1
|
Wei H, Luo Q, Zhong W. Integration of 101 machine learning algorithm combinations to unveil m6A/m1A/m5C/m7G-associated prognostic signature in colorectal cancer. Sci Rep 2025; 15:5930. [PMID: 39966486 PMCID: PMC11836460 DOI: 10.1038/s41598-025-89944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Colorectal cancer (CRC) is the most common malignancy in the digestive system, with a lower 5-year overall survival rate. There is increasing evidence showing that RNA modification regulators such as m1A, m5C, m6A, and m7G play crucial roles in tumor progression. However, the prognostic role of integrated m6A/m5C/m1A/m7G methylation modifications in CRC has not been reported and requires further investigation. Five cohorts with 989 samples were first retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Then, Three m6A/m1A/m5C/m7G-associated molecular subtypes were identified in the TCGA cohort via the consensus clustering analysis, and 1710 co-expression module genes associated with subtypes were obtained from weighted gene co-expression network analysis (WGCNA) results. After conducting univariate Cox analysis in each cohort and retaining common genes, an RNA methylation-related signature (RMS) was developed through the combination of 101 algorithms. The RMS exhibited strong accuracy and robustness in predicting survival outcomes across distinct cohorts (TCGA, GSE17536, GSE17537, GSE29612, and GSE38832) and demonstrated good performance compared with previously reported risk signatures. Additionally, the RMS was identified as an independent prognostic factor for overall survival in the TCGA, GSE17536, GSE17537, GSE29612, and GSE38832 cohorts. The patients were then stratified into high and low-risk groups based on the median risk score across the five cohorts. Compared to the high-risk groups, the low-risk group showed an increased immune cell infiltration level and showed more benefit from immunotherapy and chemotherapy drugs. Moreover, six drugs (KU-0063794, temozolomide, DNMDP, ML162, SJ-172550, ML050) from the Cancer Therapeutics Response Portal (CTRP) and five drugs (BIBX-1382, lomitapide, ZLN005, PPT, panobinostat) from the PRSM database were identified for the high-risk group patients. By integrating data from the TCGA database and the Cancer Cell Line Encyclopedia (CCLE) database, a potential therapeutic target named TERT was identified for the high-risk group of patients. The single-cell results indicated that TERT was highly expressed in epithelial cells. Overall, our developed RMS can accurately predict patients survival outcomes and immunotherapy response, indicating promising application in clinical practice. These findings may offer guidance for the prognosis and personalized treatment of CRC.
Collapse
Affiliation(s)
- Hao Wei
- Clinical Laboratory, Guangyuan Central Hospital, Guangyuan, 628099, Sichuan, People's Republic of China
| | - Qingsong Luo
- Clinical Laboratory, Guangyuan Central Hospital, Guangyuan, 628099, Sichuan, People's Republic of China
| | - Weimin Zhong
- Central Laboratory, The Fifth Hospital of Xiamen, Xiamen, Fujian, People's Republic of China.
| |
Collapse
|
2
|
Lee PWT, Kobayashi M, Dohkai T, Takahashi I, Yoshida T, Harada H. 2-Oxoglutarate-dependent dioxygenases as oxygen sensors: their importance in health and disease. J Biochem 2025; 177:79-104. [PMID: 39679914 DOI: 10.1093/jb/mvae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Since low oxygen conditions below physiological levels, hypoxia, are associated with various diseases, it is crucial to understand the molecular basis behind cellular response to hypoxia. Hypoxia-inducible factors (HIFs) have been revealed to primarily orchestrate the hypoxic response at the transcription level and have continuously attracted great attention over the past three decades. In addition to these hypoxia-responsive effector proteins, 2-oxoglutarate-dependent dioxygenase (2-OGDD) superfamily including prolyl-4-hydroxylase domain-containing proteins (PHDs) and factor inhibiting HIF-1 (FIH-1) has attracted even greater attention in recent years as factors that act as direct oxygen sensors due to their necessity of oxygen for the regulation of the expression and activity of the regulatory subunit of HIFs. Herein, we present a detailed classification of 2-OGDD superfamily proteins, such as Jumonji C-domain-containing histone demethylases, ten-eleven translocation enzymes, AlkB family of DNA/RNA demethylases and lysyl hydroxylases, and discuss their specific functions and associations with various diseases. By introducing the multifaceted roles of 2-OGDD superfamily proteins in the hypoxic response, this review aims to summarize the accumulated knowledge about the complex mechanisms governing cellular adaptation to hypoxia in various physiological and pathophysiological contexts.
