1
|
Howe D, Thompson JD, Teeter SD, Easson M, Barlow O, Griffith EH, Schnabel LV, Spang JT, Fisher MB. Early degenerative changes are different between partial and complete anterior cruciate ligament injury and associate with joint instability in a skeletally immature porcine model. Osteoarthritis Cartilage 2025; 33:302-312. [PMID: 39522937 PMCID: PMC11757048 DOI: 10.1016/j.joca.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Anterior cruciate ligament (ACL) injuries are a major problem in the pediatric and adolescent populations. Some of these injuries are only partial; yet, there is limited data to inform clinical treatment of such partial tears. It is unknown how injury partial injury impacts long-term degenerative changes in the joint relative to complete injury. In this study, we hypothesized that partial (anteromedial (AM) or posterolateral (PL) bundle) tears would result in small levels of instability and degeneration relative to complete ACL tears and that the degree of degeneration would associate with joint instability. DESIGN Partial (isolated AM or PL bundle) or complete ACL injury was arthroscopically created in 3-month-old juvenile pigs. The contralateral limb served as a sham-operated control. Six months after injury, joint biomechanics was assessed along with cartilage and meniscus degeneration (via magnetic resonance imaging [MRI], gross imaging, and histology). RESULTS Joint laxity increases were minimal after PL bundle injury (difference relative to controls (confidence interval): 0.5 (-1.2-2.2) mm), minor after AM bundle injury (3.7 (2.0-5.4) mm), and major after ACL injury (15.8 (13.7-17.8) mm). Cartilage MRI T1ρ relaxation times increased minimally after PL bundle injury (-0.9 (-5.1-3.3) ms for lateral tibia), moderately after AM bundle injury (6.6 (1.7-11.4) ms), and substantially after ACL injury (10.8 (2.1-19.5) ms). Changes in meniscus volume followed a similar rank order. Degeneration was associated with the extent of joint destabilization. CONCLUSIONS These findings suggest that cartilage and meniscus degeneration in the skeletally immature joint are associated with joint laxity after partial and complete ACL injuries.
Collapse
Affiliation(s)
- Danielle Howe
- Joint Department of Biomedical Engineering, North Carolina State University and the University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Jacob D Thompson
- Joint Department of Biomedical Engineering, North Carolina State University and the University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Stephanie D Teeter
- Joint Department of Biomedical Engineering, North Carolina State University and the University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
| | - Margaret Easson
- Joint Department of Biomedical Engineering, North Carolina State University and the University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Olivia Barlow
- Department of Mechanical Engineering, North Carolina State University, Raleigh, NC 27607, USA
| | - Emily H Griffith
- Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
| | - Lauren V Schnabel
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA; Department of Clinical Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Jeffrey T Spang
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew B Fisher
- Joint Department of Biomedical Engineering, North Carolina State University and the University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA; Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Kogan F, Watkins LE, Goyal A. PET-MRI: The promise of multi-tissue imaging of early disease mechanisms in osteoarthritis. Osteoarthritis Cartilage 2025; 33:5-8. [PMID: 39489372 DOI: 10.1016/j.joca.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Feliks Kogan
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | | | - Ananya Goyal
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Casula V, Kajabi AW. Quantitative MRI methods for the assessment of structure, composition, and function of musculoskeletal tissues in basic research and preclinical applications. MAGMA (NEW YORK, N.Y.) 2024; 37:949-967. [PMID: 38904746 PMCID: PMC11582218 DOI: 10.1007/s10334-024-01174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
Osteoarthritis (OA) is a disabling chronic disease involving the gradual degradation of joint structures causing pain and dysfunction. Magnetic resonance imaging (MRI) has been widely used as a non-invasive tool for assessing OA-related changes. While anatomical MRI is limited to the morphological assessment of the joint structures, quantitative MRI (qMRI) allows for the measurement of biophysical properties of the tissues at the molecular level. Quantitative MRI techniques have been employed to characterize tissues' structural integrity, biochemical content, and mechanical properties. Their applications extend to studying degenerative alterations, early OA detection, and evaluating therapeutic intervention. This article is a review of qMRI techniques for musculoskeletal tissue evaluation, with a particular emphasis on articular cartilage. The goal is to describe the underlying mechanism and primary limitations of the qMRI parameters, their association with the tissue physiological properties and their potential in detecting tissue degeneration leading to the development of OA with a primary focus on basic and preclinical research studies. Additionally, the review highlights some clinical applications of qMRI, discussing the role of texture-based radiomics and machine learning in advancing OA research.
Collapse
Affiliation(s)
- Victor Casula
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Abdul Wahed Kajabi
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Champagne AA, Zuleger TM, Warren SM, Smith DR, Lamplot JD, Xerogeanes JW, Slutsky-Ganesh AB, Jayaram P, Patel JM, Myer GD, Diekfuss JA. Automated quantitative assessment of bone contusions and overlying articular cartilage following anterior cruciate ligament injury. J Orthop Res 2024; 42:2495-2506. [PMID: 38885494 DOI: 10.1002/jor.25920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
Quantitative methods to characterize bone contusions and associated cartilage injury remain limited. We combined standardized voxelwise normalization and 3D mapping to automate bone contusion segmentation post-anterior cruciate ligament (ACL) injury and evaluate anomalies in articular cartilage overlying bone contusions. Forty-five patients (54% female, 26.4 ± 11.8 days post-injury) with an ACL tear underwent 3T magnetic resonance imaging of their involved and uninvolved knees. A novel method for voxelwise normalization and 3D anatomical mapping was used to automate segmentation, labeling, and localization of bone contusions in the involved knee. The same mapping system was used to identify the associated articular cartilage overlying bone lesions. Mean regional T1ρ was extracted from articular cartilage regions in both the involved and uninvolved knees for quantitative paired analysis against ipsilateral cartilage within the same compartment outside of the localized bone contusion. At least one bone contusion lesion was detected in the involved knee within the femur and/or tibia following ACL injury in 42 participants. Elevated T1ρ (p = 0.033) signal were documented within the articular cartilage overlying the bone contusions resulting from ACL injury. In contrast, the same cartilaginous regions deprojected onto the uninvolved knees showed no ipsilateral differences (p = 0.795). Automated bone contusion segmentation using standardized voxelwise normalization and 3D mapping deprojection identified altered cartilage overlying bone contusions in the setting of knee ACL injury.
Collapse
Affiliation(s)
- Allen A Champagne
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Taylor M Zuleger
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, Georgia, USA
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shayla M Warren
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, Georgia, USA
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Daniel R Smith
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, Georgia, USA
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - John W Xerogeanes
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alexis B Slutsky-Ganesh
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, Georgia, USA
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Prathap Jayaram
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jay M Patel
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gregory D Myer
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, Georgia, USA
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA
- Youth Physical Development Center, Cardiff Metropolitan University, Wales, UK
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States
| | - Jed A Diekfuss
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, Georgia, USA
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Herger S, Wirth W, Eckstein F, Nüesch C, Egloff C, Mündermann A. Anterior cruciate ligament injury and age affect knee cartilage T2 but not thickness. Osteoarthritis Cartilage 2024; 32:1492-1502. [PMID: 38950877 DOI: 10.1016/j.joca.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE To investigate the effect of unilateral anterior cruciate ligament (ACL) injury on cartilage thickness and composition, specifically laminar transverse relaxation time (T2) by magnetic resonance imaging (MRI), in younger and older participants and to compare within-person side differences in these parameters between ACL-injured and healthy controls. DESIGN Quantitative double-echo steady-state 3 Tesla MRI-sequences were acquired in both knees of 85 participants in four groups: 20-30 years: healthy, HEA20-30, n = 24; ACL-injured, ACL20-30, n = 23; 40-60 years: healthy, HEA40-60, n = 24; ACL-injured, ACL40-60, n = 14 (ACL injury 2-10 years prior to study inclusion). Weight-bearing femorotibial cartilages were manually segmented; cartilage T2 and thickness were computed using custom software. Mean and side differences in subregional cartilage thickness, superficial and deep cartilage T2 were compared within and between groups using non-parametric statistics. RESULTS Cartilage thickness did not differ within or between groups. Only the side difference in medial femorotibial cartilage thickness was greater in ACL20-30 than in HEA20-30. Deep zone T2 was longer in the ACL-injured than in the contralateral uninjured knees and than in healthy controls, especially in the lateral compartment. Most ACL-injured participants had side differences in femorotibial deep zone T2 above the threshold derived from controls. CONCLUSION In the ACL-injured knee, early compositional differences in femorotibial cartilage (T2) appear to occur in the deep zone and precede cartilage thickness loss. These results suggest that monitoring laminar T2 after ACL injury may be useful in diagnosing and monitoring early articular cartilage changes.
Collapse
Affiliation(s)
- Simon Herger
- Department of Orthopedics and Traumatology, University Hospital Basel, Basel Switzerland; Department of Spine Surgery, University Hospital Basel, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Basel, Switzerland.
| | - Wolfgang Wirth
- Research Program for Musculoskeletal Imaging, Center of Anatomy and Cell Biology, and Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria; Chondrometrics GmbH, Freilassing, Germany.
| | - Felix Eckstein
- Research Program for Musculoskeletal Imaging, Center of Anatomy and Cell Biology, and Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria; Chondrometrics GmbH, Freilassing, Germany.
| | - Corina Nüesch
- Department of Orthopedics and Traumatology, University Hospital Basel, Basel Switzerland; Department of Spine Surgery, University Hospital Basel, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Basel, Switzerland.
| | - Christian Egloff
- Department of Orthopedics and Traumatology, University Hospital Basel, Basel Switzerland.
| | - Annegret Mündermann
- Department of Orthopedics and Traumatology, University Hospital Basel, Basel Switzerland; Department of Spine Surgery, University Hospital Basel, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Davidson EJ, Figgie C, Nguyen J, Pedoia V, Majumdar S, Potter HG, Koff MF. Chondral Injury Associated With ACL Injury: Assessing Progressive Chondral Degeneration With Morphologic and Quantitative MRI Techniques. Sports Health 2024; 16:722-734. [PMID: 37876228 PMCID: PMC11346233 DOI: 10.1177/19417381231205276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Anterior cruciate ligament (ACL) injuries are associated with a risk of post-traumatic osteoarthritis due to chondral damage. Magnetic resonance imaging (MRI) techniques provide excellent visualization and assessment of cartilage and can detect subtle and early chondral damage. This is often preceding clinical and radiographic post-traumatic osteoarthritis. HYPOTHESIS Morphologic and quantitative MRI techniques can assess early and progressive degenerative chondral changes after acute ACL injury. STUDY DESIGN Prospective longitudinal cohort. LEVEL OF EVIDENCE Level 3. METHODS Sixty-five participants with acute unilateral ACL injuries underwent bilateral knee MRI scans within 1 month of injury. Fifty-seven participants presented at 6 months, while 54 were evaluated at 12 months. MRI morphologic evaluation using a modified Noyes score assessed cartilage signal alteration, chondral damage, and subchondral bone status. Quantitative T1ρ and T2 mapping at standardized anatomic locations in both knees was assessed. Participant-reported outcomes at follow-up time points were recorded. RESULTS Baseline Noyes scores of MRI detectable cartilage damage were highest in the injured knee lateral tibial plateau (mean 2.5, standard error (SE) 0.20, P < 0.01), followed by lateral femoral condyle (mean 2.1, SE 0.18, P < 0.01), which progressed after 1 year. Longitudinal prolongation at 12 months in the injured knees was significant for T1ρ affecting the medial and lateral femoral condyles (P < 0.01) and trochlea (P < 0.01), whereas T2 values were prolonged for medial and lateral femoral condyles (P < 0.01) and trochlea (P < 0.01). The contralateral noninjured knees also demonstrated T1ρ and T2 prolongation in the medial and lateral compartment chondral subdivisions. Progressive chondral damage occurred despite improved patient-reported outcomes. CONCLUSION After ACL injury, initial and sustained chondral damage predominantly affects the lateral tibiofemoral compartment, but longitudinal chondral degeneration also occurred in other compartments of the injured and contralateral knee. CLINICAL RELEVANCE Early identification of chondral degeneration post-ACL injury using morphological and quantitative MRI techniques could enable interventions to be implemented early to prevent or delay PTOA.
Collapse
Affiliation(s)
| | | | - Joseph Nguyen
- HSS MRI Laboratory, Hospital for Special Surgery, New York
| | - Valentina Pedoia
- University of California San Francisco, San Francisco, California
| | | | | | | |
Collapse
|
7
|
Li X, Kim J, Yang M, Ok AH, Zbýň Š, Link TM, Majumdar S, Ma CB, Spindler KP, Winalski CS. Cartilage compositional MRI-a narrative review of technical development and clinical applications over the past three decades. Skeletal Radiol 2024; 53:1761-1781. [PMID: 38980364 PMCID: PMC11303573 DOI: 10.1007/s00256-024-04734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Articular cartilage damage and degeneration are among hallmark manifestations of joint injuries and arthritis, classically osteoarthritis. Cartilage compositional MRI (Cart-C MRI), a quantitative technique, which aims to detect early-stage cartilage matrix changes that precede macroscopic alterations, began development in the 1990s. However, despite the significant advancements over the past three decades, Cart-C MRI remains predominantly a research tool, hindered by various technical and clinical hurdles. This paper will review the technical evolution of Cart-C MRI, delve into its clinical applications, and conclude by identifying the existing gaps and challenges that need to be addressed to enable even broader clinical application of Cart-C MRI.
