1
|
Xiong H, Zhou S, Zhang X, Sun J, Xue Y, Lei J, Feng H, Zhou Y, Hu Y, Hsia KJ, Wan H, Pan Y, Wang P. Integrated breath volatolomics and metabolomics analyses reveals novel biomarker panels for the diagnosis of chronic obstructive pulmonary disease. Talanta 2025; 293:128013. [PMID: 40220378 DOI: 10.1016/j.talanta.2025.128013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/14/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a major public health challenge, underscoring the need for reliable diagnostic biomarkers. Breath analysis has emerged as a rapid, convenient, and non-invasive diagnostic approach for various diseases. This study aimed to identify potential breath biomarkers associated with COPD using mass spectrometry and bioinformatic analysis. Breath volatile organic compounds (VOCs) and exhaled breath condensate (EBC) were collected from 75 participants, including COPD patients and healthy controls (HC). Untargeted volatolomics and metabolomics analyses identified 150 VOCs and 436 metabolites. Differentially expressed VOCs and metabolites between the COPD and HC groups were identified. LASSO logistic classification models were constructed and optimized based on differentially expressed VOCs, metabolites, and their combined data. The optimized diagnostic model, incorporating 4 VOCs and 3 metabolites, achieved superior performance with an area under the curve (AUC) of 0.97, sensitivity of 0.86, specificity of 0.89, and an accuracy of 0.88 in distinguishing COPD patients from healthy individuals. This study highlights the potential of breath analysis as a non-invasive approach for point-of-care COPD diagnosis and identifies a robust panel of VOCs and metabolites for this purpose. Further research is needed to investigate the underlying mechanisms of these biomarkers and to develop highly specific biosensors for non-invasive breath diagnosis of COPD.
Collapse
Affiliation(s)
- Hangming Xiong
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Shiwen Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xiaojing Zhang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jiaying Sun
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yingying Xue
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jinhong Lei
- Wenchao Community Health Service Center, Hangzhou, 310027, China
| | - Hongru Feng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yong Zhou
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310027, China
| | - Yanjie Hu
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310027, China
| | - K Jimmy Hsia
- Schools of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; Schools of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore, 639798, Singapore; Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Shimizu Y, Horibata Y, Domae M, Nakamura Y, Yokoyama T, Arai R, Shiobara T, Takemasa A, Koike R, Uchida N, Masawa M, Tei R, Watanabe T, Morita H, Miyoshi M, Soda S, Niho S, Igami K, Sugimoto H. Dysregulated metabolic pathways of pulmonary fibrosis and the lipids associated with the effects of nintedanib therapy. Respir Res 2025; 26:166. [PMID: 40296094 PMCID: PMC12038997 DOI: 10.1186/s12931-025-03239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a disease with a poor prognosis, and its pathogenesis is not fully understood. Identifying dysregulation of lipid metabolism in PF may provide insight and promote the development of novel therapies. The present study was designed to clarify the dysregulated lipid pathways and identify lipids correlated with treatment response. METHODS This research comprised two prospective cohort studies. Study 1 aimed to identify dysregulated metabolic pathways and lipids in the peripheral blood of PF patients, compared with healthy control (HC) subjects. Study 2 aimed to identify lipids associated with the decline in % forced vital capacity (%FVC) and survival in PF patients treated with the anti-fibrotic drug, nintedanib. As a preliminary ancillary experiment, we attempted to identify the lipids associated with endothelial cells and fibroblasts. RESULTS In Study 1, 38 lipids were identified that differed between the PF (n = 66) and HC (n = 63) groups. Compared with the HC subjects, phosphatidylcholine (PC) 36:5 was the most up-regulated and lysophosphatidylcholine (LPC) 18:0 was the most down-regulated in PF patients. Glycerophospholipid metabolism was the most enriched pathway. Plasmenyl phosphatidylethanolamine (pPE) and plasmanyl phosphatidylcholine (pPC) were determined to be endothelial-related lipids, and phosphatidylethanolamine (PE) were fibroblast-related lipids in PF. In Study 2, 10 lipids were identified that differed between the absolute decline in %FVC < 2.5% group (6 M responders, n = 14) and the decline in %FVC > 2.5% group (6 M non-responders, n = 6) after 6 M of nintedanib therapy, and 6 lipids were identified that differed between the absolute decline in %FVC < 5% group (12 M responders, n = 15) and the decline in %FVC > 5% group (12 M non-responders, n = 5) after 12 M of nintedanib therapy. Four lipids were consistently detected at 6 M and 12 M, and among them, higher levels of pPE 18:0p/22:6 at 6 M showed a poorer prognosis for 24 M survival (p < 0.05, HR = 6.547, 95% CI = 1.471-29.13). Under nintedanib therapy, pPE species were correlated with progressive fibrosis, and pPE 18:0p/22:6 was considered an endothelial-related lipid. CONCLUSIONS Lipidomic profiling revealed distinct pathways in PF patients. pPE species were strongly associated with the responses to nintedanib therapy. Targeting the lipids or catabolic enzymes involved in dysregulated pathways has the potential to ameliorate PF. TRIAL REGISTRATION Registry for UMIN, Lipidomic analysis on plasma in idiopathic pulmonary fibrosis patients. Trial registry number, UMIN000020872. Registered 3 February 2016, https://center6.umin.ac.jp/cgiopenbin/ctr/index.cgi .
Collapse
Affiliation(s)
- Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan.
| | | | - Mariko Domae
- Department of Biochemistry, Mibu, Tochigi, 321-0293, Japan
| | - Yusuke Nakamura
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Tatsuya Yokoyama
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Ryo Arai
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Taichi Shiobara
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Akihiro Takemasa
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Ryosuke Koike
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Nobuhiko Uchida
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Meitetsu Masawa
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Rinna Tei
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Taiji Watanabe
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Hiroko Morita
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Masaaki Miyoshi
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Sayo Soda
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Seiji Niho
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Ko Igami
- Kyushu Pro Search Limited Liability Partnership, 4-1, Kyudaishinmachi, Nishi-ku, Fukuoka, 819-0388, Japan
| | | |
Collapse
|
3
|
Huang X, Liu B, Shen S. Lipid Metabolism in Breast Cancer: From Basic Research to Clinical Application. Cancers (Basel) 2025; 17:650. [PMID: 40002245 PMCID: PMC11852908 DOI: 10.3390/cancers17040650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Breast cancer remains the most prevalent cancer among women globally, with significant links to obesity and lipid metabolism abnormalities. This review examines the role of lipid metabolism in breast cancer progression, highlighting its multifaceted contributions to tumor biology. We discuss key metabolic processes, including fatty acid metabolism, triglyceride metabolism, phospholipid metabolism, and cholesterol metabolism, detailing the reprogramming that occurs in these pathways within breast cancer cells. Alterations in lipid metabolism are emphasized for their roles in supporting energy production, membrane biogenesis, and tumor aggressiveness. Furthermore, we examine how lipid metabolism influences immune responses in the tumor microenvironment, affecting immune cell function and therapeutic efficacy. The potential of lipid metabolism as a target for novel therapeutic strategies is also addressed, with a focus on inhibitors of key metabolic enzymes. By integrating lipid metabolism with breast cancer research, this review underscores the importance of lipid metabolism in understanding breast cancer biology and developing treatment approaches aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Xiangyu Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bowen Liu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
| | - Songjie Shen
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
- Ambulatory Medical Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China
| |
Collapse
|
4
|
Zhao Y, Shi Y, Zhang J, Zhang H, Wang Z, Wu S, Zhang M, Liu M, Ye X, Gu H, Jiang C, Ye X, Zhu H, Li Q, Huang X, Cao M. The potential lipid biomarker 5-HETE for acute exacerbation identified by metabolomics in patients with idiopathic pulmonary fibrosis. Respirology 2025; 30:158-167. [PMID: 39681341 DOI: 10.1111/resp.14866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND AND OBJECTIVE Acute exacerbation (AE) is often the fatal complication of idiopathic pulmonary fibrosis (IPF). Emerging evidence indicates that metabolic reprogramming and dysregulation of lipid metabolism are distinctive characteristics of IPF. However, the lipid metabolic mechanisms that underlie the pathophysiology of AE-IPF remain elusive. METHODS Serum samples for pilot study were collected from 34 Controls, 37 stable IPF (S-IPF) cases and 41 AE-IPF patients. UHPLC-MS/MS was utilized to investigate metabolic variations and identify lipid biomarkers in serum. ELISA, quantitative PCR and western blot were employed to validate the identified biomarkers. RESULTS There were 32 lipid metabolites and 5 lipid metabolism pathways enriched in all IPF patients compared to Controls. In AE-IPF versus S-IPF, 19 lipid metabolites and 12 pathways were identified, with 5-hydroxyeicosatetraenoic Acid (5-HETE) significantly elevated in AE-IPF. Both in internal and external validation cohorts, the serum levels of 5-HETE were significantly elevated in AE-IPF patients compared to S-IPF subjects. Consequently, the indicators related to 5-HETE in lipid metabolic pathway were significantly changed in AE-IPF patients compared with S-IPF cases in the lung tissues. The serum level of 5-HETE was significantly correlated with the disease severity (CT score and PaO2/FiO2 ratio) and survival time. Importantly, the receiver operating characteristic (ROC) curve, Kaplan-Meier analysis and Multivariate Cox regression analysis demonstrated that 5-HETE represents a promising lipid biomarker for the diagnosis and prognosis of AE-IPF. CONCLUSION Our study highlights lipid reprogramming as a novel therapeutic approach for IPF, and 5-HETE may be a potential biomarker of AE-IPF patients.
