs controls (n = 345; IL-6: mean difference [MD] (standard error) = 0.701 (0.091), p < 0.0001; IL-1RA: MD = 0.283 (0.042), p < 0.0001) and relative to baseline (IL-6: MD = 0.656 (0.078), p < 0.0001; IL-1RA: MD = 0.242 (0.038), p < 0.0001), 12-36 hours (IL-6: MD = 0.609 (0.086), p < 0.0001; IL-1RA: MD = 0.322 (0.041), p < 0.0001), and 36-60 hours (IL-6: MD = 0.818 (0.084), p < 0.0001; IL-1RA: MD = 0.317 (0.040), p < 0.0001). IL-6 and IL-1RA were elevated in participants with sport (IL-6: MD = 0.748 (0.115), p < 0.0001; IL-1RA: MD = 0.304 (0.055), p < 0.0001) and combative-related concussions (IL-6: MD = 0.583 (0.178), p = 0.001; IL-1RA: MD = 0.312 (0.081), p = 0.0001). IL-6 was elevated in male (MD = 0.734 (0.105), p < 0.0001) and female participants (MD = 0.600 (0.177), p = 0.0008); IL-1RA was only elevated in male participants (MD = 0.356 (0.047), p < 0.0001). Logistic regression showed the inclusion of IL-6 and IL-1RA at 0-12 hours improved the discrimination of participants with concussion from controls relative to brain injury markers (χ2(2) = 17.855, p = 0.0001; area under the receiver operating characteristic curve [AUC] 0.73 [0.66-0.80] to 0.78 [0.71-0.84]), objective clinical measures (balance and cognition; χ2(2) = 40.661, p < 0.0001; AUC 0.81 [0.76-0.86] to 0.87 [0.83-0.91]), and objective and subjective measures combined (χ2(2) = 13.456, p = 0.001; AUC 0.97 [0.95-0.99] to 0.98 [0.96-0.99]), although improvement in AUC was only significantly relative to objective clinical measures. DISCUSSION IL-6 and IL-1RA (male participants only) are elevated in the early-acute window postconcussion and may aid in diagnostic decisions beyond traditional blood markers and common clinical measures. IL-1RA results highlight sex differences in the immune response to concussion which should be considered in future biomarker work.
Collapse
Affiliation(s)
- Timothy B Meier
- From the Departments of Neurosurgery (T.B.M., D.L.H., M.A.M.), Biomedical Engineering (T.B.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), Biophysics (B.D.G.), and Neurology (M.A.M.), Medical College of Wisconsin, Milwaukee; National Institute of Nursing Research (J.M.G.), NIH, Bethesda; Johns Hopkins School of Nursing and Medicine (J.M.G.), Baltimore, MD; Department of Physical Medicine and Rehabilitation (P.P.), Uniformed Services University of the Health Sciences, Bethesda, MD; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis; Department of Epidemiology and Biostatistics (J.H.), School of Public Health-Bloomington, Indiana University
| | - Daniel L Huber
- From the Departments of Neurosurgery (T.B.M., D.L.H., M.A.M.), Biomedical Engineering (T.B.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), Biophysics (B.D.G.), and Neurology (M.A.M.), Medical College of Wisconsin, Milwaukee; National Institute of Nursing Research (J.M.G.), NIH, Bethesda; Johns Hopkins School of Nursing and Medicine (J.M.G.), Baltimore, MD; Department of Physical Medicine and Rehabilitation (P.P.), Uniformed Services University of the Health Sciences, Bethesda, MD; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis; Department of Epidemiology and Biostatistics (J.H.), School of Public Health-Bloomington, Indiana University
| | - Bryna D Goeckner
- From the Departments of Neurosurgery (T.B.M., D.L.H., M.A.M.), Biomedical Engineering (T.B.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), Biophysics (B.D.G.), and Neurology (M.A.M.), Medical College of Wisconsin, Milwaukee; National Institute of Nursing Research (J.M.G.), NIH, Bethesda; Johns Hopkins School of Nursing and Medicine (J.M.G.), Baltimore, MD; Department of Physical Medicine and Rehabilitation (P.P.), Uniformed Services University of the Health Sciences, Bethesda, MD; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis; Department of Epidemiology and Biostatistics (J.H.), School of Public Health-Bloomington, Indiana University
| | - Jessica M Gill
- From the Departments of Neurosurgery (T.B.M., D.L.H., M.A.M.), Biomedical Engineering (T.B.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), Biophysics (B.D.G.), and Neurology (M.A.M.), Medical College of Wisconsin, Milwaukee; National Institute of Nursing Research (J.M.G.), NIH, Bethesda; Johns Hopkins School of Nursing and Medicine (J.M.G.), Baltimore, MD; Department of Physical Medicine and Rehabilitation (P.P.), Uniformed Services University of the Health Sciences, Bethesda, MD; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis; Department of Epidemiology and Biostatistics (J.H.), School of Public Health-Bloomington, Indiana University
| | - Paul Pasquina
- From the Departments of Neurosurgery (T.B.M., D.L.H., M.A.M.), Biomedical Engineering (T.B.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), Biophysics (B.D.G.), and Neurology (M.A.M.), Medical College of Wisconsin, Milwaukee; National Institute of Nursing Research (J.M.G.), NIH, Bethesda; Johns Hopkins School of Nursing and Medicine (J.M.G.), Baltimore, MD; Department of Physical Medicine and Rehabilitation (P.P.), Uniformed Services University of the Health Sciences, Bethesda, MD; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis; Department of Epidemiology and Biostatistics (J.H.), School of Public Health-Bloomington, Indiana University
| | - Steven P Broglio
- From the Departments of Neurosurgery (T.B.M., D.L.H., M.A.M.), Biomedical Engineering (T.B.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), Biophysics (B.D.G.), and Neurology (M.A.M.), Medical College of Wisconsin, Milwaukee; National Institute of Nursing Research (J.M.G.), NIH, Bethesda; Johns Hopkins School of Nursing and Medicine (J.M.G.), Baltimore, MD; Department of Physical Medicine and Rehabilitation (P.P.), Uniformed Services University of the Health Sciences, Bethesda, MD; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis; Department of Epidemiology and Biostatistics (J.H.), School of Public Health-Bloomington, Indiana University