Collapse
Affiliation(s)
- Xiaojuan Li
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA.
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA.
| | - Jeehun Kim
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mingrui Yang
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmet H Ok
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Štefan Zbýň
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Sharmilar Majumdar
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - C Benjamin Ma
- Department of Orthopaedic Surgery, UCSF, San Francisco, CA, USA
| | - Kurt P Spindler
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Carl S Winalski
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
8
|
Champagne AA, Zuleger TM, Smith DR, Slutsky-Ganesh AB, Warren SM, Ramirez ME, Sengkhammee LM, Mandava S, Wei H, Bardana DD, Lamplot JD, Myer GD, Diekfuss JA. Quantitative susceptibility and T1 ρ mapping of knee articular cartilage at 3T. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100509. [PMID: 39224132 PMCID: PMC11367491 DOI: 10.1016/j.ocarto.2024.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
T1 ρ and Quantitative Susceptibility Mapping (QSM) are evolving as substrates for quantifying the progressive nature of knee osteoarthritis. Objective To evaluate the effects of spin lock time combinations on depth-dependent T1 ρ estimation, in adjunct to QSM, and characterize the degree of shared variance in QSM and T1 ρ for the quantitative measurement of articular cartilage. Design Twenty healthy participants (10 M/10F, 22.2 ± 3.4 years) underwent bilateral knee MRI using T1 ρ MAPPS sequences with varying TSLs ([0-120] ms), along with a 3D spoiled gradient echo for QSM. Five total TSL combinations were used for T1 ρ computation, and direct depth-based comparison. Depth-wide variance was assessed in comparison to QSM as a basis to assess for depth-specific variation in T1 ρ computations across healthy cartilage. Results Longer T1 ρ relaxation times were observed for TSL combinations with higher spin lock times. Depth-specific differences were documented for both QSM and T1 ρ , with most change found at ∼60% depth of the cartilage, relative to the surface. Direct squared linear correlation revealed that most T1 ρ TSL combinations can explain over 30% of the variability in QSM, suggesting inherent shared sensitivity to cartilage microstructure. Conclusions T1 ρ mapping is subjective to the spin lock time combinations used for computation of relaxation times. When paired with QSM, both similarities and differences in signal sensitivity may be complementary to capture depth-wide changes in articular cartilage.
Collapse
Affiliation(s)
- Allen A. Champagne
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Taylor M. Zuleger
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel R. Smith
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexis B. Slutsky-Ganesh
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Shayla M. Warren
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Mario E. Ramirez
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- School of Medicine, Medical College of Georgia, Augusta, GA, USA
| | - Lexie M. Sengkhammee
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Davide D. Bardana
- Department of Orthopedic Surgery, Queen's University, Kingston, ON, Canada
| | | | - Gregory D. Myer
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
- Youth Physical Development Centre, Cardiff Metropolitan University, Wales, UK
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Jed A. Diekfuss
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
9
|
Zhang X, de Moura HL, Monga A, Zibetti MVW, Kijowski R, Regatte RR. Repeatability of Quantitative Knee Cartilage T 1, T 2, and T 1ρ Mapping With 3D-MRI Fingerprinting. J Magn Reson Imaging 2024; 60:688-699. [PMID: 37885320 PMCID: PMC11045656 DOI: 10.1002/jmri.29068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Three-dimensional MR fingerprinting (3D-MRF) techniques have been recently described for simultaneous multiparametric mapping of knee cartilage. However, investigation of repeatability remains limited. PURPOSE To assess the intra-day and inter-day repeatabilities of knee cartilage T1, T2, and T1ρ maps using a 3D-MRF sequence for simultaneous measurement. STUDY TYPE Prospective. SUBJECTS Fourteen healthy subjects (35.4 ± 9.3 years, eight males), scanned on Day 1 and Day 7. FIELD STRENGTH/SEQUENCE 3 T/3D-MRF, T1, T2, and T1ρ maps. ASSESSMENT The acquisition of 3D-MRF cartilage (simultaneous acquisition of T1, T2, and T1ρ maps) were acquired using a dictionary pattern-matching approach. Conventional cartilage T1, T2, and T1ρ maps were acquired using variable flip angles and a modified 3D-Turbo-Flash sequence with different echo and spin-lock times, respectively, and were fitted using mono-exponential models. Each sequence was acquired on Day 1 and Day 7 with two scans on each day. STATISTICAL TESTS The mean and SD for cartilage T1, T2, and T1ρ were calculated in five manually segmented regions of interest (ROIs), including lateral femur, lateral tibia, medial femur, medial tibia, and patella cartilages. Intra-subject and inter-subject repeatabilities were assessed using coefficient of variation (CV) and intra-class correlation coefficient (ICC), respectively, on the same day and among different days. Regression and Bland-Altman analysis were performed to compare maps between the conventional and 3D-MRF sequences. RESULTS The CV in all ROIs was lower than 7.4%, 8.4%, and 7.5% and the ICC was higher than 0.56, 0.51, and 0.52 for cartilage T1, T2, and T1ρ, respectively. The MRF results had a good agreement with the conventional methods with a linear regression slope >0.61 and R2 > 0.59. CONCLUSION The 3D-MRF sequence had high intra-subject and inter-subject repeatabilities for simultaneously measuring knee cartilage T1, T2, and T1ρ with good agreement with conventional sequences. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Hector L. de Moura
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Anmol Monga
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Marcelo V. W. Zibetti
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Richard Kijowski
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ravinder R. Regatte
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
10
|
Lemainque T, Pridöhl N, Zhang S, Huppertz M, Post M, Yüksel C, Yoneyama M, Prescher A, Kuhl C, Truhn D, Nebelung S. Time-efficient combined morphologic and quantitative joint MRI: an in situ study of standardized knee cartilage defects in human cadaveric specimens. Eur Radiol Exp 2024; 8:66. [PMID: 38834751 DOI: 10.1186/s41747-024-00462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/27/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Quantitative techniques such as T2 and T1ρ mapping allow evaluating the cartilage and meniscus. We evaluated multi-interleaved X-prepared turbo-spin echo with intuitive relaxometry (MIXTURE) sequences with turbo spin-echo (TSE) contrast and additional parameter maps versus reference TSE sequences in an in situ model of human cartilage defects. METHODS Standardized cartilage defects of 8, 5, and 3 mm in diameter were created in the lateral femora of ten human cadaveric knee specimens (81 ± 10 years old; nine males, one female). MIXTURE sequences providing proton density-weighted fat-saturated images and T2 maps or T1-weighted images and T1ρ maps as well as the corresponding two- and three-dimensional TSE reference sequences were acquired before and after defect creation (3-T scanner; knee coil). Defect delineability, bone texture, and cartilage relaxation times were quantified. Appropriate parametric or non-parametric tests were used. RESULTS Overall, defect delineability and texture features were not significantly different between the MIXTURE and reference sequences (p ≤ 0.47). After defect creation, relaxation times significantly increased in the central femur (T2pre = 51 ± 4 ms [mean ± standard deviation] versus T2post = 56 ± 4 ms; p = 0.002) and all regions combined (T1ρpre = 40 ± 4 ms versus T1ρpost = 43 ± 4 ms; p = 0.004). CONCLUSIONS MIXTURE permitted time-efficient simultaneous morphologic and quantitative joint assessment based on clinical image contrasts. While providing T2 or T1ρ maps in clinically feasible scan time, morphologic image features, i.e., cartilage defects and bone texture, were comparable between MIXTURE and reference sequences. RELEVANCE STATEMENT Equally time-efficient and versatile, the MIXTURE sequence platform combines morphologic imaging using familiar contrasts, excellent image correspondence versus corresponding reference sequences and quantitative mapping information, thereby increasing the diagnostic value beyond mere morphology. KEY POINTS • Combined morphologic and quantitative MIXTURE sequences are based on three-dimensional TSE contrasts. • MIXTURE sequences were studied in an in situ human cartilage defect model. • Morphologic image features, i.e., defect delineabilty and bone texture, were investigated. • Morphologic image features were similar between MIXTURE and reference sequences. • MIXTURE allowed time-efficient simultaneous morphologic and quantitative knee joint assessment.
Collapse
Affiliation(s)
- Teresa Lemainque
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany.
| | - Nicola Pridöhl
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| | - Shuo Zhang
- Philips GmbH Market DACH, Hamburg, Germany
| | - Marc Huppertz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| | - Manuel Post
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| | - Can Yüksel
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| | | | - Andreas Prescher
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, 52074, Germany
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| |
Collapse
|
11
|
Nakanishi Y, Hegarty P, Vivacqua T, Firth A, Milner JS, Pritchett S, Willits K, Litchfield R, Bryant D, Getgood AMJ. Quantitative MRI Analysis of Patellofemoral Joint Cartilage Health 2 Years After Anterior Cruciate Ligament Reconstruction and Lateral Extra-Articular Tenodesis. Am J Sports Med 2024; 52:1773-1783. [PMID: 38794906 DOI: 10.1177/03635465241248642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
BACKGROUND The addition of an iliotibial band-based lateral extra-articular tenodesis (LET) to anterior cruciate ligament (ACL) reconstruction (ACLR) has been shown to reduce failure rates. However, there are concerns as to the potential overconstraint of tibiofemoral kinematics that may increase the risk of cartilage degradation. To date, no clinical study has investigated the effect of LET on patellofemoral joint articular cartilage health. HYPOTHESIS It was hypothesized that at 2 years postoperatively, (1) the addition of LET at the time of ACLR would have no effect on cartilage health on magnetic resonance imaging (MRI), and (2) higher cartilage relaxation values would be associated with worse patient-reported and functional outcomes. STUDY DESIGN Cohort study; Level of evidence, 3. METHODS A subset of patients from the STABILITY 1 randomized controlled trial were included. All patients underwent primary ACLR with a hamstring autograft. Patients were randomized to either LET augmentation or not. Cartilage status in the patellofemoral joint between the ACLR group and ACLR+LET group was compared using 2-year postoperative quantitative MRI and the ACL osteoarthritis scores of both the surgical and the contralateral nonsurgical knees. Objective functional outcomes and patient-reported outcome measures (PROMs) were attained. RESULTS A total of 92 patients (43 patients in the ACLR group; mean age, 18.9 ± 3.2 years; 60.5% female; and 49 patients in the ACLR+LET group; mean age, 18.7 ± 3.2 years, 63.3% female) were included. No significant differences were seen in the mean values (ms) for adjusted T1ρ/T2 relaxation times in the medial patella (47.8/42.2 vs 47.3/43.2), central patella (45.5/42.5 vs 44.1/42.7), lateral patella (48.2/43.5 vs 47.3/43.0), medial trochlea (54.7/50.9 vs 56.4/50.9), central trochlea (53.3/51.1 vs 53.1/52.0), and lateral trochlea (54.9/52.1 vs 53.9/52.6) between the ACLR and ACLR+LET groups. No difference in overall ACL osteoarthritis scores was observed (P = .99). An increase in medial patellar T2 relaxation times was associated with a decreasing International Knee Documentation Committee score (P = .046), Knee injury and Osteoarthritis Outcome Score (KOOS) Symptoms subscale score (P = .01), and total KOOS (P = .01). CONCLUSION There was no statistical difference in patellofemoral cartilage health between knees 2 years after primary ACLR with hamstring tendon autograft with or without LET. Statistically significant correlations were found between quantitative MRI relaxation times, functional outcome scores, and PROMs; however, the correlations were weak and the clinical significance is unknown. REGISTRATION NCT02018354 (ClinicalTrials.gov identifier).
Collapse
Affiliation(s)
- Yuta Nakanishi
- Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Paul Hegarty
- Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada
| | - Thiago Vivacqua
- Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada
| | - Andrew Firth
- Department of Epidemiology and Biostatistics, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Jaques S Milner
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Stephany Pritchett
- Department of Medical Imaging, Musculoskeletal Division, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Kevin Willits
- Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada
| | - Robert Litchfield
- Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada
| | - Dianne Bryant
- School of Physical Therapy, Western University, London, Ontario, Canada
- Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Alan M J Getgood
- Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
12
|
Harkey MS, Michel N, Grozier C, Slade JM, Collins K, Pietrosimone B, Lalush D, Lisee C, Hacihaliloglu I, Fajardo R. Femoral cartilage ultrasound echo-intensity is a valid measure of cartilage composition. J Orthop Res 2024; 42:729-736. [PMID: 37874323 PMCID: PMC10978297 DOI: 10.1002/jor.25722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
This study aimed to create a conversion equation that accurately predicts cartilage magnetic resonance imaging (MRI) T2 relaxation times using ultrasound echo-intensity and common participant demographics. We recruited 15 participants with a primary anterior cruciate ligament reconstruction between the ages of 18 and 35 years at 1-5 years after surgery. A single investigator completed a transverse suprapatellar scan with the ACLR limb in max knee flexion to image the femoral trochlea cartilage. A single reader manually segmented the femoral cartilage cross-sectional area to assess the echo-intensity (i.e., mean gray-scale pixel value). At a separate visit, a T2 mapping sequence with the MRI beam set to an oblique angle was used to image the femoral trochlea cartilage. A single reader manually segmented the cartilage cross-sectional area on a single MRI slice to assess the T2 relaxation time. A stepwise, multiple linear regression was used to predict T2 relaxation time from cartilage echo-intensity and common demographic variables. We created a conversion equation using the regression betas and then used an ICC and Bland-Altman plot to assess agreement between the estimated and true T2 relaxation time. Cartilage ultrasound echo-intensity and age significantly predicted T2 relaxation time (F = 7.33, p = 0.008, R2 = 0.55). When using the new conversion equation to estimate T2 relaxation time from cartilage echo-intensity and age, there was strong agreement between the estimated and true T2 relaxation time (ICC2,k = 0.84). This study provides promising preliminary data that cartilage echo-intensity combined with age can be used as a clinically accessible tool for evaluating cartilage composition.
