1
|
Collet Q, Velard F, Laurent F, Josse J. Intracellular Staphylococcus aureus in osteoblasts and osteocytes and its impact on bone homeostasis during osteomyelitis. Bone 2025; 198:117536. [PMID: 40393553 DOI: 10.1016/j.bone.2025.117536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/13/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025]
Abstract
Osteomyelitis is a severe infection of bone tissue that can lead to bone loss and even osteonecrosis. This condition is mostly caused by Gram-positive bacteria, with Staphylococcus aureus being the most common etiological agent. Among the pathophysiological mechanisms involved in osteomyelitis, the ability of S. aureus to be internalized by osteoblasts or osteocytes and to survive within these cells, is particularly noteworthy. Infected osteoblasts and osteocytes not only serve as reservoirs in chronic cases of osteomyelitis but also play an active role in the osteoimmunology process, notably by producing mediators that promote the bone resorption activity of osteoclasts, thereby disrupting bone homeostasis. The present review explores both historical and recent literature on the internalization of S. aureus by osteoblasts and osteocytes, its intracellular behavior following internalization, and its mechanisms for inducing cell death. Additionally, it examines how S. aureus affects bone formation activity and promotes the production of inflammatory and pro-osteoclastic mediators. This review aims to highlight the limitations of current findings and outline key questions for future investigations.
Collapse
Affiliation(s)
- Quentin Collet
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France; Laboratoire de bactériologie, Institut des Agents Infectieux, French National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France.
| | | | - Frédéric Laurent
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France; Laboratoire de bactériologie, Institut des Agents Infectieux, French National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Josse
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| |
Collapse
|
2
|
Lin YH, Wang YH, Peng YJ, Liu FC, Sytwu HK, Cheng CP. Interleukin 26 attenuates osteoblast differentiation in osteoarthritis patients by activating COX2 and NF-κB pathways. Int J Med Sci 2025; 22:1504-1515. [PMID: 40093804 PMCID: PMC11905269 DOI: 10.7150/ijms.102967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Aims: Osteoarthritis (OA) represents the prevailing form of degenerative joint pathology. Recent investigations have revealed a heightened expression of interleukin 26 (IL-26) in various inflammatory arthritic conditions, including OA. However, the specific impacts and functions of IL-26 on osteoblasts (OBs) within the context of OA remain inadequately elucidated. This study aims to clarify the effects and underlying mechanisms of IL-26 by examining its influence on osteoblasts isolated from OA patients and a murine osteoblast cell line. Methods: Human primary osteoblasts and mouse pre-osteoblast cells were subjected to treatment with β-glycerophosphate or concurrent treatment with IL-26 to observe the effects on osteoblast differentiation. The differentiation of osteoblasts was assessed through the expression of relevant genes using reverse transcription-polymerase chain reaction (RT-PCR). Key molecular mechanisms of downstream signaling pathways were examined through immunoblotting assays. Results: Our results reveal that IL-26 mitigates osteoblast differentiation and reduces the expression of the marker alkaline phosphatase. Furthermore, the NF-κB downstream OB proliferated marker iNOS and inhibition OB differentiated marker LCN2 messenger RNA are up-regulated in IL-26 treated group. Also, phosphorylation and nuclear translocation of NF-κB p65 occur following IL-26 stimulation. Additionally, IL-26 enhances the downstream transcription factor cyclooxygenase-2 (COX2), a major player associated with iNOS. STAT1, the canonical receptor signaling pathway of IL-26 is activated. Conclusion: In summary, our findings substantiate the role of IL-26 in osteoarthritis and identify it as a potential therapeutic target for intervention in osteoarthritic pathology.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Department and Graduate institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hsun Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Cheng Liu
- Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Pi Cheng
- Department and Graduate institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
3
|
Pugazhendhi AS, Seal A, Hughes M, Kumar U, Kolanthai E, Wei F, Schwartzman JD, Coathup MJ. Extracellular Proteins Isolated from L. acidophilus as an Osteomicrobiological Therapeutic Agent to Reduce Pathogenic Biofilm Formation, Regulate Chronic Inflammation, and Augment Bone Formation In Vitro. Adv Healthc Mater 2024; 13:e2302835. [PMID: 38117082 DOI: 10.1002/adhm.202302835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/31/2023] [Indexed: 12/21/2023]
Abstract
Periprosthetic joint infection (PJI) is a challenging complication that can occur following joint replacement surgery. Efficacious strategies to prevent and treat PJI and its recurrence remain elusive. Commensal bacteria within the gut convey beneficial effects through a defense strategy named "colonization resistance" thereby preventing pathogenic infection along the intestinal surface. This blueprint may be applicable to PJI. The aim is to investigate Lactobacillus acidophilus spp. and their isolated extracellular-derived proteins (LaEPs) on PJI-relevant Staphylococcus aureus, methicillin-resistant S. aureus, and Escherichia coli planktonic growth and biofilm formation in vitro. The effect of LaEPs on cultured macrophages and osteogenic, and adipogenic human bone marrow-derived mesenchymal stem cell differentiation is analyzed. Data show electrostatically-induced probiotic-pathogen species co-aggregation and pathogenic growth inhibition together with LaEP-induced biofilm prevention. LaEPs prime macrophages for enhanced microbial phagocytosis via cathepsin K, reduce lipopolysaccharide-induced DNA damage and receptor activator nuclear factor-kappa B ligand expression, and promote a reparative M2 macrophage morphology under chronic inflammatory conditions. LaEPs also significantly augment bone deposition while abating adipogenesis thus holding promise as a potential multimodal therapeutic strategy. Proteomic analyses highlight high abundance of lysyl endopeptidase, and urocanate reductase. Further, in vivo analyses are warranted to elucidate their role in the prevention and treatment of PJIs.
Collapse
Affiliation(s)
| | - Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL, 32827, USA
| | | | - Udit Kumar
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, USA
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL, 32827, USA
| | | | - Melanie J Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL, 32827, USA
- College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
4
|
Bhardwaj RG, Khalaf ME, Karched M. Secretome analysis and virulence assessment in Abiotrophia defectiva. J Oral Microbiol 2024; 16:2307067. [PMID: 38352067 PMCID: PMC10863525 DOI: 10.1080/20002297.2024.2307067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
Background Abiotrophia defectiva, although infrequently occurring, is a notable cause of culture-negative infective endocarditis with limited research on its virulence. Associated with oral infections such as dental caries, exploring its secretome may provide insights into virulence mechanisms. Our study aimed to analyze and characterize the secretome of A. defectiva strain CCUG 27639. Methods Secretome of A. defectiva was prepared from broth cultures and subjected to mass spectrometry and proteomics for protein identification. Inflammatory potential of the secretome was assessed by ELISA. Results Eighty-four proteins were identified, with diverse subcellular localizations predicted by PSORTb. Notably, 20 were cytoplasmic, 12 cytoplasmic membrane, 5 extracellular, and 9 cell wall-anchored proteins. Bioinformatics tools revealed 54 proteins secreted via the 'Sec' pathway and 8 via a non-classical pathway. Moonlighting functions were found in 23 proteins, with over 20 exhibiting potential virulence properties, including peroxiredoxin and oligopeptide ABC transporter substrate-binding protein. Gene Ontology and KEGG analyses categorized protein sequences in various pathways. STRING analysis revealed functional protein association networks. Cytokine profiling demonstrated significant proinflammatory cytokine release (IL-8, IL-1β, and CCL5) from human PBMCs. Conclusions Our study provides a comprehensive understanding of A. defectiva's secretome, laying the foundation for insights into its pathogenicity.
Collapse
Affiliation(s)
- Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences College of Dentistry, Kuwait University, Safat, Kuwait
| | - Mai E Khalaf
- Department of General Dental Practice, College of Dentistry, Kuwait University, Safat, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences College of Dentistry, Kuwait University, Safat, Kuwait
| |
Collapse
|
5
|
Gómez-Alonso IS, Betanzos-Cabrera G, Moreno-Lafont MC, Cancino-Diaz ME, García-Pérez BE, Cancino-Diaz JC. Non-biofilm-forming Staphylococcus epidermidis planktonic cell supernatant induces alterations in osteoblast biological function. Sci Rep 2024; 14:1807. [PMID: 38245549 PMCID: PMC10799936 DOI: 10.1038/s41598-024-51899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Staphylococcal biofilms significantly contribute to prosthetic joint infection (PJI). However, 40% of S. epidermidis PJI isolates do not produce biofilms, which does not explain the role of biofilms in these cases. We studied whether the supernatant from planktonic S. epidermidis alters osteoblast function. Non-biofilm-forming S. epidermidis supernatants (PJI- clinical isolate, healthy skin isolate (HS), and ATCC12228 reference strain) and biofilm-forming supernatants (PJI+ clinical isolate, ATCC35984 reference strain, and Staphylococcus aureus USA300 reference strain) were included. Osteoblasts stimulated with supernatants from non-biofilm-forming isolates for 3, 7, and 14 days showed significantly reduced cellular DNA content compared with unstimulated osteoblasts, and apoptosis was induced in these osteoblasts. Similar results were obtained for biofilm-forming isolates, but with a greater reduction in DNA content and higher apoptosis. Alkaline phosphatase activity and mineralization were significantly reduced in osteoblasts treated with supernatants from non-biofilm-forming isolates compared to the control at the same time points. However, the supernatants from biofilm-forming isolates had a greater effect than those from non-biofilm-forming isolates. A significant decrease in the expression of ATF4, RUNX2, ALP, SPARC, and BGLAP, and a significant increase in RANK-L expression were observed in osteoblasts treated with both supernatants. These results demonstrate that the supernatants of the S. epidermidis isolate from the PJI- and HS (commensal) with a non-biofilm-forming phenotype alter the function of osteoblasts (apoptosis induction, failure of cell differentiation, activation of osteoblasts, and induction of bone resorption), similar to biofilm-forming isolates (PJI+, ATCC35984, and S. aureus USA300), suggesting that biofilm status contributes to impaired osteoblast function and that the planktonic state can do so independently of biofilm production.