| | - Thomas W McAllister
- From the Departments of Neurosurgery (T.B.M., D.L.H., M.A.M.), Biomedical Engineering (T.B.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), Biophysics (B.D.G.), and Neurology (M.A.M.), Medical College of Wisconsin, Milwaukee; National Institute of Nursing Research (J.M.G.), NIH, Bethesda; Johns Hopkins School of Nursing and Medicine (J.M.G.), Baltimore, MD; Department of Physical Medicine and Rehabilitation (P.P.), Uniformed Services University of the Health Sciences, Bethesda, MD; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis; Department of Epidemiology and Biostatistics (J.H.), School of Public Health-Bloomington, Indiana University
| | - Jaroslaw Harezlak
- From the Departments of Neurosurgery (T.B.M., D.L.H., M.A.M.), Biomedical Engineering (T.B.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), Biophysics (B.D.G.), and Neurology (M.A.M.), Medical College of Wisconsin, Milwaukee; National Institute of Nursing Research (J.M.G.), NIH, Bethesda; Johns Hopkins School of Nursing and Medicine (J.M.G.), Baltimore, MD; Department of Physical Medicine and Rehabilitation (P.P.), Uniformed Services University of the Health Sciences, Bethesda, MD; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis; Department of Epidemiology and Biostatistics (J.H.), School of Public Health-Bloomington, Indiana University
| | - Michael A McCrea
- From the Departments of Neurosurgery (T.B.M., D.L.H., M.A.M.), Biomedical Engineering (T.B.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), Biophysics (B.D.G.), and Neurology (M.A.M.), Medical College of Wisconsin, Milwaukee; National Institute of Nursing Research (J.M.G.), NIH, Bethesda; Johns Hopkins School of Nursing and Medicine (J.M.G.), Baltimore, MD; Department of Physical Medicine and Rehabilitation (P.P.), Uniformed Services University of the Health Sciences, Bethesda, MD; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis; Department of Epidemiology and Biostatistics (J.H.), School of Public Health-Bloomington, Indiana University
| |
Collapse
|
13
|
Reyes J, Spitz G, Major BP, O'Brien WT, Giesler LP, Bain JWP, Xie B, Rosenfeld JV, Law M, Ponsford JL, O'Brien TJ, Shultz SR, Willmott C, Mitra B, McDonald SJ. Utility of Acute and Subacute Blood Biomarkers to Assist Diagnosis in CT-Negative Isolated Mild Traumatic Brain Injury. Neurology 2023; 101:e1992-e2004. [PMID: 37788938 PMCID: PMC10662993 DOI: 10.1212/wnl.0000000000207881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/22/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Blood biomarkers glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) have recently been Food and Drug Administration approved as predictors of intracranial lesions on CT after mild traumatic brain injury (mTBI). However, most cases with mTBI are CT negative, and no biomarkers are approved to assist diagnosis in these individuals. In this study, we aimed to determine the optimal combination of blood biomarkers to assist mTBI diagnosis in otherwise healthy adults younger than 50 years presenting to an emergency department within 6 hours of injury. To further understand the utility of biomarkers, we assessed how biological sex, presence or absence of loss of consciousness and/or post-traumatic amnesia (LOC/PTA), and delayed presentation affected classification performance. METHODS Blood samples, symptom questionnaires, and cognitive tests were prospectively conducted for participants with mTBI recruited from The Alfred Hospital Level 1 Emergency & Trauma Center and uninjured controls. Follow-up testing was conducted at 7 days. Simoa quantified plasma GFAP, UCH-L1, tau, neurofilament light chain (NfL), interleukin (IL)-6, and IL-1β. Area under the receiver operating characteristic (AUC) analysis assessed classification accuracy for diagnosed mTBI, and logistic regression models identified optimal biomarker combinations. RESULTS Plasma IL-6 (AUC 0.91, 95% CI 0.86-0.96), GFAP (AUC 0.85, 95% CI 0.78-0.93), and UCH-L1 (AUC 0.79, 95% CI 0.70-0.88) best differentiated mTBI (n = 74) from controls (n = 44) acutely (<6 hours), with NfL (AUC 0.81, 95% CI 0.72-0.90) the only marker to have such utility subacutely (7 days). Biomarker performance was similar between sexes and for participants with and without LOC/PTA, with the exception at 7 days, where GFAP and IL-6 retained some utility in female participants (GFAP: AUC 0.71, 95% CI 0.55-0.88; IL-6: AUC 0.71, 95% CI 0.55-0.87) and in those with LOC/PTA (GFAP: AUC 0.73, 95% CI 0.59-0.86; IL-6: AUC 0.71, 95% CI 0.57-0.84). Acute IL-6 (R 2 = 0.50, 95% CI 0.34-0.64) outperformed GFAP and UCH-L1 combined (R 2 = 0.35, 95% CI 0.17-0.50), with the best acute model featuring GFAP and IL-6 (R 2 = 0.54, 95% CI 0.34-0.68). DISCUSSION These findings indicate that adding IL-6 to a panel of brain-specific proteins such as GFAP and UCH-L1 might assist in the acute diagnosis of mTBI in adults younger than 50 years. Multiple markers had high classification accuracy in participants without LOC/PTA. When compared with the best-performing acute markers, subacute measures of plasma NfL resulted in minimal reduction in classification accuracy. Future studies will investigate the optimal time frame over which plasma IL-6 might assist diagnostic decisions and how extracranial trauma affects utility.