Collapse
Affiliation(s)
- Matthew S Harkey
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | - Nicholas Michel
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Corey Grozier
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | - Jill M Slade
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Katherine Collins
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | - Brian Pietrosimone
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David Lalush
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Caroline Lisee
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ilker Hacihaliloglu
- Department of Radiology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Ryan Fajardo
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
- Lansing Radiology Associates, Lansing, Michigan, USA
| |
Collapse
|
13
|
Firth AD, Pritchett SL, Milner JS, Atkinson HF, Bryant DM, Holdsworth DW, Getgood AMJ. Quantitative Magnetic Resonance Imaging of Lateral Compartment Articular Cartilage After Lateral Extra-articular Tenodesis. Am J Sports Med 2024; 52:909-918. [PMID: 38385189 DOI: 10.1177/03635465241228193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
BACKGROUND Concerns have arisen that anterior cruciate ligament reconstruction (ACLR) with lateral extra-articular tenodesis (LET) may accelerate the development of posttraumatic osteoarthritis in the lateral compartment of the knee. PURPOSE/HYPOTHESIS The purpose of this study was to evaluate whether the augmentation of ACLR with LET affects the quality of lateral compartment articular cartilage on magnetic resonance imaging (MRI) at 2 years postoperatively. We hypothesized that there would be no difference in T1rho and T2 relaxation times when comparing ACLR alone with ACLR + LET. STUDY DESIGN Randomized controlled trial; Level of evidence, 1. METHODS A consecutive subgroup of patients at the Fowler Kennedy Sport Medicine Clinic participating in the STABILITY 1 Study underwent bilateral 3-T MRI at 2 years after surgery. The primary outcome was T1rho and T2 relaxation times. Articular cartilage in the lateral compartment was manually segmented into 3 regions of the tibia (lateral tibia [LT]-1 to LT-3) and 5 regions of the femur (lateral femoral condyle [LFC]-1 to LFC-5). Analysis of covariance was used to compare relaxation times between groups, adjusted for lateral meniscal tears and treatment, cartilage and bone marrow lesions, contralateral relaxation times, and time since surgery. Semiquantitative MRI scores according to the Anterior Cruciate Ligament OsteoArthritis Score were compared between groups. Correlations were used to determine the association between secondary outcomes (including results of the International Knee Documentation Committee score, Knee injury and Osteoarthritis Outcome Score, Lower Extremity Functional Scale, 4-Item Pain Intensity Measure, hop tests, and isokinetic quadriceps and hamstring strength tests) and cartilage relaxation. RESULTS A total of 95 participants (44 ACLR alone, 51 ACLR + LET) with a mean age of 18.8 years (61.1% female [58/95]) underwent 2-year MRI (range, 20-36 months). T1rho relaxation times were significantly elevated for the ACLR + LET group in LT-1 (37.3 ± 0.7 ms vs 34.1 ± 0.8 ms, respectively; P = .005) and LFC-2 (43.9 ± 0.9 ms vs 40.2 ± 1.0 ms, respectively; P = .008) compared with the ACLR alone group. T2 relaxation times were significantly elevated for the ACLR + LET group in LFC-1 (51.2 ± 0.7 ms vs 49.1 ± 0.7 ms, respectively; P = .03) and LFC-4 (45.9 ± 0.5 ms vs 44.2 ± 0.6 ms, respectively; P = .04) compared with the ACLR alone group. All effect sizes were small to medium. There was no difference in Anterior Cruciate Ligament OsteoArthritis Scores between groups (P = .99). Weak negative associations (rs = -0.27 to -0.22; P < .05) were found between relaxation times and quadriceps and hamstring strength in the anterolateral knee, while all other correlations were nonsignificant (P > .05). CONCLUSION Increased relaxation times demonstrating small to medium effect sizes suggested early biochemical changes in articular cartilage of the anterolateral compartment in the ACLR + LET group compared with the ACLR alone group. Further evidence and long-term follow-up are needed to better understand the association between these results and the potential risk of the development of osteoarthritis in our patient cohort.
Collapse
Affiliation(s)
- Andrew D Firth
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Stephany L Pritchett
- Division of Musculoskeletal Imaging, Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jaques S Milner
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Hayden F Atkinson
- School of Physical Therapy, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
| | - Dianne M Bryant
- School of Physical Therapy, Western University, London, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - David W Holdsworth
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Alan M J Getgood
- Fowler Kennedy Sport Medicine Clinic, Western University, London, Ontario, Canada
- Department of Orthopaedic Surgery, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
14
|
Löffler MT, Akkaya Z, Bhattacharjee R, Link TM. Biomarkers of Cartilage Composition. Semin Musculoskelet Radiol 2024; 28:26-38. [PMID: 38330968 DOI: 10.1055/s-0043-1776429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Magnetic resonance imaging (MRI) has significantly advanced the understanding of osteoarthritis (OA) because it enables visualization of noncalcified tissues. Cartilage is avascular and nurtured by diffusion, so it has a very low turnover and limited capabilities of repair. Consequently, prevention of structural and detection of premorphological damage is key in maintaining cartilage health. The integrity of cartilage composition and ultrastructure determines its mechanical properties but is not accessible to morphological imaging. Therefore, various techniques of compositional MRI with and without use of intravenous contrast medium have been developed. Spin-spin relaxation time (T2) and spin-lattice relaxation time constant in rotating frame (T1rho) mapping, the most studied cartilage biomarkers, were included in the recent standardization effort by the Quantitative Imaging Biomarkers Alliance (QIBA) that aims to make compositional MRI of cartilage clinically feasible and comparable. Additional techniques that are less frequently used include ultrashort echo time with T2*, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), glycosaminoglycan concentration by chemical exchange-dependent saturation transfer (gagCEST), sodium imaging, and diffusion-weighted MRI.
Collapse
Affiliation(s)
- Maximilian T Löffler
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Freiburg im Breisgau, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Zehra Akkaya
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- Department of Radiology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Rupsa Bhattacharjee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| |
Collapse
|
15
|
Pamukoff DN, Holmes SC, Heredia CE, Shumski EJ, Garcia SA, Montgomery MM. Cartilage deformation following a walking bout in individuals with anterior cruciate ligament reconstruction. J Orthop Res 2024; 42:349-359. [PMID: 37772457 DOI: 10.1002/jor.25694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/16/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
The purpose was to (1) compare the effect of a walking bout on femoral cartilage deformation between limbs with and without anterior cruciate ligament reconstruction (ACLR) and (2) examine the association between gait kinetics and the magnitude of cartilage deformation. A total of 30 individuals with primary unilateral ACLR completed this study [14 male, 16 female; age = 22.57 (3.78) years; body mass index (BMI) = 25.88 (5.68) kg/m2 ; time since ACLR = 61.00 (16.43) months]. Overground walking biomechanics were assessed on day 1, and a 30-min walking bout or 30-min resting bout (control) were completed on days 2 and 3 (counterbalanced order). Femoral cartilage thickness was measured using ultrasound before, immediately following, and 30-min following each intervention. Linear mixed effects models compared the effect of walking on cartilage thickness between the ACLR and contralateral limbs after adjusting for sex, BMI, speed, and the number of steps. Stepwise regression examined the association between the external knee flexion and adduction moments and cartilage deformation following walking. There was a significant limb × time interaction for medial cartilage thickness. Post hoc analyses indicated that cartilage thickness decreased immediately following walking in the contralateral but not ACLR limb. Main effects of limb were observed for medial, central, and lateral cartilage thickness indicating thicker cartilage in the ACLR compared with contralateral limb. A higher knee adduction moment was associated with greater cartilage deformation in the ACLR limb. Femoral cartilage in the ACLR limb exhibited a less dynamic response to walking than the uninvolved limb, which may be due to habitual underloading during gait.
Collapse
Affiliation(s)
- Derek N Pamukoff
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Skylar C Holmes
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | | | - Eric J Shumski
- Department of Kinesiology, University of Georgia, Athens, Georgia, USA
| | - Steven A Garcia
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Melissa M Montgomery
- Department of Kinesiology, California State University, Fullerton, Fullerton, California, USA
| |
Collapse
|
16
|
Pătraşcu JM, Florescu S, Brad S, Andor BC, Ilia I, Stănciugelu ŞI, Cristina RT. Magnetic resonance imaging combined with histological evaluation of repair process using the microfracture technique in an association of osteocartilaginous and meniscal surgically induced lesions of the knee. In vivo experiment on a rabbit model. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:89-97. [PMID: 38527988 PMCID: PMC11146455 DOI: 10.47162/rjme.65.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
The present research study aimed to assess magnetic resonance imaging (MRI) changes and histological findings in the therapeutic effects of microfractures in the treatment of complex animal knee lesions resulting from osteochondral and meniscal defects resulting from non-total meniscectomies. The anterior cruciate ligament lesions are also proven to facilitate the development of osteoarthritis in the knee and worsen the prognosis. Surgery was performed on the right knee joint of 22 male rabbits in order to partially remove the anterior horn of the internal meniscus and to induce an osteochondral defect at the level of the internal femoral condyle. The induced lesion complex was aimed to simulate a clinical situation that occurs frequently in orthopedic practice when young adults undergo partial meniscectomy and at the time of surgery, an osteochondral defect is diagnosed. Rabbits were separated into two study groups: the control (C1) group and the microfractures (MF2) group. After the induced cartilage defect and partial meniscectomy, both groups were followed-up for six months using detailed MRI. Also, anatomical specimens were histologically analyzed to show modifications and signs of healing process, along with complications, in the study group. The results showed that the microfracture group had better results concerning articular surface defect healing in comparison to the control group. Our results suggest that microfractures do improve results concerning surface contact healing and serial MRI studies can be useful in observing the remodeling process in dynamics.
Collapse
Affiliation(s)
- Jenel Marian Pătraşcu
- Department of Orthopedics and Traumatology, Faculty of Medicine, Professor Teodor Şora Research Center, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania; ,
| | | | | | | | | | | | | |
Collapse
|
17
|
Tong MW, Tolpadi AA, Bhattacharjee R, Han M, Majumdar S, Pedoia V. Synthetic Knee MRI T 1p Maps as an Avenue for Clinical Translation of Quantitative Osteoarthritis Biomarkers. Bioengineering (Basel) 2023; 11:17. [PMID: 38247894 PMCID: PMC10812962 DOI: 10.3390/bioengineering11010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
A 2D U-Net was trained to generate synthetic T1p maps from T2 maps for knee MRI to explore the feasibility of domain adaptation for enriching existing datasets and enabling rapid, reliable image reconstruction. The network was developed using 509 healthy contralateral and injured ipsilateral knee images from patients with ACL injuries and reconstruction surgeries acquired across three institutions. Network generalizability was evaluated on 343 knees acquired in a clinical setting and 46 knees from simultaneous bilateral acquisition in a research setting. The deep neural network synthesized high-fidelity reconstructions of T1p maps, preserving textures and local T1p elevation patterns in cartilage with a normalized mean square error of 2.4% and Pearson's correlation coefficient of 0.93. Analysis of reconstructed T1p maps within cartilage compartments revealed minimal bias (-0.10 ms), tight limits of agreement, and quantification error (5.7%) below the threshold for clinically significant change (6.42%) associated with osteoarthritis. In an out-of-distribution external test set, synthetic maps preserved T1p textures, but exhibited increased bias and wider limits of agreement. This study demonstrates the capability of image synthesis to reduce acquisition time, derive meaningful information from existing datasets, and suggest a pathway for standardizing T1p as a quantitative biomarker for osteoarthritis.
Collapse
Affiliation(s)
- Michelle W. Tong
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA (S.M.); (V.P.)
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Aniket A. Tolpadi
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA (S.M.); (V.P.)
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Rupsa Bhattacharjee
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA (S.M.); (V.P.)
| | - Misung Han
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA (S.M.); (V.P.)
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA (S.M.); (V.P.)
