1
|
Haffez H, Sanad HH, Ebrahim H, Hassan ZA. Synergistic effects of abietic acid combined with doxorubicin on apoptosis induction in a human colorectal cancer cell line. Sci Rep 2025; 15:16102. [PMID: 40341222 PMCID: PMC12062260 DOI: 10.1038/s41598-025-99616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/21/2025] [Indexed: 05/10/2025] Open
Abstract
Cancer is a significant global disease with high mortality and limited therapeutic options. Chemotherapy is a cancer treatment option; however, there are still issues, including severe side effects, inadequate response, and drug resistance. Abietic acid is a natural diterpene with diverse pharmacological properties and can be used for cancer treatment. Therefore, this study aimed to assess the anticancer efficacy of abietic acid in combination with doxorubicin, a highly clinically used chemotherapeutic agent. Biochemical investigations include initial viability assays, combination therapy using isobologram analysis, apoptosis and cell cycle assays, gene expression assay, ELISA analysis of protein expression, DNA fragmentation, and wound healing assays. The data showed that doxorubicin-abietic acid (DOX-AB) is an effective and safe anticancer combination for Caco-2 cells. DOX-AB had a high safety index with minimal cytotoxicity at the combination dose on normal WI-38 fibroblasts cells. DOX-AB significantly decreased the proliferation and viability of Caco-2 cells, with an increase in the apoptosis rate in the late stage and necrosis with cell cycle arrest at the G2/M phase. Significant changes in the expression of modulators related to apoptosis, inflammation, and epigenetics were observed in gene and protein levels. DOX-AB combination had more efficient anticancer activity than doxorubicin alone. This study suggested that the use of abietic acid in combination with doxorubicin is a promising treatment for colorectal cancer because it enhances doxorubicin activity at relatively low doses with minimal cytotoxicity and overcomes multidrug resistance in tumors; these findings merit further investigation.
Collapse
Affiliation(s)
- Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
- Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, Cairo, 11795, Egypt.
| | - Hend H Sanad
- Health Affairs Directorate, Mansoura Health Administration, Mansura city, , El Dakahlia, Egypt
| | - Hassan Ebrahim
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt
| | - Zeineb A Hassan
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
2
|
Ramchatesingh B, Martinez Villarreal A, Lefrançois P, Gantchev J, Sivachandran S, Abou Setah S, Litvinov IV. Targeting PRAME directly or via EZH2 inhibition overcomes retinoid resistance and represents a novel therapy for keratinocyte carcinoma. Mol Oncol 2025. [PMID: 40101298 DOI: 10.1002/1878-0261.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/11/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025] Open
Abstract
Retinoids have demonstrated efficacy as preventative/treatment agents for keratinocyte carcinomas (KCs): basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (SCC). However, retinoid resistance mechanisms limit the efficacy of these compounds. A subset of KCs expresses Preferentially Expressed Antigen in Melanoma (PRAME): a retinoid signaling corepressor. PRAME is proposed to repress retinoid signaling by guiding enhancer of zeste homolog 2 (EZH2) to retinoic acid response elements (RARE) in promoters. We investigated the effects of PRAME on KC pathogenesis and retinoid response. High-PRAME expression in tumors was negatively correlated with epidermal differentiation gene signatures. PRAME overexpression downregulated epidermal differentiation gene signatures and impaired differentiation in 3D culture. PRAME overexpression attenuated retinoid-induced RARE activation, growth suppression, and differentiation responses. Conversely, low-PRAME tumors and PRAME-depleted KC cells demonstrated enriched epidermal differentiation gene signatures. PRAME downregulation restored retinoid-induced RARE activation, growth suppression, keratinization in SCC, and cell death signaling in BCC. Furthermore, combined retinoid and EZH2 inhibitor treatment augmented RARE activation and suppressed PRAME-expressing KC cell growth. Hence, PRAME confers retinoid resistance in KC, which may be overcome by EZH2 inhibition.
Collapse
Affiliation(s)
- Brandon Ramchatesingh
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Amelia Martinez Villarreal
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Philippe Lefrançois
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- Division of Dermatology, McGill University Health Center, Montreal, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University Montreal, Canada
| | - Jennifer Gantchev
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Sriraam Sivachandran
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Samy Abou Setah
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Ivan V Litvinov
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- Division of Dermatology, McGill University Health Center, Montreal, Canada
| |
Collapse
|
3
|
Murra N, Pommert NS, Schmidt B, Issa RS, Kaehler M, Bruckmueller H, Tim V, Cascorbi I, Waetzig V. Regulation and Function of CCL2 and N-Myc in Retinoic Acid-treated Neuroblastoma Cells. Cancer Genomics Proteomics 2025; 22:90-102. [PMID: 39730182 PMCID: PMC11696317 DOI: 10.21873/cgp.20490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND/AIM Treatment with retinoic acid (RA) often promotes neuroblastoma differentiation and growth inhibition, including the suppression of the expression of the MYCN oncogene. However, RA also targets protumoral chemokines, such as CCL2, which may contribute to the development of resistance. The present study aimed to investigate the regulation and function of CCL2 and N-Myc in RA-treated neuroblastoma cells. MATERIALS AND METHODS In Kelly or SH-SY5Y cells, viability was quantified by cell fitness assays. Expression was analyzed using quantitative PCR and the regulation of proteins using enzyme-linked immunoabsorbent assays (ELISA) or western blots. RESULTS In MYCN-amplified Kelly cells, endogenous CCL2 levels were significantly lower compared to MYCN non-amplified SH-SY5Y cells. Treatment with 5 μM RA increased CCL2 release in both cell lines, but reduced N-Myc levels and cell numbers in Kelly cells. Over-expression of MYCN enhanced viability in SH-SY5Y cells, but did not affect RA-induced CCL2 release, while supplementation of CCL2 in Kelly cells did not prevent RA-mediated growth reduction. Impaired N-Myc or CCL2 signaling reduced the survival of all RA-treated cells and inhibition of N-Myc also decreased CCL2 levels. However, attenuated survival signaling was not generally associated with reduced levels of N-Myc or CCL2. Co-application of RA and the growth factor receptor inhibitors cediranib or crizotinib decreased N-Myc levels only in Kelly cells, while CCL2 release was dependent on the cell type and stimulus. CONCLUSION CCL2 and N-Myc promote the viability of RA-treated cells, although the levels of these mediators were not consistently correlated with cellular outcomes, especially during apoptotic signaling.
Collapse
Affiliation(s)
- Nanke Murra
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Nina Sophie Pommert
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Berit Schmidt
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Reema Sami Issa
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Vera Tim
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Vicki Waetzig
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
4
|
Sainero-Alcolado L, Sjöberg Bexelius T, Santopolo G, Yuan Y, Liaño-Pons J, Arsenian-Henriksson M. Defining neuroblastoma: From origin to precision medicine. Neuro Oncol 2024; 26:2174-2192. [PMID: 39101440 PMCID: PMC11630532 DOI: 10.1093/neuonc/noae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 08/06/2024] Open
Abstract
Neuroblastoma (NB), a heterogenous pediatric tumor of the sympathetic nervous system, is the most common and deadly extracranial solid malignancy diagnosed in infants. Numerous efforts have been invested in understanding its origin and in development of novel curative targeted therapies. Here, we summarize the recent advances in the identification of the cell of origin and the genetic alterations occurring during development that contribute to NB. We discuss current treatment regimens, present and future directions for the identification of novel therapeutic metabolic targets, differentiation agents, as well as personalized combinatory therapies as potential approaches for improving the survival and quality of life of children with NB.
Collapse
Affiliation(s)
- Lourdes Sainero-Alcolado
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, Stockholm SE-17165, Sweden
| | - Tomas Sjöberg Bexelius
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm SE-17177, Sweden
- Paediatric Oncology Unit, Astrid Lindgren’s Children Hospital, Solna SE-17164, Sweden
| | - Giuseppe Santopolo
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, Stockholm SE-17165, Sweden
| | - Ye Yuan
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, Stockholm SE-17165, Sweden
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, Stockholm SE-17165, Sweden
| | - Marie Arsenian-Henriksson
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund SE-22381, Sweden
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, Stockholm SE-17165, Sweden
| |
Collapse
|
5
|
Jin W, Zhang Y, Zhao Z, Gao M. Developing targeted therapies for neuroblastoma by dissecting the effects of metabolic reprogramming on tumor microenvironments and progression. Theranostics 2024; 14:3439-3469. [PMID: 38948053 PMCID: PMC11209723 DOI: 10.7150/thno.93962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/18/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Synergic reprogramming of metabolic dominates neuroblastoma (NB) progression. It is of great clinical implications to develop an individualized risk prognostication approach with stratification-guided therapeutic options for NB based on elucidating molecular mechanisms of metabolic reprogramming. Methods: With a machine learning-based multi-step program, the synergic mechanisms of metabolic reprogramming-driven malignant progression of NB were elucidated at single-cell and metabolite flux dimensions. Subsequently, a promising metabolic reprogramming-associated prognostic signature (MPS) and individualized therapeutic approaches based on MPS-stratification were developed and further validated independently using pre-clinical models. Results: MPS-identified MPS-I NB showed significantly higher activity of metabolic reprogramming than MPS-II counterparts. MPS demonstrated improved accuracy compared to current clinical characteristics [AUC: 0.915 vs. 0.657 (MYCN), 0.713 (INSS-stage), and 0.808 (INRG-stratification)] in predicting prognosis. AZD7762 and etoposide were identified as potent therapeutics against MPS-I and II NB, respectively. Subsequent biological tests revealed AZD7762 substantially inhibited growth, migration, and invasion of MPS-I NB cells, more effectively than that of MPS-II cells. Conversely, etoposide had better therapeutic effects on MPS-II NB cells. More encouragingly, AZD7762 and etoposide significantly inhibited in-vivo subcutaneous tumorigenesis, proliferation, and pulmonary metastasis in MPS-I and MPS-II samples, respectively; thereby prolonging survival of tumor-bearing mice. Mechanistically, AZD7762 and etoposide-induced apoptosis of the MPS-I and MPS-II cells, respectively, through mitochondria-dependent pathways; and MPS-I NB resisted etoposide-induced apoptosis by addiction of glutamate metabolism and acetyl coenzyme A. MPS-I NB progression was fueled by multiple metabolic reprogramming-driven factors including multidrug resistance, immunosuppressive and tumor-promoting inflammatory microenvironments. Immunologically, MPS-I NB suppressed immune cells via MIF and THBS signaling pathways. Metabolically, the malignant proliferation of MPS-I NB cells was remarkably supported by reprogrammed glutamate metabolism, tricarboxylic acid cycle, urea cycle, etc. Furthermore, MPS-I NB cells manifested a distinct tumor-promoting developmental lineage and self-communication patterns, as evidenced by enhanced oncogenic signaling pathways activated with development and self-communications. Conclusions: This study provides deep insights into the molecular mechanisms underlying metabolic reprogramming-mediated malignant progression of NB. It also sheds light on developing targeted medications guided by the novel precise risk prognostication approaches, which could contribute to a significantly improved therapeutic strategy for NB.