Collapse
Affiliation(s)
- Peter W T Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takakuni Dohkai
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Itsuki Takahashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takumi Yoshida
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Wada Y, Naito T, Fukushima T, Saito M. Evaluation of ALKBH2 and ALKBH3 gene regulation in patients with adult T-cell leukemia/lymphoma. Virol J 2024; 21:316. [PMID: 39633427 PMCID: PMC11619432 DOI: 10.1186/s12985-024-02590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic virus that causes malignant adult T-cell leukemia/lymphoma (ATL). Patients infected with HTLV-1 are considered HTLV-1 carriers, and a small proportion of patients progress to life-threatening ATL after a long asymptomatic phase. No antiviral agent or preventive vaccine specific for HTLV-1 infection is established in current situation. For development of countermeasures to combat HTLV-1 infection and ATL, it is essential to expand our knowledge about their pathogenesis. Recently, AlkB homolog (ALKBH) family have been shown to participate in the oncogenesis of various cancer types. METHODS To investigate the potential role of ALKBH family members in the pathogenesis of ATL, we analyzed their gene expression dynamics in HTLV-1-infected T-cell lines and peripheral blood mononuclear cell-derived clinical specimens obtained from asymptomatic HTLV-1 carriers and patients with acute-type ATL. Epigenetic analysis was performed to dissect the mechanisms of ALKBH3 gene regulation using cultivated cells and a public dataset. RESULTS The mRNA expression levels of ALKBH2 and ALKBH3 were significantly or suggestively decreased in asymptomatic HTLV-1 carriers, but reverted in acute-type ATL patients, correlating with HTLV-1 basic leucine zipper factor gene expression. Intriguingly, the pre-mRNA expression of ALKBH2 and ALKBH3 was significantly suppressed in patients infected with HTLV-1, but not in healthy controls. Epigenetic analysis was performed to dissect the mechanisms of ALKBH3 gene regulation. In vitro analysis suggested a possible relationship between DNA methylation and ALKBH3 gene expression. Investigation of a public dataset revealed that specific CpG sites exhibited characteristically regulated methylation states in HTLV-1-infected T-cell subsets. CONCLUSION We discovered dynamically regulated patterns of ALKBH2 and ALKBH3 gene expression in patients infected with HTLV-1, and specific CpG sites epigenetically regulated by HTLV-1 infection. This study provides novel insights into HTLV-1 infection and contributes to the elucidation of ATL pathogenesis.
Collapse
Affiliation(s)
- Yuji Wada
- Department of Microbiology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Tadasuke Naito
- Department of Microbiology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Takuya Fukushima
- Laboratory of Hematoimmunology, Graduate School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Mineki Saito
- Department of Microbiology, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| |
Collapse
|
4
|
Dumitru CA, Walter N, Siebert CLR, Schäfer FTA, Rashidi A, Neyazi B, Stein KP, Mawrin C, Sandalcioglu IE. The Roles of AGTRAP, ALKBH3, DIVERSIN, NEDD8 and RRM1 in Glioblastoma Pathophysiology and Prognosis. Biomedicines 2024; 12:926. [PMID: 38672281 PMCID: PMC11048029 DOI: 10.3390/biomedicines12040926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
This study determined the expression of five novel biomarker candidates in IDH wild-type glioblastoma (GBM) tissues compared to non-malign brain parenchyma, as well as their prognostic relevance for the GBM patients' outcomes. The markers were analysed by immunohistochemistry in tumour tissues (n = 186) and healthy brain tissues (n = 54). The association with the patients' overall survival (OS) and progression-free survival (PFS) was assessed by Kaplan-Meier and log-rank test. The prognostic value of the markers was determined using multivariate Cox proportional hazard models. AGTRAP, DIVERSIN, cytoplasmic NEDD8 (NEDD8c) and RRM1 were significantly overexpressed in tumour tissues compared to the healthy brain, while the opposite was observed for ALKBH3. AGTRAP, ALKBH3, NEDD8c and RRM1 were significantly associated with OS in univariate analysis. AGTRAP and RRM1 were also independent prognostic factors for OS in multivariate analysis. For PFS, only AGTRAP and NEDD8c reached significance in univariate analysis. Additionally, AGTRAP was an independent prognostic factor for PFS in multivariate models. Finally, combined analysis of the markers enhanced their prognostic accuracy. The combination AGTRAP/ALKBH3 had the strongest prognostic value for the OS of GBM patients. These findings contribute to a better understanding of the GBM pathophysiology and may help identify novel therapeutic targets in this type of cancer.
Collapse
Affiliation(s)
| | - Nikolas Walter
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | | | | | - Ali Rashidi
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Belal Neyazi
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Klaus-Peter Stein
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | | |
Collapse
|
5
|
Li Q, Zhu Q. The role of demethylase AlkB homologs in cancer. Front Oncol 2023; 13:1153463. [PMID: 37007161 PMCID: PMC10060643 DOI: 10.3389/fonc.2023.1153463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The AlkB family (ALKBH1-8 and FTO), a member of the Fe (II)- and α-ketoglutarate-dependent dioxygenase superfamily, has shown the ability to catalyze the demethylation of a variety of substrates, including DNA, RNA, and histones. Methylation is one of the natural organisms’ most prevalent forms of epigenetic modifications. Methylation and demethylation processes on genetic material regulate gene transcription and expression. A wide variety of enzymes are involved in these processes. The methylation levels of DNA, RNA, and histones are highly conserved. Stable methylation levels at different stages can coordinate the regulation of gene expression, DNA repair, and DNA replication. Dynamic methylation changes are essential for the abilities of cell growth, differentiation, and division. In some malignancies, the methylation of DNA, RNA, and histones is frequently altered. To date, nine AlkB homologs as demethylases have been identified in numerous cancers’ biological processes. In this review, we summarize the latest advances in the research of the structures, enzymatic activities, and substrates of the AlkB homologs and the role of these nine homologs as demethylases in cancer genesis, progression, metastasis, and invasion. We provide some new directions for the AlkB homologs in cancer research. In addition, the AlkB family is expected to be a new target for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao Li
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingsan Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Qingsan Zhu,
| |
Collapse
|
6
|
Fahrer J, Christmann M. DNA Alkylation Damage by Nitrosamines and Relevant DNA Repair Pathways. Int J Mol Sci 2023; 24:ijms24054684. [PMID: 36902118 PMCID: PMC10003415 DOI: 10.3390/ijms24054684] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Nitrosamines occur widespread in food, drinking water, cosmetics, as well as tobacco smoke and can arise endogenously. More recently, nitrosamines have been detected as impurities in various drugs. This is of particular concern as nitrosamines are alkylating agents that are genotoxic and carcinogenic. We first summarize the current knowledge on the different sources and chemical nature of alkylating agents with a focus on relevant nitrosamines. Subsequently, we present the major DNA alkylation adducts induced by nitrosamines upon their metabolic activation by CYP450 monooxygenases. We then describe the DNA repair pathways engaged by the various DNA alkylation adducts, which include base excision repair, direct damage reversal by MGMT and ALKBH, as well as nucleotide excision repair. Their roles in the protection against the genotoxic and carcinogenic effects of nitrosamines are highlighted. Finally, we address DNA translesion synthesis as a DNA damage tolerance mechanism relevant to DNA alkylation adducts.