Collapse
Affiliation(s)
- Jonathan Reyes
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Gershon Spitz
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Brendan P Major
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - William T O'Brien
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Lauren P Giesler
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Jesse W P Bain
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Becca Xie
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Jeffrey V Rosenfeld
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Meng Law
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Jennie L Ponsford
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Terence J O'Brien
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Sandy R Shultz
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Catherine Willmott
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Biswadev Mitra
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia
| | - Stuart J McDonald
- From the Department of Neuroscience (J.R., G.S., B.P.M., W.T.O.B., L.P.G., J.W.P.B., B.X., M.L., T.J.O.B., S.R.S., S.J.M.), School of Psychological Sciences (J.R., G.S., C.W.), Monash University; Monash-Epworth Rehabilitation Research Centre (J.R., G.S., J.L.P., C.W.), Epworth Hospital; Department of Neurosurgery (J.V.R.), The Alfred Hospital; Department of Surgery (J.V.R.), Monash University; Department of Radiology (M.L.), The Alfred Hospital; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; Department of Neurology (T.J.O.B., S.R.S., S.J.M.), The Alfred Hospital, Melbourne; Department of Medicine (T.J.O.B., S.R.S.), Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia; Health Sciences (S.R.S.), Vancouver Island University, Nanaimo, British Columbia, Canada; Australian Football League (AFL) (C.W.); Emergency & Trauma Centre (B.M.), The Alfred Hospital; and School of Public Health & Preventive Medicine (B.M.), Monash University, Melbourne, Australia.
| |
Collapse
|
14
|
Monsour M, Croci DM, Grüter BE, Taussky P, Marbacher S, Agazzi S. Cerebral Aneurysm and Interleukin-6: a Key Player in Aneurysm Generation and Rupture or Just One of the Multiple Factors? Transl Stroke Res 2023; 14:631-639. [PMID: 36042111 DOI: 10.1007/s12975-022-01079-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Intracranial aneurysm (IA) rupture is a common cause of subarachnoid hemorrhage (SAH) with high mortality and morbidity. Inflammatory interleukins (IL), such as IL-6, play an important role in the occurrence and rupture of IA causing SAH. With this review we aim to elucidate the specific role of IL-6 in aneurysm formation and rupture in preclinical and clinical studies. IL-6 is a novel cytokine in that it has pro-inflammatory and anti-inflammatory signaling pathways. In preclinical and clinical studies of IA formation, elevated and reduced levels of IL-6 are reported. Poor post-rupture prognosis and increased rupture risk, however, are associated with higher levels of IL-6. By better understanding the relationships between IL-6 and IA formation and rupture, IL-6 may serve as a biomarker in high-risk populations. Furthermore, by better understanding the IL-6 signaling mechanisms in IA formation and rupture, IL-6 may optimize surveillance and treatment strategies. This review examines the association between IL-6 and IA, while also suggesting future research directions.
Collapse
Affiliation(s)
- Molly Monsour
- Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - Davide Marco Croci
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Basil E Grüter
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Neurosurgery, Kantonsspital Aarau, c/o NeuroResearch Office, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Philipp Taussky
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Serge Marbacher
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Neurosurgery, Kantonsspital Aarau, c/o NeuroResearch Office, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Siviero Agazzi
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
15
|
de Souza DN, Jarmol M, Bell CA, Marini C, Balcer LJ, Galetta SL, Grossman SN. Precision Concussion Management: Approaches to Quantifying Head Injury Severity and Recovery. Brain Sci 2023; 13:1352. [PMID: 37759953 PMCID: PMC10526525 DOI: 10.3390/brainsci13091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Mitigating the substantial public health impact of concussion is a particularly difficult challenge. This is partly because concussion is a highly prevalent condition, and diagnosis is predominantly symptom-based. Much of contemporary concussion management relies on symptom interpretation and accurate reporting by patients. These types of reports may be influenced by a variety of factors for each individual, such as preexisting mental health conditions, headache disorders, and sleep conditions, among other factors. This can all be contributory to non-specific and potentially misleading clinical manifestations in the aftermath of a concussion. This review aimed to conduct an examination of the existing literature on emerging approaches for objectively evaluating potential concussion, as well as to highlight current gaps in understanding where further research is necessary. Objective assessments of visual and ocular motor concussion symptoms, specialized imaging techniques, and tissue-based concentrations of specific biomarkers have all shown promise for specifically characterizing diffuse brain injuries, and will be important to the future of concussion diagnosis and management. The consolidation of these approaches into a comprehensive examination progression will be the next horizon for increased precision in concussion diagnosis and treatment.