Collapse
Affiliation(s)
- Wenyi Jin
- Department of Orthopedics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, China, 325041
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, China, 430060
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China, 999077
| | - Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, China, 430060
| | - Zhijie Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, China, 200011
| | - Mingyong Gao
- Department of Orthopedics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, China, 325041
| |
Collapse
|
6
|
Zhu K, Xia Y, Tian X, He Y, Zhou J, Han R, Guo H, Song T, Chen L, Tian X. Characterization and therapeutic perspectives of differentiation-inducing therapy in malignant tumors. Front Genet 2023; 14:1271381. [PMID: 37745860 PMCID: PMC10514561 DOI: 10.3389/fgene.2023.1271381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Cancer is a major public health issue globally and is one of the leading causes of death. Although available treatments improve the survival rate of some cases, many advanced tumors are insensitive to these treatments. Cancer cell differentiation reverts the malignant phenotype to its original state and may even induce differentiation into cell types found in other tissues. Leveraging differentiation-inducing therapy in high-grade tumor masses offers a less aggressive strategy to curb tumor progression and heightens chemotherapy sensitivity. Differentiation-inducing therapy has been demonstrated to be effective in a variety of tumor cells. For example, differentiation therapy has become the first choice for acute promyelocytic leukemia, with the cure rate of more than 90%. Although an appealing concept, the mechanism and clinical drugs used in differentiation therapy are still in their nascent stage, warranting further investigation. In this review, we examine the current differentiation-inducing therapeutic approach and discuss the clinical applications as well as the underlying biological basis of differentiation-inducing agents.
Collapse
Affiliation(s)
- Kangwei Zhu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuren Xia
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xindi Tian
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuchao He
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jun Zhou
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda, Japan
| | - Ruyu Han
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Guo
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tianqiang Song
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lu Chen
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiangdong Tian
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
7
|
Ghorayshian A, Danesh M, Mostashari-Rad T, fassihi A. Discovery of novel RARα agonists using pharmacophore-based virtual screening, molecular docking, and molecular dynamics simulation studies. PLoS One 2023; 18:e0289046. [PMID: 37616260 PMCID: PMC10449137 DOI: 10.1371/journal.pone.0289046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Nuclear retinoic acid receptors (RARs) are ligand-dependent transcription factors involved in various biological processes, such as embryogenesis, cell proliferation, differentiation, reproduction, and apoptosis. These receptors are regulated by retinoids, i.e., retinoic acid (RA) and its analogs, as receptor agonists. RAR agonists are promising therapeutic agents for the treatment of serious dermatological disorders, including some malignant conditions. By inducing apoptosis, they are able to inhibit the proliferation of diverse cancer cell lines. Also, RAR agonists have recently been identified as therapeutic options for some neurodegenerative diseases. These features make retinoids very attractive molecules for medical purposes. Synthetic selective RAR agonists have several advantages over endogenous ones, but they suffer poor pharmacokinetic properties. These compounds are normally lipophilic acids with unfavorable drug-like features such as poor oral bioavailability. Recently, highly selective, potent, and less toxic RAR agonists with proper lipophilicity, thus, good oral bioavailability have been developed for some therapeutic applications. In the present study, ligand and structure-based virtual screening technique was exploited to introduce some novel RARα agonists. Pharmacokinetic assessment was also performed in silico to suggest those compounds which have optimized drug-like features. Finally, two compounds with the best in silico pharmacological features are proposed as lead molecules for future development of RARα agonists.
Collapse
Affiliation(s)
- Atefeh Ghorayshian
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mahshid Danesh
- Functional Genomics & System Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Wuerzburg, Wuerzburg, Germany
| | - Tahereh Mostashari-Rad
- Department of Artificial Intelligence, Smart University of Medical Sciences, Tehran, Iran
| | - Afshin fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Matellan C, Lachowski D, Cortes E, Chiam KN, Krstic A, Thorpe SD, Del Río Hernández AE. Retinoic acid receptor β modulates mechanosensing and invasion in pancreatic cancer cells via myosin light chain 2. Oncogenesis 2023; 12:23. [PMID: 37130839 PMCID: PMC10154384 DOI: 10.1038/s41389-023-00467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common and lethal form of pancreatic cancer, characterised by stromal remodelling, elevated matrix stiffness and high metastatic rate. Retinoids, compounds derived from vitamin A, have a history of clinical use in cancer for their anti-proliferative and differentiation effects, and more recently have been explored as anti-stromal therapies in PDAC for their ability to induce mechanical quiescence in cancer associated fibroblasts. Here, we demonstrate that retinoic acid receptor β (RAR-β) transcriptionally represses myosin light chain 2 (MLC-2) expression in pancreatic cancer cells. As a key regulatory component of the contractile actomyosin machinery, MLC-2 downregulation results in decreased cytoskeletal stiffness and traction force generation, impaired response to mechanical stimuli via mechanosensing and reduced ability to invade through the basement membrane. This work highlights the potential of retinoids to target the mechanical drivers of pancreatic cancer.
Collapse
Affiliation(s)
- Carlos Matellan
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Dariusz Lachowski
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Ernesto Cortes
- Department of Physiology, School of Medicine, Autonomous University of Madrid, 28029, Madrid, Spain
| | - Kai Ning Chiam
- UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Aleksandar Krstic
- UCD School of Medicine, University College Dublin, Dublin, Ireland
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Stephen D Thorpe
- UCD School of Medicine, University College Dublin, Dublin, Ireland.
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.
| | - Armando E Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
9
|
Raskov H, Gaggar S, Tajik A, Orhan A, Gögenur I. The Matrix Reloaded-The Role of the Extracellular Matrix in Cancer. Cancers (Basel) 2023; 15:2057. [PMID: 37046716 PMCID: PMC10093330 DOI: 10.3390/cancers15072057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
As the core component of all organs, the extracellular matrix (ECM) is an interlocking macromolecular meshwork of proteins, glycoproteins, and proteoglycans that provides mechanical support to cells and tissues. In cancer, the ECM can be remodelled in response to environmental cues, and it controls a plethora of cellular functions, including metabolism, cell polarity, migration, and proliferation, to sustain and support oncogenesis. The biophysical and biochemical properties of the ECM, such as its structural arrangement and being a reservoir for bioactive molecules, control several intra- and intercellular signalling pathways and induce cytoskeletal changes that alter cell shapes, behaviour, and viability. Desmoplasia is a major component of solid tumours. The abnormal deposition and composition of the tumour matrix lead to biochemical and biomechanical alterations that determine disease development and resistance to treatment. This review summarises the complex roles of ECM in cancer and highlights the possible therapeutic targets and how to potentially remodel the dysregulated ECM in the future. Furthering our understanding of the ECM in cancer is important as the modification of the ECM will probably become an important tool in the characterisation of individual tumours and personalised treatment options.
Collapse
Affiliation(s)
- Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| | - Shruti Gaggar
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| | - Asma Tajik
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Oncology, Zealand University Hospital, 4000 Roskilde, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
10
|
TRAF4 Silencing Induces Cell Apoptosis and Improves Retinoic Acid Sensitivity in Human Neuroblastoma. Neurochem Res 2023; 48:2116-2128. [PMID: 36795185 DOI: 10.1007/s11064-023-03882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023]
Abstract
Neuroblastoma (NB) is a pediatric malignancy that arises in the peripheral nervous system, and the prognosis in the high-risk group remains dismal, despite the breakthroughs in multidisciplinary treatments. The oral treatment with 13-cis-retinoic acid (RA) after high-dose chemotherapy and stem cell transplant has been proven to reduce the incidence of tumor relapse in children with high-risk neuroblastoma. However, many patients still have tumors relapsed following retinoid therapy, highlighting the need for the identification of resistant factors and the development of more effective treatments. Herein, we sought to investigate the potential oncogenic roles of the tumor necrosis factor (TNF) receptor-associated factor (TRAF) family in neuroblastoma and explore the correlation between TRAFs and retinoic acid sensitivity. We discovered that all TRAFs were efficiently expressed in neuroblastoma, but TRAF4, in particular, was found to be strongly expressed. The high expression of TRAF4 was associated with a poor prognosis in human neuroblastoma. The inhibition of TRAF4, rather than other TRAFs, improved retinoic acid sensitivity in two human neuroblastoma cell lines, SH-SY5Y and SK-N-AS cells. Further in vitro studies indicated that TRAF4 suppression induced retinoic acid-induced cell apoptosis in neuroblastoma cells, probably by upregulating the expression of Caspase 9 and AP1 while downregulating Bcl-2, Survivin, and IRF-1. Notably, the improved anti-tumor effects from the combination of TRAF4 knockdown and retinoic acid were confirmed in vivo using the SK-N-AS human neuroblastoma xenograft model. In conclusion, the highly expressed TRAF4 might be implicated in developing resistance to retinoic acid treatment in neuroblastoma, and the combination therapy with retinoic acid and TRAF4 inhibition may offer significant therapeutic advantages in the treatment of relapsed neuroblastoma.
Collapse
|
11
|
Ji K, Dou W, Zhang N, Wen B, Zhong M, Zhang Q, Xu S, Zhou J, Liu J. Retinoic acid receptor gamma is required for proliferation of pancreatic cancer cells. Cell Biol Int 2023; 47:144-155. [PMID: 36183362 DOI: 10.1002/cbin.11917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 01/19/2023]
Abstract
Despite the expectation that retinoic acid receptor could be the potential therapeutic targets for pancreatic cancers, there has been the lack of information about the role and the impact of retinoic acid receptor gamma (RARγ, RARG) on pancreatic cancer, unlike other two RARs. Herein, we applied TCGA and GEO database to show that the expression and prognosis of RARG is closely related to pancreatic cancer, which demonstrates that RARG is commonly overexpressed in human pancreatic cancer and is an independent diagnostic marker predicting the poor prognosis of pancreatic cancer patients. In addition, we demonstrated that the reduction in the expression of RARG in human pancreatic cancer cells dramatically suppress their proliferation and tumor growth in vivo, partially attributable to the downregulation of tumor-supporting biological processes such as cell proliferation, antiapoptosis and metabolism and the decreased expression of various oncogenes like MYC and STAT3. Mechanistically, RARG binds on the promoters of MYC, STAT3, and SLC2A1 which is distinguished from well-known conventional Retinotic acid response elements (RAREs) and that the binding is likely to be responsible for the epigenetic activation in the level of chromatin, assessed by the measurement of deposition of the gene activation marker histone H3 K27 acetylation (H3K27ac) using ChIP-qPCR. In this study, we reveal that RARG plays important role in the tumorigenesis of pancreatic cancer and represents new therapeutic targets for human pancreatic cancer.