Collapse
Affiliation(s)
- Itzia Sidney Gómez-Alonso
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico
| | - Gabriel Betanzos-Cabrera
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Actopan Camino a Tilcuautla S/N., Pueblo San Juan Tilcuautla, 42160, Pachuca Hidalgo, Mexico
| | - Martha Cecilia Moreno-Lafont
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico
| | - Mario Eugenio Cancino-Diaz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico
| | - Blanca Estela García-Pérez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico
| | - Juan Carlos Cancino-Diaz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico.
| |
Collapse
|
6
|
Torres HM, Arnold KM, Oviedo M, Westendorf JJ, Weaver SR. Inflammatory Processes Affecting Bone Health and Repair. Curr Osteoporos Rep 2023; 21:842-853. [PMID: 37759135 PMCID: PMC10842967 DOI: 10.1007/s11914-023-00824-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE OF REVIEW The purpose of this article is to review the current understanding of inflammatory processes on bone, including direct impacts of inflammatory factors on bone cells, the effect of senescence on inflamed bone, and the critical role of inflammation in bone pain and healing. RECENT FINDINGS Advances in osteoimmunology have provided new perspectives on inflammatory bone loss in recent years. Characterization of so-called inflammatory osteoclasts has revealed insights into physiological and pathological bone loss. The identification of inflammation-associated senescent markers in bone cells indicates that therapies that reduce senescent cell burden may reverse bone loss caused by inflammatory processes. Finally, novel studies have refined the role of inflammation in bone healing, including cross talk between nerves and bone cells. Except for the initial stages of fracture healing, inflammation has predominately negative effects on bone and increases fracture risk. Eliminating senescent cells, priming the osteo-immune axis in bone cells, and alleviating pro-inflammatory cytokine burden may ameliorate the negative effects of inflammation on bone.
Collapse
Affiliation(s)
- Haydee M Torres
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Katherine M Arnold
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Biomedical Engineering and Physiology Track/Regenerative Sciences Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manuela Oviedo
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
7
|
Watanabe R, Matsugaki A, Gokcekaya O, Ozasa R, Matsumoto T, Takahashi H, Yasui H, Nakano T. Host bone microstructure for enhanced resistance to bacterial infections. BIOMATERIALS ADVANCES 2023; 154:213633. [PMID: 37775399 DOI: 10.1016/j.bioadv.2023.213633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Postoperative bacterial infection is a serious complication of orthopedic surgery. Not only infections that develop in the first few weeks after surgery but also late infections that develop years after surgery are serious problems. However, the relationship between host bone and infection activation has not yet been explored. Here, we report a novel association between host bone collagen/apatite microstructure and bacterial infection. The bone-mimetic-oriented micro-organized matrix structure was obtained by prolonged controlled cell alignment using a grooved-structured biomedical titanium alloy. Surprisingly, we have discovered that highly aligned osteoblasts have a potent inhibitory effect on Escherichia coli adhesion. Additionally, the oriented collagen/apatite micro-organization of the bone matrix showed excellent antibacterial resistance against Escherichia coli. The proposed mechanism for realizing the antimicrobial activity of the micro-organized bone matrix is by the controlled secretion of the antimicrobial peptides, including β-defensin 2 and β-defensin 3, from the highly aligned osteoblasts. Our findings contribute to the development of anti-infective strategies for orthopedic surgeries. The recovery of the intrinsically ordered bone matrix organization provides superior antibacterial resistance after surgery.
Collapse
Affiliation(s)
- Ryota Watanabe
- Teijin Nakashima Medical Co. Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan; Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Ozkan Gokcekaya
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Hiroyuki Takahashi
- Teijin Nakashima Medical Co. Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan.
| | - Hidekazu Yasui
- Teijin Nakashima Medical Co. Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan.
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
8
|
Fay LY, Kuo CH, Chang HK, Yeh MY, Chang CC, Ko CC, Tu TH, Kuo YH, Hsu WY, Hung CH, Chen CJ, Wu JC, Tsai MJ, Huang WC, Cheng H, Lee MJ. Comparative Study of the Cytokine Profiles of Serum and Tissues from Patients with the Ossification of the Posterior Longitudinal Ligament. Biomedicines 2023; 11:2021. [PMID: 37509659 PMCID: PMC10377187 DOI: 10.3390/biomedicines11072021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The ossification of the posterior longitudinal ligament (OPLL) is one of the contributing factors leading to severe cervical spondylotic myelopathy (CSM). The mechanism causing ossification is still unclear. The current study was designed to analyze the specimens of patients with or without OPLL. METHODS The study collected 51 patients with cervical spondylosis. There were six serum samples in both the non-OPLL (NOPLL) and OPLL groups. For tissue analysis, there were seven samples in the NOPLL group and five samples in the OPLL group. The specimens of serum and tissue were analyzed by using Human Cytokine Antibody Arrays to differentiate biomarkers between the OPLL and NOPLL groups, as well as between serum and OPLL tissue. Immunohistochemical staining of the ligament tissue was undertaken for both groups. RESULTS For OPLL vs. NOPLL, the serum leptin levels are higher in the OPLL group, corroborating others' observations that it may serve as a disease marker. In the tissue, angiogenin (ANG), osteopontin (OPN), and osteopro-tegerin (OPG) are higher than they are in the OPLL group (p < 0.05). For serum vs. OPLL tissue, many chemotactic cytokines demonstrated elevated levels of MIP1 delta, MCP-1, and RANTES in the serum, while many cytokines promoting or regulating bone genesis were up-regulated in tissue (oncostatin M, FGF-9, LIF, osteopontin, osteoprotegerin, TGF-beta2), as well as the factor that inhibits osteoclastogenesis (IL-10), with very few cytokines responsible for osteoclastogenesis. Molecules promoting angiogenesis, including angiotensin, vEGF, and osteoprotegerin, are abundant in the OPLL tissue, which paves the way for robust bone growth.
Collapse
Affiliation(s)
- Li-Yu Fay
- Institute of Pharmacology, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Chao-Hung Kuo
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, and National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
| | - Hsuan-Kan Chang
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Mei-Yin Yeh
- Institute of Pharmacology, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Chih-Chang Chang
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Chin-Chu Ko
- Institute of Pharmacology, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Tsung-Hsi Tu
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Yi-Hsuan Kuo
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Wang-Yu Hsu
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Chien-Hui Hung
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Ching-Jung Chen
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Jau-Ching Wu
- Institute of Pharmacology, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - May-Jywan Tsai
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Wen-Cheng Huang
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Henrich Cheng
- Institute of Pharmacology, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 11217, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Meng-Jen Lee
- Department of Applied Chemistry, Chaoyang University of Technology, 168, Jifeng E. Rd., Taichung 413310, Taiwan
| |
Collapse
|
9
|
Vimalraj S, Sekaran S. RUNX Family as a Promising Biomarker and a Therapeutic Target in Bone Cancers: A Review on Its Molecular Mechanism(s) behind Tumorigenesis. Cancers (Basel) 2023; 15:3247. [PMID: 37370857 DOI: 10.3390/cancers15123247] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The transcription factor runt-related protein (RUNX) family is the major transcription factor responsible for the formation of osteoblasts from bone marrow mesenchymal stem cells, which are involved in bone formation. Accumulating evidence implicates the RUNX family for its role in tumor biology and cancer progression. The RUNX family has been linked to osteosarcoma via its regulation of many tumorigenicity-related factors. In the regulatory network of cancers, with numerous upstream signaling pathways and its potential target molecules downstream, RUNX is a vital molecule. Hence, a pressing need exists to understand the precise process underpinning the occurrence and prognosis of several malignant tumors. Until recently, RUNX has been regarded as one of the therapeutic targets for bone cancer. Therefore, in this review, we have provided insights into various molecular mechanisms behind the tumorigenic role of RUNX in various important cancers. RUNX is anticipated to grow into a novel therapeutic target with the in-depth study of RUNX family-related regulatory processes, aid in the creation of new medications, and enhance clinical efficacy.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
10
|
Lamret F, Lemaire A, Lagoutte M, Varin-Simon J, Abraham L, Colin M, Braux J, Velard F, Gangloff SC, Reffuveille F. Approaching prosthesis infection environment: Development of an innovative in vitro Staphylococcus aureus biofilm model. Biofilm 2023; 5:100120. [PMID: 37125394 PMCID: PMC10130472 DOI: 10.1016/j.bioflm.2023.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/28/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
The major role and implication of bacterial biofilms in the case of bone and prosthesis infections have been highlighted and often linked to implant colonization. Management strategies of these difficult-to-treat infections consist in surgeries and antibiotic treatment, but the rate of relapse remains high, especially if Staphylococcus aureus, a high-virulent pathogen, is involved. Therapeutic approaches are not adapted to the specific features of biofilm in bone context whereas infectious environment is known to importantly influence biofilm structure. In the present study, we aim to characterize S. aureus SH1000 (methicillin-sensitive strain, MSSA) and USA300 (methicillin-resistant strain, MRSA) biofilm on different surfaces mimicking the periprosthetic environment. As expected, protein adsorption on titanium enhanced the number of adherent bacteria for both strains. On bone explant, USA300 adhered more than SH1000. The simultaneous presence of two different surfaces was also found to change the bacterial behaviour. Thus, proteins adsorption on titanium and bone samples (from bank or directly recovered after an arthroplasty) were found to be key parameters that influence S. aureus biofilm formation: adhesion, matrix production and biofilm-related gene regulation. These results highlighted the need for new biofilm models, more relevant with the infectious environment by using adapted culture medium and presence of surfaces that are representative of in situ conditions to better evaluate therapeutic strategies against biofilm.