Collapse
Affiliation(s)
- Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany
- Correspondence: (J.F.); (M.C.); Tel.: +496312052974 (J.F.); Tel: +496131179066 (M.C.)
| | - Markus Christmann
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
- Correspondence: (J.F.); (M.C.); Tel.: +496312052974 (J.F.); Tel: +496131179066 (M.C.)
| |
Collapse
|
7
|
Zhawar VK, Kandpal RP, Athwal RS. Alternative Promoters of GRIK2 (GluR6) Gene in Human Carcinoma Cell Lines Are Regulated by Differential Methylation of CpG Dinucleotides. Genes (Basel) 2022; 13:genes13030490. [PMID: 35328043 PMCID: PMC8954616 DOI: 10.3390/genes13030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 02/04/2023] Open
Abstract
The ionotropic glutamate receptor 6 (GluR6 or GRIK2) gene is transcribed by two cell-type-specific promoters in neuronal and non-neuronal cells, which results in five different transcript variants. The purpose of this study was to explore cell-type-specific silencing of these promoters by epigenetic mechanisms. The neuronal and non-neuronal promoter sequences were cloned upstream of the luciferase gene in the pGL3 luciferase reporter vector. Promoter susceptibility to methylation was confirmed by 5-azacytidine and trichostatin treatment, and the status of CpG dinucleotides was determined by bisulfite sequencing of the promoter was determined by bisulfite sequences. GluR6A transcript variant was expressed in the brain, and GluR6B was most abundant in tumor cell lines. The neuronal promoter was methylated in non-neuronal cell lines. The treatment with 5-azacytidine and trichostatin upregulated transcription of the GluR6 gene, and methylation of the GluR6 promoter sequence in the luciferase reporter system led to downregulation of the luciferase gene transcription. Bisulfite sequencing revealed methylation of 3 and 41 CpG sites in non-neuronal and neuronal promoters, respectively. The differential activation/silencing of GluR6 promoters suggests that the transcript variants of GluR6 are involved in tissue-specific biological processes and their aberrant regulation in tumor cells may contribute to distinct properties of tumor cells.
Collapse
Affiliation(s)
- Vikramjit K. Zhawar
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19067, USA;
| | - Raj P. Kandpal
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
- Correspondence: (R.P.K.); (R.S.A.)
| | - Raghbir S. Athwal
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19067, USA;
- Correspondence: (R.P.K.); (R.S.A.)
| |
Collapse
|
8
|
Cheng W, Ma J, Tao Q, Adeel K, Xiang L, Liu D, Zhang Z, Li J. Demethylation of m1A assisted degradation of the signal probe for rapid electrochemical detection of ALKBH3 activity with practical applications. Talanta 2021; 240:123151. [PMID: 34942472 DOI: 10.1016/j.talanta.2021.123151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
ALKBH3 is an important marker for early diagnosis and histopathological grading of prostate cancer. However, the lack of a rapid and sensitive method to quantify the enzyme's activity in the current time necessitates the development of a new quantitative assay. Herein, we first tried to quantitative assay for ALKBH3 activity using an electrochemical method based on the degradation of the signal probe due to alkyl group of the m1A removal by ALKBH3. A strong electrochemical signal can be obtained when the ferrocene (Fc) labeled dsDNAs with 1-methyladenine are immobilized on the electrode. In the presence of ALKBH3, the 3' blunt of DNA can be formed because of the removal of alkyl group of the Fc-DNA probe, which can be recognized and degraded by Exonuclease III (Exo III). As a result, the electrochemical signal produced by Fc greatly decreases, and the activity of ALKBH3 can be easily detected via changes in electrochemical signal. Quantitative analysis of ALKBH3 activity showed a wide detection range (0.1 and 20 ng/mL) and low detection limit (0.04 ng/mL). Furthermore, the method can be applied to detect 1-methyladenine through ALKBH3 in cell lysates and tissue samples, providing a new method for clinical detection of prostate cancer.