Collapse
Affiliation(s)
- Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wenlong Dou
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ningfang Zhang
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Bolun Wen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mingyan Zhong
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qianbing Zhang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuxiang Xu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianlong Zhou
- Department of Oncology, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, China
| | - Jingfeng Liu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.,Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Anticancer activity of retinoic acid against breast cancer cells derived from an Iraqi patient. J Taibah Univ Med Sci 2022; 18:579-586. [PMID: 36818177 PMCID: PMC9906016 DOI: 10.1016/j.jtumed.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/27/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
Objective Breast cancer is one of the most lethal diseases in women, both worldwide and in Iraq. The high mortality rate is attributed primarily to the chemoresistance to conventional therapeutics. The search for effective and safe treatments is critical. One promising agent that has shown activity against various cancer types is retinoic acid (RA). Methods RA was tested against a panel of international breast cancer cell lines and compared with Iraqi patient-derived hormone-independent breast cancer cells through MTT viability assays. Cytopathology was assessed under an inverted microscope, and apoptotic induction was evaluated with acridine orange propidium iodide assays. Results AMJ13 breast cancer cells were more sensitive to killing induced by RA than MCF-7 and CAL-51 cells. By contrast, normal HBL-100 cells showed a negligible effect. Cytological changes were observed in all cancer cells treated with RA, whereas no changes were observed in normal HBL-100 cells. Iraqi patient-derived breast cancer cells showed a higher percentage of cells undergoing apoptosis after RA treatment than the other breast cancer cells. Conclusion We suggest RA as a possible breast cancer treatment with potential for clinical application with high safety.
Collapse
|
13
|
Hirota A, Clément JE, Tanikawa S, Nonoyama T, Komatsuzaki T, Gong JP, Tanaka S, Imajo M. ERK MAP Kinase Signaling Regulates RAR Signaling to Confer Retinoid Resistance on Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14235890. [PMID: 36497371 PMCID: PMC9739577 DOI: 10.3390/cancers14235890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Retinoic acid (RA) and its synthetic derivatives, retinoids, have been established as promising anticancer agents based on their ability to regulate cell proliferation and survival. Clinical trials, however, have revealed that cancer cells often acquire resistance to retinoid therapy. Therefore, elucidation of underlying mechanisms of retinoid resistance has been considered key to developing more effective use of retinoids in cancer treatment. In this study, we show that constitutive activation of ERK MAP kinase signaling, which is often caused by oncogenic mutations in RAS or RAF genes, suppresses RA receptor (RAR) signaling in breast cancer cells. We show that activation of the ERK pathway suppresses, whereas its inhibition promotes, RA-induced transcriptional activation of RAR and the resultant upregulation of RAR-target genes in breast cancer cells. Importantly, ERK inhibition potentiates the tumor-suppressive activity of RA in breast cancer cells. Moreover, we also reveal that suppression of RAR signaling and activation of ERK signaling are associated with poor prognoses in breast cancer patients and represent hallmarks of specific subtypes of breast cancers, such as basal-like, HER2-enriched and luminal B. These results indicate that ERK-dependent suppression of RAR activity underlies retinoid resistance and is associated with cancer subtypes and patient prognosis in breast cancers.
Collapse
Affiliation(s)
- Akira Hirota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Jean-Emmanuel Clément
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Satoshi Tanikawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Takayuki Nonoyama
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Tamiki Komatsuzaki
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Shinya Tanaka
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masamichi Imajo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Correspondence: ; Tel.: +81-11-706-9683
| |
Collapse
|
14
|
Liu CL, Hsu YC, Kuo CY, Jhuang JY, Li YS, Cheng SP. CRABP2 Is Associated With Thyroid Cancer Recurrence and Promotes Invasion via the Integrin/FAK/AKT Pathway. Endocrinology 2022; 163:6761323. [PMID: 36240291 DOI: 10.1210/endocr/bqac171] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/19/2022]
Abstract
Cellular retinoic acid-binding protein 2 (CRABP2) participates in retinoid partitioning between different nuclear receptors. Recently, we identified that CRABP2 is one of the progression-associated genes in thyroid cancer. To explore the prognostic and functional significance of CRABP2, immunohistochemical analysis was performed in thyroid tissues and neoplasms. Overexpression of CRABP2 was observed in malignant thyroid neoplasms but not in benign thyroid lesions. CRABP2 expression was an independent predictive factor for recurrence-free survival in patients with differentiated thyroid cancer. Knockdown of CRABP2 reduced the sensitivity of thyroid cancer cells to retinoic acid. Importantly, CRABP2 expression in thyroid cancer cells was associated with epithelial-mesenchymal transition properties, including anoikis resistance, migration, and invasion capacity. Furthermore, invasion promoted by CRABP2 was mediated at least partly by the integrin/focal adhesion kinase/AKT pathway. In summary, CRABP2 expression is upregulated in thyroid cancer with adverse prognostic implications. The invasion-stimulating effects appear independent of canonical retinoic acid signaling and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Chien-Liang Liu
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Chi-Yu Kuo
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Jie-Yang Jhuang
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Pathology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ying-Syuan Li
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
Ramchatesingh B, Martínez Villarreal A, Arcuri D, Lagacé F, Setah SA, Touma F, Al-Badarin F, Litvinov IV. The Use of Retinoids for the Prevention and Treatment of Skin Cancers: An Updated Review. Int J Mol Sci 2022; 23:ijms232012622. [PMID: 36293471 PMCID: PMC9603842 DOI: 10.3390/ijms232012622] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/21/2022] Open
Abstract
Retinoids are natural and synthetic vitamin A derivatives that are effective for the prevention and the treatment of non-melanoma skin cancers (NMSC). NMSCs constitute a heterogenous group of non-melanocyte-derived skin cancers that impose substantial burdens on patients and healthcare systems. They include entities such as basal cell carcinoma and cutaneous squamous cell carcinoma (collectively called keratinocyte carcinomas), cutaneous lymphomas and Kaposi’s sarcoma among others. The retinoid signaling pathway plays influential roles in skin physiology and pathology. These compounds regulate diverse biological processes within the skin, including proliferation, differentiation, angiogenesis and immune regulation. Collectively, retinoids can suppress skin carcinogenesis. Both topical and systemic retinoids have been investigated in clinical trials as NMSC prophylactics and treatments. Desirable efficacy and tolerability in clinical trials have prompted health regulatory bodies to approve the use of retinoids for NMSC management. Acceptable off-label uses of these compounds as drugs for skin cancers are also described. This review is a comprehensive outline on the biochemistry of retinoids, their activities in the skin, their effects on cancer cells and their adoption in clinical practice.
Collapse
Affiliation(s)
| | | | - Domenico Arcuri
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - François Lagacé
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Dermatology, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Samy Abu Setah
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Fadi Touma
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Faris Al-Badarin
- Faculté de Médicine, Université Laval, Québec, QC G1V 0V6, Canada
| | - Ivan V. Litvinov
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Dermatology, McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
16
|
Combination Treatment of Retinoic Acid Plus Focal Adhesion Kinase Inhibitor Prevents Tumor Growth and Breast Cancer Cell Metastasis. Cells 2022; 11:cells11192988. [PMID: 36230951 PMCID: PMC9564078 DOI: 10.3390/cells11192988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
All-trans retinoic acid (RA), the primary metabolite of vitamin A, controls the development and homeostasis of organisms and tissues. RA and its natural and synthetic derivatives, both known as retinoids, are promising agents in treating and chemopreventing different neoplasias, including breast cancer (BC). Focal adhesion kinase (FAK) is a crucial regulator of cell migration, and its overexpression is associated with tumor metastatic behavior. Thus, pharmaceutical FAK inhibitors (FAKi) have been developed to counter its action. In this work, we hypothesize that the RA plus FAKi (RA + FAKi) approach could improve the inhibition of tumor progression. By in silico analysis and its subsequent validation by qPCR, we confirmed RARA, SRC, and PTK2 (encoding RARα, Src, and FAK, respectively) overexpression in all breast cells tested. We also showed a different pattern of genes up/down-regulated between RA-resistant and RA-sensitive BC cells. In addition, we demonstrated that both RA-resistant BC cells (MDA-MB-231 and MDA-MB-468) display the same behavior after RA treatment, modulating the expression of genes involved in Src-FAK signaling. Furthermore, we demonstrated that although RA and FAKi administered separately decrease viability, adhesion, and migration in mammary adenocarcinoma LM3 cells, their combination exerts a higher effect. Additionally, we show that both drugs individually, as well as in combination, induce the expression of apoptosis markers such as active-caspase-3 and cleaved-PARP1. We also provided evidence that RA effects are extrapolated to other cancer cells, including T-47D BC and the human cervical carcinoma HeLa cells. In an orthotopic assay of LM3 tumor growth, whereas RA and FAKi administered separately reduced tumor growth, the combined treatment induced a more potent inhibition increasing mice survival. Moreover, in an experimental metastatic assay, RA significantly reduced metastatic lung dissemination of LM3 cells. Overall, these results indicate that RA resistance could reflect deregulation of most RA-target genes, including genes encoding components of the Src-FAK pathway. Our study demonstrates that RA plays an essential role in disrupting BC tumor growth and metastatic dissemination in vitro and in vivo by controlling FAK expression and localization. RA plus FAKi exacerbate these effects, thus suggesting that the sensitivity to RA therapies could be increased with FAKi coadministration in BC tumors.
Collapse
|
17
|
Heterogeneity of Cancer-Associated Fibroblasts and the Tumor Immune Microenvironment in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14163994. [PMID: 36010986 PMCID: PMC9406547 DOI: 10.3390/cancers14163994] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Stroma-targeting therapy in pancreatic ductal adenocarcinoma (PDAC) has been extensively investigated, but no candidates have shown efficacy at the clinical trial stage. Studies of cancer-associated fibroblast (CAF) depletion in a mouse model suggested that CAFs have not only tumor-promoting function but also tumor-suppressive activity. Recently, single-cell RNA sequencing (scRNA-seq) has revealed the complex tumor microenvironment within PDAC, and subpopulations of functionally distinct CAFs and their association with tumor immunity have been reported. However, the existence of tumor suppressive CAFs and CAFs involved in the maintenance of PDAC differentiation has also been reported. In the future, therapeutic strategies should be developed considering these CAF subpopulations, with the hope of improving the prognosis of PDAC. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, with a 5-year survival rate of 9%. Cancer-associated fibroblasts (CAFs) have historically been considered tumor-promoting. However, multiple studies reporting that suppression of CAFs in PDAC mouse models resulted in more aggressive tumors and worse prognosis have suggested the existence of a tumor-suppressive population within CAFs, leading to further research on heterogeneity within CAFs. In recent years, the benefits of cancer immunotherapy have been reported in various carcinomas. Unfortunately, the efficacy of immunotherapies in PDAC has been limited, and the CAF-driven cancer immunosuppressive microenvironment has been suggested as the cause. Thus, clarification of heterogeneity within the tumor microenvironment, including CAFs and tumor immunity, is urgently needed to establish effective therapeutic strategies for PDAC. In this review, we report the latest findings on the heterogeneity of CAFs and the functions of each major CAF subtype, which have been revealed by single-cell RNA sequencing in recent years. We also describe reports of tumor-suppressive CAF subtypes and the existence of CAFs that maintain a differentiated PDAC phenotype and review the potential for targeted therapy.