Collapse
Affiliation(s)
- Daniel N. de Souza
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Mitchell Jarmol
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Carter A. Bell
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Christina Marini
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Laura J. Balcer
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
- Department of Population Health, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Steven L. Galetta
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Scott N. Grossman
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
| |
Collapse
|
16
|
Spencer HF, Boese M, Berman RY, Radford KD, Choi KH. Effects of a Subanesthetic Ketamine Infusion on Inflammatory and Behavioral Outcomes after Closed Head Injury in Rats. Bioengineering (Basel) 2023; 10:941. [PMID: 37627826 PMCID: PMC10452037 DOI: 10.3390/bioengineering10080941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Traumatic brain injury (TBI) affects millions of people annually, and most cases are classified as mild TBI (mTBI). Ketamine is a potent trauma analgesic and anesthetic with anti-inflammatory properties. However, ketamine's effects on post-mTBI outcomes are not well characterized. For the current study, we used the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA), which replicates the biomechanics of a closed-head impact with resulting free head movement. Adult male Sprague-Dawley rats sustained a single-session, repeated-impacts CHIMERA injury. An hour after the injury, rats received an intravenous ketamine infusion (0, 10, or 20 mg/kg, 2 h period), during which locomotor activity was monitored. Catheter blood samples were collected at 1, 3, 5, and 24 h after the CHIMERA injury for plasma cytokine assays. Behavioral assays were conducted on post-injury days (PID) 1 to 4 and included rotarod, locomotor activity, acoustic startle reflex (ASR), and pre-pulse inhibition (PPI). Brain tissue samples were collected at PID 4 and processed for GFAP (astrocytes), Iba-1 (microglia), and silver staining (axonal injury). Ketamine dose-dependently altered locomotor activity during the infusion and reduced KC/GRO, TNF-α, and IL-1β levels after the infusion. CHIMERA produced a delayed deficit in rotarod performance (PID 3) and significant axonal damage in the optic tract (PID 4), without significant changes in other behavioral or histological measures. Notably, subanesthetic doses of intravenous ketamine infusion after mTBI did not produce adverse effects on behavioral outcomes in PID 1-4 or neuroinflammation on PID 4. A further study is warranted to thoroughly investigate beneficial effects of IV ketamine on mTBI given multi-modal properties of ketamine in traumatic injury and stress.
Collapse
Affiliation(s)
- Haley F. Spencer
- Program in Neuroscience, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA;
- Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA;
| | - Martin Boese
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA; (M.B.); (K.D.R.)
| | - Rina Y. Berman
- Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA;
| | - Kennett D. Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA; (M.B.); (K.D.R.)
| | - Kwang H. Choi
- Program in Neuroscience, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA;
- Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA;
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA; (M.B.); (K.D.R.)
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
| |
Collapse
|
17
|
Tsitsipanis C, Miliaraki M, Paflioti E, Lazarioti S, Moustakis N, Ntotsikas K, Theofanopoulos A, Ilia S, Vakis A, Simos P, Venihaki M. Inflammation biomarkers IL‑6 and IL‑10 may improve the diagnostic and prognostic accuracy of currently authorized traumatic brain injury tools. Exp Ther Med 2023; 26:364. [PMID: 37408863 PMCID: PMC10318605 DOI: 10.3892/etm.2023.12063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 07/07/2023] Open
Abstract
Traumatic brain injury (TBI) is currently one of the leading causes of mortality and disability worldwide. At present, no reliable inflammatory or specific molecular neurobiomarker exists in any of the standard models proposed for TBI classification or prognostication. Therefore, the present study was designed to assess the value of a group of inflammatory mediators for evaluating acute TBI, in combination with clinical, laboratory and radiological indices and prognostic clinical scales. In the present single-centre, prospective observational study, 109 adult patients with TBI, 20 adult healthy controls and a pilot group of 17 paediatric patients with TBI from a Neurosurgical Department and two intensive care units of University General Hospital of Heraklion, Greece were recruited. Blood measurements using the ELISA method, of cytokines IL-6, IL-8 and IL-10, ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein, were performed. Compared with those in healthy control individuals, elevated IL-6 and IL-10 but reduced levels of IL-8 were found on day 1 in adult patients with TBI. In terms of TBI severity classifications, higher levels of IL-6 (P=0.001) and IL-10 (P=0.009) on day 1 in the adult group were found to be associated with more severe TBI according to widely used clinical and functional scales. Moreover, elevated IL-6 and IL-10 in adults were found to be associated with more serious brain imaging findings (rs<0.442; P<0.007). Subsequent multivariate logistic regression analysis in adults revealed that early-measured (day 1) IL-6 [odds ratio (OR)=0.987; P=0.025] and UCH-L1 (OR=0.993; P=0.032) are significant independent predictors of an unfavourable outcome. In conclusion, results from the present study suggest that inflammatory molecular biomarkers may prove to be valuable diagnostic and prognostic tools for TBI.