Collapse
Affiliation(s)
- Yichao Zhao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanchen Shi
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ji Zhang
- Department of Lung Transplant, The First Affiliated Hospital College of Medicine, Zhejiang University, Hangzhou, China
| | - Huizhe Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zimu Wang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Shufei Wu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingrui Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengying Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xu Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Huimin Gu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Cheng Jiang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoling Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Huihui Zhu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Li
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinmei Huang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Nanjing Institute of Respiratory Diseases, Nanjing, China
| | - Mengshu Cao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Nanjing Institute of Respiratory Diseases, Nanjing, China
| |
Collapse
|
5
|
Chen R, Zhong G, Ji T, Xu Q, Liu H, Xu Q, Chen L, Dai J. Serum cholesterol levels predict the survival in patients with idiopathic pulmonary fibrosis: A long-term follow up study. Respir Med 2025; 237:107937. [PMID: 39743155 DOI: 10.1016/j.rmed.2024.107937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/03/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND The relationship between serum lipid with idiopathic pulmonary fibrosis (IPF) required to be explored. We aim to evaluate the association of serum lipid levels with mortality in patients with IPF. MATERIALS AND METHODS This retrospective study included IPF patients with more than three years follow-up. We collected baseline demographics information, forced vital capacity (FVC)% predicted, carbon monoxide diffusion capacity (DLCO)% predicted, gender-age-physiology (GAP) index, and serum lipid levels, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C). We evaluate the relationship between the serum lipid levels and the disease severity, and the mortality in IPF. RESULTS This study enrolled 146 patients, with the three-year survival rate of 71.23 %. The median follow-up time was 46.5 months. There was no significant difference in baseline lipid levels between the survival and non-survival group. TG levels were positively correlated with DLCO% predicted (r = 0.189, p = 0.022) and negatively correlated with GAP index (r = -0.186, p = 0.025). After adjusting for GAP index, smoking history, body mass index and the use of antifibrotic and lipid-lowering drug, lower TC levels (HR: 0.74, 95 % CI: 0.58-0.94, p = 0.013) were identified as an independent risk factor for mortality. CONCLUSION This study demonstrated that lower TC levels were associated with increased mortality in IPF. More investigations are required to explore the role of lipid metabolism in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ranxun Chen
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guanning Zhong
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tong Ji
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qinghua Xu
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huarui Liu
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qingqing Xu
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lulu Chen
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Sun W, Zhou S, Peng L, Wang W, Liu Y, Wang T, Cheng D, Li Z, Xiong H, Jia X, Lian W, Jiao J, Ni C. Fatty Acid Oxidation-Glycolysis Metabolic Transition Affects ECM Homeostasis in Silica-Induced Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407134. [PMID: 39721015 PMCID: PMC11831484 DOI: 10.1002/advs.202407134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Silicosis is a fatal occupational pulmonary disease that is characterized by irreversible replacement of lung parenchyma by aberrant Exracellular matrix (ECM). Metabolic reprogramming is a crucial mechanism for fibrosis. However, how the metabolic rewiring shifts the ECM homeostasis toward overaccumulation remains unclear. Herein, a phenotype with reduction in fatty acid oxidation (FAO) but enhanced glycolysis in myofibroblasts is shown. Perturbation of the glycolytic and FAO pathways, respectively, reveals distinct roles in the metabolic distribution of ECM deposition and degradation. Suppressed glycolysis leads to a decrease in insoluble ECM, primarily due to the inhibition of ECM-modifying enzyme activity and a decrease in glycine synthesis. Notably, promoted FAO facilitates the intracellular degradation pathway of ECM. In addition, the findings revealed that hypoxia-inducible factor-1 alpha (HIF-1α) serves as a crucial metabolic regulator in the transition from FAO to glycolysis, thereby playing a significant role in ECM deposition in silica-induced pulmonary fibrosis. Further, the promotion of FAO, inhibition of glycolysis and HIF-1α reduce ECM production and promote ECM degradation, ultimately impeding the progression of fibrosis and providing therapeutic relief for established pulmonary fibrosis in vivo. These findings unveil the metabolic rewire underpinning the deposition of ECM in silica-induced lung fibrosis and identify novel targets for promoting regression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Wenqing Sun
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical UniversityWuxi Center for Disease Control and PreventionWuxi Medical CenterNanjing medical universityNanjing211166China
| | - Siyun Zhou
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Lan Peng
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Wei Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical UniversityWuxi Center for Disease Control and PreventionWuxi Medical CenterNanjing medical universityNanjing211166China
| | - Yi Liu
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Ting Wang
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- Department of PathologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Demin Cheng
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Ziwei Li
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Haojie Xiong
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Xinying Jia
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Wenxiu Lian
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Jiandong Jiao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical UniversityWuxi Center for Disease Control and PreventionWuxi Medical CenterNanjing medical universityNanjing211166China
| | - Chunhui Ni
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- Department of Public HealthKangda College of Nanjing Medical UniversityLianyungang320700China
| |
Collapse
|
7
|
Luo Y, Zhou S, Zhang X, Lin Y, Liu J, Cheng W, Zeng Y. The role of the microbiota and metabolites in the treatment of pulmonary fibrosis with UC-MSCs: Integrating fecal metabolomics and 16S rDNA analysis. PLoS One 2025; 20:e0313989. [PMID: 39787138 PMCID: PMC11717254 DOI: 10.1371/journal.pone.0313989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/03/2024] [Indexed: 01/12/2025] Open
Abstract
INTRODUCTION Pulmonary fibrosis (PF) is a chronic and irreversible interstitial lung disease characterized by a lack of effective therapies. Mesenchymal stem cells (MSCs) have garnered significant interest in the realm of lung regeneration due to their abundant availability, ease of isolation, and capacity for expansion. The objective of our study was to investigate the potential therapeutic role of umbilical cord-derived MSCs (UC-MSCs) in the management of PF, with a focus on the alterations in the gut microbiota and its metabolites during the use of UC-MSCs for the treatment of pulmonary fibrosis, as well as the possible mechanisms involved. METHODS Bleomycin injection was utilized to establish a mouse model of lung fibrosis, followed by the application of 16S rDNA sequencing and LC-MS/MS metabolomics to explore the underlying mechanism of UC-MSC treatment for lung fibrosis. Seventy-five mice were allocated into five groups, namely Control, Model, and low/medium/high dose of UC-MSCs groups, and survival metrics, lung morphology, and the levels of the inflammatory cytokines TNF-α, IL-1β, IL-6, and TGF-β1 were subsequently evaluated. Fecal samples from six mice in each of the Control group, Model group, and UC-MSCs-M groups were collected randomly for 16S rDNA sequencing to analyze the gut microbiota and nontargeted metabolomics. RESULTS In comparison to IPF model mice, the three treatment groups exhibited increased survival rates, restored alveolar morphology, and reduced levels of the inflammatory cytokines TNF-α, IL-1β, IL-6, and TGF-β1, confirming the anti-inflammatory properties of UC-MSCs in IPF treatment. The findings from the 16S rDNA assay indicate that UC-MSCs treatment effectively lower α-diversity induced such as Chao 1 and ACE, as well as β-diversity, leading to a decrease in microbiota abundance. The findings from the metabolomics analysis revealed that the metabolites exhibiting notable variances were primarily composed of Lipids and lipid-like molecules, Organoheterocyclic compounds, Organic acids and derivatives, and Benzenoids, indicating the potential of UC-MSCs to exert antifibrotic effects via these metabolic pathways. CONCLUSION Umbilical cord-derived mesenchymal stem cells (UC-MSCs) ameliorate bleomycin-induced pulmonary fibrosis symptoms in mice by exerting anti-inflammatory effects and mitigating pulmonary fibrosis through the modulation of gut microbiota disorders and their metabolism. These findings offer novel insights into the potential mechanisms and clinical utility of stem cell therapy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yukai Luo
- Fujian Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- The Second Clinical Medical School of Fujian Medical University, Quanzhou, Fujian, China
| | - Shuang Zhou
- Fujian Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- The Second Clinical Medical School of Fujian Medical University, Quanzhou, Fujian, China
| | - Xiaojing Zhang
- Fujian Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- The Second Clinical Medical School of Fujian Medical University, Quanzhou, Fujian, China
| | - Yijian Lin
- Fujian Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- The Second Clinical Medical School of Fujian Medical University, Quanzhou, Fujian, China
| | - Jun Liu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Longyan, Longyan, Fujian, China
| | - Wenzhao Cheng
- Fujian Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan, Shandong, China
| | - Yiming Zeng
- Fujian Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- The Second Clinical Medical School of Fujian Medical University, Quanzhou, Fujian, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan, Shandong, China
- Respiratory Medicine Center of Fujian Province, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
8
|
Gu X, Kang H, Cao S, Tong Z, Song N. Blockade of TREM2 ameliorates pulmonary inflammation and fibrosis by modulating sphingolipid metabolism. Transl Res 2025; 275:1-17. [PMID: 39490681 DOI: 10.1016/j.trsl.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/19/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Pulmonary fibrosis is a chronic interstitial lung disease involving systemic inflammation and abnormal collagen deposition. Dysregulations in lipid metabolism, such as macrophage-dependent lipid catabolism, have been recognized as critical factors for the development of pulmonary fibrosis. However, little is known about the signaling pathways involved and the key regulators. Here we found that triggering receptor expressed on myeloid cells 2 (TREM2) plays a pivotal role in regulating the lipid handling capacities of pulmonary macrophages and triggering fibrosis. By integrating analysis of single-cell and bulk RNA sequencing data from patients and mice with pulmonary fibrosis, we revealed that pulmonary macrophages consist of heterogeneous populations with distinct pro-fibrotic properties, and found that both sphingolipid metabolism and the expression of chemotaxis-related genes are elevated in fibrotic lungs. TREM2, a sensor recognizing multiple lipid species, is specifically upregulated in a subset of monocyte-derived macrophages. Blockade of TREM2 by conventional/conditional knock-out or soluble TREM2 administration can attenuate bleomycin-induced pulmonary fibrosis. By utilizing scRNA Seq and lipidomics, we found that Trem2 deficiency downregulates the synthesis of various sphingomyelins, and inhibits the expression of chemokines such as Ccl2. Together, our findings not only reveal the alterations in lipidomic profiles and the atlas of pulmonary macrophages during pulmonary fibrosis, but also suggest that targeting TREM2, the crucial regulator affecting both pulmonary sphingolipid metabolism and the chemokines secretion, can benefit pulmonary fibrosis patients in the future.
Collapse
Affiliation(s)
- Xueqing Gu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing 100020, China
| | - Hanyujie Kang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing 100020, China
| | - Siyu Cao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing 100020, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing 100020, China.
| | - Nan Song
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing 100020, China; Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
9
|
Burla B, Oh J, Nowak A, Piraud N, Meyer E, Mei D, Bendt AK, Studt JD, Frey BM, Torta F, Wenk MR, Krayenbuehl PA. Plasma and platelet lipidome changes in Fabry disease. Clin Chim Acta 2024; 562:119833. [PMID: 38955246 DOI: 10.1016/j.cca.2024.119833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Fabry disease (FD) is an X-linked lysosomal storage disorder characterized by the progressive accumulation of globotriaosylceramide (Gb3) leading to systemic manifestations such as chronic kidney disease, cardiomyopathy, and stroke. There is still a need for novel markers for improved FD screening and prognosis. Moreover, the pathological mechanisms in FD, which also include systemic inflammation and fibrosis, are not yet fully understood. METHODS Plasma and platelets were obtained from 11 ERT (enzyme-replacement therapy)-treated symptomatic, 4 asymptomatic FD patients, and 13 healthy participants. A comprehensive targeted lipidomics analysis was conducted quantitating more than 550 lipid species. RESULTS Sphingadiene (18:2;O2)-containing sphingolipid species, including Gb3 and galabiosylceramide (Ga2), were significantly increased in FD patients. Plasma levels of lyso-dihexosylceramides, sphingoid base 1-phosphates (S1P), and GM3 ganglioside were also altered in FD patients, as well as specific plasma ceramide ratios used in cardiovascular disease risk prediction. Gb3 did not increase in patients' platelets but displayed a high inter-individual variability in patients and healthy participants. Platelets accumulated, however, lyso-Gb3, acylcarnitines, C16:0-sphingolipids, and S1P. CONCLUSIONS This study identified lipidome changes in plasma and platelets from FD patients, a possible involvement of platelets in FD, and potential new markers for screening and monitoring of this disease.
Collapse
Affiliation(s)
- Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore.
| | - Jeongah Oh
- Precision Medicine Translational Research Program and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
| | - Albina Nowak
- Department of Internal Medicine, Psychiatric University Clinic Zurich, Switzerland; Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Switzerland.
| | | | - Eduardo Meyer
- Swiss Red Cross (SRC), Zurich-Schlieren, Switzerland
| | - Ding Mei
- Precision Medicine Translational Research Program and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anne K Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Jan-Dirk Studt
- Division of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Beat M Frey
- Swiss Red Cross (SRC), Zurich-Schlieren, Switzerland
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore; Precision Medicine Translational Research Program and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore; Precision Medicine Translational Research Program and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Pierre-Alexandre Krayenbuehl
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Switzerland; General Practice Brauereistrasse, Uster-Zurich, Switzerland.
| |
Collapse
|
10
|
Cai G, Liu J, Cai M, Shao L. Exploring the causal effect between lipid-modifying drugs and idiopathic pulmonary fibrosis: a drug-target Mendelian randomization study. Lipids Health Dis 2024; 23:237. [PMID: 39090671 PMCID: PMC11293199 DOI: 10.1186/s12944-024-02218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a respiratory disorder of obscure etiology and limited treatment options, possibly linked to dysregulation in lipid metabolism. While several observational studies suggest that lipid-lowering agents may decrease the risk of IPF, the evidence is inconsistent. The present Mendelian randomization (MR) study aims to determine the association between circulating lipid traits and IPF and to assess the potential influence of lipid-modifying medications for IPF. METHODS Summary statistics of 5 lipid traits (high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglyceride, apolipoprotein A, and apolipoprotein B) and IPF were sourced from the UK Biobank and FinnGen Project Round 10. The study's focus on lipid-regulatory genes encompassed PCSK9, NPC1L1, ABCG5, ABCG8, HMGCR, APOB, LDLR, CETP, ANGPTL3, APOC3, LPL, and PPARA. The primary effect estimates were determined using the inverse-variance-weighted method, with additional analyses employing the contamination mixture method, robust adjusted profile score, the weighted median, weighted mode methods, and MR-Egger. Summary-data-based Mendelian randomization (SMR) was used to confirm significant lipid-modifying drug targets, leveraging data on expressed quantitative trait loci in relevant tissues. Sensitivity analyses included assessments of heterogeneity, horizontal pleiotropy, and leave-one-out methods. RESULTS There was no significant effect of blood lipid traits on IPF risk (all P>0.05). Drug-target MR analysis indicated that genetic mimicry for inhibitor of NPC1L1, PCSK9, ABCG5, ABCG8, and APOC3 were associated with increased IPF risks, with odds ratios (ORs) and 95% confidence intervals (CIs) as follows: 2.74 (1.05-7.12, P = 0.039), 1.36 (1.02-1.82, P = 0.037), 1.66 (1.12-2.45, P = 0.011), 1.68 (1.14-2.48, P = 0.009), and 1.42 (1.20-1.67, P = 3.17×10-5), respectively. The SMR method identified a significant association between PCSK9 gene expression in whole blood and reduced IPF risk (OR = 0.71, 95% CI: 0.50-0.99, P = 0.043). Sensitivity analyses showed no evidence of bias. CONCLUSIONS Serum lipid traits did not significantly affect the risk of idiopathic pulmonary fibrosis. Drug targets MR studies examining 12 lipid-modifying drugs indicated that PCSK9 inhibitors could dramatically increase IPF risk, a mechanism that may differ from their lipid-lowering actions and thus warrants further investigation.