Collapse
|
18
|
Jung E, Jeong SW, Lee Y, Jeon C, Shin H, Song N, Lee Y, Lee D. Self-deliverable and self-immolative prodrug nanoassemblies as tumor targeted nanomedicine with triple cooperative anticancer actions. Biomaterials 2022; 287:121681. [PMID: 35917709 DOI: 10.1016/j.biomaterials.2022.121681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022]
Abstract
Stimulus-responsive self-assembling prodrug-based nanomedicine has emerged as a novel paradigm in controlled drug delivery. All-trans retinoic acid (RA), one of vitamin A metabolites, induces apoptotic cancer cell death, but its clinical applications are limited by weak anticancer efficacy. To fully maximize the therapeutic potential of RA, we exploited the unique chemistry of arylboronic acid which undergoes hydrogen peroxide (H2O2)-triggered degradation to release quinone methide (QM) that alkylates glutathione (GSH) to disrupt redox homeostasis and is also converted into hydroxybenzyl alcohol (HBA) to suppress the expression of vascular endothelial growth factor (VEGF). Here, we report that boronated retinoic acid prodrug (RABA) can be formulated into self-deliverable nanoassemblies which release both RA and QM in a H2O2-triggered self-immolative manner to exert cooperative anticancer activities. RABA nanoassemblies exert anticancer effects by inducing reactive oxygen species (ROS)-mediated apoptosis, eliciting immunogenic cell death (ICD) and suppressing angiogenic VEGF expression. The excellent anticancer efficacy of RABA nanoassemblies can be explained by benefits of self-assembling prodrug-based drug self-delivery and cooperative anticancer actions. The design strategy of RABA would provide a new insight into the rational design of self-deliverable and self-immolative boronated prodrug nanoassemblies for targeted cancer therapy.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Seung Won Jeong
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Yeongjong Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Chanhee Jeon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Hyunbin Shin
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Nanhee Song
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Yujin Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea; Department of Polymer⋅Nano Science and Technology, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|
19
|
The Contributions of Cancer-Testis and Developmental Genes to the Pathogenesis of Keratinocyte Carcinomas. Cancers (Basel) 2022; 14:cancers14153630. [PMID: 35892887 PMCID: PMC9367444 DOI: 10.3390/cancers14153630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In addition to mutations, ectopically-expressed genes are emerging as important contributors to cancer development. Efforts to characterize the expression patterns in cancers of gamete-restricted cancer-testis antigens and developmentally-restricted genes are underway, revealing these genes to be putative biomarkers and therapeutic targets for various malignancies. Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) are two highly-prevalent non-melanoma skin cancers that result in considerable burden on patients and our health system. To optimize disease prognostication and treatment, it is necessary to further classify the molecular complexity of these malignancies. This review describes the expression patterns and functions of cancer-testis antigens and developmentally-restricted genes in BCC and cSCC tumors. A large number of cancer-testis antigens and developmental genes exhibit substantial expression levels in BCC and cSCC. These genes have been shown to contribute to several aspects of cancer biology, including tumorigenesis, differentiation, invasion and responses to anti-cancer therapy. Abstract Keratinocyte carcinomas are among the most prevalent malignancies worldwide. Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) are the two cancers recognized as keratinocyte carcinomas. The standard of care for treating these cancers includes surgery and ablative therapies. However, in recent years, targeted therapies (e.g., cetuximab for cSCC and vismodegib/sonidegib for BCC) have been used to treat advanced disease as well as immunotherapy (e.g., cemiplimab). These treatments are expensive and have significant toxicities with objective response rates approaching ~50–65%. Hence, there is a need to dissect the molecular pathogenesis of these cancers to identify novel biomarkers and therapeutic targets to improve disease management. Several cancer-testis antigens (CTA) and developmental genes (including embryonic stem cell factors and fetal genes) are ectopically expressed in BCC and cSCC. When ectopically expressed in malignant tissues, functions of these genes may be recaptured to promote tumorigenesis. CTAs and developmental genes are emerging as important players in the pathogenesis of BCC and cSCC, positioning themselves as attractive candidate biomarkers and therapeutic targets requiring rigorous testing. Herein, we review the current research and offer perspectives on the contributions of CTAs and developmental genes to the pathogenesis of keratinocyte carcinomas.
Collapse
|
20
|
Lampis S, Raieli S, Montemurro L, Bartolucci D, Amadesi C, Bortolotti S, Angelucci S, Scardovi AL, Nieddu G, Cerisoli L, Paganelli F, Valente S, Fischer M, Martelli AM, Pasquinelli G, Pession A, Hrelia P, Tonelli R. The MYCN inhibitor BGA002 restores the retinoic acid response leading to differentiation or apoptosis by the mTOR block in MYCN-amplified neuroblastoma. J Exp Clin Cancer Res 2022; 41:160. [PMID: 35490242 PMCID: PMC9055702 DOI: 10.1186/s13046-022-02367-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/18/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Neuroblastoma is a deadly childhood cancer, and MYCN-amplified neuroblastoma (MNA-NB) patients have the worst prognoses and are therapy-resistant. While retinoic acid (RA) is beneficial for some neuroblastoma patients, the cause of RA resistance is unknown. Thus, there remains a need for new therapies to treat neuroblastoma. Here we explored the possibility of combining a MYCN-specific antigene oligonucleotide BGA002 and RA as therapeutic approach to restore sensitivity to RA in NB. METHODS By molecular and cellular biology techniques, we assessed the combined effect of the two compounds in NB cell lines and in a xenograft mouse model MNA-NB. RESULTS We found that MYCN-specific inhibition by BGA002 in combination with RA (BGA002-RA) act synergistically and overcame resistance in NB cell lines. BGA002-RA also reactivated neuron differentiation (or led to apoptosis) and inhibited invasiveness capacity in MNA-NB. Moreover, we found that neuroblastoma had the highest level of mRNA expression of mTOR pathway genes, and that BGA002 led to mTOR pathway inhibition followed by autophagy reactivation in MNA-NB cells, which was strengthened by BGA002-RA. BGA002-RA in vivo treatment also eliminated tumor vascularization in a MNA-NB mouse model and significantly increased survival. CONCLUSION Taken together, MYCN modulation mediates the therapeutic efficacy of RA and the development of RA resistance in MNA-NB. Furthermore, by targeting MYCN, a cancer-specific mTOR pathway inhibition occurs only in MNA-NB, thus avoiding the side effects of targeting mTOR in normal cells. These findings warrant clinical testing of BGA002-RA as a strategy for overcoming RA resistance in MNA-NB.
Collapse
Affiliation(s)
| | | | - Luca Montemurro
- Pediatric Unit, S. Orsola IRCCS, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy
| | - Sabrina Valente
- Biotechnology and Methods in Laboratory Medicine, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany; and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | - Gianandrea Pasquinelli
- Biotechnology and Methods in Laboratory Medicine, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Subcellular nephro-vascular diagnostic program, Pathology Unit S. Orsola IRCCS, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Roberto Tonelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|
21
|
Jin Y, Teh SS, Lau HLN, Xiao J, Mah SH. Retinoids as anti-cancer agents and their mechanisms of action. Am J Cancer Res 2022; 12:938-960. [PMID: 35411232 PMCID: PMC8984900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023] Open
Abstract
Retinoids (vitamin A) have been reported extensively for anti-cancer properties due to their high receptor-binding affinities and gene regulation abilities. However, the anti-cancer potential of retinoids has not been reviewed in recent years. Thus, this review focused on the anti-cancer effects of retinoids and their synergistic effects with other drugs, together with their mechanisms of action in different types of cancers reported in the past five years. The retinoids were well studied in breast cancer, melanoma, and colorectal cancer. Synthetic retinoids have shown higher selectivity, stronger effectiveness, and lower toxicity than endogenous retinoids. Interestingly, the combination treatment of endogenous retinoids with chemotherapy drugs showed enhanced anti-cancer effects. The mechanisms of action reported for retinoids mainly involved the RAR/RXR signaling pathway. However, limited clinical studies were conducted in recent years. Thus, retinoids which are highly potential anti-cancer agents are worth further study in clinical, especially as a combination therapy with chemotherapy drugs.
Collapse
Affiliation(s)
- Ying Jin
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University (Lakeside Campus)Subang Jaya, Selangor, Malaysia
| | - Soek Sin Teh
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil BoardKajang, Selangor, Malaysia
| | - Harrison Lik Nang Lau
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil BoardKajang, Selangor, Malaysia
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense CampusOurense, Spain
| | - Siau Hui Mah
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University (Lakeside Campus)Subang Jaya, Selangor, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University (Lakeside Campus)Subang Jaya, Selangor, Malaysia
| |
Collapse
|
22
|
Liu X, Li N, Zhang C, Wu X, Zhang S, Dong G, Liu G. Identification of metastasis-associated exoDEPs in colorectal cancer using label-free proteomics. Transl Oncol 2022; 19:101389. [PMID: 35303583 PMCID: PMC8927999 DOI: 10.1016/j.tranon.2022.101389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/20/2021] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Exosomes play essential role in the metastasis of colorectal cancer from TME aspect. Finding out the prominent regulating exoDEPs by label-free proteomics in this research provided a lot of key information of CRC metastases. Metabolism, cytoskeleton-related pathways and immunosuppression are two key mechanisms by which exosomes regulate CRC malignant behavior. The discovery of the “all or none” exoDEPs was of great significance. The exoDEPs expressed only in SW620 cells can more clearly show their ability to promote the invasion and metastasis of CRC cells.
Exosomes are secreted nanovesicles consisting of biochemical molecules, including proteins, RNAs, lipids, and metabolites that play a prominent role in tumor progression. In this study, we performed a label-free proteomic analysis of exosomes from a pair of homologous human colorectal cancer cell line with different metastatic abilities. A total of 115 exoDEPs were identified, with 31 proteins upregulated and 84 proteins downregulated in SW620 exosome. We also detected 30 proteins expressed only in SW620 exosomes and 60 proteins expressed only in SW480 exosomes. Bioinformatics analysis enriched the components and pathways associated with the extracellular matrix, cytoskeleton-related pathways, and immune system changes of colorectal cancer (CRC). Cellular function experiments confirmed the role of SW620 exosomes in promoting the proliferation, migration, and invasion of SW480 cells. Further verifications were performed on six upregulated exoDEPs (FGFBP1, SIPA1, THBS1, TGFBI, COL6A1, and RPL10), three downregulated exoDEPs (SLC2A3, MYO1D, and RBP1), and three exoDEPs (SMOC2, GLG1, and CEMIP) expressed only in SW620 by WB and IHC. This study provides a complete and novel basis for exploring new drug targets to inhibit the invasion and metastasis of CRC.