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA (S.M.); (V.P.)
| |
Collapse
|
18
|
Farrow LD, Elias JJ, Li M, Yang M, Lartey R, Winalski CS, Li X. Patellar Dislocation in Adolescent Patients: Influence on Cartilage Properties Based on T1ρ Relaxation Times. Am J Sports Med 2023; 51:3714-3723. [PMID: 37897349 PMCID: PMC11087140 DOI: 10.1177/03635465231205562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
BACKGROUND Adolescents who experience a patellar dislocation have an elevated risk of patellofemoral posttraumatic osteoarthritis. Magnetic resonance imaging (MRI)-based T1ρ relaxation times were measured for adolescents to evaluate patellofemoral cartilage after patellar dislocation. Long T1ρ relaxation times are an indicator of cartilage degradation. HYPOTHESIS The primary hypothesis is that patellofemoral cartilage T1ρ relaxation times will be elevated in the acute phase after patellar dislocation. The secondary hypothesis is that T1ρ relaxation times will be higher for knees with multiple rather than single dislocations due to repeated traumatic injury. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS In total, 23 adolescents being treated for a recent patellar dislocation, 13 for a first-time dislocation (47 ± 38 days since most recent dislocation) and 10 for multiple dislocations (55 ± 24 days since most recent dislocation), and 10 healthy controls participated in MRI-based T1ρ relaxation time mapping. For multiple regions of the patellofemoral joint, mean T1ρ values were compared between the 3 groups with multiple group comparisons and post hoc tests. T1ρ relaxation times were also correlated against measures of patellofemoral anatomy and alignment for single and multiple dislocations. Statistical significance was set at P < .05. RESULTS T1ρ relaxation times were significantly longer for injured knees (single and multiple dislocations) than controls at the medial and central patella and central trochlear groove. For the regions on the patella, significant differences between injured and control knees exceeded 15%. No significant differences were identified between single and multiple dislocations. For the initial dislocation group, T1ρ relaxation times within multiple regions of the patellofemoral joint were significantly correlated with lateral patellar alignment or patellar height. CONCLUSION Elevated patellofemoral cartilage T1ρ relaxation times are consistent with a high risk of long-term patellofemoral osteoarthritis for adolescents who experience patellar dislocations. T1ρ relaxation times were elevated for multiple regions of patellofemoral cartilage. T1ρ relaxation times were expected to increase with additional dislocation episodes, but relaxation times after single and multiple dislocations were similar. After a first dislocation, parameters related to patellar maltracking were correlated with cartilage degradation.
Collapse
Affiliation(s)
| | | | - Mei Li
- Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
19
|
Lisee C, Evans-Pickett A, Davis-Wilson H, Munsch AE, Longobardi L, Schwartz TA, Lalush D, Franz JR, Pietrosimone B. Delayed cartilage oligomeric matrix protein response to loading is associated with femoral cartilage composition post-ACLR. Eur J Appl Physiol 2023; 123:2525-2535. [PMID: 37326876 DOI: 10.1007/s00421-023-05253-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
PURPOSE To determine associations between immediate and delayed response of serum cartilage oligomeric matrix protein (sCOMP) to loading (i.e., 3000 walking steps) and femoral cartilage interlimb T1ρ relaxation times in individual's post-anterior cruciate ligament reconstruction (ACLR). METHODS This cross-sectional study included 20 individuals 6-12 months following primary ACLR (65% female, 20.5 ± 4.0 years old, 24.9 ± 3.0 kg/m2, 7.3 ± 1.5 months post-ACLR). Serum samples were collected prior to, immediately following, and 3.5 h following walking 3000 steps on a treadmill at habitual walking speed. sCOMP concentrations were processed using enzyme-linked immunosorbent assays. Immediate and delayed absolute sCOMP responses to loading were evaluated immediately and 3.5 h post-walking, respectively. Participants underwent bilateral magnetic resonance imaging with T1ρ sequences to calculate resting femoral cartilage interlimb T1ρ relaxation time ratios between limbs (i.e., ACLR/Uninjured limb). Linear regression models were fitted to determine associations between sCOMP response to loading and femoral cartilage T1ρ outcomes controlling for pre-loading sCOMP concentrations. RESULTS Greater increases in delayed sCOMP response to loading were associated with greater lateral (∆R2 = 0.29, p = 0.02) but not medial (∆R2 < 0.01, p = 0.99) femoral cartilage interlimb T1ρ ratios. Associations between immediate sCOMP response to loading with femoral cartilage interlimb T1ρ ratios were weak and non-significant (∆R2 range = 0.02-0.09, p range = 0.21-0.58). CONCLUSION Greater delayed sCOMP response to loading, a biomarker of cartilage breakdown, is associated with worse lateral femoral cartilage composition in the ACLR limb compared to the uninjured limb. Delayed sCOMP response to loading may be a more indicative metabolic indicator linked to deleterious changes in composition than immediate sCOMP response.
Collapse
Affiliation(s)
- Caroline Lisee
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, CB#8700, 209 Fetzer Hall, Chapel Hill, NC, 27599, USA.
| | - Alyssa Evans-Pickett
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, CB#8700, 209 Fetzer Hall, Chapel Hill, NC, 27599, USA
| | | | - Amanda E Munsch
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lara Longobardi
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Todd A Schwartz
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Lalush
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Brian Pietrosimone
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, CB#8700, 209 Fetzer Hall, Chapel Hill, NC, 27599, USA
- Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
20
|
Coburn SL, Crossley KM, Kemp JL, Warden SJ, West TJ, Bruder AM, Mentiplay BF, Culvenor AG. Immediate and Delayed Effects of Joint Loading Activities on Knee and Hip Cartilage: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2023; 9:56. [PMID: 37450202 PMCID: PMC10348990 DOI: 10.1186/s40798-023-00602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The impact of activity-related joint loading on cartilage is not clear. Abnormal loading is considered to be a mechanical driver of osteoarthritis (OA), yet moderate amounts of physical activity and rehabilitation exercise can have positive effects on articular cartilage. Our aim was to investigate the immediate effects of joint loading activities on knee and hip cartilage in healthy adults, as assessed using magnetic resonance imaging. We also investigated delayed effects of activities on healthy cartilage and the effects of activities on cartilage in adults with, or at risk of, OA. We explored the association of sex, age and loading duration with cartilage changes. METHODS A systematic review of six databases identified studies assessing change in adult hip and knee cartilage using MRI within 48 h before and after application of a joint loading intervention/activity. Studies included adults with healthy cartilage or those with, or at risk of, OA. Joint loading activities included walking, hopping, cycling, weightbearing knee bends and simulated standing within the scanner. Risk of bias was assessed using the Newcastle-Ottawa Scale. Random-effects meta-analysis estimated the percentage change in compartment-specific cartilage thickness or volume and composition (T2 relaxation time) outcomes. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system evaluated certainty of evidence. RESULTS Forty studies of 653 participants were included after screening 5159 retrieved studies. Knee cartilage thickness or volume decreased immediately following all loading activities investigating healthy adults; however, GRADE assessment indicated very low certainty evidence. Patellar cartilage thickness and volume reduced 5.0% (95% CI 3.5, 6.4, I2 = 89.3%) after body weight knee bends, and tibial cartilage composition (T2 relaxation time) decreased 5.1% (95% CI 3.7, 6.5, I2 = 0.0%) after simulated standing within the scanner. Hip cartilage data were insufficient for pooling. Secondary outcomes synthesised narratively suggest knee cartilage recovers within 30 min of walking and 90 min of 100 knee bends. We found contrasting effects of simulated standing and walking in adults with, or at risk of, OA. An increase of 10 knee bend repetitions was associated with 2% greater reduction in patellar thickness or volume. CONCLUSION There is very low certainty evidence that minimal knee cartilage thickness and volume and composition (T2 relaxation time) reductions (0-5%) occur after weightbearing knee bends, simulated standing, walking, hopping/jumping and cycling, and the impact of knee bends may be dose dependent. Our findings provide a framework of cartilage responses to loading in healthy adults which may have utility for clinicians when designing and prescribing rehabilitation programs and providing exercise advice.
Collapse
Affiliation(s)
- Sally L. Coburn
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Kay M. Crossley
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Joanne L. Kemp
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Stuart J. Warden
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
- Department of Physical Therapy, School of Health & Human Sciences, Indiana University, Indianapolis, IN USA
| | - Tom J. West
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Andrea M. Bruder
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Benjamin F. Mentiplay
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Adam G. Culvenor
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| |
Collapse
|
21
|
Zibetti MVW, Menon RG, de Moura HL, Zhang X, Kijowski R, Regatte RR. Updates on Compositional MRI Mapping of the Cartilage: Emerging Techniques and Applications. J Magn Reson Imaging 2023; 58:44-60. [PMID: 37010113 PMCID: PMC10323700 DOI: 10.1002/jmri.28689] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 04/04/2023] Open
Abstract
Osteoarthritis (OA) is a widely occurring degenerative joint disease that is severely debilitating and causes significant socioeconomic burdens to society. Magnetic resonance imaging (MRI) is the preferred imaging modality for the morphological evaluation of cartilage due to its excellent soft tissue contrast and high spatial resolution. However, its utilization typically involves subjective qualitative assessment of cartilage. Compositional MRI, which refers to the quantitative characterization of cartilage using a variety of MRI methods, can provide important information regarding underlying compositional and ultrastructural changes that occur during early OA. Cartilage compositional MRI could serve as early imaging biomarkers for the objective evaluation of cartilage and help drive diagnostics, disease characterization, and response to novel therapies. This review will summarize current and ongoing state-of-the-art cartilage compositional MRI techniques and highlight emerging methods for cartilage compositional MRI including MR fingerprinting, compressed sensing, multiexponential relaxometry, improved and robust radio-frequency pulse sequences, and deep learning-based acquisition, reconstruction, and segmentation. The review will also briefly discuss the current challenges and future directions for adopting these emerging cartilage compositional MRI techniques for use in clinical practice and translational OA research studies. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Marcelo V. W. Zibetti
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Rajiv G. Menon
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Hector L. de Moura
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Xiaoxia Zhang
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Richard Kijowski
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ravinder R. Regatte
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
22
|
Xie D, Tanaka M, Pedoia V, Li AK, Facchetti L, Neumann J, Lartey R, Souza RB, Link TM, Ma CB, Li X. Baseline cartilage T1ρ and T2 predicted patellofemoral joint cartilage lesion progression and patient-reported outcomes after ACL reconstruction. J Orthop Res 2023; 41:1310-1319. [PMID: 36268873 PMCID: PMC10413330 DOI: 10.1002/jor.25473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023]
Abstract
This study aims to determine if baseline T1ρ and T2 will predict cartilage morphological lesion progression in the patellofemoral joint (PFJ) and patient-reported outcomes at 2-year after anterior cruciate ligament (ACL) reconstruction (ACLR). Thirty-nine ACL-injured patients were studied at baseline and two-year after ACLR. 3 T MR T1ρ and T2 images and Knee Injury and Osteoarthritis Outcome Score (KOOS) were acquired at both time points. Voxel-based relaxometry (VBR) technique was used to detect local cartilage abnormalities. Patients were divided into progression and non-progression groups based on changes of the whole-organ magnetic resonance imaging scoring (WORMS) grading of cartilage in PFJ from baseline to 2-year, and into lower (more pain) and higher (less pain) KOOS pain groups based on 2-year KOOS pain scores, separately. Voxel-based analyses of covariance were used to compare T1ρ and T2 values at baseline between the defined groups. Using VBR analysis, the progression group at 2-year showed higher T1ρ and T2 compared with the non-progression group at baseline, with the medial femoral condyle showing the largest areas with significant differences. At two-year, 56% of patients were able to recover with respect to KOOS pain. The lower KOOS pain group at 2-year showed significantly elevated T1ρ and T2 in the patella at baseline compared with the higher KOOS pain group. In conclusion, baseline T1ρ and T2 mapping, combined with VBR analysis, may help identify ACLR patients at high risk of developing progressive PFJ cartilage lesions and worse clinical symptoms 2-year after surgery.
Collapse
Affiliation(s)
- Dongxing Xie
- Program of Advanced Musculoskeletal Imaging, Department of
Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland,
Ohio, USA
- Department of Orthopaedics, Xiangya Hospital, Central South
University, Changsha, Hunan, China
| | - Matthew Tanaka
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California, USA
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California, USA
| | - Alan K. Li
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California, USA
| | - Luca Facchetti
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California, USA
| | - Jan Neumann
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California, USA
| | - Richard Lartey
- Program of Advanced Musculoskeletal Imaging, Department of
Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland,
Ohio, USA
| | - Richard B. Souza
- Department of Physical Therapy and Rehabilitation Science,
University of California, San Francisco, San Francisco, California, USA
| | - Thomas M. Link
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California, USA
| | - C. Benjamin Ma
- Department of Orthopaedic Surgery, University of
California, San Francisco, San Francisco, California, USA
| | - Xiaojuan Li
- Program of Advanced Musculoskeletal Imaging, Department of
Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland,
Ohio, USA
| |
Collapse
|
23
|
Kijowski R, Sharafi A, Zibetti MV, Chang G, Cloos MA, Regatte RR. Age-Dependent Changes in Knee Cartilage T 1 , T 2 , and T 1p Simultaneously Measured Using MRI Fingerprinting. J Magn Reson Imaging 2023; 57:1805-1812. [PMID: 36190187 PMCID: PMC10067532 DOI: 10.1002/jmri.28451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Magnetic resonance fingerprinting (MRF) techniques have been recently described for simultaneous multiparameter cartilage mapping of the knee although investigation of their ability to detect early cartilage degeneration remains limited. PURPOSE To investigate age-dependent changes in knee cartilage T1 , T2 , and T1p relaxation times measured using a three-dimensional (3D) MRF sequence in healthy volunteers. STUDY TYPE Prospective. SUBJECTS The study group consisted of 24 healthy asymptomatic human volunteers (15 males with mean age 34.9 ± 14.4 years and 9 females with mean age 44.5 ± 13.1 years). FIELD STRENGTH/SEQUENCE A 3.0 T gradient-echo-based 3D-MRF sequence was used to simultaneously create proton density-weighted images and T1 , T2 , and T1p maps of knee cartilage. ASSESSMENT Mean global cartilage and regional cartilage (lateral femur, lateral tibia, medial femur, medial tibia, and patella) T1 , T2 , and T1ρ relaxation times of the knee were measured. STATISTICAL TESTS Kruskal-Wallis tests were used to compared cartilage T1 , T2 , and T1ρ relaxation times between different age groups, while Spearman correlation coefficients was used to determine the association between age and cartilage T1 , T2 , and T1ρ relaxation times. The value of P < 0.05 was considered statistically significant. RESULTS Higher age groups showed higher global and regional cartilage T1 , T2 , and T1ρ . There was a significant difference between age groups in global cartilage T2 and T1ρ but no significant difference (P = 0.13) in global cartilage T1. Significant difference was also present between age groups in cartilage T2 and T1ρ for medial femur cartilage and medial tibia cartilage. There were significant moderate correlations between age and T2 and T1ρ for global cartilage (R2 = 0.63-0.64), medial femur cartilage (R2 = 0.50-0.56), and medial tibia cartilage (R2 = 0.54-0.66). CONCLUSION Cartilage T2 and T1p relaxation times simultaneously measured using a 3D-MRF sequence in healthy volunteers showed age-dependent changes in knee cartilage, primarily within the medial compartment.