Collapse
Affiliation(s)
- Gexiang Cai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengsi Cai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lianyou Shao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
11
|
Oh JH, Chae G, Song JW. Blood lipid profiles as a prognostic biomarker in idiopathic pulmonary fibrosis. Respir Res 2024; 25:285. [PMID: 39026259 PMCID: PMC11264581 DOI: 10.1186/s12931-024-02905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Dysregulation of lipid metabolism is implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, the association between the blood lipid profiles and the prognosis of IPF is not well defined. We aimed to identify the impacts of lipid profiles on prognosis in patients with IPF. METHODS Clinical data of 371 patients with IPF (145 and 226 in the derivation and validation cohorts, respectively), including serum lipid profiles (total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, apolipoprotein A-I [Apo A-I], and apolipoprotein B), were retrospectively collected. The association with mortality was analyzed using the Cox proportional hazard model. RESULTS In the derivation cohort, the mean age was 67.5 years, 86.2% were men, and 30.3% died during the follow-up (median: 18.0 months). Non-survivors showed lower lung function and greater gender-age-physiology scores than survivors. Among the serum lipid profiles, the levels of triglyceride and Apo A-I were significantly lower in non-survivors than in survivors. In the multivariate Cox analysis, low Apo A-I levels (< 140 mg/dL) were independently associated with the risk of mortality (hazard ratio 3.910, 95% confidence interval 1.170-13.069; P = 0.027), when adjusted for smoking history, body mass index, GAP score, and antifibrotic agent use. In both derivation and validation cohorts, patients with low Apo A-I levels (< 140 mg/dL) had worse survival (median survival: [derivation] 34.0 months vs. not reached, P = 0.003; [validation] 40.0 vs. 53.0 months, P = 0.027) than those with high Apo A-I levels in the Kaplan-Meier survival analysis. CONCLUSIONS Our results indicate that low serum Apo A-1 levels are an independent predictor of mortality in patients with IPF, suggesting the utility of serum Apo A-I as a prognostic biomarker in IPF.
Collapse
Affiliation(s)
- Ju Hyun Oh
- Department of Pulmonology and Critical Care Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Ganghee Chae
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Jin Woo Song
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpagu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
12
|
Li Z, Liu T, Wang S, Chen T, Wang X, Xu X, Liu Q. Yinhuang buccal tablet alters airway microbiota composition and metabolite profile in healthy humans. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118043. [PMID: 38490289 DOI: 10.1016/j.jep.2024.118043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/04/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Perturbations in airway microbiota composition and disruption of microbe-metabolite interactions have been observed in respiratory infectious diseases (RIDs). The Yinhuang (YH) buccal tablet, as an ancient Chinese medicinal formula, has been traditionally employed for the management of upper RIDs. However, there is a lack of evidence for the effects of YH buccal tablets on upper respiratory tract microbiota and circulating metabolites. AIM OF THE STUDY The aim of this study was to analyze the changes in respiratory microbiota composition and circulating metabolite profile after YH buccal tablets administration. MATERIALS AND METHODS Throat swab samples and serum samples were collected from 60 healthy subjects for high-throughput 16S ribosomal RNA gene (16S rRNA) sequencing and non-targeted Ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. RESULTS Airway microbial composition changed significantly after YH administration. The abundance of Actinomyces and Prevotella_7 increased, while the abundance of potentially pathogenic Pseudomonas and Corynebacterium decreased. A total of 168 significant HMDB taxonomic metabolites were identified in serum samples, of which lipid metabolites accounted for the largest proportion. Correlation analysis showed that circulatory metabolites were significantly correlated with changes in airway microbiota composition. CONCLUSIONS YH buccal tablets can inhibit opportunistic pathogens, increase beneficial microorganisms in the upper respiratory tract, and regulate the body's metabolic pathways. These findings provide insights into the mechanism of action of YH buccal tablets in the treatment and prevention of respiratory diseases.
Collapse
Affiliation(s)
- Zhenxuan Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Capital Medical University, Beijing, 100069, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China.
| | - Tengwen Liu
- Chengdu University of Traditional Chinese Medicine, Basic Medical College, Chengdu, Sichuan Province, 610075, China.
| | - Shuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Tengfei Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Xuerui Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Capital Medical University, Beijing, 100069, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China.
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Capital Medical University, Beijing, 100069, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Capital Medical University, Beijing, 100069, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China.
| |
Collapse
|
13
|
Mönki J, Mykkänen A. Lipids in Equine Airway Inflammation: An Overview of Current Knowledge. Animals (Basel) 2024; 14:1812. [PMID: 38929431 PMCID: PMC11200544 DOI: 10.3390/ani14121812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Mild-moderate and severe equine asthma (MEA and SEA) are prevalent inflammatory airway conditions affecting horses of numerous breeds and disciplines. Despite extensive research, detailed disease pathophysiology and the differences between MEA and SEA are still not completely understood. Bronchoalveolar lavage fluid cytology, broadly used in clinical practice and in equine asthma research, has limited means to represent the inflammatory status in the lower airways. Lipidomics is a field of science that can be utilized in investigating cellular mechanisms and cell-to-cell interactions. Studies in lipidomics have a broad variety of foci, of which fatty acid and lipid mediator profile analyses and global lipidomics have been implemented in veterinary medicine. As many crucial proinflammatory and proresolving mediators are lipids, lipidomic studies offer an interesting yet largely unexplored means to investigate inflammatory reactions in equine airways. The aim of this review article is to collect and summarize the findings of recent lipidomic studies on equine airway inflammation.
Collapse
Affiliation(s)
| | - Anna Mykkänen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014 Helsinki, Finland;
| |
Collapse
|
14
|
Yang J, Pan X, Xu M, Li Y, Liang C, Liu L, Li Z, Wang L, Yu G. Downregulation of HMGCS2 mediated AECIIs lipid metabolic alteration promotes pulmonary fibrosis by activating fibroblasts. Respir Res 2024; 25:176. [PMID: 38658970 PMCID: PMC11040761 DOI: 10.1186/s12931-024-02816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Abnormal lipid metabolism has recently been reported as a crucial signature of idiopathic pulmonary fibrosis (IPF). However, the origin and biological function of the lipid and possible mechanisms of increased lipid content in the pathogenesis of IPF remains undetermined. METHODS Oil-red staining and immunofluorescence analysis were used to detect lipid accumulation in mouse lung fibrosis frozen sections, Bleomycin-treated human type II alveolar epithelial cells (AECIIs) and lung fibroblast. Untargeted Lipid omics analysis was applied to investigate differential lipid species and identified LysoPC was utilized to treat human lung fibroblasts and mice. Microarray and single-cell RNA expression data sets identified lipid metabolism-related differentially expressed genes. Gain of function experiment was used to study the function of 3-hydroxy-3-methylglutaryl-Coa Synthase 2 (HMGCS2) in regulating AECIIs lipid metabolism. Mice with AECII-HMGCS2 high were established by intratracheally delivering HBAAV2/6-SFTPC- HMGCS2 adeno-associated virus. Western blot, Co-immunoprecipitation, immunofluorescence, site-directed mutation and flow cytometry were utilized to investigate the mechanisms of HMGCS2-mediated lipid metabolism in AECIIs. RESULTS Injured AECIIs were the primary source of accumulated lipids in response to Bleomycin stimulation. LysoPCs released by injured AECIIs could activate lung fibroblasts, thus promoting the progression of pulmonary fibrosis. Mechanistically, HMGCS2 was decreased explicitly in AECIIs and ectopic expression of HMGCS2 in AECIIs using the AAV system significantly alleviated experimental mouse lung fibrosis progression via modulating lipid degradation in AECIIs through promoting CPT1A and CPT2 expression by interacting with PPARα. CONCLUSIONS These data unveiled a novel etiological mechanism of HMGCS2-mediated AECII lipid metabolism in the genesis and development of pulmonary fibrosis and provided a novel target for clinical intervention.
Collapse
Affiliation(s)
- Juntang Yang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xin Pan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Min Xu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yingge Li
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Chenxi Liang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Lulu Liu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Zhongzheng Li
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Lan Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
15
|
Pan T, Bai L, Zhu D, Wei Y, Zhao Q, Feng F, Wang Z, Xu Y, Zhou X. The causal relationship between genetically predicted blood metabolites and idiopathic pulmonary fibrosis: A bidirectional two-sample Mendelian randomization study. PLoS One 2024; 19:e0300423. [PMID: 38626141 PMCID: PMC11020755 DOI: 10.1371/journal.pone.0300423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/28/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND Numerous metabolomic studies have confirmed the pivotal role of metabolic abnormalities in the development of idiopathic pulmonary fibrosis (IPF). Nevertheless, there is a lack of evidence on the causal relationship between circulating metabolites and the risk of IPF. METHODS The potential causality between 486 blood metabolites and IPF was determined through a bidirectional two-sample Mendelian randomization (TSMR) analysis. A genome-wide association study (GWAS) involving 7,824 participants was performed to analyze metabolite data, and a GWAS meta-analysis involving 6,257 IPF cases and 947,616 control European subjects was conducted to analyze IPF data. The TSMR analysis was performed primarily with the inverse variance weighted model, supplemented by weighted mode, MR-Egger regression, and weighted median estimators. A battery of sensitivity analyses was performed, including horizontal pleiotropy assessment, heterogeneity test, Steiger test, and leave-one-out analysis. Furthermore, replication analysis and meta-analysis were conducted with another GWAS dataset of IPF containing 4,125 IPF cases and 20,464 control subjects. Mediation analyses were used to identify the mediating role of confounders in the effect of metabolites on IPF. RESULTS There were four metabolites associated with the elevated risk of IPF, namely glucose (odds ratio [OR] = 2.49, 95% confidence interval [95%CI] = 1.13-5.49, P = 0.024), urea (OR = 6.24, 95% CI = 1.77-22.02, P = 0.004), guanosine (OR = 1.57, 95%CI = 1.07-2.30, P = 0.021), and ADpSGEGDFXAEGGGVR (OR = 1.70, 95%CI = 1.00-2.88, P = 0.0496). Of note, the effect of guanosine on IPF was found to be mediated by gastroesophageal reflux disease. Reverse Mendelian randomization analysis displayed that IPF might slightly elevate guanosine levels in the blood. CONCLUSION Conclusively, hyperglycemia may confer a promoting effect on IPF, highlighting that attention should be paid to the relationship between diabetes and IPF, not solely to the diagnosis of diabetes. Additionally, urea, guanosine, and ADpSGEGDFXAEGGGVR also facilitate the development of IPF. This study may provide a reference for analyzing the potential mechanism of IPF and carry implications for the prevention and treatment of IPF.
Collapse
Affiliation(s)
- Tingyu Pan
- Department of Pulmonary and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Le Bai
- Department of Pulmonary and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dongwei Zhu
- Department of Pulmonary and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yun Wei
- Department of Pulmonary and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qi Zhao
- Department of Pulmonary and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fanchao Feng
- Department of Pulmonary and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhichao Wang
- Department of Pulmonary and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yong Xu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xianmei Zhou
- Department of Pulmonary and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Shi X, Chen Y, Shi M, Gao F, Huang L, Wang W, Wei D, Shi C, Yu Y, Xia X, Song N, Chen X, Distler JHW, Lu C, Chen J, Wang J. The novel molecular mechanism of pulmonary fibrosis: insight into lipid metabolism from reanalysis of single-cell RNA-seq databases. Lipids Health Dis 2024; 23:98. [PMID: 38570797 PMCID: PMC10988923 DOI: 10.1186/s12944-024-02062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Pulmonary fibrosis (PF) is a severe pulmonary disease with limited available therapeutic choices. Recent evidence increasingly points to abnormal lipid metabolism as a critical factor in PF pathogenesis. Our latest research identifies the dysregulation of low-density lipoprotein (LDL) is a new risk factor for PF, contributing to alveolar epithelial and endothelial cell damage, and fibroblast activation. In this study, we first integrative summarize the published literature about lipid metabolite changes found in PF, including phospholipids, glycolipids, steroids, fatty acids, triglycerides, and lipoproteins. We then reanalyze two single-cell RNA-sequencing (scRNA-seq) datasets of PF, and the corresponding lipid metabolomic genes responsible for these lipids' biosynthesis, catabolism, transport, and modification processes are uncovered. Intriguingly, we found that macrophage is the most active cell type in lipid metabolism, with almost all lipid metabolic genes being altered in macrophages of PF. In type 2 alveolar epithelial cells, lipid metabolic differentially expressed genes (DEGs) are primarily associated with the cytidine diphosphate diacylglycerol pathway, cholesterol metabolism, and triglyceride synthesis. Endothelial cells are partly responsible for sphingomyelin, phosphatidylcholine, and phosphatidylethanolamines reprogramming as their metabolic genes are dysregulated in PF. Fibroblasts may contribute to abnormal cholesterol, phosphatidylcholine, and phosphatidylethanolamine metabolism in PF. Therefore, the reprogrammed lipid profiles in PF may be attributed to the aberrant expression of lipid metabolic genes in different cell types. Taken together, these insights underscore the potential of targeting lipid metabolism in developing innovative therapeutic strategies, potentially leading to extended overall survival in individuals affected by PF.
Collapse
Affiliation(s)
- Xiangguang Shi
- Department of Dermatology, Huashan Hospital, and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yahui Chen
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China
| | - Mengkun Shi
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fei Gao
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Lihao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Wei Wang
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Dong Wei
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Chenyi Shi
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuexin Yu
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China
| | - Xueyi Xia
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Fudan Zhangjiang Institute, Shanghai, People's Republic of China
| | - Xiaofeng Chen
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jörg H W Distler
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen, Nuremberg, Germany
| | - Chenqi Lu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Jingyu Chen
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China.
- Center for Lung Transplantation, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jiucun Wang
- Department of Dermatology, Huashan Hospital, and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China.
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China.