Collapse
Affiliation(s)
- Xinlu Liu
- 1st Department of general surgery, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China
| | - Na Li
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian City, Liaoning Province, China
| | - Chi Zhang
- 1st Department of general surgery, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China
| | - Xiaoyu Wu
- Operating Room, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China
| | - Shoujia Zhang
- 1st Department of general surgery, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China
| | - Gang Dong
- Anorectal surgery, Central Hospital of Jinzhou City, No. 51, Section 2, Shanghai Road, Guta District, Jinzhou City, Liaoning Province, China
| | - Ge Liu
- 1st Department of general surgery, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China.
| |
Collapse
|
23
|
Zhang X, Li H, Lv X, Hu L, Li W, Zi M, He Y. Impact of Diets on Response to Immune Checkpoint Inhibitors (ICIs) Therapy against Tumors. Life (Basel) 2022; 12:409. [PMID: 35330159 PMCID: PMC8951256 DOI: 10.3390/life12030409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has revolutionized the established therapeutics against tumors. As the major immunotherapy approach, immune checkpoint inhibitors (ICIs) achieved remarkable success in the treatment of malignancies. However, the clinical gains are far from universal and durable, because of the primary and secondary resistance of tumors to the therapy, or side effects induced by ICIs. There is an urgent need to find safe combinatorial strategies that enhance the response of ICIs for tumor treatment. Diets have an excellent safety profile and have been shown to play pleiotropic roles in tumor prevention, growth, invasion, and metastasis. Accumulating evidence suggests that dietary regimens bolster not only the tolerability but also the efficacy of tumor immunotherapy. In this review, we discussed the mechanisms by which tumor cells evade immune surveillance, focusing on describing the intrinsic and extrinsic mechanisms of resistance to ICIs. We also summarized the impacts of different diets and/or nutrients on the response to ICIs therapy. Combinatory treatments of ICIs therapy with optimized diet regimens own great potential to enhance the efficacy and durable response of ICIs against tumors, which should be routinely considered in clinical settings.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Clinical Nutrition, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Huiqin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (H.L.); (L.H.); (M.Z.)
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiupeng Lv
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Li Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (H.L.); (L.H.); (M.Z.)
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Wen Li
- Department of Endocrinology, The Third People’s Hospital of Yunnan Province, Kunming 650011, China;
| | - Meiting Zi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (H.L.); (L.H.); (M.Z.)
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (H.L.); (L.H.); (M.Z.)
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
24
|
The Role of ATRA, Natural Ligand of Retinoic Acid Receptors, on EMT-Related Proteins in Breast Cancer: Minireview. Int J Mol Sci 2021; 22:ijms222413345. [PMID: 34948142 PMCID: PMC8705994 DOI: 10.3390/ijms222413345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
The knowledge of the structure, function, and abundance of specific proteins related to the EMT process is essential for developing effective diagnostic approaches to cancer with the perspective of diagnosis and therapy of malignancies. The success of all-trans retinoic acid (ATRA) differentiation therapy in acute promyelocytic leukemia has stimulated studies in the treatment of other tumors with ATRA. This review will discuss the impact of ATRA use, emphasizing epithelial-mesenchymal transition (EMT) proteins in breast cancer, of which metastasis and recurrence are major causes of death.
Collapse
|
25
|
The unfolding role of ceramide in coordinating retinoid-based cancer therapy. Biochem J 2021; 478:3621-3642. [PMID: 34648006 DOI: 10.1042/bcj20210368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022]
Abstract
Sphingolipid-mediated regulation in cancer development and treatment is largely ceramide-centered with the complex sphingolipid metabolic pathways unfolding as attractive targets for anticancer drug discovery. The dynamic interconversion of sphingolipids is tightly controlled at the level of enzymes and cellular compartments in response to endogenous or exogenous stimuli, such as anticancer drugs, including retinoids. Over the past two decades, evidence emerged that retinoids owe part of their potency in cancer therapy to modulation of sphingolipid metabolism and ceramide generation. Ceramide has been proposed as a 'tumor-suppressor lipid' that orchestrates cell growth, cell cycle arrest, cell death, senescence, autophagy, and metastasis. There is accumulating evidence that cancer development is promoted by the dysregulation of tumor-promoting sphingolipids whereas cancer treatments can kill tumor cells by inducing the accumulation of endogenous ceramide levels. Resistance to cancer therapy may develop due to a disrupted equilibrium between the opposing roles of tumor-suppressor and tumor-promoter sphingolipids. Despite the undulating effect and complexity of sphingolipid pathways, there are emerging opportunities for a plethora of enzyme-targeted therapeutic interventions that overcome resistance resulting from perturbed sphingolipid pathways. Here, we have revisited the interconnectivity of sphingolipid metabolism and the instrumental role of ceramide-biosynthetic and degradative enzymes, including bioactive sphingolipid products, how they closely relate to cancer treatment and pathogenesis, and the interplay with retinoid signaling in cancer. We focused on retinoid targeting, alone or in combination, of sphingolipid metabolism nodes in cancer to enhance ceramide-based therapeutics. Retinoid and ceramide-based cancer therapy using novel strategies such as combination treatments, synthetic retinoids, ceramide modulators, and delivery formulations hold promise in the battle against cancer.
Collapse
|
26
|
Hattori N, Asada K, Miyajima N, Mori A, Nakanishi Y, Kimura K, Wakabayashi M, Takeshima H, Nitani C, Hara J, Ushijima T. Combination of a synthetic retinoid and a DNA demethylating agent induced differentiation of neuroblastoma through retinoic acid signal reprogramming. Br J Cancer 2021; 125:1647-1656. [PMID: 34635821 DOI: 10.1038/s41416-021-01571-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The CpG island methylator phenotype of neuroblastoma (NBL) is strongly associated with poor prognosis and can be targeted by 5-aza-2'-deoxycytidine (5-aza-dC). Differentiation therapy is a standard maintenance therapy for high-risk NBLs. However, the in vivo effect of tamibarotene, a synthetic retinoic acid, and the efficacy of its combination with 5-aza-dC have not been studied. Here, we conducted a preclinical study to assess the in vivo tamibarotene effect and the combination. METHODS Treatment effects were analysed by in vitro cell growth and differentiation state and by in vivo xenograft suppression. Demethylated genes were analysed by DNA methylation microarrays and geneset enrichment. RESULTS Tamibarotene monotherapy induced neural extension and upregulation of differentiation markers of NBL cells in vitro, and tumour regression without severe side effects in vivo. 5-Aza-dC monotherapy suppressed tumour growth both in vitro and in vivo, and induced demethylation of genes related to nervous system development and function. Pre-treatment with 5-aza-dC in vitro enhanced upregulation of differentiation markers and genes involved in retinoic acid signaling. Pre-treatment with 5-aza-dC in vivo significantly suppressed tumour growth and reduced the variation in tumour sizes. CONCLUSIONS Epigenetic drug-based differentiation therapy using 5-aza-dC and TBT is a promising strategy for refractory NBLs.
Collapse
Affiliation(s)
- Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan.
| | - Kiyoshi Asada
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Nozomu Miyajima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akiko Mori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoko Nakanishi
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kana Kimura
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Mika Wakabayashi
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Chika Nitani
- Department of Pediatric Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Junichi Hara
- Department of Pediatric Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
27
|
Sunami Y, Rebelo A, Kleeff J. Lipid Droplet-Associated Factors, PNPLA3, TM6SF2, and HSD17B Proteins in Hepatopancreatobiliary Cancer. Cancers (Basel) 2021; 13:cancers13174391. [PMID: 34503201 PMCID: PMC8431307 DOI: 10.3390/cancers13174391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Aberrant lipid synthesis and reprogrammed lipid metabolism are both associated with the development and progression of pancreatic and liver cancer. Most cells store fatty acids in the form of triacylglycerols in lipid droplets. Lipid droplets are intracellular organelles that not only store neutral lipids, but also play roles as molecular messengers and signaling factors. Some cancer cells accumulate massive amount of lipid droplets. Lipid droplets and lipid droplet-associated factors are further implicated to mediate proliferation, invasion, metastasis, as well as chemotherapy resistance in several types of cancer. This review dissected recent findings on the role of several lipid droplet-associated factors, patatin-like phospholipase domain-containing 3 (PNPLA3), Transmembrane 6 superfamily member 2 (TM6SF2), and 17β-hydroxysteroid dehydrogenase (HSD17B) 11 and 13 as well as their genetic variations in hepatopancreatobiliary diseases, especially cancer. Abstract Pancreatic and liver cancer are leading causes of cancer deaths, and by 2030, they are projected to become the second and the third deadliest cancer respectively. Cancer metabolism, especially lipid metabolism, plays an important role in progression and metastasis of many types of cancer, including pancreatic and liver cancer. Lipid droplets are intracellular organelles that store neutral lipids, but also act as molecular messengers, and signaling factors. It is becoming increasingly evident that alterations in the regulation of lipid droplets and their associated factors influence the risk of developing not only metabolic disease but also fibrosis and cancer. In the current review article, we summarized recent findings concerning the roles of lipid droplet-associated factors, patatin-like phospholipase domain-containing 3, Transmembrane 6 superfamily member 2, and 17β-hydroxysteroid dehydrogenase 11 and 13 as well as genetic variants in pancreatic and hepatic diseases. A better understanding of cancer type- and cell type-specific roles of lipid droplet-associated factors is important for establishing new therapeutic options in the future.
Collapse
|
28
|
Retinoids Delivery Systems in Cancer: Liposomal Fenretinide for Neuroectodermal-Derived Tumors. Pharmaceuticals (Basel) 2021; 14:ph14090854. [PMID: 34577553 PMCID: PMC8466194 DOI: 10.3390/ph14090854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Retinoids are a class of natural and synthetic compounds derived from vitamin A. They are involved in several biological processes like embryogenesis, reproduction, vision, growth, inflammation, differentiation, proliferation, and apoptosis. In light of their important functions, retinoids have been widely investigated for their therapeutic applications. Thus far, their use for the treatment of several types of cancer and skin disorders has been reported. However, these therapeutic agents present several limitations for their widespread clinical translatability, i.e., poor solubility and chemical instability in water, sensitivity to light, heat, and oxygen, and low bioavailability. These characteristics result in internalization into target cells and tissues only at low concentration and, consequently, at an unsatisfactory therapeutic dose. Furthermore, the administration of retinoids causes severe side-effects. Thus, in order to improve their pharmacological properties and circulating half-life, while minimizing their off-target uptake, various retinoids delivery systems have been recently developed. This review intends to provide examples of retinoids-loaded nano-delivery systems for cancer treatment. In particular, the use and the therapeutic results obtained by using fenretinide-loaded liposomes against neuroectodermal-derived tumors, such as melanoma, in adults, and neuroblastoma, the most common extra-cranial solid tumor of childhood, will be discussed.
Collapse
|
29
|
Hossain MS, Quadery Tonmoy MI, Islam MN, Islam MS, Afif IK, Singha Roy A, Fariha A, Al Reza H, Bahadur NM, Rahaman MM. MicroRNAs expression analysis shows key affirmation of Synaptopodin-2 as a novel prognostic and therapeutic biomarker for colorectal and cervical cancers. Heliyon 2021; 7:e07347. [PMID: 34195444 PMCID: PMC8239731 DOI: 10.1016/j.heliyon.2021.e07347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/30/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs play a crucial role in tumorigenesis, tumor progression, and metastasis, and thus they contribute in development of different malignancies including cervical cancer (CC) and colorectal cancer (CRC). Through integrated strategies of computational biology, this study aims to identify prognostic biomarkers responsible for CRC and CC prognosis, and potential therapeutic agents to halt the progression of these cancers. Expression analysis of miRNA datasets of CRC and CC identified 17 differentially expressed miRNAs (DEMs). SYNPO2, NEGR1, FGF7, LIFR, RUNX1T1, CFL2, BNC2, EPHB2, PMAIP1, and CDC25A differentially expressed genes (DEGs) regulated by these DEMs were classified as candidate genes responsible for CRC and CC. Down-regulation of Synaptopodin-2 (SYNPO2) is involved in emergence and progression of these cancers by activating ER, PI3K/AKT, and EMT pathways as well as by suppressing DNA damage response, and cell cycle pathways. Higher methylation rate in promoter region of SYNPO2 could be a possible reason for lowering the expression of SYNPO2 in tumor stages. Hence, the lower expression of SYNPO2 is associated with poor prognosis of CRC and CC and could function as prognostic biomarker and therapeutic target. Fourteen transcription factors were recognized which can activate/inhibit the transcription of SYNPO2 and may be a potential target to regulate expression of SYNPO2 in CRC and CC. Retinoic acid and Estradiol were identified as putative therapeutic drugs for CRC and CC patients. This study will thus help in understanding the underlying molecular events in CRC and CC that may improve the detection of malignant lesions in primary screening and will broaden the clinical applications.