Collapse
|
11
|
Sekar A, Lekkala S, Oral E. A Novel Method to Determine the Longitudinal Antibacterial Activity of Drug-Eluting Materials. J Vis Exp 2023:10.3791/64641. [PMID: 36939249 PMCID: PMC10859037 DOI: 10.3791/64641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Ultrahigh molecular weight polyethylene (UHMWPE) is widely used in total joint arthroplasties as a load-bearing surface. Periprosthetic joint infections, the majority of which occur shortly after joint replacement, constitute almost 25% of total knee revision surgeries, and the complete eradication of bacterial infection poses a major challenge. A promising way to tackle this problem is to ensure the local sustained delivery of antibiotic concentrations sufficient to inhibit the bacteria to support routine systemic antibiotic prophylaxis. There is increased research into the development of efficient local drug delivery devices. Although established antibacterial testing methods for drugs can be used to test the antibacterial efficacy of drug-eluting materials, they are lacking in terms of providing real-time and longitudinal antibacterial efficacy data that can be correlated to the elution profiles of antibiotics from these devices. Here, we report a direct and versatile methodology to determine the antibacterial efficacy of antibiotic-eluting UHMWPE implants. This methodology can be used as a platform to avoid bacterial culture at each time point of a lengthy experiment and can also be adapted to other local drug delivery devices.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedics Laboratory, Massachusetts General Hospital; Department of Orthopaedic Surgery, Harvard Medical School
| | - Sashank Lekkala
- Harris Orthopaedics Laboratory, Massachusetts General Hospital
| | - Ebru Oral
- Harris Orthopaedics Laboratory, Massachusetts General Hospital; Department of Orthopaedic Surgery, Harvard Medical School;
| |
Collapse
|
12
|
Fisher CR, Patel R. Profiling the Immune Response to Periprosthetic Joint Infection and Non-Infectious Arthroplasty Failure. Antibiotics (Basel) 2023; 12:296. [PMID: 36830206 PMCID: PMC9951934 DOI: 10.3390/antibiotics12020296] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Arthroplasty failure is a major complication of joint replacement surgery. It can be caused by periprosthetic joint infection (PJI) or non-infectious etiologies, and often requires surgical intervention and (in select scenarios) resection and reimplantation of implanted devices. Fast and accurate diagnosis of PJI and non-infectious arthroplasty failure (NIAF) is critical to direct medical and surgical treatment; differentiation of PJI from NIAF may, however, be unclear in some cases. Traditional culture, nucleic acid amplification tests, metagenomic, and metatranscriptomic techniques for microbial detection have had success in differentiating the two entities, although microbiologically negative apparent PJI remains a challenge. Single host biomarkers or, alternatively, more advanced immune response profiling-based approaches may be applied to differentiate PJI from NIAF, overcoming limitations of microbial-based detection methods and possibly, especially with newer approaches, augmenting them. In this review, current approaches to arthroplasty failure diagnosis are briefly overviewed, followed by a review of host-based approaches for differentiation of PJI from NIAF, including exciting futuristic combinational multi-omics methodologies that may both detect pathogens and assess biological responses, illuminating causes of arthroplasty failure.
Collapse
Affiliation(s)
- Cody R. Fisher
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
13
|
Granata V, Possetti V, Parente R, Bottazzi B, Inforzato A, Sobacchi C. The osteoblast secretome in Staphylococcus aureus osteomyelitis. Front Immunol 2022; 13:1048505. [PMID: 36483565 PMCID: PMC9723341 DOI: 10.3389/fimmu.2022.1048505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
Osteomyelitis (OM) is an infectious disease of the bone predominantly caused by the opportunistic bacterium Staphylococcus aureus (S. aureus). Typically established upon hematogenous spread of the pathogen to the musculoskeletal system or contamination of the bone after fracture or surgery, osteomyelitis has a complex pathogenesis with a critical involvement of both osteal and immune components. Colonization of the bone by S. aureus is traditionally proposed to induce functional inhibition and/or apoptosis of osteoblasts, alteration of the RANKL/OPG ratio in the bone microenvironment and activation of osteoclasts; all together, these events locally subvert tissue homeostasis causing pathological bone loss. However, this paradigm has been challenged in recent years, in fact osteoblasts are emerging as active players in the induction and orientation of the immune reaction that mounts in the bone during an infection. The interaction with immune cells has been mostly ascribed to osteoblast-derived soluble mediators that add on and synergize with those contributed by professional immune cells. In this respect, several preclinical and clinical observations indicate that osteomyelitis is accompanied by alterations in the local and (sometimes) systemic levels of both pro-inflammatory (e.g., IL-6, IL-1α, TNF-α, IL-1β) and anti-inflammatory (e.g., TGF-β1) cytokines. Here we revisit the role of osteoblasts in bacterial OM, with a focus on their secretome and its crosstalk with cellular and molecular components of the bone microenvironment and immune system.
Collapse
Affiliation(s)
- Valentina Granata
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Milan Unit, National Research Council - Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy
| | - Valentina Possetti
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | | | | | - Antonio Inforzato
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Milan Unit, National Research Council - Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy,*Correspondence: Cristina Sobacchi,
| |
Collapse
|
14
|
Lamret F, Varin-Simon J, Six M, Thoraval L, Chevrier J, Adam C, Guillaume C, Velard F, Gangloff SC, Reffuveille F. Human Osteoblast-Conditioned Media Can Influence Staphylococcus aureus Biofilm Formation. Int J Mol Sci 2022; 23:ijms232214393. [PMID: 36430871 PMCID: PMC9696964 DOI: 10.3390/ijms232214393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Osteoblasts are bone-forming and highly active cells participating in bone homeostasis. In the case of osteomyelitis and more specifically prosthetic joint infections (PJI) for which Staphylococcus aureus (S. aureus) is mainly involved, the interaction between osteoblasts and S. aureus results in impaired bone homeostasis. If, so far, most of the studies of osteoblasts and S. aureus interactions were focused on osteoblast response following direct interactions with co-culture and/or internalization models, less is known about the effect of osteoblast factors on S. aureus biofilm formation. In the present study, we investigated the effect of human osteoblast culture supernatant on methicillin sensitive S. aureus (MSSA) SH1000 and methicillin resistant S. aureus (MRSA) USA300. Firstly, Saos-2 cell line was incubated with either medium containing TNF-α to mimic the inflammatory periprosthetic environment or with regular medium. Biofilm biomass was slightly increased for both strains in the presence of culture supernatant collected from Saos-2 cells, stimulated or not with TNF-α. In such conditions, SH1000 was able to develop microcolonies, suggesting a rearrangement in biofilm organization. However, the biofilm matrix and regulation of genes dedicated to biofilm formation were not substantially changed. Secondly, culture supernatant obtained from primary osteoblast culture induced varied response from SH1000 strain depending on the different donors tested, whereas USA300 was only slightly affected. This suggested that the sensitivity to bone cell secretions is strain dependent. Our results have shown the impact of osteoblast secretions on bacteria and further identification of involved factors will help to manage PJI.