Collapse
Affiliation(s)
- Christos Tsitsipanis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Marianna Miliaraki
- Pediatric Intensive Care Unit, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Elina Paflioti
- Department of Clinical Chemistry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Sofia Lazarioti
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Nikolaos Moustakis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Konstantinos Ntotsikas
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | | | - Stavroula Ilia
- Pediatric Intensive Care Unit, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Antonis Vakis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Panagiotis Simos
- Department of Psychiatry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Maria Venihaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
18
|
Malik S, Alnaji O, Malik M, Gambale T, Farrokhyar F, Rathbone MP. Inflammatory cytokines associated with mild traumatic brain injury and clinical outcomes: a systematic review and meta-analysis. Front Neurol 2023; 14:1123407. [PMID: 37251220 PMCID: PMC10213278 DOI: 10.3389/fneur.2023.1123407] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Mild traumatic brain injuries (mTBIs) trigger a neuroinflammatory response, which leads to perturbations in the levels of inflammatory cytokines, resulting in a distinctive profile. A systematic review and meta-analysis were conducted to synthesize data related to levels of inflammatory cytokines in patients with mTBI. The electronic databases EMBASE, MEDLINE, and PUBMED were searched from January 2014 to December 12, 2021. A total of 5,138 articles were screened using a systematic approach based on the PRISMA and R-AMSTAR guidelines. Of these articles, 174 were selected for full-text review and 26 were included in the final analysis. The results of this study demonstrate that within 24 hours, patients with mTBI have significantly higher levels of Interleukin-6 (IL-6), Interleukin-1 Receptor Antagonist (IL-1RA), and Interferon-γ (IFN-γ) in blood, compared to healthy controls in majority of the included studies. Similarly one week following the injury, patients with mTBI have higher circulatory levels of Monocyte Chemoattractant Protein-1/C-C Motif Chemokine Ligand 2 (MCP-1/CCL2), compared to healthy controls in majority of the included studies. The results of the meta-analysis also confirmed these findings by demonstrating significantly elevated blood levels of IL-6, MCP-1/CCL2, and Interleukin-1 beta (IL-1β) in the mTBI population compared to healthy controls (p < 0.0001), particularly in the acute stages (<7 days). Furthermore, it was found that IL-6, Tumor Necrosis Factor-alpha (TNF-α), IL-1RA, IL-10, and MCP-1/CCL2 were associated with poor clinical outcomes following the mTBI. Finally, this research highlights the lack of consensus in the methodology of mTBI studies that measure inflammatory cytokines in the blood, and also provides direction for future mTBI research.
Collapse
Affiliation(s)
- Shazia Malik
- Neurosciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Omar Alnaji
- Faculty of Life Sciences, McMaster University, Hamilton, ON, Canada
| | - Mahnoor Malik
- Bachelor of Health Sciences Program, McMaster University, Hamilton, ON, Canada
| | - Teresa Gambale
- Division of Neurology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Forough Farrokhyar
- Department of Surgery and Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Michel P. Rathbone
- Division of Neurology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
19
|
Tomaiuolo R, Zibetti M, Di Resta C, Banfi G. Challenges of the Effectiveness of Traumatic Brain Injuries Biomarkers in the Sports-Related Context. J Clin Med 2023; 12:jcm12072563. [PMID: 37048647 PMCID: PMC10095236 DOI: 10.3390/jcm12072563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Traumatic brain injury affects 69 million people every year. One of the main limitations in managing TBI patients is the lack of univocal diagnostic criteria, including the absence of standardized assessment methods and guidelines. Computerized axial tomography is the first-choice examination, despite the limited prevalence of positivity; moreover, its performance is undesirable due to the risk of radiological exposure, prolonged stay in emergency departments, inefficient use of resources, high cost, and complexity. Furthermore, immediacy and accuracy in diagnosis and management of TBIs are critically unmet medical needs. Especially in the context of sports-associated TBI, there is a strong need for prognostic indicators to help diagnose and identify at-risk subjects to avoid their returning to play while the brain is still highly vulnerable. Fluid biomarkers may emerge as new prognostic indicators to develop more accurate prediction models, improving risk stratification and clinical decision making. This review describes the current understanding of the cellular sources, temporal profile, and potential utility of leading and emerging blood-based protein biomarkers of TBI; its focus is on biomarkers that could improve the management of mild TBI cases and can be measured readily and directly in the field, as in the case of sports-related contexts.