Collapse
Affiliation(s)
- Richard Kijowski
- Bernard and Irene Schwartz Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Azadeh Sharafi
- Bernard and Irene Schwartz Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Marcelo V.W. Zibetti
- Bernard and Irene Schwartz Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Gregory Chang
- Bernard and Irene Schwartz Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Martijn A. Cloos
- Center of Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
- ARC Training Center for Innovation in Biomedical Imaging Technology, University of Queensland, Brisbane, QLD, Australia
| | - Ravinder R. Regatte
- Bernard and Irene Schwartz Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
24
|
Martel-Pelletier J, Paiement P, Pelletier JP. Magnetic resonance imaging assessments for knee segmentation and their use in combination with machine/deep learning as predictors of early osteoarthritis diagnosis and prognosis. Ther Adv Musculoskelet Dis 2023; 15:1759720X231165560. [PMID: 37151912 PMCID: PMC10155034 DOI: 10.1177/1759720x231165560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/23/2023] [Indexed: 05/09/2023] Open
Abstract
Knee osteoarthritis (OA) is a prevalent and disabling disease that can develop over decades. This disease is heterogeneous and involves structural changes in the whole joint, encompassing multiple tissue types. Detecting OA before the onset of irreversible changes is crucial for early management, and this could be achieved by allowing knee tissue visualization and quantifying their changes over time. Although some imaging modalities are available for knee structure assessment, magnetic resonance imaging (MRI) is preferred. This narrative review looks at existing literature, first on MRI-developed approaches for evaluating knee articular tissues, and second on prediction using machine/deep-learning-based methodologies and MRI as input or outcome for early OA diagnosis and prognosis. A substantial number of MRI methodologies have been developed to assess several knee tissues in a semi-quantitative and quantitative fashion using manual, semi-automated and fully automated systems. This dynamic field has grown substantially since the advent of machine/deep learning. Another active area is predictive modelling using machine/deep-learning methodologies enabling robust early OA diagnosis/prognosis. Moreover, incorporating MRI markers as input/outcome in such predictive models is important for a more accurate OA structural diagnosis/prognosis. The main limitation of their usage is the ability to move them in rheumatology practice. In conclusion, MRI knee tissue determination and quantification provide early indicators for individuals at high risk of developing this disease or for patient prognosis. Such assessment of knee tissues, combined with the development of models/tools from machine/deep learning using, in addition to other parameters, MRI markers for early diagnosis/prognosis, will maximize opportunities for individualized risk assessment for use in clinical practice permitting precision medicine. Future efforts should be made to integrate such prediction models into open access, allowing early disease management to prevent or delay the OA outcome.
Collapse
Affiliation(s)
- Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of
Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis, R11.412B,
Montreal, QC H2X 0A9, Canada
| | - Patrice Paiement
- Osteoarthritis Research Unit, University of
Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of
Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
25
|
Laothamatas I, Al Mubarak H, Reddy A, Wax R, Badani K, Taouli B, Bane O, Lewis S. Multiparametric MRI of Solid Renal Masses: Principles and Applications of Advanced Quantitative and Functional Methods for Tumor Diagnosis and Characterization. J Magn Reson Imaging 2023. [PMID: 37052601 DOI: 10.1002/jmri.28718] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Solid renal masses (SRMs) are increasingly detected and encompass both benign and malignant masses, with renal cell carcinoma (RCC) being the most common malignant SRM. Most patients with SRMs will undergo management without a priori pathologic confirmation. There is an unmet need to noninvasively diagnose and characterize RCCs, as significant variability in clinical behavior is observed and a wide range of differing management options exist. Cross-sectional imaging modalities, including magnetic resonance imaging (MRI), are increasingly used for SRM characterization. Multiparametric (mp) MRI techniques can provide insight into tumor biology by probing different physiologic/pathophysiologic processes noninvasively. These include sequences that probe tissue microstructure, including intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and T1 relaxometry; oxygen metabolism (blood oxygen level dependent [BOLD-MRI]); as well as vascular flow and perfusion (dynamic contrast-enhanced MRI [DCE-MRI] and arterial spin labeling [ASL]). In this review, we will discuss each mpMRI method in terms of its principles, roles, and discuss the results of human studies for SRM assessment. Future validation of these methods may help to enable a personalized management approach for patients with SRM in the emerging era of precision medicine. EVIDENCE LEVEL: 5. TECHNICAL EFFICACY: 2.
Collapse
Affiliation(s)
- Indira Laothamatas
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Haitham Al Mubarak
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Arthi Reddy
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rebecca Wax
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ketan Badani
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Octavia Bane
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sara Lewis
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
26
|
Li X, Roemer FW, Cicuttini F, MacKay JW, Turmezei T, Link TM. Early knee OA definition-what do we know at this stage? An imaging perspective. Ther Adv Musculoskelet Dis 2023; 15:1759720X231158204. [PMID: 36937824 PMCID: PMC10017942 DOI: 10.1177/1759720x231158204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/01/2023] [Indexed: 03/16/2023] Open
Abstract
While criteria for early-stage knee osteoarthritis (OA) in a primary care setting have been proposed, the role of imaging has been limited to radiography using the standard Kellgren-Lawrence classification. Standardized imaging and interpretation are critical with radiographs, yet studies have also shown that even early stages of radiographic OA already demonstrate advanced damage to knee joint tissues such as cartilage, menisci, and bone marrow. Morphological magnetic resonance imaging (MRI) shows degenerative damage earlier than radiographs and definitions for OA using MRI have been published though no accepted definition of early OA based on MRI is currently available. The clinical significance of structural abnormalities has also not been well defined, and the differentiation between normal aging and structural OA development remains a challenge. Compositional MRI of cartilage provides information on biochemical, degenerative changes within the cartilage matrix before cartilage defects occur and when cartilage damage is potentially reversible. Studies have shown that cartilage composition can predict cartilage loss and radiographic OA. However, while this technology is most promising for characterizing early OA it has currently limited clinical application. Better standardization of compositional MRI is required, which is currently work in progress. Finally, there has been renewed interest in computed tomography (CT) for assessing early knee OA as new techniques such as weight bearing and spectral CT are available, which may provide information on joint loading, cartilage, and bone and potentially have a role in better characterizing early OA. In conclusion, while imaging may have a limited role in diagnosing early OA in a primary care setting, there are advanced imaging technologies available, which detect early degeneration and may thus significantly alter management as new therapeutic modalities evolve.
Collapse
Affiliation(s)
- Xiaojuan Li
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Frank W. Roemer
- Department of Radiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Flavia Cicuttini
- Musculoskeletal Unit, Monash University and Rheumatology, Alfred Hospital, Melbourne, VIC, Australia
| | - Jamie W. MacKay
- Department of Radiology, University of Cambridge, Cambridge, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Tom Turmezei
- Department of Radiology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Thomas M. Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 400 Parnassus Ave, A-367, San Francisco, CA 94143, USA
| |
Collapse
|
27
|
Jeon H, Donovan L, Thomas AC. Exercise-Induced Changes in Femoral Cartilage Thickness in Patients With Patellofemoral Pain. J Athl Train 2023; 58:128-135. [PMID: 35476136 PMCID: PMC10072095 DOI: 10.4085/1062-6050-0602.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Rehabilitative exercises alleviate pain in patients with patellofemoral pain (PFP); however, no researchers have analyzed the cartilage response after a bout of those athletic activities in patients with PFP. OBJECTIVE To determine if a single session of rehabilitative exercises alters femoral cartilage morphology. DESIGN Crossover study. SETTING Research laboratory. PATIENTS OR OTHER PARTICIPANTS Twelve participants with PFP (age = 21.0 ± 2.0 years, height = 1.72 ± 0.1 m, mass = 68.7 ± 12.6 kg) and 12 matched healthy participants (age = 21.3 ± 2.8 years, height = 1.71 ± 0.1 m, mass = 65.9 ± 12.2 kg) were enrolled. INTERVENTION(S) Participants completed treadmill running, lower extremity strengthening exercises, and plyometric exercises for 30 minutes each. MAIN OUTCOME MEASURE(S) Patient-reported outcomes on the visual analog scale, Anterior Knee Pain Scale (AKPS), Knee injury and Osteoarthritis Outcome Score (KOOS), and Knee Injury and Osteoarthritis Outcome Score for Patellofemoral Pain and Osteoarthritis were collected. Femoral cartilage ultrasonographic images were obtained at 140° of knee flexion. Ultrasound images were segmented into medial and lateral images using the intercondylar notch. Medial and lateral cartilage cross-sectional area (mm2) and echo intensity (EI), defined as the average grayscale from 0 to 255, were analyzed by ImageJ software. The difference between loading conditions was calculated using repeated-measures analysis of variance. The Spearman correlation was calculated to find the association between the cartilage percentage change (Δ%) and patient-reported outcomes. RESULTS Pain increased in the PFP group after all loading conditions (P values < .007). No differences were found in cartilage cross-sectional area or EI alteration between or within groups (P values > .06). The KOOS was negatively associated with the Δ% of the lateral femoral cartilage EI after plyometric loading (ρ = -0.87, P = .001), and the AKPS score was positively correlated with the Δ% of lateral femoral cartilage EI (ρ = 0.57, P = .05). CONCLUSIONS Ultrasound imaging did not identify cartilaginous deformation after all loading conditions. However, because lateral cartilaginous EI changes were associated with the AKPS and KOOS score, those questionnaires may be useful for monitoring changes in femoral cartilage health.
Collapse
Affiliation(s)
- Hyunjae Jeon
- Dunnigan Movement Analysis Lab, School of Health Sciences, University of Evansville, IN
| | - Luke Donovan
- Biodynamics Laboratory, Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte
| | - Abbey C. Thomas
- Biodynamics Laboratory, Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte
| |
Collapse
|
28
|
Lartey R, Nanavati A, Kim J, Li M, Xu K, Nakamura K, Shin W, Winalski CS, Obuchowski N, Bahroos E, Link TM, Hardy PA, Peng Q, Kim J, Liu K, Fung M, Wu C, Li X. Reproducibility of T 1ρ and T 2 quantification in a multi-vendor multi-site study. Osteoarthritis Cartilage 2023; 31:249-257. [PMID: 36370959 PMCID: PMC10016129 DOI: 10.1016/j.joca.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To evaluate the multi-vendor multi-site reproducibility of two-dimensional (2D) multi-echo spin-echo (MESE) T2 mapping (product sequences); and to evaluate the longitudinal reproducibility of three-dimensional (3D) magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots (MAPSS) T1ρ and T2 mapping (research sequences), and 2D MESE T2 mapping, separated by 6 months, in a multi-vendor multi-site setting. METHODS Phantoms and volunteers (n = 5 from each site, n = 20 in total) were scanned on four 3 T magnetic resonance (MR) systems from four sites and three vendors (Siemens, General Electric, and Phillips). Two traveling volunteers (3 knees) scanned at all 4 sites at baseline and 6-month follow-up. Data was transferred to one site for centralized processing. Coefficients of variation (CVs) were calculated to evaluate reproducibility. RESULTS For baseline 2D MESE T2 measures, average CV were 0.37-2.45% (intra-site) and 5.96% (inter-site) for phantoms, and 3.15-8.49% (intra-site) and 14.16% (inter-site) for volunteers. For longitudinal phantom data, intra-site CVs were 1.42-3.48% for 3D MAPSS T1ρ, 1.77-3.56% for 3D MAPSS T2, and 1.02-2.54% for 2D MESE T2. For the longitudinal volunteer data, the intra-site CVs were 2.60-4.86% for 3D MAPSS T1ρ, 3.33-7.25% for 3D MAPSS T2, and 3.11-8.77% for 2D MESE T2. CONCLUSION This study demonstrated excellent intra-site reproducibility of 2D MESE T2 imaging, while its inter-site variation was slightly higher than 3D MAPSS T2 imaging (10.06% as previously reported). This study also showed excellent reproducibility of longitudinal T1ρ and T2 cartilage quantification, in a multi-vendor multi-site setting for both product 2D MESE T2 and 3D MAPSS T1p/T2 research sequences.