Collapse
Affiliation(s)
- Md. Shahadat Hossain
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Md. Nur Islam
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Sajedul Islam
- Department of Biochemistry & Biotechnology, University of Barishal, Barishal, Bangladesh
| | - Ibrahim Khalil Afif
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Arpita Singha Roy
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Atqiya Fariha
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Hasan Al Reza
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | |
Collapse
|
30
|
Epithelium-specific ETS transcription factor-1 regulates NANOG expression and inhibits NANOG-induced proliferation of human embryonic carcinoma cells. Biochimie 2021; 186:33-42. [PMID: 33865902 DOI: 10.1016/j.biochi.2021.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/16/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022]
Abstract
The epithelium-specific ETS transcription factor-1 (ESE-1) plays multiple roles in pathogenesis and normal development of epithelial tissues. NANOG, a key mediator of stem cell self-renewal and pluripotency, is also expressed in various cancers and pluripotent cells. In this study, we investigated how ESE-1 influences NANOG expression and NANOG-induced proliferation in human germ cell-derived embryonic carcinoma NCCIT cells. Endogenous ESE-1 expression in NCCIT cells significantly increased during differentiation, whereas NANOG expression decreased. In addition, NANOG expression was downregulated by exogenous overexpression of ESE-1, and increased by shRNA-mediated knockdown of ESE-1. NANOG transcriptional activity was reduced by dose-dependent ESE-1 overexpression and a putative ESE-1 binding site (EBS) was mapped within conserved region 2. Site-directed mutagenesis of the putative EBS abrogated the repressive effect of ESE-1 on NANOG promoter activity. ESE-1 directly interacted with the putative EBS to regulate transcriptional activity of NANOG. Furthermore, NANOG-induced proliferation and colony formation of NCCIT cells were inhibited by ESE-1 overexpression and stimulated by ESE-1 shRNA-mediated knockdown. Altogether, our results suggest that ESE-1 exerts an anti-proliferative effect on NCCIT cells by acting as a novel transcriptional repressor of NANOG.
Collapse
|
31
|
Lenz M, Kruse P, Eichler A, Straehle J, Beck J, Deller T, Vlachos A. All-trans retinoic acid induces synaptic plasticity in human cortical neurons. eLife 2021; 10:e63026. [PMID: 33781382 PMCID: PMC8009674 DOI: 10.7554/elife.63026] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
A defining feature of the brain is the ability of its synaptic contacts to adapt structurally and functionally in an experience-dependent manner. In the human cortex, however, direct experimental evidence for coordinated structural and functional synaptic adaptation is currently lacking. Here, we probed synaptic plasticity in human cortical slices using the vitamin A derivative all-trans retinoic acid (atRA), a putative treatment for neuropsychiatric disorders such as Alzheimer's disease. Our experiments demonstrated that the excitatory synapses of superficial (layer 2/3) pyramidal neurons underwent coordinated structural and functional changes in the presence of atRA. These synaptic adaptations were accompanied by ultrastructural remodeling of the calcium-storing spine apparatus organelle and required mRNA translation. It was not observed in synaptopodin-deficient mice, which lack spine apparatus organelles. We conclude that atRA is a potent mediator of synaptic plasticity in the adult human cortex.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburg im BreisgauGermany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburg im BreisgauGermany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburg im BreisgauGermany
| | - Jakob Straehle
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of FreiburgFreiburg im BreisgauGermany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of FreiburgFreiburg im BreisgauGermany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of FreiburgFreiburg im BreisgauGermany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University FrankfurtFreiburg im BreisgauGermany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburg im BreisgauGermany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of FreiburgFreiburg im BreisgauGermany
- Center Brain Links Brain Tools, University of FreiburgFreiburg im BreisgauGermany
| |
Collapse
|
32
|
Tratnjek L, Jeruc J, Romih R, Zupančič D. Vitamin A and Retinoids in Bladder Cancer Chemoprevention and Treatment: A Narrative Review of Current Evidence, Challenges and Future Prospects. Int J Mol Sci 2021; 22:3510. [PMID: 33805295 PMCID: PMC8036787 DOI: 10.3390/ijms22073510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bladder cancer (BC) is the tenth most common cancer worldwide with a high recurrence rate, morbidity and mortality. Therefore, chemoprevention and improved treatment of BC are of paramount importance. Epidemiological studies suggest that adequate vitamin A intake may be associated with reduced BC risk. In addition, retinoids, natural and synthetic derivatives of vitamin A, are intensively studied in cancer research due to their antioxidant properties and their ability to regulate cell growth, differentiation, and apoptosis. Findings from in vivo and in vitro models of BC show great potential for the use of retinoids in the chemoprevention and treatment of BC. However, translation to the clinical practice is limited. In this narrative review we discuss: (i) vitamin A and retinoid metabolism and retinoic acid signalling, (ii) the pathobiology of BC and the need for chemoprevention, (iii) the epidemiological evidence for the role of dietary vitamin A in BC, (iv) mechanistic insights obtained from in vivo and in vitro models, (v) clinical trials of retinoids and the limitations of retinoid use, (vi) novel systems of retinoid delivery, and (vii) components of retinoid signalling pathways as potential novel therapeutic targets.
Collapse
Affiliation(s)
- Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.T.); (R.R.)
| | - Jera Jeruc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.T.); (R.R.)
| | - Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.T.); (R.R.)
| |
Collapse
|
33
|
Differentiating Neuroblastoma: A Systematic Review of the Retinoic Acid, Its Derivatives, and Synergistic Interactions. J Pers Med 2021; 11:jpm11030211. [PMID: 33809565 PMCID: PMC7999600 DOI: 10.3390/jpm11030211] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
A neuroblastoma (NB) is a solid paediatric tumour arising from undifferentiated neuronal cells. Despite the recent advances in disease management and treatment, it remains one of the leading causes of childhood cancer deaths, thereby necessitating the development of new therapeutic agents and regimens. Retinoic acid (RA), a vitamin A derivative, is a promising agent that can induce differentiation in NB cells. Its isoform, 13-cis RA or isotretinoin, is used in NB therapy; however, its effectiveness is limited to treating a minimal residual disease as maintenance therapy. As such, research focuses on RA derivatives that might increase the anti-NB action or explores the potential synergy between RA and other classes of drugs, such as cellular processes mediators, epigenetic modifiers, and immune modulators. This review summarises the in vitro, in vivo, and clinical data of RA, its derivatives, and synergising compounds, thereby establishing the most promising RA derivatives and combinations of RA for further investigation.
Collapse
|
34
|
All-trans retinoic acid and protein kinase C α/β1 inhibitor combined treatment targets cancer stem cells and impairs breast tumor progression. Sci Rep 2021; 11:6044. [PMID: 33723318 PMCID: PMC7961031 DOI: 10.1038/s41598-021-85344-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 02/28/2021] [Indexed: 01/08/2023] Open
Abstract
Breast cancer is the leading cause of cancer death among women worldwide. Blocking a single signaling pathway is often an ineffective therapy, especially in the case of aggressive or drug-resistant tumors. Since we have previously described the mechanism involved in the crosstalk between Retinoic Acid system and protein kinase C (PKC) pathway, the rationale of our study was to evaluate the effect of combining all-trans-retinoic acid (ATRA) with a classical PCK inhibitor (Gö6976) in preclinical settings. Employing hormone-independent mammary cancer models, Gö6976 and ATRA combined treatment induced a synergistic reduction in proliferative potential that correlated with an increased apoptosis and RARs modulation towards an anti-oncogenic profile. Combined treatment also impairs growth, self-renewal and clonogenicity potential of cancer stem cells and reduced tumor growth, metastatic spread and cancer stem cells frequency in vivo. An in-silico analysis of “Kaplan–Meier plotter” database indicated that low PKCα together with high RARα mRNA expression is a favorable prognosis factor for hormone-independent breast cancer patients. Here we demonstrate that a classical PKC inhibitor potentiates ATRA antitumor effects also targeting cancer stem cells growth, self-renewal and frequency.
Collapse
|
35
|
Zolghadr F, Bakhshinejad B, Davuchbabny S, Sarrafpour B, Seyedasli N. Critical regulatory levels in tumor differentiation: Signaling pathways, epigenetics and non-coding transcripts. Bioessays 2021; 43:e2000190. [PMID: 33644880 DOI: 10.1002/bies.202000190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/07/2022]
Abstract
Approaches to induce tumor differentiation often result in manageable and therapy-naïve cellular states in cancer cells. This transformation is achieved by activating pathways that drive tumor cells away from plasticity, a state that commonly correlates with enhanced aggression, metastasis and resistance to therapy. Here, we discuss signaling pathways, epigenetics and non-coding RNAs as three main regulatory levels with the potential to drive tumor differentiation and hence as potential targets in differentiation therapy approaches. The success of an effective therapeutic regimen in one cancer, however, does not necessarily sustain across cancer types; a phenomenon largely resulting from heterogeneity in the genetic and physiological landscapes of tumor types necessitating an approach designed for each cancer's unique genetic and phenotypic build-up.
Collapse
Affiliation(s)
- Fatemeh Zolghadr
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sapir Davuchbabny
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Babak Sarrafpour
- School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Naisana Seyedasli
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia.,The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| |
Collapse
|
36
|
Sunami Y, Böker V, Kleeff J. Targeting and Reprograming Cancer-Associated Fibroblasts and the Tumor Microenvironment in Pancreatic Cancer. Cancers (Basel) 2021; 13:697. [PMID: 33572223 PMCID: PMC7915918 DOI: 10.3390/cancers13040697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer deaths in the United States both in female and male, and is projected to become the second deadliest cancer by 2030. The overall five-year survival rate remains at around 10%. Pancreatic cancer exhibits a remarkable resistance to established therapeutic options such as chemotherapy and radiotherapy, due to dense stromal tumor microenvironment. Cancer-associated fibroblasts are the major stromal cell type and source of extracellular matrix proteins shaping a physical and metabolic barrier thereby reducing therapeutic efficacy. Targeting cancer-associated fibroblasts has been considered a promising therapeutic strategy. However, depleting cancer-associated fibroblasts may also have tumor-promoting effects due to their functional heterogeneity. Several subtypes of cancer-associated fibroblasts have been suggested to exhibit tumor-restraining function. This review article summarizes recent preclinical and clinical investigations addressing pancreatic cancer therapy through targeting specific subtypes of cancer-associated fibroblasts, deprogramming activated fibroblasts, administration of mesenchymal stem cells, as well as reprogramming tumor-promoting cancer-associated fibroblasts to tumor-restraining cancer-associated fibroblasts. Further, inter-cellular mediators between cancer-associated fibroblasts and the surrounding tissue microenvironment are discussed. It is important to increase our understanding of cancer-associated fibroblast heterogeneity and the tumor microenvironment for more specific and personalized therapies for pancreatic cancer patients in the future.