Collapse
Affiliation(s)
- Wenting Cheng
- Department of Clinical Laboratory, Nanjing Gaochun People's Hospital, Nanjing, 211300, PR China
| | - Jiehua Ma
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, PR China
| | - Qinfang Tao
- Department of Clinical Laboratory, Nanjing Gaochun People's Hospital, Nanjing, 211300, PR China
| | - Khan Adeel
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210000, PR China
| | - Liangliang Xiang
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, PR China
| | - Duxian Liu
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, PR China
| | - Zhaoli Zhang
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, PR China
| | - Jinlong Li
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, PR China.
| |
Collapse
|
9
|
Bonilla B, Brown AJ, Hengel SR, Rapchak KS, Mitchell D, Pressimone CA, Fagunloye AA, Luong TT, Russell RA, Vyas RK, Mertz TM, Zaher HS, Mosammaparast N, Malc EP, Mieczkowski PA, Roberts SA, Bernstein KA. The Shu complex prevents mutagenesis and cytotoxicity of single-strand specific alkylation lesions. eLife 2021; 10:e68080. [PMID: 34723799 PMCID: PMC8610418 DOI: 10.7554/elife.68080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/29/2021] [Indexed: 12/31/2022] Open
Abstract
Three-methyl cytosine (3meC) are toxic DNA lesions, blocking base pairing. Bacteria and humans express members of the AlkB enzymes family, which directly remove 3meC. However, other organisms, including budding yeast, lack this class of enzymes. It remains an unanswered evolutionary question as to how yeast repairs 3meC, particularly in single-stranded DNA. The yeast Shu complex, a conserved homologous recombination factor, aids in preventing replication-associated mutagenesis from DNA base damaging agents such as methyl methanesulfonate (MMS). We found that MMS-treated Shu complex-deficient cells exhibit a genome-wide increase in A:T and G:C substitutions mutations. The G:C substitutions displayed transcriptional and replicational asymmetries consistent with mutations resulting from 3meC. Ectopic expression of a human AlkB homolog in Shu-deficient yeast rescues MMS-induced growth defects and increased mutagenesis. Thus, our work identifies a novel homologous recombination-based mechanism mediated by the Shu complex for coping with alkylation adducts.
Collapse
Affiliation(s)
- Braulio Bonilla
- Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Alexander J Brown
- Molecular Biosciences and Center for Reproductive Biology, Washington State UniversityPullmanUnited States
| | - Sarah R Hengel
- Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Kyle S Rapchak
- Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Debra Mitchell
- Molecular Biosciences and Center for Reproductive Biology, Washington State UniversityPullmanUnited States
| | - Catherine A Pressimone
- Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Adeola A Fagunloye
- Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Thong T Luong
- Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Reagan A Russell
- University of Pittsburgh School of MedicinePittsburghUnited States
| | - Rudri K Vyas
- Molecular Biosciences and Center for Reproductive Biology, Washington State UniversityPullmanUnited States
| | - Tony M Mertz
- Molecular Biosciences and Center for Reproductive Biology, Washington State UniversityPullmanUnited States
| | - Hani S Zaher
- Biology, Washington University in St LouisSt. LouisUnited States
| | | | - Ewa P Malc
- Genetics, University of North Carolina Chapel HillChapel HillUnited States
| | | | - Steven A Roberts
- Molecular Biosciences and Center for Reproductive Biology, Washington State UniversityPullmanUnited States
| | - Kara A Bernstein
- Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| |
Collapse
|
10
|
Epigenetic loss of m1A RNA demethylase ALKBH3 in Hodgkin lymphoma targets collagen, conferring poor clinical outcome. Blood 2021; 137:994-999. [PMID: 32915956 DOI: 10.1182/blood.2020005823] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022] Open
|
11
|
Ren Y, Liu Y, Wang H. Identification of epigenetic regulators in the estrogen signaling pathway via siRNA screening. Mol Omics 2021; 17:596-606. [PMID: 34128034 DOI: 10.1039/d1mo00040c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Breast cancer is the most prevalent malignant disease among women across the globe. Notably, estrogen signaling plays a vital role in the progression of estrogen receptor-positive breast cancer. Therefore, targeting epigenetic regulators is a promising therapy for cancer. To identify epigenetic regulators, we conducted a siRNA screening targeting 140 epigenetic genes by which 32 positive and 15 negative regulators of estrogen signaling were obtained. The protein-protein interaction network of the candidate genes was constructed and the topological parameters of the network were calculated. As a result, the top 10 genes with higher MCC (Maximal Clique Centrality) scores were considered as hub genes. Notably, the hub genes all belong to polycomb group genes. The transcription levels of the above genes were compared between breast cancer and normal tissues using the UALCAN database. Then, the survival analysis of the hub genes was conducted using the Kaplan-Meier Plotter online database. Lastly, the effect of hub genes on MCF-7 cell proliferation and ER target gene expression were investigated. These results indicate that PcG genes regulate estrogen signaling and breast cancer development.
Collapse
Affiliation(s)
- Yun Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | |
Collapse
|
12
|
Integrative analysis of DNA methylation and gene expression profiles identified potential breast cancer-specific diagnostic markers. Biosci Rep 2021; 40:224161. [PMID: 32412047 PMCID: PMC7263199 DOI: 10.1042/bsr20201053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is a common malignant tumor among women whose prognosis is largely determined by the period and accuracy of diagnosis. We here propose to identify a robust DNA methylation-based breast cancer-specific diagnostic signature. Genome-wide DNA methylation and gene expression profiles of breast cancer patients along with their adjacent normal tissues from the Cancer Genome Atlas (TCGA) were obtained as the training set. CpGs that with significantly elevated methylation level in breast cancer than not only their adjacent normal tissues and the other ten common cancers from TCGA but also the healthy breast tissues from the Gene Expression Omnibus (GEO) were finally remained for logistic regression analysis. Another independent breast cancer DNA methylation dataset from GEO was used as the testing set. Lots of CpGs were hyper-methylated in breast cancer samples compared with adjacent normal tissues, which tend to be negatively correlated with gene expressions. Eight CpGs located at RIIAD1, ENPP2, ESPN, and ETS1, were finally retained. The diagnostic model was reliable in separating BRCA from normal samples. Besides, chromatin accessibility status of RIIAD1, ENPP2, ESPN and ETS1 showed great differences between MCF-7 and MDA-MB-231 cell lines. In conclusion, the present study should be helpful for breast cancer early and accurate diagnosis.