Collapse
Affiliation(s)
- Rossella Tomaiuolo
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Martina Zibetti
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Chiara Di Resta
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Correspondence:
| | - Giuseppe Banfi
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- IRCCS Galeazzi-Sant’Ambrogio, 20157 Milan, Italy
| |
Collapse
|
20
|
Cytokine Profiles Differentiate Symptomatic from Asymptomatic PTSD in Service Members and Veterans with Chronic Traumatic Brain Injury. Biomedicines 2022; 10:biomedicines10123289. [PMID: 36552045 PMCID: PMC9775258 DOI: 10.3390/biomedicines10123289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injuries (TBI) and posttraumatic stress disorder (PTSD) are commonly observed comorbid occurrences among military service members and veterans (SMVs). In this cross-sectional study, SMVs with a history of TBI were stratified into symptomatic and asymptomatic PTSD groups based on posttraumatic stress checklist-civilian (PCL-C) total scores. Blood-based biomarkers were assessed, and significant differential markers were associated with scores from multiple neurobehavioral self-report assessments. PCL-C cutoffs were total scores >50 (PTSD symptomatic) and <25 (asymptomatic). Cytokines IL6, IL8, TNFα, and IL10 were significantly elevated (p < 0.05−0.001) in the TBI+/PTSD symptomatic group compared to the TBI+/asymptomatic group. Cytokine levels of IL8, TNFα, and IL10 were strongly associated with PCL-C scores (0.356 < r > 0.624 for all, p < 0.01 for all), while TNFα and IL10 were additionally associated with NSI totals (r = 0.285 and r = 0.270, p < 0.05, respectively). This is the first study focused on PTSD symptom severity to report levels of circulating pro-inflammatory IL8, specifically in SMVs with TBI. These data suggest that within the military TBI population, there are unique cytokine profiles that relate to neurobehavioral outcomes associated with TBI and PTSD.
Collapse
|
21
|
The role of IL-6 in TBI and PTSD, a potential therapeutic target? Clin Neurol Neurosurg 2022; 218:107280. [PMID: 35567833 DOI: 10.1016/j.clineuro.2022.107280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 01/14/2023]
Abstract
This literature review focuses on the role of IL-6 in TBI or PTSD-induced neuroinflammation. While TBI and PTSD are widely prevalent, these diagnoses are particularly common amongst veterans. Given the role of IL-6 in neuroprotection acutely, compared to detrimental chronically, targeting this cytokine at specific time points may be beneficial in modulating neuroinflammation. Current treatments for TBI or PTSD are variably affective. By reviewing the role of IL-6 in these two diagnoses, future studies can focus on therapeutics to treat neuroinflammation and ultimately reduce the devastating impacts of neuroinflammation on cognition in PTSD and TBI.
Collapse
|
22
|
Elliott JE, Keil AT, Mithani S, Gill JM, O’Neil ME, Cohen AS, Lim MM. Dietary Supplementation With Branched Chain Amino Acids to Improve Sleep in Veterans With Traumatic Brain Injury: A Randomized Double-Blind Placebo-Controlled Pilot and Feasibility Trial. Front Syst Neurosci 2022; 16:854874. [PMID: 35602971 PMCID: PMC9114805 DOI: 10.3389/fnsys.2022.854874] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Study Objectives Traumatic brain injury (TBI) is associated with chronic sleep disturbances and cognitive impairment. Our prior preclinical work demonstrated dietary supplementation with branched chain amino acids (BCAA: leucine, isoleucine, and valine), precursors to de novo glutamate production, restored impairments in glutamate, orexin/hypocretin neurons, sleep, and memory in rodent models of TBI. This pilot study assessed the feasibility and preliminary efficacy of dietary supplementation with BCAA on sleep and cognition in Veterans with TBI. Methods Thirty-two Veterans with TBI were prospectively enrolled in a randomized, double-blinded, placebo-controlled trial comparing BCAA (30 g, b.i.d. for 21-days) with one of two placebo arms (microcrystalline cellulose or rice protein, both 30 g, b.i.d. for 21-days). Pre- and post-intervention outcomes included sleep measures (questionnaires, daily sleep/study diaries, and wrist actigraphy), neuropsychological testing, and blood-based biomarkers related to BCAA consumption. Results Six subjects withdrew from the study (2/group), leaving 26 remaining subjects who were highly adherent to the protocol (BCAA, 93%; rice protein, 96%; microcrystalline, 95%; actigraphy 87%). BCAA were well-tolerated with few side effects and no adverse events. BCAA significantly improved subjective insomnia symptoms and objective sleep latency and wake after sleep onset on actigraphy. Conclusion Dietary supplementation with BCAA is a mechanism-based, promising intervention that shows feasibility, acceptability, and preliminary efficacy to treat insomnia and objective sleep disruption in Veterans with TBI. A larger scale randomized clinical trial is warranted to further evaluate the efficacy, dosing, and duration of BCAA effects on sleep and other related outcome measures in individuals with TBI. Clinical Trial Registration [http://clinicaltrials.gov/], identifier [NCT03990909].