Collapse
Affiliation(s)
- R Lartey
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, OH, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - A Nanavati
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, OH, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - J Kim
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, OH, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - M Li
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, OH, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - K Xu
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, OH, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - K Nakamura
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, OH, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - W Shin
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, OH, USA; Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, OH, USA
| | - C S Winalski
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, OH, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, OH, USA; Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, OH, USA
| | - N Obuchowski
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, OH, USA; Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - E Bahroos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), CA, USA
| | - T M Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), CA, USA
| | - P A Hardy
- Department of Radiology, University of Kentucky, Lexington KY, USA
| | - Q Peng
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - J Kim
- Arthritis Foundation, GA, USA
| | - K Liu
- Siemens Medical Solution Inc., USA
| | - M Fung
- GE Healthcare, Waukesha, WI, USA
| | - C Wu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - X Li
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, OH, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, OH, USA; Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, OH, USA.
| |
Collapse
|
29
|
Eck BL, Yang M, Elias JJ, Winalski CS, Altahawi F, Subhas N, Li X. Quantitative MRI for Evaluation of Musculoskeletal Disease: Cartilage and Muscle Composition, Joint Inflammation, and Biomechanics in Osteoarthritis. Invest Radiol 2023; 58:60-75. [PMID: 36165880 PMCID: PMC10198374 DOI: 10.1097/rli.0000000000000909] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Magnetic resonance imaging (MRI) is a valuable tool for evaluating musculoskeletal disease as it offers a range of image contrasts that are sensitive to underlying tissue biochemical composition and microstructure. Although MRI has the ability to provide high-resolution, information-rich images suitable for musculoskeletal applications, most MRI utilization remains in qualitative evaluation. Quantitative MRI (qMRI) provides additional value beyond qualitative assessment via objective metrics that can support disease characterization, disease progression monitoring, or therapy response. In this review, musculoskeletal qMRI techniques are summarized with a focus on techniques developed for osteoarthritis evaluation. Cartilage compositional MRI methods are described with a detailed discussion on relaxometric mapping (T 2 , T 2 *, T 1ρ ) without contrast agents. Methods to assess inflammation are described, including perfusion imaging, volume and signal changes, contrast-enhanced T 1 mapping, and semiquantitative scoring systems. Quantitative characterization of structure and function by bone shape modeling and joint kinematics are described. Muscle evaluation by qMRI is discussed, including size (area, volume), relaxometric mapping (T 1 , T 2 , T 1ρ ), fat fraction quantification, diffusion imaging, and metabolic assessment by 31 P-MR and creatine chemical exchange saturation transfer. Other notable technologies to support qMRI in musculoskeletal evaluation are described, including magnetic resonance fingerprinting, ultrashort echo time imaging, ultrahigh-field MRI, and hybrid MRI-positron emission tomography. Challenges for adopting and using qMRI in musculoskeletal evaluation are discussed, including the need for metal artifact suppression and qMRI standardization.
Collapse
Affiliation(s)
- Brendan L. Eck
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Imaging Instute, Cleveland Clinic, Cleveland, OH, USA
| | - Mingrui Yang
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John J. Elias
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Department of Research, Cleveland Clinic Akron General, Akron, OH, USA
| | - Carl S. Winalski
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Imaging Instute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Faysal Altahawi
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Imaging Instute, Cleveland Clinic, Cleveland, OH, USA
| | - Naveen Subhas
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Imaging Instute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaojuan Li
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Imaging Instute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
30
|
Tolpadi AA, Han M, Calivà F, Pedoia V, Majumdar S. Region of interest-specific loss functions improve T 2 quantification with ultrafast T 2 mapping MRI sequences in knee, hip and lumbar spine. Sci Rep 2022; 12:22208. [PMID: 36564430 PMCID: PMC9789075 DOI: 10.1038/s41598-022-26266-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
MRI T2 mapping sequences quantitatively assess tissue health and depict early degenerative changes in musculoskeletal (MSK) tissues like cartilage and intervertebral discs (IVDs) but require long acquisition times. In MSK imaging, small features in cartilage and IVDs are crucial for diagnoses and must be preserved when reconstructing accelerated data. To these ends, we propose region of interest-specific postprocessing of accelerated acquisitions: a recurrent UNet deep learning architecture that provides T2 maps in knee cartilage, hip cartilage, and lumbar spine IVDs from accelerated T2-prepared snapshot gradient-echo acquisitions, optimizing for cartilage and IVD performance with a multi-component loss function that most heavily penalizes errors in those regions. Quantification errors in knee and hip cartilage were under 10% and 9% from acceleration factors R = 2 through 10, respectively, with bias for both under 3 ms for most of R = 2 through 12. In IVDs, mean quantification errors were under 12% from R = 2 through 6. A Gray Level Co-Occurrence Matrix-based scheme showed knee and hip pipelines outperformed state-of-the-art models, retaining smooth textures for most R and sharper ones through moderate R. Our methodology yields robust T2 maps while offering new approaches for optimizing and evaluating reconstruction algorithms to facilitate better preservation of small, clinically relevant features.
Collapse
Affiliation(s)
- Aniket A Tolpadi
- Department of Radiology and Biomedical Imaging, University of California, 1700, 4th Street, San Francisco, CA, 94158, USA.
| | - Misung Han
- Department of Radiology and Biomedical Imaging, University of California, 1700, 4th Street, San Francisco, CA, 94158, USA
| | - Francesco Calivà
- Department of Radiology and Biomedical Imaging, University of California, 1700, 4th Street, San Francisco, CA, 94158, USA
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California, 1700, 4th Street, San Francisco, CA, 94158, USA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California, 1700, 4th Street, San Francisco, CA, 94158, USA
| |
Collapse
|
31
|
Xie D, Murray J, Lartey R, Gaj S, Kim J, Li M, Eck BL, Winalski CS, Altahawi F, Jones MH, Obuchowski NA, Huston LJ, Harkins KD, Friel HT, Damon BM, Knopp MV, Kaeding CC, Spindler KP, Li X. Multi-vendor multi-site quantitative MRI analysis of cartilage degeneration 10 Years after anterior cruciate ligament reconstruction: MOON-MRI protocol and preliminary results. Osteoarthritis Cartilage 2022; 30:1647-1657. [PMID: 36049665 PMCID: PMC9671830 DOI: 10.1016/j.joca.2022.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To describe the protocol of a multi-vendor, multi-site quantitative MRI study for knee post-traumatic osteoarthritis (PTOA), and to present preliminary results of cartilage degeneration using MR T1ρ and T2 imaging 10 years after anterior cruciate ligament reconstruction (ACLR). DESIGN This study involves three sites and two MR platforms. The patients are from a nested cohort (termed as Onsite cohort) within the Multicenter Orthopaedic Outcomes Network (MOON) cohort 10 years after ACLR. Phantoms and controls were scanned for evaluating reproducibility. Cartilage was automatically segmented, and T1ρ and T2 were compared between operated, contralateral, and control knees. RESULTS Sixty-eight ACL-reconstructed patients and 20 healthy controls were included. In phantoms, the intra-site coefficients of variation (CVs) of repeated scans ranged 1.8-2.1% for T1ρ and 1.3-1.7% for T2. The inter-site CVs ranged 1.6-2.1% for T1ρ and 1.1-1.4% for T2. In human subjects, the intra-site scan/rescan CVs ranged 2.2-3.5% for T1ρ and 2.6-4.9% for T2 for the six major compartments. In patients, operated knees showed significantly higher T1ρ and T2 values mainly in medial femoral condyle, medial tibia and trochlear cartilage compared with contralateral knees, and showed significantly higer T1ρ and T2 values in all six compartments compared to healthy control knees. The patient contralateral knees showed higher T1ρ and T2 values mainly in the lateral femoral condyle, lateral tibia, trochlear, and patellar cartilage compared to healthy control knees. CONCLUSION A platform and workflow with rigorous quality control has been established for a multi-vendor multi-site quantitative MRI study in evaluating PTOA 10 years after ACLR. Our preliminary report suggests significant cartilage matrix changes in both operated and contralateral knees compared with healthy control knees.
Collapse
Affiliation(s)
- D Xie
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - J Murray
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - R Lartey
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - S Gaj
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - J Kim
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - M Li
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - B L Eck
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA; Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - C S Winalski
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - F Altahawi
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA; Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - M H Jones
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - N A Obuchowski
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA; Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - L J Huston
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - K D Harkins
- Departments of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - H T Friel
- MR Clinical Science, Philips Healthcare, Highland Heights, OH, USA.
| | - B M Damon
- Departments of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - M V Knopp
- Wright Center of Innovation in Biomedical Imaging, Department of Radiology, The Ohio State University, Columbus, OH, USA.
| | - C C Kaeding
- Department of Orthopaedic Surgery, The Ohio State University, Columbus, OH, USA.
| | - K P Spindler
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA; Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA.
| | - X Li
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
32
|
Evans-Pickett A, Lisee C, Zachary Horton W, Lalush D, Nissman D, Troy Blackburn J, Spang JT, Pietrosimone B. Worse Tibiofemoral Cartilage Composition Is Associated with Insufficient Gait Kinetics After ACL Reconstruction. Med Sci Sports Exerc 2022; 54:1771-1781. [PMID: 35700436 PMCID: PMC9481723 DOI: 10.1249/mss.0000000000002969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Greater articular cartilage T1ρ magnetic resonance imaging relaxation times indicate less proteoglycan density and are linked to posttraumatic osteoarthritis development after anterior cruciate ligament reconstruction (ACLR). Although changes in T1ρ relaxation times are associated with gait biomechanics, it is unclear if excessive or insufficient knee joint loading is linked to greater T1ρ relaxation times 12 months post-ACLR. The purpose of this study was to compare external knee adduction (KAM) and flexion (KFM) moments in individuals after ACLR with high versus low tibiofemoral T1ρ relaxation profiles and uninjured controls. METHODS Gait biomechanics were collected in 26 uninjured controls (50% females; age, 22 ± 4 yr; body mass index, 23.9 ± 2.8 kg·m -2 ) and 26 individuals after ACLR (50% females; age, 22 ± 4 yr; body mass index, 24.2 ± 3.5 kg·m -2 ) at 6 and 12 months post-ACLR. ACLR-T1ρ High ( n = 9) and ACLR-T1ρ Low ( n = 17) groups were created based on 12-month post-ACLR T1ρ relaxation times using a k-means cluster analysis. Functional analyses of variance were used to compare KAM and KFM. RESULTS ACLR-T1ρ High exhibited lesser KAM than ACLR-T1ρ Low and uninjured controls 6 months post-ACLR. ACLR-T1ρ Low exhibited greater KAM than uninjured controls 6 and 12 months post-ACLR. KAM increased in ACLR-T1ρ High and decreased in ACLR-T1ρ Low between 6 and 12 months, both groups becoming more similar to uninjured controls. There were scant differences in KFM between ACLR-T1ρ High and ACLR-T1ρ Low 6 or 12 months post-ACLR, but both groups demonstrated lesser KFM compared with uninjured controls. CONCLUSIONS Associations between worse T1ρ profiles and increases in KAM may be driven by the normalization of KAM in individuals who initially exhibit insufficient KAM 6 months post-ACLR.
Collapse
Affiliation(s)
- Alyssa Evans-Pickett
- MOTION Science Institute, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Caroline Lisee
- MOTION Science Institute, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - W. Zachary Horton
- Department of Statistics, University of California at Santa Cruz, Santa Cruz, CA
| | - David Lalush
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC
| | - Daniel Nissman
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - J. Troy Blackburn
- MOTION Science Institute, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Orthopaedics, School of Medicine, University of North Carolina at Chapel Hill, NC
| | - Jeffrey T. Spang
- Department of Orthopaedics, School of Medicine, University of North Carolina at Chapel Hill, NC
| | - Brian Pietrosimone
- MOTION Science Institute, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Orthopaedics, School of Medicine, University of North Carolina at Chapel Hill, NC
| |
Collapse
|
33
|
Roemer FW, Guermazi A, Demehri S, Wirth W, Kijowski R. Imaging in Osteoarthritis. Osteoarthritis Cartilage 2022; 30:913-934. [PMID: 34560261 DOI: 10.1016/j.joca.2021.04.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is the most frequent form of arthritis with major implications on both individual and public health care levels. The field of joint imaging, and particularly magnetic resonance imaging (MRI), has evolved rapidly due to the application of technical advances to the field of clinical research. This narrative review will provide an introduction to the different aspects of OA imaging aimed at an audience of scientists, clinicians, students, industry employees, and others who are interested in OA but who do not necessarily focus on OA. The current role of radiography and recent advances in measuring joint space width will be discussed. The status of cartilage morphology assessment and evaluation of cartilage biochemical composition will be presented. Advances in quantitative three-dimensional morphologic cartilage assessment and semi-quantitative whole-organ assessment of OA will be reviewed. Although MRI has evolved as the most important imaging method used in OA research, other modalities such as ultrasound, computed tomography, and metabolic imaging play a complementary role and will also be discussed.