Collapse
|
13
|
Peng Y, Pei H. DNA alkylation lesion repair: outcomes and implications in cancer chemotherapy. J Zhejiang Univ Sci B 2021; 22:47-62. [PMID: 33448187 DOI: 10.1631/jzus.b2000344] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alkylated DNA lesions, induced by both exogenous chemical agents and endogenous metabolites, represent a major form of DNA damage in cells. The repair of alkylation damage is critical in all cells because such damage is cytotoxic and potentially mutagenic. Alkylation chemotherapy is a major therapeutic modality for many tumors, underscoring the importance of the repair pathways in cancer cells. Several different pathways exist for alkylation repair, including base excision and nucleotide excision repair, direct reversal by methyl-guanine methyltransferase (MGMT), and dealkylation by the AlkB homolog (ALKBH) protein family. However, maintaining a proper balance between these pathways is crucial for the favorable response of an organism to alkylating agents. Here, we summarize the progress in the field of DNA alkylation lesion repair and describe the implications for cancer chemotherapy.
Collapse
Affiliation(s)
- Yihan Peng
- Department of Biochemistry and Molecular Medicine, the George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.,GW Cancer Center, the George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Huadong Pei
- Department of Biochemistry and Molecular Medicine, the George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA. .,GW Cancer Center, the George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA.
| |
Collapse
|
14
|
Xu B, Liu D, Wang Z, Tian R, Zuo Y. Multi-substrate selectivity based on key loops and non-homologous domains: new insight into ALKBH family. Cell Mol Life Sci 2021; 78:129-141. [PMID: 32642789 PMCID: PMC11072825 DOI: 10.1007/s00018-020-03594-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022]
Abstract
AlkB homologs (ALKBH) are a family of specific demethylases that depend on Fe2+ and α-ketoglutarate to catalyze demethylation on different substrates, including ssDNA, dsDNA, mRNA, tRNA, and proteins. Previous studies have made great progress in determining the sequence, structure, and molecular mechanism of the ALKBH family. Here, we first review the multi-substrate selectivity of the ALKBH demethylase family from the perspective of sequence and structural evolution. The construction of the phylogenetic tree and the comparison of key loops and non-homologous domains indicate that the paralogs with close evolutionary relationship have similar domain compositions. The structures show that the lack and variations of four key loops change the shape of clefts to cause the differences in substrate affinity, and non-homologous domains may be related to the compatibility of multiple substrates. We anticipate that the new insights into selectivity determinants of the ALKBH family are useful for understanding the demethylation mechanisms.
Collapse
Affiliation(s)
- Baofang Xu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Dongyang Liu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zerong Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ruixia Tian
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yongchun Zuo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
15
|
Oxidative demethylase ALKBH5 repairs DNA alkylation damage and protects against alkylation-induced toxicity. Biochem Biophys Res Commun 2020; 534:114-120. [PMID: 33321288 DOI: 10.1016/j.bbrc.2020.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 11/22/2022]
Abstract
DNA integrity is challenged by both exogenous and endogenous alkylating agents. DNA repair proteins such as Escherichia coli AlkB family of enzymes can repair 1-methyladenine and 3-methylcytosine adducts by oxidative demethylation. Human AlkB homologue 5 (ALKBH5) is RNA N6-methyladenine demethylase and not known to be involved in DNA repair. Herein we show that ALKBH5 also has weak DNA repair activity and it can demethylate DNA 3-methylcytosine. The mutation of the amino acid residues involved in demethylation also abolishes the DNA repair activity of ALKBH5. Overexpression of ALKBH5 decreases the 3-methylcytosine level in genomic DNA and reduces the cytotoxic effects of the DNA damaging alkylating agent methyl methanesulfonate. Thus, demethylation by ALKBH5 might play a supporting role in maintaining genome integrity.
Collapse
|
16
|
Xiao MZ, Liu JM, Xian CL, Chen KY, Liu ZQ, Cheng YY. Therapeutic potential of ALKB homologs for cardiovascular disease. Biomed Pharmacother 2020; 131:110645. [PMID: 32942149 DOI: 10.1016/j.biopha.2020.110645] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading causes of human death. Recently, ALKB homologs, including ALKBH1-8 and FTO, have been found to have a variety of biological functions, such as histone demethylation, RNA demethylation, and DNA demethylation. These functions may regulate the physiological and pathological processes of CVDs, including inflammation, oxidative stress, cell apoptosis, and mitochondrial, endothelial, and fat metabolism dysfunction. In the present review, we summarize the biological functions of ALKB homologs and the relationship between the ALKB homologs and CVDs. Importantly, we discuss the roles of ALKB homologs in the regulation of oxidative stress, inflammation, autophagy, and DNA damage in CVDs, as well as the practical applications of ALKB homologs inhibitors or agonists in treating CVDs. In conclusion, the ALKBH family might be a promising target for CVDs therapy.