Collapse
Affiliation(s)
- Jonathan E. Elliott
- VA Portland Health Care System, Portland, OR, United States,Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | | | - Sara Mithani
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, United States
| | - Jessica M. Gill
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, United States
| | - Maya E. O’Neil
- VA Portland Health Care System, Portland, OR, United States,Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States,Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States
| | - Akiva S. Cohen
- Perelman School of Medicine, Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, United States,Anesthesiology, Children’s Hospital of Philadelphia, Joseph Stokes Research Institute, Philadelphia, PA, United States
| | - Miranda M. Lim
- VA Portland Health Care System, Portland, OR, United States,Department of Neurology, Oregon Health & Science University, Portland, OR, United States,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR, United States,Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States,VA Portland Health Care System, National Center for Rehabilitation and Auditory Research, Portland, OR, United States,*Correspondence: Miranda M. Lim,
| |
Collapse
|
23
|
Feasibility and preliminary efficacy for morning bright light therapy to improve sleep and plasma biomarkers in US Veterans with TBI. A prospective, open-label, single-arm trial. PLoS One 2022; 17:e0262955. [PMID: 35421086 PMCID: PMC9009710 DOI: 10.1371/journal.pone.0262955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
Mild traumatic brain injury (TBI) is associated with persistent sleep-wake dysfunction, including insomnia and circadian rhythm disruption, which can exacerbate functional outcomes including mood, pain, and quality of life. Present therapies to treat sleep-wake disturbances in those with TBI (e.g., cognitive behavioral therapy for insomnia) are limited by marginal efficacy, poor patient acceptability, and/or high patient/provider burden. Thus, this study aimed to assess the feasibility and preliminary efficacy of morning bright light therapy, to improve sleep in Veterans with TBI (NCT03578003). Thirty-three Veterans with history of TBI were prospectively enrolled in a single-arm, open-label intervention using a lightbox (~10,000 lux at the eye) for 60-minutes every morning for 4-weeks. Pre- and post-intervention outcomes included questionnaires related to sleep, mood, TBI, post-traumatic stress disorder (PTSD), and pain; wrist actigraphy as a proxy for objective sleep; and blood-based biomarkers related to TBI/sleep. The protocol was rated favorably by ~75% of participants, with adherence to the lightbox and actigraphy being ~87% and 97%, respectively. Post-intervention improvements were observed in self-reported symptoms related to insomnia, mood, and pain; actigraphy-derived measures of sleep; and blood-based biomarkers related to peripheral inflammatory balance. The severity of comorbid PTSD was a significant positive predictor of response to treatment. Morning bright light therapy is a feasible and acceptable intervention that shows preliminary efficacy to treat disrupted sleep in Veterans with TBI. A full-scale randomized, placebo-controlled study with longitudinal follow-up is warranted to assess the efficacy of morning bright light therapy to improve sleep, biomarkers, and other TBI related symptoms.
Collapse
|
24
|
García-Juárez M, Camacho-Morales A. Defining the role of anti- and pro-inflammatory outcomes of Interleukin-6 in mental health. Neuroscience 2022; 492:32-46. [DOI: 10.1016/j.neuroscience.2022.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 01/03/2023]
|
25
|
Malik S, Alnaji O, Malik M, Gambale T, Rathbone MP. Correlation between Mild Traumatic Brain Injury-Induced Inflammatory Cytokines and Emotional Symptom Traits: A Systematic Review. Brain Sci 2022; 12:brainsci12010102. [PMID: 35053845 PMCID: PMC8773760 DOI: 10.3390/brainsci12010102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
Both mild traumatic brain injuries (mTBI) and systemic injuries trigger a transient neuroinflammatory response that result in similar clinical outcome. The ensuing physical, cognitive, and emotional symptoms fail to subside in approximately 15–20% of the concussed population. Emotional impairments, particularly depression, anxiety, and post-traumatic stress disorder (PTSD), are commonly associated with poor recovery following mTBI. These emotional impairments also have a significant neuroinflammatory component. We hypothesized that the inflammatory cytokines seen in mTBI patients with emotional symptoms would coincide with those commonly seen in patients with emotional symptoms without mTBI. A systematic review was conducted to identify the most common neuroinflammatory cytokines in the mTBI population with psychological symptoms (depression, anxiety, PTSD). The electronic databases EMBASE, MEDLINE, Cochrane Central Register of Controlled Trials (CENTRAL), PUBMED, and PSYCINFO were searched from data inception to 31 August 2021. A systematic screening approach was employed from screening to data analysis. A total of 994 articles were screened, 108 were selected for full article review, and 8 were selected for data analysis. The included studies consisted of 875 patients of which 81.3% were male. The mean sample size of patients with at least one mTBI was 73.8 ± 70.3 (range, 9–213), with a mean age of 33.9 ± 4.8 years. The most common cytokines associated with poor psychological outcomes involving PTSD and/or depression in the chronic mTBI population were IL-6, TNFα, IL-10, and CRP.
Collapse
Affiliation(s)
- Shazia Malik
- Neurosciences Graduate Program, McMaster University, Hamilton, ON L8S 4L8, Canada
- Correspondence:
| | - Omar Alnaji
- Faculty of Life Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Mahnoor Malik
- Bachelor of Health Sciences Program, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Teresa Gambale
- Division of Neurology, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; (T.G.); (M.P.R.)
| | - Michel Piers Rathbone
- Division of Neurology, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; (T.G.); (M.P.R.)