Collapse
Affiliation(s)
- Fabien Lamret
- Biomatériaux et Inflammation en Site Osseux, BIOS EA 4691, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51097 Reims, France
| | - Jennifer Varin-Simon
- Biomatériaux et Inflammation en Site Osseux, BIOS EA 4691, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51097 Reims, France
| | - Mélodie Six
- Biomatériaux et Inflammation en Site Osseux, BIOS EA 4691, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51097 Reims, France
| | - Léa Thoraval
- Biomatériaux et Inflammation en Site Osseux, BIOS EA 4691, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51097 Reims, France
| | - Julie Chevrier
- Biomatériaux et Inflammation en Site Osseux, BIOS EA 4691, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51097 Reims, France
| | - Cloé Adam
- Biomatériaux et Inflammation en Site Osseux, BIOS EA 4691, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51097 Reims, France
| | - Christine Guillaume
- Biomatériaux et Inflammation en Site Osseux, BIOS EA 4691, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51097 Reims, France
| | - Frédéric Velard
- Biomatériaux et Inflammation en Site Osseux, BIOS EA 4691, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51097 Reims, France
| | - Sophie C. Gangloff
- Biomatériaux et Inflammation en Site Osseux, BIOS EA 4691, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51097 Reims, France
- UFR Pharmacie, Service de Microbiologie, Université de Reims Champagne-Ardenne, 51097 Reims, France
| | - Fany Reffuveille
- Biomatériaux et Inflammation en Site Osseux, BIOS EA 4691, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51097 Reims, France
- UFR Pharmacie, Service de Microbiologie, Université de Reims Champagne-Ardenne, 51097 Reims, France
- Correspondence:
| |
Collapse
|
15
|
Tong Z, Chen Z, Li Z, Xie Z, Zhang H. Mechanisms of promoting the differentiation and bone resorption function of osteoclasts by Staphylococcus aureus infection. Int J Med Microbiol 2022; 312:151568. [PMID: 36240531 DOI: 10.1016/j.ijmm.2022.151568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023] Open
Abstract
Bone infection is a common and serious complication in the field of orthopedics, which frequently leads to excessive bone destruction and fracture nonunion. Staphylococcus aureus (S. aureus) infection affects bone cell function which, in turn, causes bone destruction. Bone is mainly regulated by osteoblasts and osteoclasts. Osteoclasts are the only cell type with bone resorptive function. Their over-activation is closely associated with excessive bone loss. Understanding how S. aureus changes the functional state of osteoclasts is the key to effective treatment. By reviewing the literature, this paper summarizes several mechanisms of bone destruction caused by S. aureus influencing osteoclasts, thereby stimulating new ideas for the treatment of bone infection.
Collapse
Affiliation(s)
- Zelei Tong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhihao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziyuan Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zonggang Xie
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Cellular Response of Human Osteoblasts to Different Presentations of Deproteinized Bovine Bone. MATERIALS 2022; 15:ma15030999. [PMID: 35160947 PMCID: PMC8839050 DOI: 10.3390/ma15030999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023]
Abstract
Objectives: This study evaluated the cellular response of primary osteoblasts exposed to two different presentations of a low-temperature non-sintered deproteinized bovine bone matrix (DBBM). Materials and methods: Six different baths of a commercially available DBBM block (Bonefill® Porous Block) and one of DBBM granule (Bonefill® Porous) were evaluated to identify the mineral structure and organic or cellular remnants. Samples of the same baths were processed in TRIZOL for RNA extraction and quantification. For the immunologic cell reaction assay, primary human osteoblasts (pOB) were exposed to DBMM block (pOB + B) or granules (pOB + G), or none (control) for 1, 3, or 7 days of cell cultivation. Expression of proinflammatory cytokines by pOB was evaluated by crosslinked ELISA assay. In addition, total DNA amount, as well as cell viability via LDH evaluation, was assessed. Results: Organic remnants were present in DBBM blocks; 45.55% (±7.12) of osteocytes lacunae presented cellular remnants in blocks compared to 17.31% (±1.31) in granules. In three of five batches of blocks, it was possible to isolate bovine RNA. The highest concentration of TGF-β1 was found in supernatants of pOB + G on day 7 (218.85 ± 234.62 pg/mL) (p < 0.05), whereas pOB + B presented the lowest amount of TGF-β1 secretion at the end of evaluation (30.22 ± 14.94 pg/mL, p < 0.05). For IL-6 and OPG, there was no statistical difference between groups, while pOB + G induced more IL-8 secretion than the control (3.03 ± 3.38 ng/mL, p < 0.05). Considering the kinetics of cytokine release during the study period, all groups presented a similar pattern of cytokines, estimated as an increasing concentration for IL-6, IL-8, and OPG during cultivation. Adherent cells were observed on both material surfaces on day 7, according to H&E and OPN staining. Conclusion: Neither tested material induced a pronounced inflammatory response upon osteoblast cultivation. However, further studies are needed to elucidate the potential influence of organic remnants in bone substitute materials on the regeneration process.
Collapse
|
17
|
Rosman CWK, van Dijl JM, Sjollema J. Interactions between the foreign body reaction and Staphylococcus aureus biomaterial-associated infection. Winning strategies in the derby on biomaterial implant surfaces. Crit Rev Microbiol 2021; 48:624-640. [PMID: 34879216 DOI: 10.1080/1040841x.2021.2011132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterial-associated infections (BAIs) are an increasing problem where antibiotic therapies are often ineffective. The design of novel strategies to prevent or combat infection requires a better understanding of how an implanted foreign body prevents the immune system from eradicating surface-colonizing pathogens. The objective of this review is to chart factors resulting in sub-optimal clearance of Staphylococcus aureus bacteria involved in BAIs. To this end, we first describe three categories of bacterial mechanisms to counter the host immune system around foreign bodies: direct interaction with host cells, modulation of intercellular communication, and evasion of the immune system. These mechanisms take place in a time frame that differentiates sterile foreign body reactions, BAIs, and soft tissue infections. In addition, we identify experimental interventions in S. aureus BAI that may impact infectious mechanisms. Most experimental treatments modulate the host response to infection or alter the course of BAI through implant surface modulation. In conclusion, the first week after implantation and infection is crucial for the establishment of an S. aureus biofilm that resists the local immune reaction and antibiotic treatment. Although established and chronic S. aureus BAI is still treatable and manageable, the focus of interventions should lie on this first period.
Collapse
Affiliation(s)
- Colin W K Rosman
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jelmer Sjollema
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Patient-specific effects of soluble factors from Staphylococcus aureus and Staphylococcus epidermidis biofilms on osteogenic differentiation of primary human osteoblasts. Sci Rep 2021; 11:17282. [PMID: 34446785 PMCID: PMC8390505 DOI: 10.1038/s41598-021-96719-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/13/2021] [Indexed: 11/08/2022] Open
Abstract
Due to the frequency of biofilm-forming Staphylococcus aureus and Staphylococcus epidermidis in orthopedics, it is crucial to understand the interaction between the soluble factors produced by prokaryotes and their effects on eukaryotes. Our knowledge concerning the effect of soluble biofilm factors (SBF) and their virulence potential on osteogenic differentiation is limited to few studies, particularly when there is no direct contact between prokaryotic and eukaryotic cells. SBF were produced by incubating biofilm from S. aureus and S. epidermidis in osteogenic media. Osteoblasts of seven donors were included in this study. Our results demonstrate that the detrimental effects of these pathogens do not require direct contact between prokaryotic and eukaryotic cells. SBF produced by S. aureus and S. epidermidis affect the metabolic activity of osteoblasts. However, the effect of SBF derived from S. aureus seems to be more pronounced compared to that of S. epidermidis. The influence of SBF of S. aureus and S. epidermidis on gene expression of COL1A1, ALPL, BGLAP, SPP1, RUNX2 is bacteria-, patient-, concentration-, and incubation time dependent. Mineralization was monitored by staining the calcium and phosphate deposition and revealed that the SBF of S. epidermidis markedly inhibits calcium deposition; however, S. aureus shows a less inhibitory effect. Therefore, these new findings support the hypotheses that soluble biofilm factors affect the osteogenic processes substantially, particularly when there is no direct interaction between bacteria and osteoblast.
Collapse
|
19
|
Sabaté-Brescó M, Berset CM, Zeiter S, Stanic B, Thompson K, Ziegler M, Richards RG, O'Mahony L, Moriarty TF. Fracture biomechanics influence local and systemic immune responses in a murine fracture-related infection model. Biol Open 2021; 10:270855. [PMID: 34240122 PMCID: PMC8496694 DOI: 10.1242/bio.057315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/05/2021] [Indexed: 11/26/2022] Open
Abstract
Biomechanical stability plays an important role in fracture healing, with unstable fixation being associated with healing disturbances. A lack of stability is also considered a risk factor for fracture-related infection (FRI), although confirmatory studies and an understanding of the underlying mechanisms are lacking. In the present study, we investigate whether biomechanical (in)stability can lead to altered immune responses in mice under sterile or experimentally inoculated conditions. In non-inoculated C57BL/6 mice, instability resulted in an early increase of inflammatory markers such as granulocyte-colony stimulating factor (G-CSF), keratinocyte chemoattractant (KC) and interleukin (IL)-6 within the bone. When inoculated with Staphylococcus epidermidis, instability resulted in a further significant increase in G-CSF, IL-6 and KC in bone tissue. Staphylococcus aureus infection led to rapid osteolysis and instability in all animals and was not further studied. Gene expression measurements also showed significant upregulation in CCL2 and G-CSF in these mice. IL-17A was found to be upregulated in all S. epidermidis infected mice, with higher systemic IL-17A cell responses in mice that cleared the infection, which was found to be produced by CD4+ and γδ+ T cells in the bone marrow. IL-17A knock-out (KO) mice displayed a trend of delayed clearance of infection (P=0.22, Fisher’s exact test) and an increase in interferon (IFN)-γ production. Biomechanical instability leads to a more pronounced local inflammatory response, which is exaggerated by bacterial infection. This study provides insights into long-held beliefs that biomechanics are crucial not only for fracture healing, but also for control of infection. Summary: Physical movement between bone fragments after a fracture influence healing, and are shown here, for the first time, to influence immune responses and infection.