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
He J, Yu C, Shen Y, Huang J, Zhou Y, Gu J, Cao Y, Zheng Q. Sirtuin 6 ameliorates bleomycin-induced pulmonary fibrosis via activation of lipid catabolism. J Cell Physiol 2024; 239:e31027. [PMID: 37099691 DOI: 10.1002/jcp.31027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
Pulmonary fibrosis is a chronic and serious interstitial lung disease with little effective therapies currently. Our incomplete understanding of its pathogenesis remains obstacles in therapeutic developments. Sirtuin 6 (SIRT6) has been shown to mitigate multiple organic fibrosis. However, the involvement of SIRT6-mediated metabolic regulation in pulmonary fibrosis remains unclear. Here, we demonstrated that SIRT6 was predominantly expressed in alveolar epithelial cells in human lung tissues by using a single-cell sequencing database. We showed that SIRT6 protected against bleomycin-induced injury of alveolar epithelial cells in vitro and pulmonary fibrosis of mice in vivo. High-throughput sequencing revealed enriched lipid catabolism in Sirt6 overexpressed lung tissues. Mechanismly, SIRT6 ameliorates bleomycin-induced ectopic lipotoxicity by enhancing lipid degradation, thereby increasing the energy supply and reducing the levels of lipid peroxides. Furthermore, we found that peroxisome proliferator-activated receptor α (PPARα) was essential for SIRT6-mediated lipid catabolism, anti-inflammatory responses, and antifibrotic signaling. Our data suggest that targeting SIRT6-PPARα-mediated lipid catabolism could be a potential therapeutic strategy for diseases complicated with pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiangping He
- Department of Rheumatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Yu
- Department of Ultrasound, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Shen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiao Huang
- Department of Rheumatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanzi Zhou
- Department of Rheumatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmin Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Cao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Ma S, He S, Liu J, Zhuang W, Li H, Lin C, Wang L, Feng J, Wang L. Metabolomics unveils the exacerbating role of arachidonic acid metabolism in atherosclerosis. Front Mol Biosci 2024; 11:1297437. [PMID: 38384498 PMCID: PMC10879346 DOI: 10.3389/fmolb.2024.1297437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Atherosclerosis is a complex vascular disorder characterized by the deposition of lipids, inflammatory cascades, and plaque formation in arterial walls. A thorough understanding of its causes and progression is necessary to develop effective diagnostic and therapeutic strategies. Recent breakthroughs in metabolomics have provided valuable insights into the molecular mechanisms and genetic factors involved in atherosclerosis, leading to innovative approaches for preventing and treating the disease. In our study, we analyzed clinical serum samples from both atherosclerosis patients and animal models using laser desorption ionization mass spectrometry. By employing methods such as orthogonal partial least-squares discrimination analysis (OPLS-DA), heatmaps, and volcano plots, we can accurately classify atherosclerosis (AUC = 0.892) and identify key molecules associated with the disease. Specifically, we observed elevated levels of arachidonic acid and its metabolite, leukotriene B4, in atherosclerosis. By inhibiting arachidonic acid and monitoring its downstream metabolites, we discovered the crucial role of this metabolic pathway in regulating atherosclerosis. Metabolomic research provides detailed insights into the metabolic networks involved in atherosclerosis development and reveals the close connection between abnormal metabolism and the disease. These studies offer new possibilities for precise diagnosis, treatment, and monitoring of disease progression, as well as evaluating the effectiveness of therapeutic interventions.
Collapse
Affiliation(s)
- Sai Ma
- Department of Cardiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Cardiology, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Songqing He
- Department of Cardiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Cardiology, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Jing Liu
- Department of Cardiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Cardiology, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Wei Zhuang
- Department of Cardiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Cardiology, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Hanqing Li
- Department of Cardiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Cardiology, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Chen Lin
- Department of Cardiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Cardiology, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Lijun Wang
- Department of Cardiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Cardiology, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Jing Feng
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Emergency Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Lei Wang
- Department of Cardiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Cardiology, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| |
Collapse
|
19
|
Sun M, Zhang F, Lu F, Yu D, Wang Y, Chen P, Liu S. Integrating fecal metabolomics and intestinal microbiota to study the mechanism of cannabidiol in the treatment of idiopathic pulmonary fibrosis. Front Pharmacol 2024; 15:1358626. [PMID: 38379898 PMCID: PMC10877013 DOI: 10.3389/fphar.2024.1358626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction: Idiopathic pulmonary fibrosis is a chronic interstitial lung disease characterized by excessive deposition of extracellular matrix. Cannabidiol, a natural component extracted from plant cannabis, has been shown to have therapeutic effects on lung diseases, but its exact mechanism of action is unknown, hindering its therapeutic effectiveness. Methods: To establish a pulmonary fibrosis model, combined with UPLC-Q-TOF/MS metabolomics and 16S rDNA sequencing, to explore cannabidiol's mechanism in treating pulmonary fibrosis. The rats were randomly divided into the control group, pulmonary fibrosis model group, prednisone treatment group, and cannabidiol low, medium, and high dose groups. The expression levels of HYP, SOD, and MDA in lung tissue and the expression levels of TNF-α, IL-1β, and IL-6 in serum were detected. Intestinal microbiota was detected using UPLC-QTOF/MS analysis of metabolomic properties and 16S rDNA sequencing. Results: Pathological studies and biochemical indexes showed that cannabidiol treatment could significantly alleviate IPF symptoms, significantly reduce the levels of TNF-α, IL-1β, IL-6, MDA, and HYP, and increase the expression level of SOD (p < 0.05). CBD-H can regulate Lachnospiraceae_NK4A136_group, Pseudomonas, Clostridia_UCG-014, Collinsella, Prevotella, [Eubacterium]_coprostanoligenes_group, Fusobacterium, Ruminococcus, and Streptococcus, it can restore intestinal microbiota function and reverse fecal metabolism trend. It also plays the role of fibrosis through the metabolism of linoleic acid, glycerol, linolenic acid, and sphingolipid. Discussion: Cannabidiol reverses intestinal microbiota imbalance and attenuates pulmonary fibrosis in rats through anti-inflammatory, antioxidant, and anti-fibrotic effects. This study lays the foundation for future research on the pathological mechanisms of IPF and the development of new drug candidates.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
20
|
Summer R, Todd JL, Neely ML, Lobo LJ, Namen A, Newby LK, Shafazand S, Suliman S, Hesslinger C, Keller S, Leonard TB, Palmer SM, Ilkayeva O, Muehlbauer MJ, Newgard CB, Roman J. Circulating metabolic profile in idiopathic pulmonary fibrosis: data from the IPF-PRO Registry. Respir Res 2024; 25:58. [PMID: 38273290 PMCID: PMC10809477 DOI: 10.1186/s12931-023-02644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The circulating metabolome, reflecting underlying cellular processes and disease biology, has not been fully characterized in patients with idiopathic pulmonary fibrosis (IPF). We evaluated whether circulating levels of metabolites correlate with the presence of IPF, with the severity of IPF, or with the risk of clinically relevant outcomes among patients with IPF. METHODS We analyzed enrollment plasma samples from 300 patients with IPF in the IPF-PRO Registry and 100 individuals without known lung disease using a set of targeted metabolomics and clinical analyte modules. Linear regression was used to compare metabolite and clinical analyte levels between patients with IPF and controls and to determine associations between metabolite levels and measures of disease severity in patients with IPF. Unadjusted and adjusted univariable Cox regression models were used to evaluate associations between circulating metabolites and the risk of mortality or disease progression among patients with IPF. RESULTS Levels of 64 metabolites and 5 clinical analytes were significantly different between patients with IPF and controls. Among analytes with greatest differences were non-esterified fatty acids, multiple long-chain acylcarnitines, and select ceramides, levels of which were higher among patients with IPF versus controls. Levels of the branched-chain amino acids valine and leucine/isoleucine were inversely correlated with measures of disease severity. After adjusting for clinical factors known to influence outcomes, higher levels of the acylcarnitine C:16-OH/C:14-DC were associated with all-cause mortality, lower levels of the acylcarnitine C16:1-OH/C14:1DC were associated with all-cause mortality, respiratory death, and respiratory death or lung transplant, and higher levels of the sphingomyelin d43:2 were associated with the risk of respiratory death or lung transplantation. CONCLUSIONS IPF has a distinct circulating metabolic profile characterized by increased levels of non-esterified fatty acids, long-chain acylcarnitines, and ceramides, which may suggest a more catabolic environment that enhances lipid mobilization and metabolism. We identified select metabolites that were highly correlated with measures of disease severity or the risk of disease progression and that may be developed further as biomarkers. TRIAL REGISTRATION ClinicalTrials.gov; No: NCT01915511; URL: www. CLINICALTRIALS gov .
Collapse
Affiliation(s)
- Ross Summer
- Thomas Jefferson University, Philadelphia, PA, USA.
| | - Jamie L Todd
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | - Megan L Neely
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | - L Jason Lobo
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Andrew Namen
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - L Kristin Newby
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | | | | | | | - Sascha Keller
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Scott M Palmer
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, NC, USA
| | | | | | - Jesse Roman
- Jane and Leonard Korman Institute, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
21
|
Li S, Duan X, Zhang Y, Zhao C, Yu M, Li X, Li X, Zhang J. Lipidomics reveals serum lipid metabolism disorders in CTD-induced liver injury. BMC Pharmacol Toxicol 2024; 25:10. [PMID: 38225635 PMCID: PMC10790540 DOI: 10.1186/s40360-024-00732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/03/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Cantharidin (CTD), the main toxic component of Mylabris, has been extensively used for tumor treatment in recent years. CTD-induced liver toxicity has attracted significant interest in clinic. METHODS In this study, biochemical parameters and liver pathological changes were analyzed after CTD was administered to mice by gavage. Subsequently, a lipidomic approach was used to investigate serum lipid metabolism disorders, and the mechanism underlying CTD-induced liver injury in mice was explored. RESULTS The results showed that the levels of TC and LDL-C were significantly increased after CTD intervention. Besides, pathological results showed inflammatory cell infiltration and hepatocyte necrosis in the liver. Furthermore, lipidomics found that a total of 18 lipid metabolites were increased and 40 were decreased, including LPC(20:4), LPC(20:3), PC(22:6e/2:0), PE(14:0e/21:2), PC(18:2e/22:6), glycerophospholipids, CE(16:0), CE(18:0) Cholesterol esters and TAG(12:0/12:0/22:3), TAG(16:1/16:2/20:4), TAG(18:1/18:1/20:0), TAG(16:2/18:2/18:2), TAG(18:0/18:0/20:0), TAG(13:1/19:0/19:0) glycerolipids. Metabolic pathway analysis found that glycerophospholipid, glycerol ester and glycosylphosphatidylinositol (GPI)-anchored biosynthetic metabolic pathways were dysregulated and the increase in PE caused by glycophoric metabololism and GPI may be the source of lipid metabolism disorders caused by CTD. Overall, the present study provided new insights into the mechanism of CTD-induced liver injury and increased drug safety during clinical application.
Collapse
Affiliation(s)
- Shan Li
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaotong Duan
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yixin Zhang
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Cancan Zhao
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ming Yu
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaofei Li
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Xiaomei Li
- Cancer Research Laboratory, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China.
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
22
|
Choi B, San José Estépar R, Godbole S, Curtis JL, Wang JM, San José Estépar R, Rosas IO, Mayers JR, Hobbs BD, Hersh CP, Ash SY, Han MK, Bowler RP, Stringer KA, Washko GR, Labaki WW. Plasma metabolomics and quantitative interstitial abnormalities in ever-smokers. Respir Res 2023; 24:265. [PMID: 37925418 PMCID: PMC10625195 DOI: 10.1186/s12931-023-02576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Quantitative interstitial abnormalities (QIA) are an automated computed tomography (CT) finding of early parenchymal lung disease, associated with worse lung function, reduced exercise capacity, increased respiratory symptoms, and death. The metabolomic perturbations associated with QIA are not well known. We sought to identify plasma metabolites associated with QIA in smokers. We also sought to identify shared and differentiating metabolomics features between QIA and emphysema, another smoking-related advanced radiographic abnormality. METHODS In 928 former and current smokers in the Genetic Epidemiology of COPD cohort, we measured QIA and emphysema using an automated local density histogram method and generated metabolite profiles from plasma samples using liquid chromatography-mass spectrometry (Metabolon). We assessed the associations between metabolite levels and QIA using multivariable linear regression models adjusted for age, sex, body mass index, smoking status, pack-years, and inhaled corticosteroid use, at a Benjamini-Hochberg False Discovery Rate p-value of ≤ 0.05. Using multinomial regression models adjusted for these covariates, we assessed the associations between metabolite levels and the following CT phenotypes: QIA-predominant, emphysema-predominant, combined-predominant, and neither- predominant. Pathway enrichment analyses were performed using MetaboAnalyst. RESULTS We found 85 metabolites significantly associated with QIA, with overrepresentation of the nicotinate and nicotinamide, histidine, starch and sucrose, pyrimidine, phosphatidylcholine, lysophospholipid, and sphingomyelin pathways. These included metabolites involved in inflammation and immune response, extracellular matrix remodeling, surfactant, and muscle cachexia. There were 75 metabolites significantly different between QIA-predominant and emphysema-predominant phenotypes, with overrepresentation of the phosphatidylethanolamine, nicotinate and nicotinamide, aminoacyl-tRNA, arginine, proline, alanine, aspartate, and glutamate pathways. CONCLUSIONS Metabolomic correlates may lend insight to the biologic perturbations and pathways that underlie clinically meaningful quantitative CT measurements like QIA in smokers.