Collapse
Affiliation(s)
- F W Roemer
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, FGH Building, 3rd Floor, 820 Harrison Ave, Boston, MA, 02118, USA; Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Maximiliansplatz 3, Erlangen, 91054, Germany.
| | - A Guermazi
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, FGH Building, 3rd Floor, 820 Harrison Ave, Boston, MA, 02118, USA; Department of Radiology, VA Boston Healthcare System, 1400 VFW Pkwy, Suite 1B105, West Roxbury, MA, 02132, USA
| | - S Demehri
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 N. Wolf Street, Park 311, Baltimore, MD, 21287, USA
| | - W Wirth
- Institute of Anatomy, Paracelsus Medical University Salzburg, Salzburg, Austria, Nüremberg, Germany; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University Salzburg, Strubergasse 21, 5020, Salzburg, Austria; Chondrometrics, GmbH, Freilassing, Germany
| | - R Kijowski
- Department of Radiology, New York University Grossmann School of Medicine, 550 1st Avenue, 3nd Floor, New York, NY, 10016, USA
| |
Collapse
|
34
|
Elias JJ, Li M, Yang M, Lartey R, Murray JP, Farrow LD, Winalski CS, Li X. Elevated Patellofemoral and Tibiofemoral T1ρ Relaxation Times Following a First Time Patellar Dislocation. Cartilage 2022; 13:19476035221102570. [PMID: 35676874 PMCID: PMC9189536 DOI: 10.1177/19476035221102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The study was performed to evaluate cartilage within the knee following a first-time patellar dislocation, using elevated MRI-based T1ρ relaxation times as an indicator of low proteoglycan concentration. The hypothesis is that MRI-based T1ρ relaxation times for patellofemoral and tibiofemoral cartilage are significantly longer for knees being treated for patellar dislocation than for healthy control knees. DESIGN Twenty-one subjects being treated for a first-time, unilateral dislocation of the patella and 16 healthy controls participated in MRI-based T1ρ relaxation time mapping. Mean relaxation times were quantified for patellofemoral and tibiofemoral regions for injured knees, the contralateral knees, and healthy controls. T1ρ values for each region were compared between the 3 groups with generalized estimating equations. Linear regressions were also performed to correlate T1ρ relaxation times with time from injury. RESULTS The knees with a disloction had longer T1ρ relaxation times than the contralateral knees and control group at the medial patella and longer relaxation times than the control group at the lateral tibia (P < 0.05). T1ρ relaxation times at the medial patella also decreased with time from injury (r2 = 0.21, P = 0.037). CONCLUSIONS Compositional changes to cartilage on the medial patella are related to traumatic impact during a dislocation. Potential exists for cartilage properties at the medial patella to improve with time. Cartilage degradation at the lateral tibia is not directly related to traumatic impact. The current baseline data are a starting point to characterize the pathway from a first-time dislocation to progressive cartilage degradation and osteoarthritis.
Collapse
Affiliation(s)
- John J. Elias
- Department of Research, Cleveland Clinic Akron General, Akron, OH, USA,John J. Elias, Department of Research, Cleveland Clinic Akron General, 1 Akron General Avenue, Akron, OH 44302, USA.
| | - Mei Li
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | - Mingrui Yang
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | - Richard Lartey
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | - John P. Murray
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | - Lutul D. Farrow
- Orthopaedic & Rheumatologic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Carl S. Winalski
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaojuan Li
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
35
|
Nieminen MT, Casula V, Nissi MJ. Compositional MRI of articular cartilage - current status and the way forward. Osteoarthritis Cartilage 2022; 30:633-635. [PMID: 35093515 DOI: 10.1016/j.joca.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 02/02/2023]
Affiliation(s)
- M T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland.
| | - V Casula
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - M J Nissi
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
36
|
Gatti AA, Keir PJ, Noseworthy MD, Maly MR. Investigating acute changes in osteoarthritic cartilage by integrating biomechanics and statistical shape models of bone: data from the osteoarthritis initiative. MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE 2022; 35:861-873. [PMID: 35286512 PMCID: PMC8919909 DOI: 10.1007/s10334-022-01004-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022]
Abstract
Objective Methods Results Discussion Supplementary Information
Collapse
Affiliation(s)
- Anthony A Gatti
- School of Rehabilitation Sciences, McMaster University, Hamilton, Canada
- NeuralSeg Ltd., Hamilton, Canada
| | - Peter J Keir
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | - Michael D Noseworthy
- School of Biomedical Engineering, McMaster University, Hamilton, Canada
- School of Electrical and Computer Engineering, McMaster University, Hamilton, Canada
| | - Monica R Maly
- School of Rehabilitation Sciences, McMaster University, Hamilton, Canada.
- Department of Kinesiology, McMaster University, Hamilton, Canada.
- Department of Kinesiology, University of Waterloo, Waterloo, Canada.
| |
Collapse
|
37
|
Cutcliffe HC, Kottamasu PK, McNulty AL, Goode AP, Spritzer CE, DeFrate LE. Mechanical metrics may show improved ability to predict osteoarthritis compared to T1rho mapping. J Biomech 2021; 129:110771. [PMID: 34627074 PMCID: PMC8744537 DOI: 10.1016/j.jbiomech.2021.110771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 01/01/2023]
Abstract
Changes in cartilage structure and composition are commonly observed during the progression of osteoarthritis (OA). Importantly, quantitative magnetic resonance imaging (MRI) methods, such as T1rho relaxation imaging, can noninvasively provide in vivo metrics that reflect changes in cartilage composition and therefore have the potential for use in early OA detection. Changes in cartilage mechanical properties are also hallmarks of OA cartilage; thus, measurement of cartilage mechanical properties may also be beneficial for earlier OA detection. However, the relative predictive ability of compositional versus mechanical properties in detecting OA has yet to be determined. Therefore, we developed logistic regression models predicting OA status in an ex vivo environment using several mechanical and compositional metrics to assess which metrics most effectively predict OA status. Specifically, in this study the compositional metric analyzed was the T1rho relaxation time, while the mechanical metrics analyzed were the stiffness and recovery (defined as a measure of how quickly cartilage returns to its original shape after loading) of the cartilage. Cartilage recovery had the best predictive ability of OA status both alone and in a multivariate model including the T1rho relaxation time. These findings highlight the potential of cartilage recovery as a non-invasive marker of in vivo cartilage health and motivate future investigation of this metric clinically.
Collapse
Affiliation(s)
- Hattie C Cutcliffe
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States; Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Pavan K Kottamasu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Adam P Goode
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States; Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, United States; Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC 27710, United States
| | - Charles E Spritzer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States; Department of Radiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Louis E DeFrate
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States; Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
38
|
Williams AA, Deadwiler BC, Dragoo JL, Chu CR. Cartilage Matrix Degeneration Occurs within the First Year after ACLR and Is Associated with Impaired Clinical Outcome. Cartilage 2021; 13:1809S-1818S. [PMID: 34894770 PMCID: PMC8804799 DOI: 10.1177/19476035211063856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Anterior cruciate ligament reconstruction (ACLR) has not been shown to decrease the risk for development of post-traumatic osteoarthritis. Magnetic resonance imaging (MRI) T2 mapping can be used to assess cartilage compositional changes. This study tests whether (1) worse cartilage arthroscopic status at ACLR is reflected by higher cartilage T2 values in matched study regions 6 weeks and 1 year after ACLR, and (2) increasing cartilage T2 values between 6 weeks and 1 year after ACLR are associated with worsening patient-reported outcomes. DESIGN Twenty-two participants with ACLR and 26 controls underwent 3T MRI. T2 values in medial and lateral femoral and tibial cartilage were measured at 6 weeks and 1 year after ACLR and compared with arthroscopic grades, Knee injury and Osteoarthritis Outcome Scores (KOOS), and control T2 values. RESULTS Most (59%-86%) cartilage study regions examined by arthroscopy demonstrated intact articular surfaces. Average T2 value increased in 3 of 4 study regions between 6 weeks and 1 year after ACLR (P = .001-.011). T2 value increased (P < .013) even for participants whose cartilage had intact articular surfaces at ACLR. Participants with ACLR who showed greater increases in cartilage T2 values had less improvement to KOOS Quality of Life (P = .009, ρ = -0.62). DISCUSSION Cartilage status assessed arthroscopically at ACLR and by MRI T2 maps 6 weeks later was healthier than cartilage status assessed by MRI T2 maps at 1-year follow-up. Progressive T2 elevations were observed over the first year after ACLR even in patients with arthroscopically intact cartilage at the time of surgery and were associated with reduced improvement in knee quality of life suggesting preosteoarthritis.
Collapse
Affiliation(s)
- Ashley A. Williams
- Department of Orthopaedic Surgery,
Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare
System, Palo Alto, CA, USA
| | | | - Jason L. Dragoo
- Department of Orthopaedics, University
of Colorado, Denver, CO, USA
| | - Constance R. Chu
- Department of Orthopaedic Surgery,
Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare
System, Palo Alto, CA, USA
| |
Collapse
|
39
|
Chalian M, Li X, Guermazi A, Obuchowski NA, Carrino JA, Oei EH, Link TM. The QIBA Profile for MRI-based Compositional Imaging of Knee Cartilage. Radiology 2021; 301:423-432. [PMID: 34491127 PMCID: PMC8574057 DOI: 10.1148/radiol.2021204587] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022]
Abstract
MRI-based cartilage compositional analysis shows biochemical and microstructural changes at early stages of osteoarthritis before changes become visible with structural MRI sequences and arthroscopy. This could help with early diagnosis, risk assessment, and treatment monitoring of osteoarthritis. Spin-lattice relaxation time constant in rotating frame (T1ρ) and T2 mapping are the MRI techniques best established for assessing cartilage composition. Only T2 mapping is currently commercially available, which is sensitive to water, collagen content, and orientation of collagen fibers, whereas T1ρ is more sensitive to proteoglycan content. Clinical application of cartilage compositional imaging is limited by high variability and suboptimal reproducibility of the biomarkers, which was the motivation for creating the Quantitative Imaging Biomarkers Alliance (QIBA) Profile for cartilage compositional imaging by the Musculoskeletal Biomarkers Committee of the QIBA. The profile aims at providing recommendations to improve reproducibility and to standardize cartilage compositional imaging. The QIBA Profile provides two complementary claims (summary statements of the technical performance of the quantitative imaging biomarkers that are being profiled) regarding the reproducibility of biomarkers. First, cartilage T1ρ and T2 values are measurable at 3.0-T MRI with a within-subject coefficient of variation of 4%-5%. Second, a measured increase or decrease in T1ρ and T2 of 14% or more indicates a minimum detectable change with 95% confidence. If only an increase in T1ρ and T2 values is expected (progressive cartilage degeneration), then an increase of 12% represents a minimum detectable change over time. The QIBA Profile provides recommendations for clinical researchers, clinicians, and industry scientists pertaining to image data acquisition, analysis, and interpretation and assessment procedures for T1ρ and T2 cartilage imaging and test-retest conformance. This special report aims to provide the rationale for the proposed claims, explain the content of the QIBA Profile, and highlight the future needs and developments for MRI-based cartilage compositional imaging for risk prediction, early diagnosis, and treatment monitoring of osteoarthritis.
Collapse
Affiliation(s)
- Majid Chalian
- From the Department of Radiology, Division of Musculoskeletal Imaging
and Intervention, University of Washington, UW Radiology–Roosevelt
Clinic, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105 (M.C.); Department
of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI)
(X.L.), and Department of Biostatistics (N.A.O.), Cleveland Clinic, Cleveland,
Ohio; Department of Radiology, Boston University School of Medicine, Boston,
Mass (A.G.); Department of Radiology and Imaging, Hospital for Special Surgery,
New York, NY (J.A.C.); Department of Radiology & Nuclear Medicine,
Erasmus MC University Medical Center, Rotterdam, the Netherlands (E.H.O.);
European Imaging Biomarkers Alliance (E.H.O.); and Department of Radiology and
Biomedical Imaging, University of California, San Francisco, Calif
(T.M.L.)
| | - Xiaojuan Li
- From the Department of Radiology, Division of Musculoskeletal Imaging
and Intervention, University of Washington, UW Radiology–Roosevelt
Clinic, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105 (M.C.); Department
of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI)
(X.L.), and Department of Biostatistics (N.A.O.), Cleveland Clinic, Cleveland,
Ohio; Department of Radiology, Boston University School of Medicine, Boston,
Mass (A.G.); Department of Radiology and Imaging, Hospital for Special Surgery,
New York, NY (J.A.C.); Department of Radiology & Nuclear Medicine,
Erasmus MC University Medical Center, Rotterdam, the Netherlands (E.H.O.);
European Imaging Biomarkers Alliance (E.H.O.); and Department of Radiology and
Biomedical Imaging, University of California, San Francisco, Calif
(T.M.L.)
| | - Ali Guermazi
- From the Department of Radiology, Division of Musculoskeletal Imaging
and Intervention, University of Washington, UW Radiology–Roosevelt
Clinic, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105 (M.C.); Department
of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI)
(X.L.), and Department of Biostatistics (N.A.O.), Cleveland Clinic, Cleveland,
Ohio; Department of Radiology, Boston University School of Medicine, Boston,
Mass (A.G.); Department of Radiology and Imaging, Hospital for Special Surgery,
New York, NY (J.A.C.); Department of Radiology & Nuclear Medicine,
Erasmus MC University Medical Center, Rotterdam, the Netherlands (E.H.O.);
European Imaging Biomarkers Alliance (E.H.O.); and Department of Radiology and
Biomedical Imaging, University of California, San Francisco, Calif
(T.M.L.)