Collapse
Affiliation(s)
- Marina Sabaté-Brescó
- AO Research Institute Davos, AO Foundation, Davos, Switzerland.,Swiss Institute of Asthma and Allergy Research, University of Zurich, Davos, Switzerland
| | - Corina M Berset
- Swiss Institute of Asthma and Allergy Research, University of Zurich, Davos, Switzerland
| | - Stephan Zeiter
- AO Research Institute Davos, AO Foundation, Davos, Switzerland
| | - Barbara Stanic
- AO Research Institute Davos, AO Foundation, Davos, Switzerland
| | - Keith Thompson
- AO Research Institute Davos, AO Foundation, Davos, Switzerland
| | - Mario Ziegler
- Swiss Institute of Asthma and Allergy Research, University of Zurich, Davos, Switzerland
| | | | - Liam O'Mahony
- Swiss Institute of Asthma and Allergy Research, University of Zurich, Davos, Switzerland
| | | |
Collapse
|
20
|
Di Pompo G, Errani C, Gillies R, Mercatali L, Ibrahim T, Tamanti J, Baldini N, Avnet S. Acid-Induced Inflammatory Cytokines in Osteoblasts: A Guided Path to Osteolysis in Bone Metastasis. Front Cell Dev Biol 2021; 9:678532. [PMID: 34124067 PMCID: PMC8194084 DOI: 10.3389/fcell.2021.678532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Bone metastasis (BM) is a dismal complication of cancer that frequently occurs in patients with advanced carcinomas and that often manifests as an osteolytic lesion. In bone, tumor cells promote an imbalance in bone remodeling via the release of growth factors that, directly or indirectly, stimulate osteoclast resorption activity. However, carcinoma cells are also characterized by an altered metabolism responsible for a decrease of extracellular pH, which, in turn, directly intensifies osteoclast bone erosion. Here, we speculated that tumor-derived acidosis causes the osteoblast–osteoclast uncoupling in BM by modulating the pro-osteoclastogenic phenotype of osteoblasts. According to our results, a low pH recruits osteoclast precursors and promotes their differentiation through the secretome of acid-stressed osteoblasts that includes pro-osteoclastogenic factors and inflammatory mediators, such as RANKL, M-CSF, TNF, IL-6, and, above the others, IL-8. The treatment with the anti-IL-6R antibody tocilizumab or with an anti-IL-8 antibody reverted this effect. Finally, in a series of BM patients, circulating levels of the osteolytic marker TRACP5b significantly correlated with IL-8. Our findings brought out that tumor-derived acidosis promotes excessive osteolysis at least in part by inducing an inflammatory phenotype in osteoblasts, and these results strengthen the use of anti-IL-6 or anti-IL-8 strategies to treat osteolysis in BM.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Costantino Errani
- Orthopaedic Oncology Surgical Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Robert Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Jacopo Tamanti
- National Tumor Assistance (ANT) Foundation, Bologna, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sofia Avnet
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Zhu L, Zhang J, Wang J, Lv X, Pu D, Wang Y, Men Q, He L. Uncoupled bone remodeling is characteristic of bone damage in premenopausal women with new-onset systemic lupus erythematosus. Lupus 2021; 30:1116-1123. [PMID: 33832361 DOI: 10.1177/09612033211005067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate the mechanism underlying systemic lupus erythematosus (SLE)-related bone loss by evaluating the bone mineral density (BMD) and bone turnover markers (BTMs) in premenopausal patients with new-onset SLE without any treatment. METHODS BMD and BTMs of 106 premenopausal patients with new-onset SLE and 64 gender-, age- and body mass index (BMI)-matched healthy controls were analyzed. BMD was determined using dual energy X-ray absorptiometry (DXA). Serum BTMs were measured. RESULTS Hip and lumbar spine BMD in premenopausal patients with new-onset SLE was significantly decreased compared with healthy controls. Higher rate of osteoporosis was observed in new-onset SLE patients (25% vs. 1%). Moreover, uncoupled bone remodeling evidenced by an increase in bone resorption marker β-CTX (685.9 ± 709.6 pg/mL vs. 395.4 ± 326.0 pg/mL, P < 0.05) and decrease in bone formation markers PINP (37.4 ± 33.0 ng/mL vs. 46.1 ± 20.9 ng/mL, P < 0.05) and OC (11.4 ± 9.8 ng/mL vs. 18.2 ± 8.6 ng/mL, P < 0.05) was observed in premenopausal patients with new-onset SLE compared with healthy controls. Univariate correlation analyses showed negative correlations between OC and SLE Disease Activity Index (SLEDAI), and positive correlations between β-CTX and SLEDAI. SLE patients positive for dsDNA, nucleosome showed lower OC and higher β-CTX. CONCLUSION Premenopausal patients with new-onset SLE had decreased BMD and abnormal bone metabolism with increased β-CTX and decreased OC and P1NP levels, indicating uncoupled bone remodeling in new-onset SLE patients. Disease activity and abnormal immunity, especially the amount of antibodies in SLE patients, were strongly associated with abnormality of bone metabolism.
Collapse
Affiliation(s)
- Li Zhu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi'an, JiaoTong University, Xi'an, China
| | - Jing Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi'an, JiaoTong University, Xi'an, China
| | - Jing Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi'an, JiaoTong University, Xi'an, China
| | - Xiaohong Lv
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi'an, JiaoTong University, Xi'an, China
| | - Dan Pu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi'an, JiaoTong University, Xi'an, China
| | - Yanhua Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi'an, JiaoTong University, Xi'an, China
| | - Qian Men
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi'an, JiaoTong University, Xi'an, China
| | - Lan He
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi'an, JiaoTong University, Xi'an, China
| |
Collapse
|
22
|
Thompson K, Freitag L, Styger U, Camenisch K, Zeiter S, Arens D, Richards RG, Moriarty TF, Stadelmann VA. Impact of low bone mass and antiresorptive therapy on antibiotic efficacy in a rat model of orthopedic device-related infection. J Orthop Res 2021; 39:415-425. [PMID: 33325074 DOI: 10.1002/jor.24951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/05/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
A significant proportion of orthopedic devices are implanted in osteoporotic patients, but it is currently unclear how estrogen deficiency and/or exposure to antiresorptive bisphosphonates (BPs) influence orthopedic device-related infection (ODRI), or response to therapy. The aim of this study is to characterize the bone changes resulting from Staphylococcus epidermidis infection in a rodent ODRI model and to determine if ovariectomy (OVX) or BP treatment influences the infection or the success of antibiotic therapy. A sterile or S. epidermidis-contaminated screw was implanted into the proximal tibia of skeletally mature female Wistar rats (n = 6-9 per group). Bone changes were monitored over 28 days using in vivo micro-computed tomography scanning. OVX was performed 12 weeks before screw implantation. The BP zoledronic acid (ZOL) was administered 4 days before screw insertion. A combination antibiotic regimen (rifampin plus cefazolin) was administered from Days 7-21. In skeletally healthy animals, S. epidermidis induced marked changes in bone, with peak osteolysis occurring at Day 9 and woven bone deposition and periosteal mineralization from Day 14 onwards. Antibiotic therapy cleared the infection in the majority of animals (2/9 infected) but did not affect bone responses. OVX did not affect the pattern of infection-induced changes in bone, nor bacterial load, but reduced antibiotic efficacy (5/9 infected). ZOL treatment did not protect from osteolysis in OVX animals, or further affect antibiotic efficacy (5/9 infected) but did significantly increase the bacterial load. This study suggests that both BPs and OVX can influence host responses to bone infections involving S. epidermidis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Vincent A Stadelmann
- AO Research Institute Davos, Davos, Switzerland.,Department of Teaching, Research and Development, Schulthess Clinic, Zürich, Switzerland
| |
Collapse
|
23
|
Dapunt U, Prior B, Kretzer JP, Hänsch GM, Gaida MM. The effect of surgical suture material on osteoclast generation and implant-loosening. Int J Med Sci 2021; 18:295-303. [PMID: 33390798 PMCID: PMC7757137 DOI: 10.7150/ijms.50270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/07/2020] [Indexed: 11/28/2022] Open
Abstract
Background: Implant loosening - either infectious or aseptic- is a still a major complication in the field of orthopaedic surgery. In both cases, a pro-inflammatory peri-prosthetic environment is generated by the immune system - either triggered by bacteria or by implant wear particles - which leads to osteoclast differentiation and osteolysis. Since infectious cases in particular often require multiple revision surgeries, we wondered whether commonly used surgical suture material may also activate the immune system and thus contribute to loss of bone substance by generation of osteoclasts. Methods: Tissue samples from patients suffering from infectious implant loosening were collected intraoperatively and presence of osteoclasts was evaluated by histopathology and immunohistochemistry. Further on, human monocytes were isolated from peripheral blood and stimulated with surgical suture material. Cell supernatant samples were collected and ELISA analysis for the pro-inflammatory cytokine IL-8 was performed. These experiments were additionally carried out on ivory slices to demonstrate functionality of osteoclasts. Whole blood samples were incubated with surgical suture material and up-regulation of activation-associated cell surface markers CD11b and CD66b on neutrophils was evaluated by flow cytofluorometry analysis. Results: We were able to demonstrate that multinucleated giant cells form in direct vicinity to surgical suture material. These cells stained positive for cathepsin K, which is a typical protease found in osteoclasts. By in vitro analysis, we were able to show that monocytes differentiated into osteoclasts when stimulated with surgical suture material. Resorption pits on ivory slices provided proof that the osteoclasts were functional. Release of IL-8 into cell supernatant was increased after stimulation with suture material and was further enhanced if minor amounts of bacterial lipoteichoic acid (LTA) were added. Neutrophils were also activated by surgical suture material and up-regulation of CD11b and CD66b could be seen. Conclusion: We were able to demonstrate that surgical suture material induces a pro-inflammatory response of immune cells which leads to osteoclast differentiation, in particular in combination with bacterial infection. In conclusion, surgical suture material -aside from bacteria and implant wear particles- is a contributing factor in implant loosening.