Collapse
Affiliation(s)
- Bina Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Pulmonary-PBB-CA-3, Boston, MA, 02115, USA.
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA.
| | - Raúl San José Estépar
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Suneeta Godbole
- Anschutz Medical Campus, Department of Biostatistics and Informatics, University of Colorado, Aurora, CO, USA
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Jennifer M Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rubén San José Estépar
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Jared R Mayers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Pulmonary-PBB-CA-3, Boston, MA, 02115, USA
| | - Brian D Hobbs
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Pulmonary-PBB-CA-3, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Craig P Hersh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Pulmonary-PBB-CA-3, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Samuel Y Ash
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Critical Care, South Shore Hospital, South Weymouth, MA, USA
| | - MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Russell P Bowler
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Kathleen A Stringer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Pulmonary-PBB-CA-3, Boston, MA, 02115, USA
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Wang W, Peng F, Ding C, Li T, Wang H. An Analysis of Targeted Serum Lipidomics in Patients with Pneumoconiosis - China, 2022. China CDC Wkly 2023; 5:849-855. [PMID: 37814648 PMCID: PMC10560374 DOI: 10.46234/ccdcw2023.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023] Open
Abstract
Introduction Pneumoconiosis emerges as the most critical and prevalent occupational disease in China at present, according to research. Studies indicate that pneumoconiosis may indeed impact the body's phospholipid metabolism. Methods In this study, serum samples were taken from 46 paired participants, which included patients with pneumoconiosis and dust-exposed workers. We employed ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology in targeted lipidomics to investigate serum target phospholipids. Initially, a pilot study was conducted with a selection of 24 pneumoconiosis patients and 24 dust-exposed workers, using both univariate and multivariate statistical analyses to preliminarily identify significant differences in phospholipids. Subsequent to this, the remaining subjects were engaged in a validation study, wherein receiver operating characteristic (ROC) analysis was performed to further substantiate the screening potency of potential lipid biomarkers for pneumoconiosis. Results The pilot study revealed significantly reduced serum levels of 16∶0 lysophosphatidylcholines (Lyso PC), 18∶0-18∶1 phosphatidylglycerol (PG), 18∶0-18∶1 phosphatidylethanolamine (PE), 18∶0 PE, and 18∶1 lysophosphatidylethanolamine(Lyso PE) in the case group in comparison to the control group. Additionally, 18∶0 PE, 18∶0-18∶1 PE, and 18∶1 Lyso PE emerged as significant phospholipids with superior diagnostic values [area under the curve (AUC)>0.7]. A diagnostic model was established, built on 16∶0 PC and 18∶0 PE (AUC>0.8). In the ROC analyses of validation studies, the 18∶0-18∶1 PE and this diagnostic model demonstrated excellent screening efficiency (AUC>0.7). Discussion A significant divergence in phospholipid metabolism has been observed between pneumoconiosis patients and dust-exposed workers. The 18∶0-18∶1 PE present in serum could potentially function as a lipid biomarker for pneumoconiosis. Additionally, diagnostic models were developed relying on 16∶0 PC and 18∶0 PE, proving to have superior screening efficiency.
Collapse
Affiliation(s)
- Wenrong Wang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fangda Peng
- National Center for Occupational Safety and Health, Beijing, China
- National Key Laboratory for Engineering Control of Dust Hazard, Beijing, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, Beijing, China
- National Key Laboratory for Engineering Control of Dust Hazard, Beijing, China
| | - Tao Li
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huanqiang Wang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
24
|
Chen R, Dai J. Lipid metabolism in idiopathic pulmonary fibrosis: From pathogenesis to therapy. J Mol Med (Berl) 2023; 101:905-915. [PMID: 37289208 DOI: 10.1007/s00109-023-02336-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic irreversible interstitial lung disease characterized by a progressive decline in lung function. The etiology of IPF is unknown, which poses a significant challenge to the treatment of IPF. Recent studies have identified a strong association between lipid metabolism and the development of IPF. Qualitative and quantitative analysis of small molecule metabolites using lipidomics reveals that lipid metabolic reprogramming plays a role in the pathogenesis of IPF. Lipids such as fatty acids, cholesterol, arachidonic acid metabolites, and phospholipids are involved in the onset and progression of IPF by inducing endoplasmic reticulum stress, promoting cell apoptosis, and enhancing the expression of pro-fibrotic biomarkers. Therefore, targeting lipid metabolism can provide a promising therapeutic strategy for pulmonary fibrosis. This review focuses on lipid metabolism in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ranxun Chen
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
25
|
El Agha E, Thannickal VJ. The lung mesenchyme in development, regeneration, and fibrosis. J Clin Invest 2023; 133:e170498. [PMID: 37463440 DOI: 10.1172/jci170498] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Mesenchymal cells are uniquely located at the interface between the epithelial lining and the stroma, allowing them to act as a signaling hub among diverse cellular compartments of the lung. During embryonic and postnatal lung development, mesenchyme-derived signals instruct epithelial budding, branching morphogenesis, and subsequent structural and functional maturation. Later during adult life, the mesenchyme plays divergent roles wherein its balanced activation promotes epithelial repair after injury while its aberrant activation can lead to pathological remodeling and fibrosis that are associated with multiple chronic pulmonary diseases, including bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this Review, we discuss the involvement of the lung mesenchyme in various morphogenic, neomorphogenic, and dysmorphogenic aspects of lung biology and health, with special emphasis on lung fibroblast subsets and smooth muscle cells, intercellular communication, and intrinsic mesenchymal mechanisms that drive such physiological and pathophysiological events throughout development, homeostasis, injury repair, regeneration, and aging.
Collapse
Affiliation(s)
- Elie El Agha
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| |
Collapse
|
26
|
Yang C, Wang G, Zhan W, Wang Y, Feng J. The identification of metabolism-related subtypes and potential treatments for idiopathic pulmonary fibrosis. Front Pharmacol 2023; 14:1173961. [PMID: 37274115 PMCID: PMC10232787 DOI: 10.3389/fphar.2023.1173961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is caused by aberrant repair because of alveolar epithelial injury and can only be effectively treated with several compounds. Several metabolism-related biomolecular processes were found to be involved in IPF. We aimed to identify IPF subtypes based on metabolism-related pathways and explore potential drugs for each subtype. Methods: Gene profiles and clinical information were obtained from the Gene Expression Omnibus (GEO) database (GSE70867 and GSE93606). The enrichment scores for 41 metabolism-related pathways, immune cells, and immune pathways were calculated using the Gene Set Variation Analysis (GSVA) package. The ConsensusClusterPlus package was used to cluster samples. Novel modules and hub genes were identified using weighted correlation network analysis (WGCNA). Receiver operating characteristic (ROC) and calibration curves were plotted, and decision curve analysis (DCA) were performed to evaluate the model in the training and validation cohorts. A connectivity map was used as a drug probe. Results: Two subtypes with significant differences in prognosis were identified based on the metabolism-related pathways. Subtype C1 had a poor prognosis, low metabolic levels, and a unique immune signature. CDS2, LCLAT1, GPD1L, AGPAT1, ALDH3A1, LAP3, ADH5, AHCYL2, and MDH1 were used to distinguish between the two subtypes. Finally, subtype-specific drugs, which can potentially treat IPF, were identified. Conclusion: The aberrant activation of metabolism-related pathways contributes to differential prognoses in patients with IPF. Collectively, our findings provide novel mechanistic insights into subtyping IPF based on the metabolism-related pathway and potential treatments, which would help clinicians provide subtype-specific individualized therapeutic management to patients.
Collapse
Affiliation(s)
- Changqing Yang
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Guixin Wang
- Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wenyu Zhan
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Yubao Wang
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Feng
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
27
|
Ma R, Fan Y, Huang X, Wang J, Li S, Wang Y, Ye Q. Lipid dysregulation associated with progression of silica-induced pulmonary fibrosis. Toxicol Sci 2023; 191:296-307. [PMID: 36477571 DOI: 10.1093/toxsci/kfac124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Silicosis is an irreversible, progressive, fibrotic lung disease caused by long-term exposure to dust-containing silica particles at the workplace. Despite the precautions enforced, the rising incidence of silicosis continues to occur globally, particularly in developing countries. A better understanding of the disease progression and potential metabolic reprogramming of silicosis is warranted. The low- or high-dose silica-induced pulmonary fibrosis in mice was constructed to mimic chronic or accelerated silicosis. Silica-induced mice lung fibrosis was analyzed by histology, lung function, and computed tomography scans. Non-targeted metabolomics of the lung tissues was conducted by ultra-high-performance liquid chromatography-mass spectrometry to show the temporal metabolic trajectory. The low-dose silica-induced silicosis characterized inflammation for up to 42 days, with the onset of cellular silicon nodules. Conversely, the high-dose silica-induced silicosis characterized inflammation for up to 14 days, after which the disease developed rapidly, with a large volume of collagen deposition, presenting progressive massive fibrosis. Both low- and high silica-induced fibrosis had aberrant lipid metabolism. Combined with the RNA-Seq data, this multiomics study demonstrated alterations in the enzymes involved in sphingolipid metabolism. Time-dependent metabolic reprogramming revealing abnormal glycerophospholipid metabolism was intimately associated with the process of inflammation, whereas sphingolipid metabolism was crucial during lung fibrosis. These findings suggest that lipid dysregulation, especially sphingolipid metabolism, was involved in the process of silicosis.
Collapse
Affiliation(s)
- Ruimin Ma
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yali Fan
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiaoxi Huang
- Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jingwei Wang
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Shuang Li
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yuanying Wang
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Qiao Ye
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| |
Collapse
|
28
|
Cellular and Molecular Control of Lipid Metabolism in Idiopathic Pulmonary Fibrosis: Clinical Application of the Lysophosphatidic Acid Pathway. Cells 2023; 12:cells12040548. [PMID: 36831215 PMCID: PMC9954511 DOI: 10.3390/cells12040548] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a representative disease that causes fibrosis of the lungs. Its pathogenesis is thought to be characterized by sustained injury to alveolar epithelial cells and the resultant abnormal tissue repair, but it has not been fully elucidated. IPF is currently difficult to cure and is known to follow a chronic progressive course, with the patient's survival period estimated at about three years. The disease occasionally exacerbates acutely, leading to a fatal outcome. In recent years, it has become evident that lipid metabolism is involved in the fibrosis of lungs, and various reports have been made at the cellular level as well as at the organic level. The balance among eicosanoids, sphingolipids, and lipid composition has been reported to be involved in fibrosis, with particularly close attention being paid to a bioactive lipid "lysophosphatidic acid (LPA)" and its pathway. LPA signals are found in a wide variety of cells, including alveolar epithelial cells, vascular endothelial cells, and fibroblasts, and have been reported to intensify pulmonary fibrosis via LPA receptors. For instance, in alveolar epithelial cells, LPA signals reportedly induce mitochondrial dysfunction, leading to epithelial damage, or induce the transcription of profibrotic cytokines. Based on these mechanisms, LPA receptor inhibitors and the metabolic enzymes involved in LPA formation are now considered targets for developing novel means of IPF treatment. Advances in basic research on the relationships between fibrosis and lipid metabolism are opening the path to new therapies targeting lipid metabolism in the treatment of IPF.