Collapse
Affiliation(s)
- Ming-Zhu Xiao
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia-Ming Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Cui-Ling Xian
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Keng-Yu Chen
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; The Second Affiliated Hospital of Guangdong Pharmaceutical University, Yunfu, 527300, China
| | - Zhong-Qiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Yuan-Yuan Cheng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
17
|
Shen C, Yan T, Tong T, Shi D, Ren L, Zhang Y, Zhang X, Cao Y, Yan Y, Ma Y, Zhu X, Tian X, Fang JY, Chen H, Ji L, Hong J, Xuan B. ALKBH4 Functions as a Suppressor of Colorectal Cancer Metastasis via Competitively Binding to WDR5. Front Cell Dev Biol 2020; 8:293. [PMID: 32478065 PMCID: PMC7240015 DOI: 10.3389/fcell.2020.00293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/06/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Epithelial-Mesenchymal Transition (EMT) is a major process in the initiation of tumor metastasis, where cancer cells lose sessile epithelial potential and gain mesenchymal phenotype. Large-scale cell identity shifts are often orchestrated on an epigenetic level and the interplay between epigenetic factors and EMT progression was still largely unknown. In this study, we tried to identify candidate epigenetic factors that involved in EMT progression. METHODS Colorectal cancer (CRC) cells were transfected with an arrayed shRNA library targeting 384 genes involved in epigenetic modification. Candidate genes were identified by real-time PCR. Western blot, RNA-seq and gene set enrichment analysis were conducted to confirm the suppressive role of ALKBH4 in EMT. The clinical relevance of ALKBH4 in CRC was investigated in two independent Renji Cohorts and a microarray dataset (GSE21510) from GEO database. In vitro transwell assay and in vivo metastatic tumor model were performed to explore the biological function of ALKBH4 in the metastasis of CRC. Co-IP (Co-Immunoprecipitation) and ChIP (Chromatin Immunoprecipitation) assays were employed to uncover the mechanism. RESULTS We screened for candidate epigenetic factors that affected EMT process and identified ALKBH4 as a candidate EMT suppressor gene, which was significantly downregulated in CRC patients. Decreased level of ALKBH4 was associated with metastasis and predicted poor prognosis of CRC patients. Follow-up functional experiments illustrated overexpression of ALKBH4 inhibited the invasion ability of CRC cells in vitro, as well as their metastatic capability in vivo. Mechanistically, CO-IP and ChIP assays indicated that ALKBH4 competitively bound WDR5 (a key component of histone methyltransferase complex) and decreased H3K4me3 histone modification on the target genes including MIR21. CONCLUSIONS This study illustrated that ALKBH4 may function as a novel metastasis suppressor of CRC, and inhibits H3K4me3 modification through binding WDR5 during EMT.
Collapse
Affiliation(s)
- Chaoqin Shen
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Yan
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianying Tong
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Debin Shi
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Linlin Ren
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Youwei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, China
| | - Xinyu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Cao
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Yan
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanru Ma
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqiang Zhu
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xianglong Tian
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyan Chen
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linhua Ji
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Hong
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baoqin Xuan
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Mohan M, Akula D, Dhillon A, Goyal A, Anindya R. Human RAD51 paralogue RAD51C fosters repair of alkylated DNA by interacting with the ALKBH3 demethylase. Nucleic Acids Res 2019; 47:11729-11745. [PMID: 31642493 PMCID: PMC7145530 DOI: 10.1093/nar/gkz938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
The integrity of our DNA is challenged daily by a variety of chemicals that cause DNA base alkylation. DNA alkylation repair is an essential cellular defence mechanism to prevent the cytotoxicity or mutagenesis from DNA alkylating chemicals. Human oxidative demethylase ALKBH3 is a central component of alkylation repair, especially from single-stranded DNA. However, the molecular mechanism of ALKBH3-mediated damage recognition and repair is less understood. We report that ALKBH3 has a direct protein-protein interaction with human RAD51 paralogue RAD51C. We also provide evidence that RAD51C-ALKBH3 interaction stimulates ALKBH3-mediated repair of methyl-adduct located within 3'-tailed DNA, which serves as a substrate for the RAD51 recombinase. We further show that the lack of RAD51C-ALKBH3 interaction affects ALKBH3 function in vitro and in vivo. Our data provide a molecular mechanism underlying upstream events of alkyl adduct recognition and repair by ALKBH3.