Collapse
Affiliation(s)
- Ulrike Dapunt
- Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstrasse, Heidelberg, Germany
| | - Birgit Prior
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg
| | - Jan Philippe Kretzer
- Laboratory of Biomechanics and Implant Research, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Matthias Martin Gaida
- Institute of Pathology, Universitätsmedizin der Johannes Gutenberg Universität Mainz, Germany
| |
Collapse
|
24
|
Dapunt U, Prior B, Kretzer JP, Giese T, Zhao Y. Bacterial Biofilm Components Induce an Enhanced Inflammatory Response Against Metal Wear Particles. Ther Clin Risk Manag 2020; 16:1203-1212. [PMID: 33324065 PMCID: PMC7733385 DOI: 10.2147/tcrm.s280042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/18/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose Aseptic implant loosening is still a feared complication in the field of orthopaedics. Presumably, a chronic inflammatory response is induced by wear particles, which leads to osteoclast generation, bone degradation and hence loosening of the implant. Since it has been demonstrated in the literature that most implants are in fact colonized by bacteria, the question arises whether aseptic implant loosening is truly aseptic. The aim of this study was to investigate a possibly enhanced inflammatory response to metal wear particles in the context of subclinical infection. Patients and Methods Tissue samples were collected intra-operatively from patients undergoing implant-exchange surgery due to aseptic loosening. Histopathological analysis was performed, as well as gene expression analysis for the pro-inflammatory cytokine Interleukin-8. By a series of in vitro experiments, the effect of metal wear particles on human monocytes, polymorphonuclear neutrophiles and osteoblasts was investigated. Additionally, minor amounts of lipoteichoic acid (LTA) and the bacterial heat shock protein GroEL were added. Results Histopathology of tissue samples revealed an accumulation of metal wear particles, as well as a cellular infiltrate consisting predominately of mononuclear cells. Furthermore, high expression of IL-8 could be detected in tissue surrounding the implant. Monocytes and osteoblasts in particular showed an increased release of IL-8 after stimulation with metal wear particles and in particular after stimulation with bacterial components and wear particles together. Conclusion We were able to show that minor amounts of bacterial components and metal wear particles together induce an enhanced inflammatory response in human monocytes and osteoblasts. This effect could significantly contribute to the generation of bone-resorbing osteoclasts and hence implant-loosening.
Collapse
Affiliation(s)
- Ulrike Dapunt
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg 69118, Germany
| | - Birgit Prior
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Jan Philippe Kretzer
- Laboratory of Biomechanics and Implant Research, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg 69118, Germany
| | - Thomas Giese
- Institute for Immunology, Heidelberg University, Heidelberg 69120, Germany
| | - Yina Zhao
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg 69118, Germany
| |
Collapse
|
25
|
Zhang L, Cui Y, Yang Y, Wei J, Liu W, Cai L, Wang L, Zhang D, Xie J, Cheng L. The virulence factor GroEL promotes gelatinase secretion from cells in the osteoblast lineage: Implication for direct crosstalk between bacteria and adult cells. Arch Oral Biol 2020; 122:104991. [PMID: 33307322 DOI: 10.1016/j.archoralbio.2020.104991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/22/2020] [Accepted: 11/15/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of this study was to demonstrate the influence of the virulence factor GroEL on osteoblast behavior by characterizing the changes of secreted gelatinases. DESIGN ELISA was performed to detect GroEL from samples from patients with or without apical periodontitis. An apical periodontitis model was established in rats and the expression of MMP-2, MMP-9 and NF-κB was evaluated by immunofluorescence staining. The primary osteoblasts and osteoblast-like MC3T3 cells were stimulated with recombinant GroEL, and gelatin zymography was used to determine the activity and expression of MMP-2 and MMP-9. Western blot was used to screen signaling pathways, and immunofluorescence staining was performed to confirm the activated signaling. RESULTS First, we found expression of GroEL to be higher in oral saliva, gingival crevicular fluid and periradicular granulation tissue of patients with apical periodontitis than it was in healthy control patients. We next found that recombinant GroEL could increase the activity of the gelatinases, MMP-2 and MMP-9, which were secreted by both primary osteoblasts and MC3T3 cells. In a rat apical periodontitis model, strong expression of gelatinases was confirmed. Then, we found that GroEL-enhanced gelatinase activity was mediated through activation of NF-κB signaling. Acetylated NF-κB accumulated in the cell nucleus and bound to the promoter of MMP-2 and MMP-9 genes, thus initiating their high expression. CONCLUSION This study reveals a direct interaction between oral bacteria and adult cells by demonstrating that gelatinase secretion is induced by GroEL, which partially explains bone resorption through gelatinase activation.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yueyi Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenjing Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Luling Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Venugopal M, Nambiar J, Nair BG. Anacardic acid-mediated regulation of osteoblast differentiation involves mitigation of inflammasome activation pathways. Mol Cell Biochem 2020; 476:819-829. [PMID: 33090336 DOI: 10.1007/s11010-020-03947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
Disruption of the finely tuned osteoblast-osteoclast balance is the underlying basis of several inflammatory bone diseases, such as osteomyelitis, osteoporosis, and septic arthritis. Prolonged and unrestrained exposure to inflammatory environment results in reduction of bone mineral density by downregulating osteoblast differentiation. Earlier studies from our laboratory have identified that Anacardic acid (AA), a constituent of Cashew nut shell liquid that is used widely in traditional medicine, has potential inhibitory effect on gelatinases (MMP2 and MMP9) which are over-expressed in numerous inflammatory conditions (Omanakuttan et al. in Mol Pharmacol, 2012 and Nambiar et al. in Exp Cell Res, 2016). The study demonstrated for the first time that AA promotes osteoblast differentiation in lipopolysaccharide-treated osteosarcoma cells (MG63) by upregulating specific markers, like osteocalcin, receptor activator of NF-κB ligand, and alkaline phosphatase. Furthermore, expression of the negative regulators, such as nuclear factor-κB, matrix metalloproteinases (MMPs), namely MMP13, and MMP1, along with several inflammatory markers, such as Interleukin-1β and Nod-like receptor protein 3 were downregulated by AA. Taken together, AA expounds as a novel template for development of potential pharmacological therapeutics for inflammatory bone diseases.
Collapse
Affiliation(s)
- Meera Venugopal
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala, India, 690525
| | - Jyotsna Nambiar
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala, India, 690525
| | - Bipin G Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala, India, 690525.
| |
Collapse
|
27
|
Lüthje FL, Jensen LK, Jensen HE, Skovgaard K. The inflammatory response to bone infection - a review based on animal models and human patients. APMIS 2020; 128:275-286. [PMID: 31976582 DOI: 10.1111/apm.13027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
Bone infections are difficult to diagnose and treat, especially when a prosthetic joint replacement or implant is involved. Bone loss is a major complication of osteomyelitis, but the mechanism behind has mainly been investigated in cell cultures and has not been confirmed in human settings. Inflammation is important in initiating an appropriate immune response to invading pathogens. However, many of the signaling molecules used by the immune system can also modulate bone remodeling and contribute to bone resorption during osteomyelitis. Our current knowledge of the inflammatory response relies heavily on animal models as research based on human samples is scarce. Staphylococcus aureus is one of the most common causes of bone infections and is the pathogen of choice in animal models. The regulation of inflammatory genes during prosthetic joint infections and implant-associated osteomyelitis has only been studied in rodent models. It is important to consider the validity of an animal model when results are extrapolated to humans, and both bone composition and the immune system of pigs has been shown to be more similar to humans, than to rodents. Here in vivo studies on the inflammatory response to prosthetic joint infections and implant-associated osteomyelitis are reviewed.