Collapse
|
29
|
Tian Y, Duan C, Feng J, Liao J, Yang Y, Sun W. Roles of lipid metabolism and its regulatory mechanism in idiopathic pulmonary fibrosis: A review. Int J Biochem Cell Biol 2023; 155:106361. [PMID: 36592687 DOI: 10.1016/j.biocel.2022.106361] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/06/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Idiopathic pulmonary fibrosis is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. Several lung cell types, including alveolar epithelial cells and fibroblasts, have been implicated in the development and progression of fibrosis. However, the pathogenesis of idiopathic pulmonary fibrosis is still incompletely understood. The latest research has found that dysregulation of lipid metabolism plays an important role in idiopathic pulmonary fibrosis. The changes in the synthesis and activity of fatty acids, cholesterol and other lipids seriously affect the regenerative function of alveolar epithelial cells and promote the transformation of fibroblasts into myofibroblasts. Mitochondrial function is the key to regulating the metabolic needs of a variety of cells, including alveolar epithelial cells. Sirtuins located in mitochondria are essential to maintain mitochondrial function and cellular metabolic homeostasis. Sirtuins can maintain normal lipid metabolism by regulating respiratory enzyme activity, resisting oxidative stress, and protecting mitochondrial function. In this review, we aimed to discuss the difference between normal and idiopathic pulmonary fibrosis lungs in terms of lipid metabolism. Additionally, we highlight recent breakthroughs on the effect of abnormal lipid metabolism on idiopathic pulmonary fibrosis, including the effects of sirtuins. Idiopathic pulmonary fibrosis has its high mortality and limited therapeutic options; therefore, we believe that this review will help to develop a new therapeutic direction from the aspect of lipid metabolism in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Yunchuan Tian
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunyan Duan
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Jiayue Feng
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China; Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China
| | - Jie Liao
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China; Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China
| | - Yang Yang
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| | - Wei Sun
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
30
|
Yang F, Ma Z, Li W, Kong J, Zong Y, Wendusu B, Wu Q, Li Y, Dong G, Zhao X, Wang J. Identification and immune characteristics of molecular subtypes related to fatty acid metabolism in idiopathic pulmonary fibrosis. Front Nutr 2022; 9:992331. [PMID: 36211517 PMCID: PMC9537386 DOI: 10.3389/fnut.2022.992331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Background Although fatty acid metabolism has been confirmed to be involved in the pathological process of idiopathic pulmonary fibrosis (IPF), systematic analyses on the immune process mediated by fatty acid metabolism-related genes (FAMRGs) in IPF remain lacking. Methods The gene expression data of 315 patients with IPF were obtained from Gene Expression Omnibus database and were divided into the training and verification sets. The core FAMRGs of the training set were identified through weighted gene co-expression network analysis. Then, the fatty acid metabolism-related subtypes in IPF were identified on the basis of k-means unsupervised clustering. The scores of fatty acid metabolism and the expression of the fibrosis biomarkers in different subtypes were compared, and functional enrichment analysis was carried out on the differentially expressed genes between subtypes. A random forest model was used to select important FAMRGs as diagnostic markers for distinguishing between subtypes, and a line chart model was constructed and verified by using other datasets and rat models with different degrees of pulmonary fibrosis. The difference in immune cell infiltration among subtypes was evaluated with CIBERSORT, and the correlation between core diagnostic markers and immune cells were analyzed. Results Twenty-four core FAMRGs were differentially expressed between the training set and normal samples, and IPF was divided into two subtypes. Significant differences were observed between the two subtypes in biological processes, such as linoleic acid metabolism, cilium movement, and natural killer (NK) cell activation. The subtype with high fatty acid metabolism had more severe pulmonary fibrosis than the other subtype. A reliable construction line chart model based on six diagnostic markers was constructed, and ABCA3 and CYP24A1 were identified as core diagnostic markers. Significant differences in immune cell infiltration were found between the two subtypes, and ABCA3 and CYP24A1 were closely related to NK cells. Conclusion Fatty acid metabolism and the immune process that it mediates play an important role in the occurrence and development of IPF. The analysis of the role of FAMRGs in IPF may provide a new potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Fan Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaotian Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Wanyang Li
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, China
| | - Jingwei Kong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bilige Wendusu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Qinglu Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangda Dong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoshan Zhao
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
31
|
Seeliger B, Carleo A, Wendel-Garcia PD, Fuge J, Montes-Warboys A, Schuchardt S, Molina-Molina M, Prasse A. Changes in serum metabolomics in idiopathic pulmonary fibrosis and effect of approved antifibrotic medication. Front Pharmacol 2022; 13:837680. [PMID: 36059968 PMCID: PMC9428132 DOI: 10.3389/fphar.2022.837680] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with significant mortality and morbidity. Approval of antifibrotic therapy has ameliorated disease progression, but therapy response is heterogeneous and to date, adequate biomarkers predicting therapy response are lacking. In recent years metabolomic technology has improved and is broadly applied in cancer research thus enabling its use in other fields. Recently both aberrant metabolic and lipidomic pathways have been described to influence profibrotic responses. We thus aimed to characterize the metabolomic and lipidomic changes between IPF and healthy volunteers (HV) and analyze metabolomic changes following treatment with nintedanib and pirfenidone. We collected serial serum samples from two IPF cohorts from Germany (n = 122) and Spain (n = 21) and additionally age-matched healthy volunteers (n = 16). Metabolomic analysis of 630 metabolites covering 14 small molecule and 12 different lipid classes was carried out using flow injection analysis tandem mass spectrometry for lipids and liquid chromatography tandem mass spectrometry for small molecules. Levels were correlated with survival and disease severity. We identified 109 deregulated analytes in IPF compared to HV in cohort 1 and 112 deregulated analytes in cohort 2. Metabolites which were up-regulated in both cohorts were mainly triglycerides while the main class of down-regulated metabolites were phosphatidylcholines. Only a minority of de-regulated analytes were small molecules. Triglyceride subclasses were inversely correlated with baseline disease severity (GAP-score) and a clinical compound endpoint of lung function decline or death. No changes in the metabolic profiles were observed following treatment with pirfenidone. Nintedanib treatment induced up-regulation of triglycerides and phosphatidylcholines. Patients in whom an increase in these metabolites was observed showed a trend towards better survival using the 2-years composite endpoint (HR 2.46, p = 0.06). In conclusion, we report major changes in metabolites in two independent cohorts testing a large number of patients. Specific lipidic metabolite signatures may serve as biomarkers for disease progression or favorable treatment response to nintedanib.
Collapse
Affiliation(s)
- Benjamin Seeliger
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Alfonso Carleo
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | | | - Jan Fuge
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Ana Montes-Warboys
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Maria Molina-Molina
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
- Centro Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antje Prasse
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- *Correspondence: Antje Prasse,
| |
Collapse
|
32
|
State of the Art in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11162487. [PMID: 36010564 PMCID: PMC9406390 DOI: 10.3390/cells11162487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a form of usual interstitial pneumonia (UIP), though its origin is unknown [...]
Collapse
|
33
|
Kheirollahi V, Khadim A, Kiliaris G, Korfei M, Barroso MM, Alexopoulos I, Vazquez-Armendariz AI, Wygrecka M, Ruppert C, Guenther A, Seeger W, Herold S, El Agha E. Transcriptional Profiling of Insulin-like Growth Factor Signaling Components in Embryonic Lung Development and Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11121973. [PMID: 35741102 PMCID: PMC9221724 DOI: 10.3390/cells11121973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Insulin-like growth factor (IGF) signaling controls the development and growth of many organs, including the lung. Loss of function of Igf1 or its receptor Igf1r impairs lung development and leads to neonatal respiratory distress in mice. Although many components of the IGF signaling pathway have shown to be dysregulated in idiopathic pulmonary fibrosis (IPF), the expression pattern of such components in different cellular compartments of the developing and/or fibrotic lung has been elusive. In this study, we provide a comprehensive transcriptional profile for such signaling components during embryonic lung development in mice, bleomycin-induced pulmonary fibrosis in mice and in human IPF lung explants. During late gestation, we found that Igf1 is upregulated in parallel to Igf1r downregulation in the lung mesenchyme. Lung tissues derived from bleomycin-treated mice and explanted IPF lungs revealed upregulation of IGF1 in parallel to downregulation of IGF1R, in addition to upregulation of several IGF binding proteins (IGFBPs) in lung fibrosis. Finally, treatment of IPF lung fibroblasts with recombinant IGF1 led to myogenic differentiation. Our data serve as a resource for the transcriptional profile of IGF signaling components and warrant further research on the involvement of this pathway in both lung development and pulmonary disease.
Collapse
Affiliation(s)
- Vahid Kheirollahi
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Ali Khadim
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Georgios Kiliaris
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Martina Korfei
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Margarida Maria Barroso
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Ioannis Alexopoulos
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Malgorzata Wygrecka
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Clemens Ruppert
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Andreas Guenther
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Werner Seeger
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Susanne Herold
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Elie El Agha
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Correspondence:
| |
Collapse
|
34
|
Connective Tissue Growth Factor in Idiopathic Pulmonary Fibrosis: Breaking the Bridge. Int J Mol Sci 2022; 23:ijms23116064. [PMID: 35682743 PMCID: PMC9181498 DOI: 10.3390/ijms23116064] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
CTGF is upregulated in patients with idiopathic pulmonary fibrosis (IPF), characterized by the deposition of a pathological extracellular matrix (ECM). Additionally, many omics studies confirmed that aberrant cellular senescence-associated mitochondria dysfunction and metabolic reprogramming had been identified in different IPF lung cells (alveolar epithelial cells, alveolar endothelial cells, fibroblasts, and macrophages). Here, we reviewed the role of the CTGF in IPF lung cells to mediate anomalous senescence-related metabolic mechanisms that support the fibrotic environment in IPF.
Collapse
|
35
|
Yang XH, Wang FF, Chi XS, Wang XM, Cong JP, Hu Y, Zhang YZ. Disturbance of serum lipid metabolites and potential biomarkers in the Bleomycin model of pulmonary fibrosis in young mice. BMC Pulm Med 2022; 22:176. [PMID: 35509094 PMCID: PMC9066762 DOI: 10.1186/s12890-022-01972-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/26/2022] [Indexed: 01/15/2023] Open
Abstract
Background Altered metabolic pathways have recently been considered as potential drivers of idiopathic pulmonary fibrosis (IPF) for the study of drug therapeutic targets. However, our understanding of the metabolite profile during IPF formation is lacking. Methods To comprehensively characterize the metabolic disorders of IPF, a mouse IPF model was constructed by intratracheal injection of bleomycin into C57BL/6J male mice, and lung tissues from IPF mice at 7 days, 14 days, and controls were analyzed by pathology, immunohistochemistry, and Western Blots. Meanwhile, serum metabolite detections were conducted in IPF mice using LC–ESI–MS/MS, KEGG metabolic pathway analysis was applied to the differential metabolites, and biomarkers were screened using machine learning algorithms. Results We analyzed the levels of 1465 metabolites and found that more than one-third of the metabolites were altered during IPF formation. There were 504 and 565 metabolites that differed between M7 and M14 and controls, respectively, while 201 differential metabolites were found between M7 and M14. In IPF mouse sera, about 80% of differential metabolite expression was downregulated. Lipids accounted for more than 80% of the differential metabolite species with down-regulated expression. The KEGG pathway enrichment analysis of differential metabolites was mainly enriched to pathways such as the metabolism of glycerolipids and glycerophospholipids. Eight metabolites were screened by a machine learning random forest model, and receiver operating characteristic curves (ROC) assessed them as ideal diagnostic tools. Conclusions In conclusion, we have identified disturbances in serum lipid metabolism associated with the formation of pulmonary fibrosis, contributing to the understanding of the pathogenesis of pulmonary fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01972-6.
Collapse
Affiliation(s)
- Xiao-Hui Yang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Fang-Fang Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiao-Sa Chi
- Department of Geriatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Xiao-Meng Wang
- Department of Geriatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Jin-Peng Cong
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yi Hu
- Department of Geriatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Yu-Zhu Zhang
- Department of Geriatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China.
| |
Collapse
|
36
|
Liu X, Zhang H, Si Y, Du Y, Wu J, Li J. High-coverage lipidomics analysis reveals biomarkers for diagnosis of acute exacerbation of chronic obstructive pulmonary disease. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1201-1202:123278. [DOI: 10.1016/j.jchromb.2022.123278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/05/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022]
|
37
|
Chen L, Chen F, Liu T, Feng F, Guo W, Zhang Y, Feng X, Lin JM, Zhang F. Lipidomics Profiling of HepG2 Cells and Interference by Mycotoxins Based on UPLC-TOF-IMS. Anal Chem 2022; 94:6719-6727. [PMID: 35475631 DOI: 10.1021/acs.analchem.1c05543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Discovering the fungus-infected or mycotoxin-contaminated biomarkers is significant for systems biology since the metabolites in biological samples have significant polarity differences in both stochastic gene expression and microenvironmental change. Here, we aim to establish a comprehensive method for a lipidome by ion mobility mass spectrometry (IMS) merged with chemometrics to accurately find out the more scientific markers of cell interference by mycotoxins and for pathogenesis exploration and drug development. The differences in the abundances of several small molecules found in these metabolites were explored through multivariate statistical analysis, including principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA), to further screen biomarkers. Good applicability and predictability were demonstrated by R2(X) and Q2 (R2 = 0.959, Q2 = 0.999). Five compounds with m/z values of 512.502 8, 540.5343, 722.525 8, 787.667 5, and 813.683 0 were selected as markers, and four of them were further confirmed by chemical standards (i.e., MSMS of m/z 813.683 0 covering m/z 86.0978, 125.0008, 184.0745, and 185.0781). In summary, we demonstrated the integration of UPLC-TOF-IMS and the chemometrics approach to elucidate identified biomarkers, which also provides a new way of thinking for covering lipid biomarkers or prognostic indicators for mycotoxins.