Collapse
Affiliation(s)
- Monisha Mohan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Deepa Akula
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Arun Dhillon
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| |
Collapse
|
19
|
Stefansson OA, Hilmarsdottir H, Olafsdottir K, Tryggvadottir L, Sverrisdottir A, Johannsson OT, Jonasson JG, Eyfjord JE, Sigurdsson S. BRCA1 Promoter Methylation Status in 1031 Primary Breast Cancers Predicts Favorable Outcomes Following Chemotherapy. JNCI Cancer Spectr 2019; 4:pkz100. [PMID: 32175521 PMCID: PMC7061679 DOI: 10.1093/jncics/pkz100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/28/2019] [Accepted: 12/07/2019] [Indexed: 11/28/2022] Open
Abstract
Background Breast Cancer 1 gene (BRCA1) is known to be inactivated in breast tumors by promoter methylation. Tumor cells in patients carrying a germline mutation in BRCA1 are sensitive to cytotoxic drugs that cause DNA double strand breaks. However, very little is known on whether patients with BRCA1 promoter methylated tumors are similarly sensitive to cytotoxic drugs. In this study, we address this by making use of extensive follow-up data on patients treated with cyclophosphamide, methotrexate, and fluorouracil in Iceland between 1976 and 2007. Methods We analyzed BRCA1 promoter methylation by pyrosequencing DNA from tumor samples from 1031 patients with primary breast cancer. Of those, 965 were sporadic cases, 61 were BRCA2, and five were BRCA1 germline mutation carriers. All cases were examined with respect to clinicopathological parameters and breast cancer–specific survival in patients treated with cytotoxic drugs. Information on chemotherapy treatment in noncarriers was available for 26 BRCA1 methylated tumors and 857 unmethylated tumors. Results BRCA1 was promoter methylated in 29 sporadic tumors or in 3.0% of cases (29 of 965), whereas none of the tumors derived from BRCA germline mutation carriers were promoter methylated. Important to note, patients with BRCA1 promoter methylation receiving chemotherapeutic drug treatment show highly improved breast cancer–specific survival compared with unmethylated controls (hazard ratio = 0.10, 95% confidence interval = 0.01 to 0.75, two-sided P = .02). Conclusions BRCA1 promoter methylation is predictive of improved disease outcome in patients receiving cyclophosphamide, methotrexate, and fluorouracil drug treatment. Our results support the use of markers indicative of “BRCAness” in sporadic breast cancers to identify patients that are likely to benefit from the use of DNA-damaging agents.
Collapse
Affiliation(s)
- Olafur A Stefansson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Cancer Research Laboratory, Biomedical Center, University of Iceland, Reykjavik, Iceland.,Current affiliation deCODE genetics/Amgen Inc., Sturlugata 8, Reykjavik, Iceland
| | | | | | - Laufey Tryggvadottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Icelandic Cancer Registry, Icelandic Cancer Society, Reykjavik, Iceland
| | | | - Oskar T Johannsson
- Department of Oncology, Landspitali University Hospital, Reykjavik, Iceland
| | - Jon G Jonasson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Jorunn E Eyfjord
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Cancer Research Laboratory, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Stefan Sigurdsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Cancer Research Laboratory, Biomedical Center, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
20
|
Jin W, Li QZ, Zuo YC, Cao YN, Zhang LQ, Hou R, Su WX. Relationship Between DNA Methylation in Key Region and the Differential Expressions of Genes in Human Breast Tumor Tissue. DNA Cell Biol 2018; 38:49-62. [PMID: 30346835 DOI: 10.1089/dna.2018.4276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Breast cancer has a high mortality rate for females. Aberrant DNA methylation plays a crucial role in the occurrence and progression of breast carcinoma. By comparing DNA methylation differences between tumor breast tissue and normal breast tissue, we calculate and analyze the distributions of the hyper- and hypomethylation sites in different function regions. Results indicate that enhancer regions are often hypomethylated in breast cancer. CpG islands (CGIs) are mainly hypermethylated, while the flanking CGI (shores and shelves) is more easily hypomethylated. The hypomethylation in gene body region is related to the upregulation of gene expression, and the hypomethylation of enhancer regions is closely associated with gene expression upregulation in breast cancer. Some key hypomethylation sites in enhancer regions and key hypermethylation sites in CGIs for regulating key genes are, respectively, found, such as oncogenes ESR1 and ERBB2 and tumor suppressor genes FBLN2, CEBPA, and FAT4. This suggests that the recognizing methylation status of these genes will be useful for the diagnosis of breast cancer.
Collapse
Affiliation(s)
- Wen Jin
- 1 Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University , Hohhot, China
| | - Qian-Zhong Li
- 1 Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University , Hohhot, China .,2 The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University , Hohhot, China
| | - Yong-Chun Zuo
- 2 The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University , Hohhot, China
| | - Yan-Ni Cao
- 1 Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University , Hohhot, China
| | - Lu-Qiang Zhang
- 1 Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University , Hohhot, China
| | - Rui Hou
- 1 Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University , Hohhot, China
| | - Wen-Xia Su
- 3 College of Science, Inner Mongolia Agricultural University , Hohhot, China
| |
Collapse
|
21
|
Nigam R, Babu KR, Ghosh T, Kumari B, Akula D, Rath SN, Das P, Anindya R, Khan FA. Indenone derivatives as inhibitor of human DNA dealkylation repair enzyme AlkBH3. Bioorg Med Chem 2018; 26:4100-4112. [PMID: 30041948 DOI: 10.1016/j.bmc.2018.06.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 11/16/2022]
Abstract
The mammalian AlkB homologue-3 (AlkBH3) is a member of the dioxygenase family of enzymes that in humans is involved in DNA dealkylation repair. Because of its role in promoting tumor cell proliferation and metastasis of cancer, extensive efforts are being directed in developing selective inhibitors for AlkBH3. Here we report synthesis, screening and evaluation of panel of arylated indenone derivatives as new class of inhibitors of AlkBH3 DNA repair activity. An efficient synthesis of 2,3-diaryl indenones from 2,3-dibromo indenones was achieved via Suzuki-Miyaura cross-coupling. Using a robust quantitative assay, we have obtained an AlkBH3 inhibitor that display specific binding and competitive mode of inhibition against DNA substrate. Finally, we established that this compound could prevent the proliferation of lung cancer cell line and enhance sensitivity to DNA damaging alkylating agent.