Collapse
Affiliation(s)
- Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle, Germany; (V.B.); (J.K.)
| | | | | |
Collapse
|
37
|
Abstract
Knowledge of the role of HOX proteins in cancer has been steadily accumulating in the last 25 years. They are encoded by 39 HOX genes arranged in 4 distinct clusters, and have unique and redundant function in all types of cancers. Many HOX genes behave as oncogenic transcriptional factors regulating multiple pathways that are critical to malignant progression in a variety of tumors. Some HOX proteins have dual roles that are tumor-site specific, displaying both oncogenic and tumor suppressor function. The focus of this review is on how HOX proteins contribute to growth or suppression of metastasis. The review will cover HOX protein function in the critical aspects of epithelial-mesenchymal transition, in cancer stem cell sustenance and in therapy resistance, manifested as distant metastasis. The emerging role of adiposity in both initiation and progression of metastasis is described. Defining the role of HOX genes in the metastatic process has identified candidates for targeted cancer therapies that may combat the metastatic process. We will discuss potential therapeutic opportunities, particularly in pathways influenced by HOX proteins.
Collapse
|
38
|
Abdelaal MR, Soror SH, Elnagar MR, Haffez H. Revealing the Potential Application of EC-Synthetic Retinoid Analogues in Anticancer Therapy. Molecules 2021; 26:506. [PMID: 33477997 PMCID: PMC7835894 DOI: 10.3390/molecules26020506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background and Aim: All-trans retinoic acid (ATRA) induces differentiation and inhibits growth of many cancer cells. However, resistance develops rapidly prompting the urgent need for new synthetic and potent derivatives. EC19 and EC23 are two synthetic retinoids with potent stem cell neuro-differentiation activity. Here, these compounds were screened for their in vitro antiproliferative and cytotoxic activity using an array of different cancer cell lines. (2) Methods: MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, AV/PI (annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI)), cell cycle analysis, immunocytochemistry, gene expression analysis, Western blotting, measurement of glutamate and total antioxidant concentrations were recruited. (3) Results: HepG2, Caco-2, and MCF-7 were the most sensitive cell lines; HepG2 (ATRA; 36.2, EC19; 42.2 and EC23; 0.74 µM), Caco-2 (ATRA; 58.0, EC19; 10.8 and EC23; 14.7 µM) and MCF-7 (ATRA; 99.0, EC19; 9.4 and EC23; 5.56 µM). Caco-2 cells were selected for further biochemical investigations. Isobologram analysis revealed the combined synergistic effects with 5-fluorouracil with substantial reduction in IC50. All retinoids induced apoptosis but EC19 had higher potency, with significant cell cycle arrest at subG0-G1, -S and G2/M phases, than ATRA and EC23. Moreover, EC19 reduced cellular metastasis in a transwell invasion assay due to overexpression of E-cadherin, retinoic acid-induced 2 (RAI2) and Werner (WRN) genes. (4) Conclusion: The present study suggests that EC-synthetic retinoids, particularly EC19, can be effective, alone or in combinations, for potential anticancer activity to colorectal cancer. Further in vivo studies are recommended to pave the way for clinical applications.
Collapse
Affiliation(s)
- Mohamed R. Abdelaal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (M.R.A.); (S.H.S.)
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Sameh H. Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (M.R.A.); (S.H.S.)
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Mohamed R. Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt;
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (M.R.A.); (S.H.S.)
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
39
|
Everts HB, Akuailou EN. Retinoids in Cutaneous Squamous Cell Carcinoma. Nutrients 2021; 13:E153. [PMID: 33466372 PMCID: PMC7824907 DOI: 10.3390/nu13010153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Animal studies as early as the 1920s suggested that vitamin A deficiency leads to squamous cell metaplasia in numerous epithelial tissues including the skin. However, humans usually die from vitamin A deficiency before cancers have time to develop. A recent long-term cohort study found that high dietary vitamin A reduced the risk of cutaneous squamous cell carcinoma (cSCC). cSCC is a form of nonmelanoma skin cancer that primarily occurs from excess exposure to ultraviolet light B (UVB). These cancers are expensive to treat and can lead to metastasis and death. Oral synthetic retinoids prevent the reoccurrence of cSCC, but side effects limit their use in chemoprevention. Several proteins involved in vitamin A metabolism and signaling are altered in cSCC, which may lead to retinoid resistance. The expression of vitamin A metabolism proteins may also have prognostic value. This article reviews what is known about natural and synthetic retinoids and their metabolism in cSCC.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX 76209, USA
| | | |
Collapse
|
40
|
Brtko J, Dvorak Z. Natural and synthetic retinoid X receptor ligands and their role in selected nuclear receptor action. Biochimie 2020; 179:157-168. [PMID: 33011201 DOI: 10.1016/j.biochi.2020.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
Important key players in the regulatory machinery within the cells are nuclear retinoid X receptors (RXRs), which compose heterodimers in company with several diverse nuclear receptors, playing a role as ligand inducible transcription factors. In general, nuclear receptors are ligand-activated, transcription-modulating proteins affecting transcriptional responses in target genes. RXR molecules forming permissive heterodimers with disparate nuclear receptors comprise peroxisome proliferator-activated receptors (PPARs), liver X receptors (LXRs), farnesoid X receptor (FXR), pregnane X receptor (PXR) and constitutive androstan receptor (CAR). Retinoid receptors (RARs) and thyroid hormone receptors (TRs) may form conditional heterodimers, and dihydroxyvitamin D3 receptor (VDR) is believed to form nonpermissive heterodimer. Thus, RXRs are the important molecules that are involved in control of many cellular functions in biological processes and diseases, including cancer or diabetes. This article summarizes both naturally occurring and synthetic ligands for nuclear retinoid X receptors and describes, predominantly in mammals, their role in molecular mechanisms within the cells. A focus is also on triorganotin compounds, which are high affinity RXR ligands, and finally, we present an outlook on human microbiota as a potential source of RXR activators. Nevertheless, new synthetic rexinoids with better retinoid X receptor activity and lesser side effects are highly required.
Collapse
Affiliation(s)
- Julius Brtko
- Institute of Experimental Endocrinology, Biomedical Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 11, 783 71, Olomouc, Czech Republic
| |
Collapse
|
41
|
Protein Kinase C Alpha (PKCα) overexpression leads to a better response to retinoid acid therapy through Retinoic Acid Receptor Beta (RARβ) activation in mammary cancer cells. J Cancer Res Clin Oncol 2020; 146:3241-3253. [PMID: 32865619 DOI: 10.1007/s00432-020-03368-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Retinoids have proved to be effective for hematologic malignancies treatment but till nowadays, their use as single agent for the solid tumor's management is still controversial. All-trans retinoic acid (ATRA), the main active metabolite of vitamin A, exerts non-genomic interactions with different members of the protein kinase C (PKC) family, recognized modulators of different tumor progression pathways. To determine whether a group of patients could become benefited employing a retinoid therapy, in this study we have evaluated whether PKCα expression (a poor prognosis marker in breast cancer) could sensitizes mammary cells to ATRA treatment. METHODS PKCα overexpression was achieved by stable transfection and confirmed by western blot. Transfected PKC functionality was determined by nuclear translocation-induction and confocal microscopy. In vitro proliferation was evaluated by cell counting and cell cycle distribution was analyzed by flow cytometry. In vivo studies were performed to evaluate orthotopic tumor growth and experimental lung colonization. Retinoic acid response elements (RARE) and AP1 sites-dependent activity was studied by gene reporter assays and retinoic acid receptors (RARs) were measured by RT-qPCR. RESULTS Our findings suggest that high PKCα levels improve the differentiation response to ATRA in a RAR signaling-dependent manner. Moreover, RARβ expression appears to be critical to induce ATRA sensitization, throughout AP1 trans-repression. CONCLUSION Here we propose that retinoids could lead a highly personalized anticancer treatment, bringing benefits to patients with aggressive breast tumors resulting from high PKCα expression but, an adequate expression of the RARβ receptor is required to ensure the effect on this process.
Collapse
|
42
|
Maeshima R, Moulding D, Stoker AW, Hart SL. MYCN Silencing by RNAi Induces Neurogenesis and Suppresses Proliferation in Models of Neuroblastoma with Resistance to Retinoic Acid. Nucleic Acid Ther 2020; 30:237-248. [PMID: 32240058 PMCID: PMC7415885 DOI: 10.1089/nat.2019.0831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is the most common solid tumor in childhood. Twenty percent of patients display MYCN amplification, which indicates a very poor prognosis. MYCN is a highly specific target for an NB tumor therapy as MYCN expression is absent or very low in most normal cells, while, as a transcription factor, it regulates many essential cell activities in tumor cells. We aim to develop a therapy for NB based on MYCN silencing by short interfering RNA (siRNA) molecules, which can silence target genes by RNA interference (RNAi), a naturally occurring method of gene silencing. It has been shown previously that MYCN silencing can induce apoptosis and differentiation in MYCN amplified NB. In this article, we have demonstrated that siRNA-mediated silencing of MYCN in MYCN-amplified NB cells induced neurogenesis in NB cells, whereas retinoic acid (RA) treatment did not. RA can differentiate NB cells and is used for treatment of residual disease after surgery or chemotherapy, but resistance can develop. In addition, MYCN siRNA treatment suppressed growth in a MYCN-amplified NB cell line more than that by RA. Our result suggests that gene therapy using RNAi targeting MYCN can be a novel therapy toward MYCN-amplified NB that have complete or partial resistance toward RA.
Collapse
Affiliation(s)
- Ruhina Maeshima
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Dale Moulding
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Andrew W. Stoker
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Stephen L. Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
43
|
The RBP1-CKAP4 axis activates oncogenic autophagy and promotes cancer progression in oral squamous cell carcinoma. Cell Death Dis 2020; 11:488. [PMID: 32587255 PMCID: PMC7316825 DOI: 10.1038/s41419-020-2693-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/02/2022]
Abstract
Retinol-binding protein 1 (RBP1) is involved in several physiological functions, including the regulation of the metabolism and retinol transport. Studies have shown that it plays an important role in the pathogenesis of several types of cancer. However, the role of RBP1 and its correlation with autophagy in oral squamous cell carcinoma (OSCC) pathogenesis remain unknown. In this study, RBP1 was identified as the most significantly upregulated DEPs with a >2-fold change in OSCC samples when compared to normal tissues through iTRAQ-based proteomics analysis coupled with 2D LC–MS/MS. RBP1 overexpression was significantly associated with malignant phenotypes (differentiation, TNM stage, and lymphatic metastasis) of OSCC. In vitro experiments demonstrated that RBP1 was significantly increased in OSCC tissues and cell lines compared with control group. RBP1 overexpression promoted cell growth, migration, and invasion of OSCC cells. Silencing of RBP1 suppressed tumor formation in xenografted mice. We further demonstrated that the RBP1–CKAP4 axis was a critical regulator of the autophagic machinery in OSCC, inactivation of autophagy rescued the RBP1–CKAP4-mediated malignant biological behaviors of OSCC cells. Overall, a mechanistic link was provided by RBP1–CKAP4 between primary oncogenic features and the induction of autophagy, which may provide a potential therapeutic target that warrants further investigation for treatment of OSCC.