Collapse
Affiliation(s)
- Lan Chen
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.,School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Fengming Chen
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Feng Feng
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Wei Guo
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xuesong Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jin-Ming Lin
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
38
|
Karnati S, Guntas G, Rajendran R, Shityakov S, Höring M, Liebisch G, Kosanovic D, Ergün S, Nagai M, Förster CY. Quantitative Lipidomic Analysis of Takotsubo Syndrome Patients' Serum. Front Cardiovasc Med 2022; 9:797154. [PMID: 35514439 PMCID: PMC9062978 DOI: 10.3389/fcvm.2022.797154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Takotsubo syndrome (TTS), also known as the transient left ventricular apical ballooning syndrome, is in contemporary times known as novel acute cardiac syndrome. It is characterized by transient left ventricular apical akinesis and hyperkinesis of the basal left ventricular portions. Although the precise etiology of TTS is unknown, events like the sudden release of stress hormones, such as the catecholamines and the increased inflammatory status might be plausible causes leading to the cardiovascular pathologies. Recent studies have highlighted that an imbalance in lipid accumulation might promote a deviant immune response as observed in TTS. However, there is no information on comprehensive profiling of serum lipids of TTS patients. Therefore, we investigated a detailed quantitative lipid analysis of TTS patients using ES-MSI. Our results showed significant differences in the majority of lipid species composition in the TTS patients compared to the control group. Furthermore, the computational analyses presented was able to link the altered lipids to the pro-inflammatory cytokines and disseminate possible mechanistic pathways involving TNFα and IL-6. Taken together, our study provides an extensive quantitative lipidome of TTS patients, which may provide a valuable Pre-diagnostic tool. This would facilitate the elucidation of the underlying mechanisms of the disease and to prevent the development of TTS in the future.
Collapse
Affiliation(s)
- Srikanth Karnati
- University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
- *Correspondence: Srikanth Karnati
| | - Gulcan Guntas
- Department of Biochemistry, Medical Faculty, Atilim University, Ankara, Turkey
| | - Ranjithkumar Rajendran
- Experimental Neurology, Department of Neurology, Justus Liebig University, Giessen, Germany
| | - Sergey Shityakov
- Infochemistry Scientific Center, Laboratory of Chemoinformatics, ITMO University, Saint-Petersburg, Russia
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Djuro Kosanovic
- Department of Pulmonology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Süleyman Ergün
- University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
| | - Michiaki Nagai
- Hiroshima City Asa Hospital, Department of Cardiology, Hiroshima, Japan
| | - Carola Y. Förster
- University of Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg, Germany
- Carola Y. Förster
| |
Collapse
|
39
|
Liu Y, Chen S, Yu L, Deng Y, Li D, Yu X, Chen D, Lu Y, Liu S, Chen R. Pemafibrate attenuates pulmonary fibrosis by inhibiting myofibroblast differentiation. Int Immunopharmacol 2022; 108:108728. [PMID: 35397395 DOI: 10.1016/j.intimp.2022.108728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 03/18/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Idiopathic pulmonary fibrosis is a chronic progressive disease associated with substantial morbidity and mortality despite advances in medical therapy. Increasing evidence suggests that peroxisome proliferator-activated receptors (PPARs) play important roles in the fibrosis-related diseases and their agonists may become effective therapeutic targets. Pemafibrate is a selective PPARα agonist, but the efficacy against pulmonary fibrosis and mechanisms involved have not been systematically evaluated. Thus, the aims of this study were to explore the role of PPARα in the pulmonary fibrosis and to assess the effect of pemafibrate in vivo and in vitro. METHODS The effects of pemafibrate were evaluated in bleomycin-challenged murine pulmonary fibrosis model and transforming growth factor-beta 1 (TGF-β1) stimulated lung fibroblasts. RESULTS Bleomycin instillation induced body weight loss, declined lung function, pulmonary fibrosis, and extensive collagen deposition in the mice, accompanied with decreased pulmonary expression of PPARα, all of which were partially improved by pemafibrate at a dose of 2 mg/kg. Besides, pemafibrate effectively inhibits TGF-β1-induced myofibroblast differentiation and extracellular matrix (ECM) production in vivo and in vitro. Furthermore, we showed that pemafibrate not only inhibited pulmonary expression of NLRP3 and cleaved caspase-1 in bleomycin-inhaled mice, but also repressed activation of NLRP3/caspase-1 axis in TGF-β1 stimulated lung fibroblasts. CONCLUSION Our data suggest that pemafibrate exerts a marked protection against from the development of pulmonary fibrosis, which could constitute a novel candidate for the treatment for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China; Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuyu Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China; Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Yao Deng
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Difei Li
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Xiu Yu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Dandan Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Ye Lu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengming Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China.
| |
Collapse
|
40
|
Extracellular Lipids in the Lung and Their Role in Pulmonary Fibrosis. Cells 2022; 11:cells11071209. [PMID: 35406772 PMCID: PMC8997955 DOI: 10.3390/cells11071209] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Lipids are major actors and regulators of physiological processes within the lung. Initial research has described their critical role in tissue homeostasis and in orchestrating cellular communication to allow respiration. Over the past decades, a growing body of research has also emphasized how lipids and their metabolism may be altered, contributing to the development and progression of chronic lung diseases such as pulmonary fibrosis. In this review, we first describe the current working model of the mechanisms of lung fibrogenesis before introducing lipids and their cellular metabolism. We then summarize the evidence of altered lipid homeostasis during pulmonary fibrosis, focusing on their extracellular forms. Finally, we highlight how lipid targeting may open avenues to develop therapeutic options for patients with lung fibrosis.
Collapse
|
41
|
Label-free Raman spectroscopy characterizes signatures of inflammation and fibrosis in the silicosis. Biochem Biophys Res Commun 2022; 606:114-120. [PMID: 35344708 DOI: 10.1016/j.bbrc.2022.03.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/29/2022]
Abstract
Silicosis is an occupational disease that seriously damages the life and health of miners. Herein, we constructed a mouse model of silicosis and used label-free confocal Raman spectroscopy to analyze the biomolecular variations in lung fibrous nodules and inflammatory sites. The mice were exposed to silica particles for 1 month (SIL-1M group), 3 months (SIL-3M group), or no exposure (control tissues, NS). Raman spectra obtained from treated and untreated lung tissue were subjected to chemometric analysis to quantify biochemical composition differences in the silicosis. Simultaneously, immunohistochemistry and collagen staining were used to evaluate inflammation, fibrosis, and apoptosis. As a result, the SIL-1M and SIL-3M groups showed significant differences in cholesterol, lipids, amino acids, nucleic acids, and cytochrome C, and the collagen peaks at 1248 cm-1 and 1448 cm-1 were significantly higher than in the NS group. Notably, glycogen and phospholipid may be an inflammatory indicator consistent with NF-κB expression. In addition, significant differences in collagen and cytochrome C content in silicosis lung tissue were found using Raman spectroscopy and were verified by Masson's staining and Bax/Bcl-2 expression ratio. In summary, our findings provide a label-free technique to understand the biochemical changes in lung inflammatory and fibrosis microenvironment after exposure to silica particles and provide a valuable reference for studying the mechanism of silicosis.
Collapse
|
42
|
Liu Z, Xu P, Gong F, Tan Y, Han J, Tian L, Yan J, Li K, Xi Z, Liu X. Altered lipidomic profiles in lung and serum of rat after sub-chronic exposure to ozone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150630. [PMID: 34597571 DOI: 10.1016/j.scitotenv.2021.150630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Ozone (O) exposure not only causes lung injury and lung inflammation but also changes blood composition. Previous studies have mainly focused on inflammatory processes and metabolic diseases caused by acute or chronic ozone exposure. However, the effect of ozone on lipid expression profiles remains unclear. This study aimed to investigate the lipidomic changes in lung tissue and serum of rats after ozone exposure for three months and explore the lipid metabolic pathway involved in an ozone-induced injury. Based on the non-targeted lipidomic analysis platform of the UPLC Orbitrap mass spectrometry system, we found that sub-chronic exposure to ozone significantly changed the characteristics of lipid metabolism in lungs and serum of rats. First, the variation in sphingomyelin (SM) and triglyceride (TG) levels in the lung and serum after O3 exposure are shown. SM decreased in both tissues, while TG decreased in the lungs and increased in the serum. Further, the effect of ozone on glycerophospholipids in the lung and serum was completely different. Phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI) were the major glycerophospholipids whose levels were altered in the lung, while phosphatidylglycerol (PG), phosphatidic acid (PA), and phosphatidylcholine (PC) levels changed dramatically in the serum. Third, after O3 exposure, the level of monogalactosyldiacylglycerol (MGDG), mainly MGDG (43, 11), a saccharolipid, declined significantly and uniquely in the serum. These results suggested that sub-chronic O3 exposure may play a role in the development of several diseases through perturbation of lipidomic profiles in the lungs and blood. In addition, changes in the lipids of the lung and blood may induce or exacerbate respiratory diseases.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Tianjin University of Sport, Tianjin 301617, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Pengfei Xu
- Tianjin University of Sport, Tianjin 301617, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Fuxu Gong
- Tianjin University of Sport, Tianjin 301617, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yizhe Tan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jie Han
- Tianjin University of Sport, Tianjin 301617, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Xiaohua Liu
- Tianjin University of Sport, Tianjin 301617, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
43
|
Wang X, Xu X, Chen Y, Li Z, Zhang M, Zhao C, Lian B, Zhao J, Guo Y, Liu Q. Liu Shen Capsule Alters Airway Microbiota Composition and Metabolite Profiles in Healthy Humans. Front Pharmacol 2022; 12:824180. [PMID: 35153770 PMCID: PMC8831732 DOI: 10.3389/fphar.2021.824180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
Alteration in airway microbiota composition and perturbations in microbe-metabolites interactions have been proposed as markers of many diseases. Liu Shen (LS) capsule, a traditional Chinese medicine, was proved as favorable in treating respiratory diseases. However, the effects of the LS capsule in terms of regulating human microorganisms and metabolite profiles are not well known. This study aimed to define and compare the respiratory microbiota composition and circulating and fecal metabolite profiles before and after LS capsule administration. A total of 30 healthy volunteers were recruited. The pharyngeal swab samples were collected for 16S rRNA gene sequencing. The serum and fecal samples were collected to analyze the non-targeted ultra-performance liquid chromatography-tandem mass spectrometry metabolomics. The airway microbial compositions were profoundly altered after LS capsule administration, as evidenced by increased microbial diversity and altered microbial taxa distribution. The increasing abundance of bacterial Bifidobacteria, and Lactobacillus characterized the after-administration groups, and the increasing of abundance bacterial Proteobacteria, Veillonella, Prevotella, Neisseria, and Actinomyces characterized the before-administration groups. Significant discriminations were observed in both serum and fecal metabolic profiles between the before- and after-administration groups. A total number of 134 and 71 significant HMDB taxonomic metabolites including glycerophospholipids, fatty acyls, and prenol lipids in the serum and fecal samples were identified respectively between the before- and after-administration groups. The integrated analysis showed that some altered airway microbiota phylum, such as Bacteroidetes and Proteobacteria, significantly correlated with metabolites in serum and fecal. Hence, our study reported the alternations in the composition and functions of the airway microbial community and the changes in circulating and fecal metabolite profiles after LS capsule administration in healthy humans, thus providing a novel insight into the mechanisms underlying the role of LS capsule treating and preventing related diseases.
Collapse
Affiliation(s)
- Xuerui Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Yishan Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhenxuan Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Mina Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chunxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Bo Lian
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Yuhong Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| |
Collapse
|
44
|
Gogulska Z, Smolenska Z, Turyn J, Mika A, Zdrojewski Z. Lipid Alterations in Systemic Sclerosis. Front Mol Biosci 2022; 8:761721. [PMID: 34993231 PMCID: PMC8724564 DOI: 10.3389/fmolb.2021.761721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Systemic sclerosis (SSc) is an autoimmune disease with an elusive etiology and poor prognosis. Due to its diverse clinical presentation, a personalized approach is obligatory and needs to be based on a comprehensive biomarker panel. Therefore, particular metabolomic studies are necessary. Lipidomics addressed these issues and found disturbances in several crucial metabolic pathways. Aim of Review: The review aims to briefly summarize current knowledge related to lipid alterations in systemic sclerosis, highlight its importance, and encourage further research in this field. Key Scientific Concepts of Review: In this review, we summarized the studies on the lipidomic pattern, fatty acids, lipoproteins, cholesterol, eicosanoids, prostaglandins, leukotrienes, lysophospholipids, and sphingolipids in systemic sclerosis. Researchers demonstrated several alternate aspects of lipid metabolism. As we aimed to present our findings in a comprehensive view, we decided to divide our findings into three major groups: “serum lipoproteins,” “fatty acids and derivatives,” and “cellular membrane components,” as we do believe they play a prominent role in SSc pathology.
Collapse
Affiliation(s)
- Zuzanna Gogulska
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, Gdansk, Poland
| | - Zaneta Smolenska
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, Gdansk, Poland
| | - Jacek Turyn
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Zbigniew Zdrojewski
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
45
|
Dasgupta S, Ghosh N, Choudhury P, Joshi M, Chowdhury SR, Bhattacharyya P, Chaudhury K. NMR metabolomic and microarray-based transcriptomic data integration identifies unique molecular signatures of hypersensitivity pneumonitis. Mol Omics 2021; 18:101-111. [PMID: 34881764 DOI: 10.1039/d1mo00209k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypersensitivity pneumonitis (HP) is an immune-mediated granulomatous interstitial lung disease (ILD) that results from repeated inhalation of certain antigens. Despite major advances in research, pathophysiology of the disease remains poorly understood. The present study combines metabolomic and transcriptomic data to determine alterations in HP subjects as compared with healthy controls. Metabolic signatures were identified in serum, exhaled breath condensate (EBC) and bronchoalveolar lavage fluid (BALF) of HP patients using proton nuclear magnetic resonance (NMR) metabolomics. The expression of three metabolites, i.e., lactate, pyruvate, and proline, was found to be significantly altered in all three biofluids. The potential of differential diagnosis based on these three metabolites was investigated by including a group of patients with sarcoidosis, which is another type of granulomatous ILD. In addition, differentially expressed transcriptomic fingerprints in blood samples were identified by analyzing a Gene Expression Omnibus (GEO) database. The transcriptomics analysis of these microarray-based data revealed 59 genes to be significantly dysregulated in patients with HP. Over representation analysis of the metabolites and genes of interest was performed using IMPaLA (Integrated Molecular Pathway Level Analysis) version 12. Integrated analysis of serum metabolite signatures and blood gene expression suggests dysregulation of PI3K-AKT signaling and TCA cycle pathways in these patients. This preliminary study is a step towards better understanding of the pathogenesis of HP by identification of differentially expressed metabolites and transcriptomic fingerprints. These molecular signatures may be explored as diagnostic markers for differentiating HP from other lung diseases.