Collapse
Affiliation(s)
- Freja Lea Lüthje
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Louise Kruse Jensen
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Henrik Elvang Jensen
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
28
|
Seebach E, Kubatzky KF. Chronic Implant-Related Bone Infections-Can Immune Modulation be a Therapeutic Strategy? Front Immunol 2019; 10:1724. [PMID: 31396229 PMCID: PMC6664079 DOI: 10.3389/fimmu.2019.01724] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic implant-related bone infections are a major problem in orthopedic and trauma-related surgery with severe consequences for the affected patients. As antibiotic resistance increases in general and because most antibiotics have poor effectiveness against biofilm-embedded bacteria in particular, there is a need for alternative and innovative treatment approaches. Recently, the immune system has moved into focus as the key player in infection defense and bone homeostasis, and the targeted modulation of the host response is becoming an emerging field of interest. The aim of this review was to summarize the current knowledge of impaired endogenous defense mechanisms that are unable to prevent chronicity of bone infections associated with a prosthetic or osteosynthetic device. The presence of foreign material adversely affects the immune system by generating a local immune-compromised environment where spontaneous clearance of planktonic bacteria does not take place. Furthermore, the surface structure of the implant facilitates the transition of bacteria from the planktonic to the biofilm stage. Biofilm formation on the implant surface is closely linked to the development of a chronic infection, and a misled adaption of the immune system makes it impossible to effectively eliminate biofilm infections. The interaction between the immune system and bone cells, especially osteoclasts, is extensively studied in the field of osteoimmunology and this crosstalk further aggravates the course of bone infection by shifting bone homeostasis in favor of bone resorption. T cells play a major role in various chronic diseases and in this review a special focus was therefore set on what is known about an ineffective T cell response. Myeloid-derived suppressor cells (MDSCs), anti-inflammatory macrophages, regulatory T cells (Tregs) as well as osteoclasts all suppress immune defense mechanisms and negatively regulate T cell-mediated immunity. Thus, these cells are considered to be potential targets for immune therapy. The success of immune checkpoint inhibition in cancer treatment encourages the transfer of such immunological approaches into treatment strategies of other chronic diseases. Here, we discuss whether immune modulation can be a therapeutic tool for the treatment of chronic implant-related bone infections.
Collapse
Affiliation(s)
- Elisabeth Seebach
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Katharina F Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
29
|
Prévost V, Anselme K, Gallet O, Hindié M, Petithory T, Valentin J, Veuillet M, Ploux L. Real-Time Imaging of Bacteria/Osteoblast Dynamic Coculture on Bone Implant Material in an in Vitro Postoperative Contamination Model. ACS Biomater Sci Eng 2019; 5:3260-3269. [PMID: 33405569 DOI: 10.1021/acsbiomaterials.9b00050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biomedical implants are an important part of evolving modern medicine but have a potential drawback in the form of postoperative pathogenic infection. Accordingly, the "race for surface" combat between invasive bacteria and host cells determines the fate of implants. Hence, proper in vitro systems are required to assess effective strategies to avoid infection. In this study, we developed a real time observation model, mimicking postoperative contamination, designed to follow E. coli proliferation on a titanium surface occupied by human osteoblastic progenitor cells (STRO). This model allowed us to monitor E. coli invasion of human cells on titanium surfaces coated and uncoated with fibronectin. We showed that the surface colonization of bacteria is significantly enhanced on fibronectin coated surfaces irrespective of whether areas were uncovered or covered with human cells. We further revealed that bacterial colonization of the titanium surfaces is enhanced in coculture with STRO cells. Finally, this coculture system provides a comprehensive system to describe in vitro and in situ bacterial and human cells and their localization but also to target biological mechanisms involved in adhesion as well as in interactions with surfaces, thanks to fluorescent labeling. This system is thus an efficient method for studies related to the design and function of new biomaterials.
Collapse
Affiliation(s)
- Victor Prévost
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France.,Université de Strasbourg, F-67000 Strasbourg, France.,Université de Cergy-Pontoise, ERRMECe, F-95000 Neuville-sur-Oise, France
| | - Karine Anselme
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France.,Université de Strasbourg, F-67000 Strasbourg, France
| | - Olivier Gallet
- Université de Cergy-Pontoise, ERRMECe, F-95000 Neuville-sur-Oise, France
| | - Mathilde Hindié
- Université de Cergy-Pontoise, ERRMECe, F-95000 Neuville-sur-Oise, France
| | - Tatiana Petithory
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France.,Université de Strasbourg, F-67000 Strasbourg, France
| | - Jules Valentin
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France.,Université de Strasbourg, F-67000 Strasbourg, France
| | - Mathieu Veuillet
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France.,Université de Strasbourg, F-67000 Strasbourg, France
| | - Lydie Ploux
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France.,Université de Strasbourg, F-67000 Strasbourg, France.,Université de Strasbourg, INSERM, BIOMAT U1121, F-67000 Strasbourg, France
| |
Collapse
|
30
|
Karched M, Bhardwaj RG, Tiss A, Asikainen S. Proteomic Analysis and Virulence Assessment of Granulicatella adiacens Secretome. Front Cell Infect Microbiol 2019; 9:104. [PMID: 31069174 PMCID: PMC6491454 DOI: 10.3389/fcimb.2019.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Despite reports on the occurrence of Granulicatella adiacens in infective endocarditis, few mechanistic studies on its virulence characteristics or pathogenicity are available. Proteins secreted by this species may act as determinants of host-microbe interaction and play a role in virulence. Our aim in this study was to investigate and functionally characterize the secretome of G. adiacens. Proteins in the secretome preparation were digested by trypsin and applied to nanoLC-ESI-MS/MS. By using a combined mass spectrometry and bioinformatics approach, we identified 101 proteins. Bioinformatics tools predicting subcellular localization revealed that 18 of the secreted proteins possessed signal sequence. More than 20% of the secretome proteins were putative virulence proteins including serine protease, superoxide dismutase, aminopeptidase, molecular chaperone DnaK, and thioredoxin. Ribosomal proteins, molecular chaperones, and glycolytic enzymes, together known as "moonlighting proteins," comprised fifth of the secretome proteins. By Gene Ontology analysis, more than 60 proteins of the secretome were grouped in biological processes or molecular functions. KEGG pathway analysis disclosed that the secretome consisted of enzymes involved in biosynthesis of antibiotics. Cytokine profiling revealed that secreted proteins stimulated key cytokines, such as IL-1β, MCP-1, TNF-α, and RANTES from human PBMCs. In summary, the results from the current investigation of the G. adiacens secretome provide a basis for understanding possible pathogenic mechanisms of G. adiacens.
Collapse
Affiliation(s)
- Maribasappa Karched
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Ali Tiss
- Functional Proteomics and Metabolomics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sirkka Asikainen
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
31
|
He X, Liu J, Liang C, Badshah SA, Zheng K, Dang L, Guo B, Li D, Lu C, Guo Q, Fan D, Bian Y, Feng H, Xiao L, Pan X, Xiao C, Zhang B, Zhang G, Lu A. Osteoblastic PLEKHO1 contributes to joint inflammation in rheumatoid arthritis. EBioMedicine 2019; 41:538-555. [PMID: 30824383 PMCID: PMC6442230 DOI: 10.1016/j.ebiom.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 12/29/2022] Open
Abstract
Background Osteoblasts participating in the inflammation regulation gradually obtain concerns. However, its role in joint inflammation of rheumatoid arthritis (RA) is largely unknown. Here, we investigated the role of osteoblastic pleckstrin homology domain-containing family O member 1 (PLEKHO1), a negative regulator of osteogenic lineage activity, in regulating joint inflammation in RA. Methods The level of osteoblastic PLEKHO1 in RA patients and collagen-induced arthritis (CIA) mice was examined. The role of osteoblastic PLEKHO1 in joint inflammation was evaluated by a CIA model and a K/BxN serum-transfer arthritis (STA) model which were induced in osteoblast-specific Plekho1 conditional knockout mice and mice expressing high Plekho1 exclusively in osteoblasts, respectively. The effect of osteoblastic PLEKHO1 inhibition was explored in a CIA mice model and a non-human primate arthritis model. The mechanism of osteoblastic PLEKHO1 in regulating joint inflammation were performed by a series of in vitro studies. Results PLEKHO1 was highly expressed in osteoblasts from RA patients and CIA mice. Osteoblastic Plekho1 deletion ameliorated joint inflammation, whereas overexpressing Plekho1 only within osteoblasts exacerbated local inflammation in CIA mice and STA mice. PLEKHO1 was required for TRAF2-mediated RIP1 ubiquitination to activate NF-κB for inducing inflammatory cytokines production in osteoblasts. Moreover, osteoblastic PLEKHO1 inhibition diminished joint inflammation and promoted bone formation in CIA mice and non-human primate arthritis model. Conclusions These data strongly suggest that the highly expressed PLEKHO1 in osteoblasts contributes to joint inflammation in RA. Targeting osteoblastic PLEKHO1 may exert dual therapeutic action of alleviating joint inflammation and promoting bone formation in RA.