Collapse
Affiliation(s)
- Richa Nigam
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Kaki Raveendra Babu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Topi Ghosh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Bhavini Kumari
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, Patna 801106, India
| | - Deepa Akula
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Subha Narayan Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, Patna 801106, India
| | - Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India.
| | - Faiz Ahmed Khan
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India.
| |
Collapse
|
22
|
Speidel SE, Buckley BA, Boldt RJ, Enns RM, Lee J, Spangler ML, Thomas MG. Genome-wide association study of Stayability and Heifer Pregnancy in Red Angus cattle. J Anim Sci 2018; 96:846-853. [PMID: 29471369 PMCID: PMC6093520 DOI: 10.1093/jas/sky041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/15/2018] [Indexed: 11/12/2022] Open
Abstract
Reproductive performance is the most important component of cattle production from the standpoint of economic sustainability of commercial beef enterprises. Heifer Pregnancy (HPG) and Stayability (STAY) genetic predictions are 2 selection tools published by the Red Angus Association of America (RAAA) to assist with improvements in reproductive performance. Given the importance of HPG and STAY to the profitability of commercial beef enterprises, the objective of this study was to identify QTL associated with both HPG and STAY in Red Angus cattle. A genome-wide association study (GWAS) was performed using deregressed HPG and STAY EBV, calculated using a single-trait animal model and a 3-generation pedigree with data from the Spring 2015 RAAA National Cattle Evaluation. Each individual animal possessed 74,659 SNP genotypes. Individual animals with a deregressed EBV reliability > 0.05 were merged with the genotype file and marker quality control was performed. Criteria for sifting genotypes consisted of removing those markers where any of the following were found: average call rate less than 0.85, minor allele frequency < 0.01, lack of Hardy-Weinberg equilibrium (P < 0.0001), or extreme linkage disequilibrium (r2 > 0.99). These criteria resulted in 2,664 animals with 62,807 SNP available for GWAS. Association studies were performed using a Bayes Cπ model in the BOLT software package. Marker significance was calculated as the posterior probability of inclusion (PPI), or the number of instances a specific marker was sampled divided by the total number of samples retained from the Markov chain Monte Carlo chains. Nine markers, with a PPI ≥ 3% were identified as QTL associated with HPG on BTA 1, 11, 13, 23, and 29. Twelve markers, with a PPI ≥ 75% were identified as QTL associated with STAY on BTA 6, 8, 9, 12, 15, 18, 22, and 23.
Collapse
Affiliation(s)
- S E Speidel
- Department of Animal Sciences, Colorado State University, Fort Collins, CO
| | - B A Buckley
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI
| | - R J Boldt
- Department of Animal Sciences, Colorado State University, Fort Collins, CO
| | - R M Enns
- Department of Animal Sciences, Colorado State University, Fort Collins, CO
| | - J Lee
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - M L Spangler
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - M G Thomas
- Department of Animal Sciences, Colorado State University, Fort Collins, CO
| |
Collapse
|
23
|
Gutierrez R, Department of Cancer Biology, Beckman Research Institute/City of Hope, Duarte, CA 91010 USA, Thompson Y, R. O’Connor T. DNA direct repair pathways in cancer. AIMS MEDICAL SCIENCE 2018. [DOI: 10.3934/medsci.2018.3.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
Christmann M, Kaina B. Epigenetic regulation of DNA repair genes and implications for tumor therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 780:15-28. [PMID: 31395346 DOI: 10.1016/j.mrrev.2017.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/31/2022]
Abstract
DNA repair represents the first barrier against genotoxic stress causing metabolic changes, inflammation and cancer. Besides its role in preventing cancer, DNA repair needs also to be considered during cancer treatment with radiation and DNA damaging drugs as it impacts therapy outcome. The DNA repair capacity is mainly governed by the expression level of repair genes. Alterations in the expression of repair genes can occur due to mutations in their coding or promoter region, changes in the expression of transcription factors activating or repressing these genes, and/or epigenetic factors changing histone modifications and CpG promoter methylation or demethylation levels. In this review we provide an overview on the epigenetic regulation of DNA repair genes. We summarize the mechanisms underlying CpG methylation and demethylation, with de novo methyltransferases and DNA repair involved in gain and loss of CpG methylation, respectively. We discuss the role of components of the DNA damage response, p53, PARP-1 and GADD45a on the regulation of the DNA (cytosine-5)-methyltransferase DNMT1, the key enzyme responsible for gene silencing. We stress the relevance of epigenetic silencing of DNA repair genes for tumor formation and tumor therapy. A paradigmatic example is provided by the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT), which is silenced in up to 40% of various cancers through CpG promoter methylation. The CpG methylation status of the MGMT promoter strongly correlates with clinical outcome and, therefore, is used as prognostic marker during glioblastoma therapy. Mismatch repair genes are also subject of epigenetic silencing, which was shown to correlate with colorectal cancer formation. For many other repair genes shown to be epigenetically regulated the clinical outcome is not yet clear. We also address the question of whether genotoxic stress itself can lead to epigenetic alterations of genes encoding proteins involved in the defense against genotoxic stress.
Collapse
Affiliation(s)
- Markus Christmann
- Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Bernd Kaina
- Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|