Collapse
Affiliation(s)
- Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, India.
| | - Nilanjana Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, India.
| | - Priyanka Choudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, India.
| | - Mamata Joshi
- National Facility for High-field NMR, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, India.
| |
Collapse
|
46
|
Smith BJ, Silva-Costa LC, Martins-de-Souza D. Human disease biomarker panels through systems biology. Biophys Rev 2021; 13:1179-1190. [PMID: 35059036 PMCID: PMC8724340 DOI: 10.1007/s12551-021-00849-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/01/2021] [Indexed: 12/23/2022] Open
Abstract
As more uses for biomarkers are sought after for an increasing number of disease targets, single-target biomarkers are slowly giving way for biomarker panels. These panels incorporate various sources of biomolecular and clinical data to guarantee a higher robustness and power of separation for a clinical test. Multifactorial diseases such as psychiatric disorders show great potential for clinical use, assisting medical professionals during the analysis of risk and predisposition, disease diagnosis and prognosis, and treatment applicability and efficacy. More specific tests are also being developed to assist in ruling out, distinguishing between, and confirming suspicions of multifactorial diseases, as well as to predict which therapy option may be the best option for a given patient's biochemical profile. As more complex datasets are entering the field, involving multi-omic approaches, systems biology has stepped in to facilitate the discovery and validation steps during biomarker panel generation. Filtering biomolecules and clinical data, pre-validating and cross-validating potential biomarkers, generating final biomarker panels, and testing the robustness and applicability of those panels are all beginning to rely on machine learning and systems biology and research in this area will only benefit from advances in these approaches.
Collapse
Affiliation(s)
- Bradley J. Smith
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Licia C. Silva-Costa
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico E Tecnológico, Sao Paulo, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
| |
Collapse
|
47
|
Efficacy and Safety of Dahuang Zhechong Pill in Silicosis: A Randomized Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4354054. [PMID: 34840587 PMCID: PMC8616670 DOI: 10.1155/2021/4354054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/19/2021] [Accepted: 10/23/2021] [Indexed: 12/26/2022]
Abstract
Background There is no effective therapy for silicosis, and Dahuang Zhechong pill (DHZCP), an ancient Chinese medicine prescription, may have a therapeutic effect on silicosis. This study aims to verify the efficacy and safety of DHZCP in silicosis. Methods This is a randomized controlled clinical trial done at Panzhihua Second People's Hospital (Panzhihua City, Sichuan Province, China). Participants diagnosed with silicosis were recruited and randomized to the conventional treatment group (CG) or DHZCP combined with the conventional treatment group (DG). Forced vital capacity % predicted (FVC%), diffusing capacity of the lung for carbon monoxide % predicted (DLCO%), six-minute walk distance (6MWD), peripheral oxygen (SpO2), King's Brief Interstitial Lung Disease Questionnaire (K-BILD), and safety outcomes were measured at baseline and 9 weeks. Results Fifty-six participants (28 in each group) completed the study, and 53 of them (26 in DG and 27 in CG) completed pulmonary function. At 9 weeks, compared with no DHZCP, DHZCP treatment was associated with significant improvements in FVC% (mean ± SD, 95%CI) (8.2 ± 3.9, 0.3 to 16.0), DLCO% (8.6 ± 3.5, 1.5 to 15.7), SpO2 (3.8 ± 0.7, 2.3 to 5.2), and K-BILD total score (6.0 ± 2.3, 1.4 to 10.7). And, there were no statistical differences of safety outcomes between the two groups. Eight patients accepting DHZCP developed mild diarrhea during the first week, which subsequently resolved on its own. Conclusion DHZCP could improve the pulmonary function, the quality of life, and the exercise capacity of silicosis patients.
Collapse
|
48
|
Pinilla L, Benítez ID, Santamaria-Martos F, Targa A, Moncusí-Moix A, Dalmases M, Mínguez O, Aguilà M, Jové M, Sol J, Pamplona R, Barbé F, Sánchez-de-la-Torre M. Plasma profiling reveals a blood-based metabolic fingerprint of obstructive sleep apnea. Biomed Pharmacother 2021; 145:112425. [PMID: 34800782 DOI: 10.1016/j.biopha.2021.112425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) is a chronic, heterogeneous and multicomponent disorder with associated cardiovascular and metabolic alterations. Despite being the most common sleep-disordered breathing, it remains a significantly undiagnosed condition. OBJECTIVE We examined the plasma metabolome and lipidome of patients with suspected OSA, aiming to identify potential diagnosis biomarkers and to provide insights into the pathophysiological mechanisms underlying the disease. Additionally, we evaluated the impact of continuous positive airway pressure (CPAP) treatment on the circulating metabolomic and lipidomic profile. MATERIAL AND METHODS Observational-prospective-longitudinal study including 206 consecutive subjects referred to the sleep unit. OSA was defined as an apnea-hypopnoea index ≥ 15 events/h after polysomnography (PSG). Patients treated with CPAP were followed-up for 6 months. Untargeted plasma metabolomic and lipidomic profiling was performed using liquid chromatography coulpled to massspectrometry. RESULTS A plasma profile composed of 33 metabolites (mainly glycerophospholipids and bile acids) was identified in OSA vs. non-OSA patients. This profile correlated with specific PSG measures of OSA severity related to sleep fragmentation and hypoxemia. Machine learning analyses disclosed a 4-metabolites-signature that provided an accuracy (95% CI) of 0.98 (0.95-0.99) for OSA detection. CPAP treatment was associated with changes in 5 plasma metabolites previously altered by OSA. CONCLUSIONS This analysis of the circulating metabolome and lipidome reveals a molecular fingerprint of OSA, which was modulated after effective CPAP treatment. Our results suggest blood-based biomarker candidates with potential application in the personalized management of OSA and suggest the activation of adaptive mechanisms in response to OSA-derived hypoxia.
Collapse
Affiliation(s)
- Lucía Pinilla
- Group of Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa María, IRBLleida, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Lleida, Lleida, Spain.; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Iván D Benítez
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Group of Translational Research in Respiratory Medicine, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRB Lleida, Lleida, Spain
| | - Fernando Santamaria-Martos
- Group of Translational Research in Respiratory Medicine, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRB Lleida, Lleida, Spain
| | - Adriano Targa
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Group of Translational Research in Respiratory Medicine, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRB Lleida, Lleida, Spain
| | - Anna Moncusí-Moix
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Group of Translational Research in Respiratory Medicine, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRB Lleida, Lleida, Spain
| | - Mireia Dalmases
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Group of Translational Research in Respiratory Medicine, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRB Lleida, Lleida, Spain
| | - Olga Mínguez
- Group of Translational Research in Respiratory Medicine, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRB Lleida, Lleida, Spain
| | - Maria Aguilà
- Group of Translational Research in Respiratory Medicine, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRB Lleida, Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Spain; Institut Català de la Salut, Atenció Primària, Lleida, Spain; Research Support Unit Lleida, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Spain
| | - Ferran Barbé
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Group of Translational Research in Respiratory Medicine, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, IRB Lleida, Lleida, Spain
| | - Manuel Sánchez-de-la-Torre
- Group of Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa María, IRBLleida, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Lleida, Lleida, Spain.; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
49
|
Metabolomic Identification of Alpha-Ketoglutaric Acid Elevation in Pediatric Chronic Graft-versus-Host Disease. Blood 2021; 139:287-299. [PMID: 34534280 DOI: 10.1182/blood.2021013244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/03/2021] [Indexed: 11/20/2022] Open
Abstract
Chronic graft versus host disease (cGvHD) is the most common cause for non-relapse mortality post allogenic hematopoietic stem cell transplant (HSCT). However, there are no well-defined biomarkers for cGvHD or late acute GvHD (aGvHD). This study is a longitudinal evaluation of metabolomic patterns of cGvHD and late aGvHD in pediatric HSCT recipients. A quantitative analysis of plasma metabolites was performed on 222 evaluable pediatric subjects from the ABLE/PBMTC1202 study. We performed a risk-assignment analysis at day+100 on subjects who later developed either cGvHD or late aGvHD after day 114 to non-cGvHD controls. A second analysis at diagnosis used fixed and mixed multiple regression to compare cGvHD at onset to time matched non-cGvHD controls. A metabolomic biomarker was considered biologically relevant only if it met all three selection criteria: a) p value ≤0.05, b) effect ratio of ≥1.3 or ≤0.75, and c) receiver operator characteristic AUC ≥0.60. We found a consistent elevation in plasma alpha-ketoglutaric acid before (Day + 100) and at the onset of cGvHD, not impacted by cGvHD severity, pubertal status, or previous aGvHD. In addition, late aGvHD had a unique metabolomic pattern at day+100 compared to cGvHD. Additional metabolomic correlation patterns were seen with the clinical presentation of pulmonary, de novo, and progressive cGvHD. Alpha-ketoglutaric acid emerged as the single most significant metabolite associated with cGvHD, both in the day +100 risk-assignment and later diagnostic onset analysis. These distinctive metabolic patterns may lead to improved subclassification of cGvHD. Future validation of these exploratory results are needed.
Collapse
|
50
|
Wang Z, Chen L, Huang Y, Luo M, Wang H, Jiang Z, Zheng J, Yang Z, Chen Z, Zhang C, Long L, Wang Y, Li X, Liao F, Gan Y, Luo P, Liu Y, Wang Y, XuTan, Zhou Z, Zhang A, Shi C. Pharmaceutical targeting of succinate dehydrogenase in fibroblasts controls bleomycin-induced lung fibrosis. Redox Biol 2021; 46:102082. [PMID: 34343908 PMCID: PMC8342973 DOI: 10.1016/j.redox.2021.102082] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by excessive deposition of extracellular matrix in the lung with fibroblast-to-myofibroblast transition, leading to chronically compromising lung function and death. However, very little is known about the metabolic alterations of fibroblasts in IPF, and there is still a lack of pharmaceutical agents to target the metabolic dysregulation. Here we show a glycolysis upregulation and fatty acid oxidation (FAO) downregulation in fibroblasts from fibrotic lung, and perturbation of glycolysis and FAO affects fibroblasts transdifferentiation. In addition, there is a significant accumulation of succinate both in fibrotic lung tissues and myofibroblasts, where succinate dehydrogenase (SDH) operates in reverse by reducing fumarate to succinate. Then succinate contributes to glycolysis upregulation and FAO downregulation by stabilizing HIF-1α, which promotes the development of lung fibrosis. In addition, we identify a near-infrared small molecule dye, IR-780, as a targeting agent which stimulates mild inhibition of succinate dehydrogenase subunit A (SDHA) in fibroblasts, and which inhibits TGF-β1 induced SDH and succinate elevation, then to prevent fibrosis formation and respiratory dysfunction. Further, enhanced cell retention of IR-780 is shown to promote severe inhibition of SDHA in myofibroblasts, which may contribute to excessive ROS generation and selectively induces myofibroblasts to apoptosis, and then therapeutically improves established lung fibrosis in vivo. These findings indicate that targeting metabolic dysregulation has significant implications for therapies aimed at lung fibrosis and succinate dehydrogenase is an exciting new therapeutic target to treat IPF. Glycolysis upregulation and fatty acid oxidation (FAO) downregulation in fibroblasts lead to lung fibrosis. Succinate contributes to metabolic dysregulation of fibroblasts by stabilizing HIF-1α. Succinate dehydrogenase is an exciting new therapeutic target to treat IPF. IR-780 can be a promising agent to control lung fibrosis by targeting succinate dehydrogenase.
Collapse
Affiliation(s)
- Ziwen Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Cardiology, Geriatric Cardiovascular Disease Research and Treatment Center, The 82nd Group Army Hospital of PLA (252 Hospital of PLA), Baoding, Hebei, 071000, China
| | - Long Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yu Huang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang, 550025, China
| | - Min Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang, 550025, China
| | - Huilan Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Institute of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Zhongyong Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiancheng Zheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zeyu Yang
- Breast and Thyroid Surgical Department, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China
| | - Zelin Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chi Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lei Long
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yawei Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xueru Li
- Department of Ophthalmology, Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, 401120, China
| | - Fengying Liao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yibo Gan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yunsheng Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - XuTan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang, 550025, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|