Collapse
|
44
|
Abstract
Retinoic acid (RA), the biologically active metabolite of vitamin A, regulates a vast spectrum of biological processes, such as cell differentiation, proliferation, apoptosis, and morphogenesis. microRNAs (miRNAs) play a crucial role in regulating gene expression by binding to messenger RNA (mRNA) which leads to mRNA degradation and/or translational repression. Like RA, miRNAs regulate multiple biological processes, including proliferation, differentiation, apoptosis, neurogenesis, tumorigenesis, and immunity. In fact, RA regulates the expression of many miRNAs to exert its biological functions. miRNA and RA regulatory networks have been studied in recent years. In this manuscript, we summarize literature that highlights the impact of miRNAs in RA-regulated molecular networks included in the PubMed.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, United States
| | - Atharva Piyush Rohatgi
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, United States
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, United States.
| |
Collapse
|
45
|
Rahmati M, Johari B, Kadivar M, Rismani E, Mortazavi Y. Suppressing the metastatic properties of the breast cancer cells using STAT3 decoy oligodeoxynucleotides: A promising approach for eradication of cancer cells by differentiation therapy. J Cell Physiol 2020; 235:5429-5444. [PMID: 31912904 DOI: 10.1002/jcp.29431] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Abstract
Due to the presence of cancer stem cells (CSCs), breast cancer often relapsed after conventional therapies. Strategies that induce differentiation of CSCs will be helpful in eradication of tumor cells, so we designed an oligodeoxynucleotide (ODNs) for targeting of signal transducer and activator of transcription 3 (STAT3) transcription factor which is involved in stemness, and constitutively activated in triple-negative breast cancer. Molecular docking and electrophoretic mobility shift assay analysis showed that decoy ODN bound specifically to the DNA binding site of STAT3 protein. The prevalent uptake of Cy3-labeled ODNs is in the cytoplasm and the nucleus of MDA-MB-231 treated cells. STAT3 decoy ODNs treatment showed cell growth inhibition by decreasing cell viability (17%), increasing the percentage of arrested cells in G0/G1 phases (18%), and triggering apoptosis (29%). Migration and invasion potential decreased from 10.77 to 6.76 µm/hr, by wound closure rate, and migrated/invaded percentage by 26.4% and 15.4% in the transwell assays, respectively. CD44 protein expression level on the cell surface also decreased, while CD24 increased. Mammosphere formation efficiency reduced in terms of tumorsphere size by 47%, while the required time increased. Cells morphology was changed, and lipid droplets were accumulated in the cytoplasm compared to the control and scrambled groups, in all assays (repeated triplicate). Furthermore, the gene expression of all downstream targets significantly decreased owing to suppressing the STAT3 transcription factor. Overall, the results confirmed the antitumor effects of STAT3 decoy in MDA-MB-231 cells. Thus, it seems that STAT3 decoy ODNs might be considered as an auxiliary tool for breast cancer eradicating by the differentiation therapy approach.
Collapse
Affiliation(s)
- Mohammad Rahmati
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Rismani
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Yousef Mortazavi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
46
|
Wang C, Li H, Ma P, Sun J, Li L, Wei J, Tao L, Qian K. The third-generation retinoid adapalene triggered DNA damage to induce S-phase arrest in HaCat cells. Fundam Clin Pharmacol 2019; 34:380-388. [PMID: 31808972 DOI: 10.1111/fcp.12527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/07/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Epidermal proliferative diseases consisted of a series of common skin diseases, most of which were recurrent chronic skin diseases, and had greatly negative influence on the life quality of patient. Retinoids exhibited vital roles in the treatment of many skin diseases. Our recent study demonstrated that adapalene significantly inhibited the growth of HaCat cells, and the inhibitory activity was stronger than other retinoids, such as all-trans-retinoic acid, acitretin, isotretinoin, tazarotene, and bexarotene. Further study showed that adapalene suppressed the colony formation of HaCat cells, and it dramatically triggered S-phase arrest and apoptosis, rather than G1 phase arrest which was reported in other retinoids in several studies. Additionally, adapalene treatment greatly upregulated the protein expression of DNA damage marker γ-H2AX, which was in accord with the results of the elongation of tail moment by comet electrophoresis analysis. Moreover, DNA damage was triggered and DNA repair was suppressed synchronously with adapalene treatment, which accounted for the mechanism of S-phase arrest induced by adapalene. In summary, our recent work demonstrated that adapalene showed strong anti-proliferation activity in HaCat cells and could be an alternative agent for the epidermal proliferative disease.
Collapse
Affiliation(s)
- Cheng Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China
| | - Hongyang Li
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China
| | - Pengcheng Ma
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China
| | - Jianfang Sun
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China
| | - Lingjun Li
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China
| | - Jun Wei
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China
| | - Lei Tao
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China
| | - Kun Qian
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China
| |
Collapse
|
47
|
Veselska R, Jezova M, Kyr M, Mazanek P, Chlapek P, Dobrotkova V, Sterba J. Comparative Analysis of Putative Prognostic and Predictive Markers in Neuroblastomas: High Expression of PBX1 Is Associated With a Poor Response to Induction Therapy. Front Oncol 2019; 9:1221. [PMID: 31803613 PMCID: PMC6872531 DOI: 10.3389/fonc.2019.01221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
The survival rate for patients with high-risk neuroblastomas remains poor despite new improvements in available therapeutic modalities. A detailed understanding of the mechanisms underlying clinical responses to multimodal treatment is one of the important aspects that may provide precision in the prediction of a patient's clinical outcome. Our study was designed as a detailed comparative analysis of five selected proteins (DDX39A, HMGA1, HOXC9, NF1, and PBX1) in one cohort of patients using the same methodical approaches. These proteins were already reported separately as related to the resistance or sensitivity to retinoids and as useful prognostic markers of survival probability. In the cohort of 19 patients suffering from high-risk neuroblastomas, we analyzed initial immunohistochemistry samples obtained by diagnostic biopsy and post-induction samples taken after the end of induction therapy. The expression of DDX39A, HMGA1, HOXC9, and NF1 showed varied patterns with almost no differences between responders and non-responders. Nevertheless, we found very interesting results for PBX1: non-responders had significantly higher expression levels of this protein in the initial tumor samples when compared with responders; this expression pattern changed inversely in the post-induction samples, and this change was also statistically significant. Moreover, our results from survival analyses reveal the prognostic value of PBX1, NF1, and HOXC9 expression in neuroblastoma tissue. In addition to the prognostic importance of PBX1, NF1, and HOXC9 proteins, our results demonstrated that PBX1 could be used for the prediction of the clinical response to induction chemotherapy in patients suffering from high-risk neuroblastoma.
Collapse
Affiliation(s)
- Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Marta Jezova
- Department of Pathology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czechia
| | - Michal Kyr
- Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Pavel Mazanek
- Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czechia
| | - Petr Chlapek
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Viera Dobrotkova
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jaroslav Sterba
- Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
48
|
Dobrotkova V, Chlapek P, Jezova M, Adamkova K, Mazanek P, Sterba J, Veselska R. Prediction of neuroblastoma cell response to treatment with natural or synthetic retinoids using selected protein biomarkers. PLoS One 2019; 14:e0218269. [PMID: 31188873 PMCID: PMC6561640 DOI: 10.1371/journal.pone.0218269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/29/2019] [Indexed: 01/20/2023] Open
Abstract
Although the administration of retinoids represents an important part of treatment for children suffering from high-risk neuroblastomas, approximately 50% of these patients do not respond to this therapy or develop resistance to retinoids during treatment. Our study focused on the comparative analysis of the expression of five genes and corresponding proteins (DDX39A, HMGA1, HMGA2, HOXC9 and PBX1) that have recently been discussed as possible predictive biomarkers of clinical response to retinoid differentiation therapy. Expression of these five candidate biomarkers was evaluated at both the mRNA and protein level in the same subset of 8 neuroblastoma cell lines after treatment with natural or synthetic retinoids. We found that the cell lines that were HMGA2-positive and/or HOXC9-negative have a reduced sensitivity to retinoids. Furthermore, the experiments revealed that the retinoid-sensitive cell lines showed a uniform pattern of change after treatment with both natural and sensitive retinoids: increased DDX39A and decreased PBX1 protein levels. Our results showed that in NBL cells, these putative protein biomarkers are associated with sensitivity or resistance to retinoids, and their endogenous or induced expression can distinguish between these two phenotypes.
Collapse
Affiliation(s)
- Viera Dobrotkova
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska, Czech Republic
| | - Petr Chlapek
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska, Czech Republic
| | - Marta Jezova
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavska, Czech Republic
| | - Katerina Adamkova
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska, Czech Republic
| | - Pavel Mazanek
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni, Czech Republic
| | - Jaroslav Sterba
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska, Czech Republic
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni, Czech Republic
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska, Czech Republic
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni, Czech Republic
| |
Collapse
|
49
|
The Role of Tissue Transglutaminase in Cancer Cell Initiation, Survival and Progression. Med Sci (Basel) 2019; 7:medsci7020019. [PMID: 30691081 PMCID: PMC6409630 DOI: 10.3390/medsci7020019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022] Open
Abstract
Tissue transglutaminase (transglutaminase type 2; TG2) is the most ubiquitously expressed member of the transglutaminase family (EC 2.3.2.13) that catalyzes specific post-translational modifications of proteins through a calcium-dependent acyl-transfer reaction (transamidation). In addition, this enzyme displays multiple additional enzymatic activities, such as guanine nucleotide binding and hydrolysis, protein kinase, disulfide isomerase activities, and is involved in cell adhesion. Transglutaminase 2 has been reported as one of key enzymes that is involved in all stages of carcinogenesis; the molecular mechanisms of action and physiopathological effects depend on its expression or activities, cellular localization, and specific cancer model. Since it has been reported as both a potential tumor suppressor and a tumor-promoting factor, the role of this enzyme in cancer is still controversial. Indeed, TG2 overexpression has been frequently associated with cancer stem cells’ survival, inflammation, metastatic spread, and drug resistance. On the other hand, the use of inducers of TG2 transamidating activity seems to inhibit tumor cell plasticity and invasion. This review covers the extensive and rapidly growing field of the role of TG2 in cancer stem cells survival and epithelial–mesenchymal transition, apoptosis and differentiation, and formation of aggressive metastatic phenotypes.
Collapse
|