| |
Collapse
|
26
|
Wiseman-Hakes C, Foster E, Langer L, Chandra T, Bayley M, Comper P. Characterizing Sleep and Wakefulness in the Acute Phase of Concussion in the General Population: A Naturalistic Cohort from the Toronto Concussion Study. J Neurotrauma 2021; 39:172-180. [PMID: 34714132 DOI: 10.1089/neu.2021.0295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Growing literature links concussion to changes in sleep and wakefulness in humans and in rodent models. Sleep has been linked with synaptic reorganization under other conditions; however, the characterization and role of sleep after acute concussion remains poorly understood. While much research has focused on insomnia among patients with chronic or persistent concussion symptoms, there is limited understanding of sleep and acute concussion, its potential role in recovery, and associated risk factors for the development of chronic sleep disturbance. Studies to date are limited by small sample sizes of primarily athlete or military populations. Additional studies among the general population are critical to inform best practice guidelines. We examined the sleep and daytime wakefulness of 472 adults from a naturalistic general population cohort (mean age, 33.3 years, females = 60.8%) within seven days of diagnosed concussion, using a validated, condition-specific measure, the Sleep and Concussion Questionnaire. Participants identified immediate changes in sleep characterized by hypersomnia and difficulty maintaining daytime wakefulness; 35% considered these changes as moderate to severe and 79% required monitoring or follow-up. Females experienced significantly greater severity of changes in sleep compared with males. Positive correlations between severity of sleep and pain and headache were identified. Differences by sex are an important consideration for early intervention and long-term monitoring. Because sleep was compromised by pain, pain management is also an integral part of early intervention. Our findings suggest that assessment of sleep beginning in the acute stage is a critical component of concussion management in the general population.
Collapse
Affiliation(s)
- Catherine Wiseman-Hakes
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada
| | - Evan Foster
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,Translational Research Program, University of Toronto, Toronto, Ontario, Canada
| | - Laura Langer
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Tharshini Chandra
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Mark Bayley
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,Physiatry, University of Toronto, Toronto, Ontario, Canada
| | - Paul Comper
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Visser K, Koggel M, Blaauw J, van der Horn HJ, Jacobs B, van der Naalt J. Blood-based biomarkers of inflammation in mild traumatic brain injury: A systematic review. Neurosci Biobehav Rev 2021; 132:154-168. [PMID: 34826510 DOI: 10.1016/j.neubiorev.2021.11.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/17/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022]
Abstract
VISSER, K., M. Koggel, J. Blaauw, H.J.v.d. Horn, B. Jacobs, and J.v.d. Naalt. Blood based biomarkers of inflammation in mild traumatic brain injury: A systematic review. NEUROSCI BIOBEHAV REV XX(X) XXX-XXX, 2021. - Inflammation is an important secondary physiological response to traumatic brain injury (TBI). Most of the current knowledge on this response is derived from research in moderate and severe TBI. In this systematic review we summarize the literature on clinical studies measuring blood based inflammatory markers following mild traumatic brain injury (mTBI) and identify the value of inflammatory markers as biomarkers. Twenty-three studies were included. This review suggests a distinct systemic inflammatory response following mTBI, quantifiable within 6 h up to 12 months post-injury. Interleukin-6 is the most promising biomarker for the clinical diagnosis of brain injury while interleukin-10 is a potential candidate for triaging CT scans. The diagnostic and prognostic utility of inflammatory markers may be more fully appreciated as a component of a panel of biomarkers. However, discrepancies in study design, analysis and reporting make it difficult to draw any definite conclusions. For the same reasons, a meta-analysis was not possible. We provide recommendations to follow standardized methodologies to allow for reproducibility of results in future studies.
Collapse
Affiliation(s)
- Koen Visser
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| | - Milou Koggel
- Faculty of Science, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Jurre Blaauw
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Harm Jan van der Horn
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Bram Jacobs
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
28
|
McDonald SJ, Shultz SR, Agoston DV. The Known Unknowns: An Overview of the State of Blood-Based Protein Biomarkers of Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:2652-2666. [PMID: 33906422 DOI: 10.1089/neu.2021.0011] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Blood-based protein biomarkers have revolutionized several fields of medicine by enabling molecular level diagnosis, as well as monitoring disease progression and treatment efficacy. Traumatic brain injury (TBI) so far has benefitted only moderately from using protein biomarkers to improve injury outcome. Because of its complexity and dynamic nature, TBI, especially its most prevalent mild form (mild TBI; mTBI), presents unique challenges toward protein biomarker discovery and validation given that blood is frequently obtained and processed outside of the clinical laboratory (e.g., athletic fields, battlefield) under variable conditions. As it stands, the field of mTBI blood biomarkers faces a number of outstanding questions. Do elevated blood levels of currently used biomarkers-ubiquitin carboxy-terminal hydrolase L1, glial fibrillary acidic protein, neurofilament light chain, and tau/p-tau-truly mirror the extent of parenchymal damage? Do these different proteins represent distinct injury mechanisms? Is the blood-brain barrier a "brick wall"? What is the relationship between intra- versus extracranial values? Does prolonged elevation of blood levels reflect de novo release or extended protein half-lives? Does biological sex affect the pathobiological responses after mTBI and thus blood levels of protein biomarkers? At the practical level, it is unknown how pre-analytical variables-sample collection, preparation, handling, and stability-affect the quality and reliability of biomarker data. The ever-increasing sensitivity of assay systems and lack of quality control of samples, combined with the almost complete reliance on antibody-based assay platforms, represent important unsolved issues given that false-negative results can lead to false clinical decision making and adverse outcomes. This article serves as a commentary on the state of mTBI biomarkers and the landscape of significant challenges. We highlight and discusses several biological and methodological "known unknowns" and close with some practical recommendations.
Collapse
Affiliation(s)
- Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|