Collapse
Affiliation(s)
- Xiaojuan He
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong, China
| | - Chao Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong, China
| | - Shaikh Atik Badshah
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong, China
| | - Kang Zheng
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Dang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong, China
| | - Baosheng Guo
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong, China
| | - Defang Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong, China
| | - Cheng Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingqing Guo
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Danping Fan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqin Bian
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Guanghua Integrative Medicine Hospital/Shanghai University of TCM, Shanghai, China
| | - Hui Feng
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Guanghua Integrative Medicine Hospital/Shanghai University of TCM, Shanghai, China
| | - Lianbo Xiao
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Guanghua Integrative Medicine Hospital/Shanghai University of TCM, Shanghai, China
| | - Xiaohua Pan
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Department of Orthopaedics and Traumatology, Bao-an Hospital Affiliated to Southern Medical University & Shenzhen 8th People Hospital, Shenzhen, China
| | - Cheng Xiao
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - BaoTing Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong, China; School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
32
|
Guedes JAC, Esteves JV, Morais MR, Zorn TM, Furuya DT. Osteocalcin improves insulin resistance and inflammation in obese mice: Participation of white adipose tissue and bone. Bone 2018; 115:68-82. [PMID: 29183784 DOI: 10.1016/j.bone.2017.11.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS The discovery of osteocalcin, a protein synthetized by osteoblasts, as a hormone that has positive effects on insulin resistance, contributed to support the concept of bone as an endocrine organ. However, very little is known about the molecular pathways involved in osteocalcin improved-insulin resistance. The present study aimed to investigate the mechanisms of action of osteocalcin on insulin resistance and inflammation in obese mice and 3T3-L1 adipocytes. METHODS AND RESULTS Lean control, saline-treated obese and uncarboxylated osteocalcin (uOC)-treated obese mice were subjected to insulin tolerance test in vivo. Blood was collect for biochemical/metabolic profile analysis; and, skeletal muscle, white adipose tissue (WAT) and bone were collected for protein (Western blotting) and mRNA (RT-qPCR) analysis. uOC effects on insulin resistance and inflammation were also investigated in 3T3-L1 adipocytes challenged with tumor necrosis factor. Osteocalcin treatment improved in vivo insulin resistance in obese mice. In WAT, osteocalcin had positive effects such as (1) WAT weight reduction; (2) upregulation of glucose transporter (GLUT) 4 protein and its mRNA (Slc2a4); (3) improved insulin-induced AKT phosphorylation; (4) downregulation of several genes involved in inflammation and inflammassome transcriptional machinery, and (5) reduction of the density of macrophage in crown-like structures (histomorphometrical analysis). Notably, in 3T3-L1 adipocytes, osteocalcin restored Slc2a4/GLUT4 content and reduced the expression of inflammatory genes after TNF-a challenge; moreover, osteocalcin treatment increased AKT phosphorylation induced by insulin. Finally, it was observed that in bone, osteocalcin improves insulin resistance by increasing insulin-induced AKT phosphorylation and reducing the expression of genes involved in bone insulin resistance, resulting in increased secretion of uncarboxylated osteocalcin in circulation. CONCLUSION We provided some mechanisms of action for osteocalcin in the amelioration of insulin resistance in obesity: in WAT, osteocalcin improves insulin resistance by decreasing inflammation, and increasing insulin signaling and the expression of Slc2a4/GLUT4; and, in bone, osteocalcin increases the secretion of uncarboxylated osteocalcin by improving insulin resistance.
Collapse
Affiliation(s)
- J A C Guedes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - J V Esteves
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M R Morais
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - T M Zorn
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - D T Furuya
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
33
|
Wang M, Tang T. Surface treatment strategies to combat implant-related infection from the beginning. J Orthop Translat 2018; 17:42-54. [PMID: 31194031 PMCID: PMC6551355 DOI: 10.1016/j.jot.2018.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/13/2018] [Accepted: 09/04/2018] [Indexed: 02/08/2023] Open
Abstract
Orthopaedic implants are recognised as important therapeutic devices in the successful clinical management of a wide range of orthopaedic conditions. However, implant-related infections remain a challenging and not uncommon issue in patients with implanted instrumentation or medical devices. Bacterial adhesion and formation of biofilm on the surface of the implant represent important processes towards progression of infection. Given the intimate association between infection and the implant surface, adequate treatment of the implant surface may help mitigate the risk of infection. This review summarises the current surface treatment technologies and their role in prevention of implant-related infection from the beginning. Translational potential of this article Despite great technological advancements, the prevalence of implant-related infections remains high. Four main challenges can be identified. (i) Insufficient mechanical stability can cause detachment of the implant surface coating, altering the antimicrobial ability of functionalized surfaces. (ii) Regarding drug-loaded coatings, a stable drug release profile is of vital importance for achieving effective bactericidal effect locally; however, burst release of the loaded antibacterial agents remains common. (iii) Although many coatings and modified surfaces provide superior antibacterial action, such functionalisation of surfaces sometimes has a detrimental effect on tissue biocompatibility, impairing the integration of the implants into the surrounding tissue. (iv) Biofilm eradication at the implant surface remains particularly challenging. This review summarised the recent progress made to address the aforementioned problems. By providing a perspective on state-of-the-art surface treatment strategies for medical implants, we hope to support the timely adoption of modern materials and techniques into clinical practice.
Collapse
Affiliation(s)
- Minqi Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Mödinger Y, Rapp A, Pazmandi J, Vikman A, Holzmann K, Haffner-Luntzer M, Huber-Lang M, Ignatius A. C5aR1 interacts with TLR2 in osteoblasts and stimulates the osteoclast-inducing chemokine CXCL10. J Cell Mol Med 2018; 22:6002-6014. [PMID: 30247799 PMCID: PMC6237570 DOI: 10.1111/jcmm.13873] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/13/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
The anaphylatoxin C5a is generated upon activation of the complement system, a crucial arm of innate immunity. C5a mediates proinflammatory actions via the C5a receptor C5aR1 and thereby promotes host defence, but also modulates tissue homeostasis. There is evidence that the C5a/C5aR1 axis is critically involved both in physiological bone turnover and in inflammatory conditions affecting bone, including osteoarthritis, periodontitis, and bone fractures. C5a induces the migration and secretion of proinflammatory cytokines of osteoblasts. However, the underlying mechanisms remain elusive. Therefore, in this study we aimed to determine C5a‐mediated downstream signalling in osteoblasts. Using a whole‐genome microarray approach, we demonstrate that C5a activates mitogen‐activated protein kinases (MAPKs) and regulates the expression of genes involved in pathways related to insulin, transforming growth factor‐β and the activator protein‐1 transcription factor. Interestingly, using coimmunoprecipitation, we found an interaction between C5aR1 and Toll‐like receptor 2 (TLR2) in osteoblasts. The C5aR1‐ and TLR2‐signalling pathways converge on the activation of p38 MAPK and the generation of C‐X‐C motif chemokine 10, which functions, among others, as an osteoclastogenic factor. In conclusion, C5a‐stimulated osteoblasts might modulate osteoclast activity and contribute to immunomodulation in inflammatory bone disorders.
Collapse
Affiliation(s)
- Yvonne Mödinger
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Hospital, Ulm, Germany
| | - Anna Rapp
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Hospital, Ulm, Germany
| | - Julia Pazmandi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Anna Vikman
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Hospital, Ulm, Germany
| | | | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Hospital, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
35
|
Cui YC, Wu Q, Teh SW, Peli A, Bu G, Qiu YS, Benelli G, Kumar SS. Bone breaking infections – A focus on bacterial and mosquito-borne viral infections. Microb Pathog 2018; 122:130-136. [DOI: 10.1016/j.micpath.2018.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022]
|
36
|
Mödinger Y, Löffler B, Huber-Lang M, Ignatius A. Complement involvement in bone homeostasis and bone disorders. Semin Immunol 2018; 37:53-65. [DOI: 10.1016/j.smim.2018.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
|
37
|
Sabaté Brescó M, Harris LG, Thompson K, Stanic B, Morgenstern M, O'Mahony L, Richards RG, Moriarty TF. Pathogenic Mechanisms and Host Interactions in Staphylococcus epidermidis Device-Related Infection. Front Microbiol 2017; 8:1401. [PMID: 28824556 PMCID: PMC5539136 DOI: 10.3389/fmicb.2017.01401] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus epidermidis is a permanent member of the normal human microbiota, commonly found on skin and mucous membranes. By adhering to tissue surface moieties of the host via specific adhesins, S. epidermidis is capable of establishing a lifelong commensal relationship with humans that begins early in life. In its role as a commensal organism, S. epidermidis is thought to provide benefits to human host, including out-competing more virulent pathogens. However, largely due to its capacity to form biofilm on implanted foreign bodies, S. epidermidis has emerged as an important opportunistic pathogen in patients receiving medical devices. S. epidermidis causes approximately 20% of all orthopedic device-related infections (ODRIs), increasing up to 50% in late-developing infections. Despite this prevalence, it remains underrepresented in the scientific literature, in particular lagging behind the study of the S. aureus. This review aims to provide an overview of the interactions of S. epidermidis with the human host, both as a commensal and as a pathogen. The mechanisms retained by S. epidermidis that enable colonization of human skin as well as invasive infection, will be described, with a particular focus upon biofilm formation. The host immune responses to these infections are also described, including how S. epidermidis seems to trigger low levels of pro-inflammatory cytokines and high levels of interleukin-10, which may contribute to the sub-acute and persistent nature often associated with these infections. The adaptive immune response to S. epidermidis remains poorly described, and represents an area which may provide significant new discoveries in the coming years.
Collapse
Affiliation(s)
- Marina Sabaté Brescó
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland.,Molecular Immunology, Swiss Institute of Allergy and Asthma Research, University of ZurichDavos, Switzerland
| | - Llinos G Harris
- Microbiology and Infectious Diseases, Institute of Life Science, Swansea University Medical SchoolSwansea, United Kingdom
| | - Keith Thompson
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| | - Barbara Stanic
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| | - Mario Morgenstern
- Department of Orthopedic and Trauma Surgery, University Hospital BaselBasel, Switzerland
| | - Liam O'Mahony
- Molecular Immunology, Swiss Institute of Allergy and Asthma Research, University of ZurichDavos, Switzerland
| | - R Geoff Richards
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| | - T Fintan Moriarty
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| |
Collapse
|
38
|
Mechanisms of Bacterial Colonization of Implants and Host Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 971:15-27. [DOI: 10.1007/5584_2016_173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|