| | - Nancy A. Obuchowski
- From the Department of Radiology, Division of Musculoskeletal Imaging
and Intervention, University of Washington, UW Radiology–Roosevelt
Clinic, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105 (M.C.); Department
of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI)
(X.L.), and Department of Biostatistics (N.A.O.), Cleveland Clinic, Cleveland,
Ohio; Department of Radiology, Boston University School of Medicine, Boston,
Mass (A.G.); Department of Radiology and Imaging, Hospital for Special Surgery,
New York, NY (J.A.C.); Department of Radiology & Nuclear Medicine,
Erasmus MC University Medical Center, Rotterdam, the Netherlands (E.H.O.);
European Imaging Biomarkers Alliance (E.H.O.); and Department of Radiology and
Biomedical Imaging, University of California, San Francisco, Calif
(T.M.L.)
| | - John A. Carrino
- From the Department of Radiology, Division of Musculoskeletal Imaging
and Intervention, University of Washington, UW Radiology–Roosevelt
Clinic, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105 (M.C.); Department
of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI)
(X.L.), and Department of Biostatistics (N.A.O.), Cleveland Clinic, Cleveland,
Ohio; Department of Radiology, Boston University School of Medicine, Boston,
Mass (A.G.); Department of Radiology and Imaging, Hospital for Special Surgery,
New York, NY (J.A.C.); Department of Radiology & Nuclear Medicine,
Erasmus MC University Medical Center, Rotterdam, the Netherlands (E.H.O.);
European Imaging Biomarkers Alliance (E.H.O.); and Department of Radiology and
Biomedical Imaging, University of California, San Francisco, Calif
(T.M.L.)
| | - Edwin H. Oei
- From the Department of Radiology, Division of Musculoskeletal Imaging
and Intervention, University of Washington, UW Radiology–Roosevelt
Clinic, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105 (M.C.); Department
of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI)
(X.L.), and Department of Biostatistics (N.A.O.), Cleveland Clinic, Cleveland,
Ohio; Department of Radiology, Boston University School of Medicine, Boston,
Mass (A.G.); Department of Radiology and Imaging, Hospital for Special Surgery,
New York, NY (J.A.C.); Department of Radiology & Nuclear Medicine,
Erasmus MC University Medical Center, Rotterdam, the Netherlands (E.H.O.);
European Imaging Biomarkers Alliance (E.H.O.); and Department of Radiology and
Biomedical Imaging, University of California, San Francisco, Calif
(T.M.L.)
| | - Thomas M. Link
- From the Department of Radiology, Division of Musculoskeletal Imaging
and Intervention, University of Washington, UW Radiology–Roosevelt
Clinic, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105 (M.C.); Department
of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI)
(X.L.), and Department of Biostatistics (N.A.O.), Cleveland Clinic, Cleveland,
Ohio; Department of Radiology, Boston University School of Medicine, Boston,
Mass (A.G.); Department of Radiology and Imaging, Hospital for Special Surgery,
New York, NY (J.A.C.); Department of Radiology & Nuclear Medicine,
Erasmus MC University Medical Center, Rotterdam, the Netherlands (E.H.O.);
European Imaging Biomarkers Alliance (E.H.O.); and Department of Radiology and
Biomedical Imaging, University of California, San Francisco, Calif
(T.M.L.)
| | - for the RSNA QIBA MSK Biomarker Committee
- From the Department of Radiology, Division of Musculoskeletal Imaging
and Intervention, University of Washington, UW Radiology–Roosevelt
Clinic, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105 (M.C.); Department
of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI)
(X.L.), and Department of Biostatistics (N.A.O.), Cleveland Clinic, Cleveland,
Ohio; Department of Radiology, Boston University School of Medicine, Boston,
Mass (A.G.); Department of Radiology and Imaging, Hospital for Special Surgery,
New York, NY (J.A.C.); Department of Radiology & Nuclear Medicine,
Erasmus MC University Medical Center, Rotterdam, the Netherlands (E.H.O.);
European Imaging Biomarkers Alliance (E.H.O.); and Department of Radiology and
Biomedical Imaging, University of California, San Francisco, Calif
(T.M.L.)
| |
Collapse
|
40
|
O'Reilly T, Webb AG. In vivo T 1 and T 2 relaxation time maps of brain tissue, skeletal muscle, and lipid measured in healthy volunteers at 50 mT. Magn Reson Med 2021; 87:884-895. [PMID: 34520068 PMCID: PMC9292835 DOI: 10.1002/mrm.29009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE Low-field (B0 < 0.1 T) MRI has generated much interest as a means of increased accessibility via reduced cost and improved portability compared to conventional clinical systems (B0 ≥ 1.5 Tesla). Here we measure MR relaxation times at 50 mT and compare results with commonly used models based on both in vivo and ex vivo measurements. METHODS Using 3D turbo spin echo readouts, T1 and T2 maps of the human brain and lower leg were acquired on a custom-built 50 mT MRI scanner using inversion-recovery and multi-echo-based sequences, respectively. Image segmentation was performed based on a histogram analysis of the relaxation times. RESULTS The average T1 times of gray matter, white matter, and cerebrospinal fluid (CSF) were 327 ± 10 ms, 275 ± 5 ms, and 3695 ± 287 ms, respectively. Corresponding values of T2 were 102 ± 6 ms, 102 ± 6 ms, and 1584 ± 124 ms. T1 times in the calf muscle were measured to be 171 ± 11 ms and were 130 ± 5 ms in subcutaneous and bone marrow lipid. Corresponding T2 times were 39 ± 2 ms in muscle and 90 ± 13 ms in lipid. CONCLUSIONS For tissues except for CSF, the measured T1 times are much shorter than reported at higher fields and generally lie within the range of different models in the literature. As expected, T2 times are similar to those seen at typical clinical field strengths. Analysis of the relaxation maps indicates that segmentation of white and gray matter based purely on T1 or T2 will be quite challenging at low field given the relatively small difference in relaxation times.
Collapse
Affiliation(s)
- Thomas O'Reilly
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrew G Webb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
41
|
Kijowski R. Standardization of Compositional MRI of Knee Cartilage: Why and How. Radiology 2021; 301:433-434. [PMID: 34491134 DOI: 10.1148/radiol.2021211957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Richard Kijowski
- From the Department of Radiology, New York University Grossman School of Medicine, 660 First Ave, 3rd Floor, New York, NY 10016
| |
Collapse
|
42
|
Common Biochemical and Magnetic Resonance Imaging Biomarkers of Early Knee Osteoarthritis and of Exercise/Training in Athletes: A Narrative Review. Diagnostics (Basel) 2021; 11:diagnostics11081488. [PMID: 34441422 PMCID: PMC8391340 DOI: 10.3390/diagnostics11081488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Knee osteoarthritis (OA) is the most common joint disease of the world population. Although considered a disease of old age, OA also affects young individuals and, more specifically among them, those practicing knee-joint-loading sports. Predicting OA at an early stage is crucial but remains a challenge. Biomarkers that can predict early OA development will help in the design of specific therapeutic strategies for individuals and, for athletes, to avoid adverse outcomes due to exercising/training regimens. This review summarizes and compares the current knowledge of fluid and magnetic resonance imaging (MRI) biomarkers common to early knee OA and exercise/training in athletes. A variety of fluid biochemical markers have been proposed to detect knee OA at an early stage; however, few have shown similar behavior between the two studied groups. Moreover, in endurance athletes, they are often contingent on the sport involved. MRI has also demonstrated its ability for early detection of joint structural alterations in both groups. It is currently suggested that for optimal forecasting of early knee structural alterations, both fluid and MRI biomarkers should be analyzed as a panel and/or combined, rather than individually.
Collapse
|
43
|
Lee C, Choi YJ, Jeon KJ, Han SS. Synthetic magnetic resonance imaging for quantitative parameter evaluation of temporomandibular joint disorders. Dentomaxillofac Radiol 2021; 50:20200584. [PMID: 33544630 DOI: 10.1259/dmfr.20200584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE This study investigated the usefulness of quantitative parameters [longitudinal relaxation (T1), transverse relaxation (T2), and proton density (PD)] obtained with synthetic magnetic resonance imaging (MRI) in assessing the progression of temporomandibular joint (TMJ) disorders. METHODS For individual TMJ disorder diagnoses, the presence of disc displacement in MRI and the osseous change in cone-beam CT were investigated. Joints were classified into three stages: (1) silent stage, no disc displacement or osseous change; (2) incipient stage, presence of disc displacement and absence of osseous change; and (3) progressed stage, both disc displacement and osseous change. In synthetic MRI, the T1, T2, and PD values of the condyle bone marrow were measured simultaneously. The median T1, T2, and PD values were analyzed according to disc displacement, osseous changes, and joint stage. RESULTS Significant differences were observed in the T1 and PD values of joints with disc displacement or condylar osseous change compared to normal joints. The T1 and PD values also differed between the silent and progressed stages. The PD value differed between the silent and incipient groups, while the T2 value did not differ significantly among the three groups. CONCLUSION The PD and T1 values of condylar bone marrow obtained from synthetic MRI can be used as sensitive indicators of TMJ disorder progression. The PD value of the bone marrow showed potential as a useful biomarker for recognizing the initial stages of TMJ disorders. Synthetic MRI is useful for the simultaneous acquisition of effective MRI parameters for evaluating TMJ disorders.
Collapse
Affiliation(s)
- Chena Lee
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yoon Joo Choi
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Kug Jin Jeon
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sang-Sun Han
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
44
|
Gersing AS, Schwaiger BJ, Nevitt MC, Joseph GB, Feuerriegel G, Jungmann PM, Guimaraes JB, Facchetti L, McCulloch CE, Makowski MR, Link TM. Anterior cruciate ligament abnormalities are associated with accelerated progression of knee joint degeneration in knees with and without structural knee joint abnormalities: 96-month data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 2021; 29:995-1005. [PMID: 33775919 PMCID: PMC8217143 DOI: 10.1016/j.joca.2021.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare progression over 8 years in knee compositional cartilage degeneration and structural joint abnormalities in knees with different types of anterior cruciate ligament (ACL) abnormalities over 8 years. METHOD Baseline MR images of the right knees of 1899 individuals of the Osteoarthritis Initiative (OAI) with no evidence of or mild to moderate radiographic osteoarthritis were assessed for nontraumatic ACL abnormalities. The knees of 91 individuals showed nontraumatic ACL abnormalities (age 60.6 ± 9.8 y, 46 females; mucoid degeneration (MD), N = 37; complete tear (CT), N = 22; partial tear (PT), N = 32) and were frequency-matched to 91 individuals with normal ACL. MRIs were assessed for knee joint abnormalities using the Whole-Organ Magnetic Resonance Imaging Score (WORMS) and cartilage T2 mapping at baseline, 4- and 8-year follow-up. RESULTS Over 8 years, cartilage T2 values of the medial tibia showed a significantly greater increase in individuals with MD, PT or CT compared to those with normal ACL (adjusted rate of change/year [95% confidence interval], normal ACL: 0.06 [0.01, 0.23], MD: 0.34 [0.07, 0.73], PT, 0.21 [0.02, 0.33], CT, 0.51 [0.16, 0.78]), indicating an association of ACL abnormalities and an increased progression rate of cartilage degeneration in subjects with and without knee joint degeneration. This effect was also seen in cartilage T2 values averaged over all compartments (normal ACL: 0.08 [0.05, 0.20] vs abnormal ACL: 0.27 [0.06, 0.56]). CONCLUSIONS Over 8 years, higher progression rates of cartilage degeneration, especially in the medial tibia, were associated with ACL abnormalities compared to those with normal ACL, in subjects with and without knee joint abnormalities.
Collapse
Affiliation(s)
- Alexandra S. Gersing
- Department of Radiology and Biomedical Imaging, University of California, San Francisco,Department of Radiology, School of Medicine, Technical University of Munich, Munich, Germany,Department of Neuroradiology, University Hospital, LMU Munich, Munich, Germany
| | - Benedikt J. Schwaiger
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Michael C. Nevitt
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Gabby B. Joseph
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Georg Feuerriegel
- Department of Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Pia M. Jungmann
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julio B. Guimaraes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Luca Facchetti
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Charles E. McCulloch
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Marcus R. Makowski
- Department of Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas M. Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| |
Collapse
|
45
|
Gao KT, Pedoia V, Young KA, Kogan F, Koff MF, Gold GE, Potter HG, Majumdar S. Multiparametric MRI characterization of knee articular cartilage and subchondral bone shape in collegiate basketball players. J Orthop Res 2021; 39:1512-1522. [PMID: 32910520 PMCID: PMC8359246 DOI: 10.1002/jor.24851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/31/2020] [Accepted: 09/02/2020] [Indexed: 02/04/2023]
Abstract
Magnetic resonance imaging (MRI) is commonly used to evaluate the morphology of the knee in athletes with high-knee impact; however, complex repeated loading of the joint can lead to biochemical and structural degeneration that occurs before visible morphological changes. In this study, we utilized multiparametric quantitative MRI to compare morphology and composition of articular cartilage and subchondral bone shape between young athletes with high-knee impact (basketball players; n = 40) and non-knee impact (swimmers; n = 25). We implemented voxel-based relaxometry to register all cases to a single reference space and performed a localized compositional analysis of T 1ρ - and T 2 -relaxation times on a voxel-by-voxel basis. Additionally, statistical shape modeling was employed to extract differences in subchondral bone shape between the two groups. Evaluation of cartilage composition demonstrated a significant prolongation of relaxation times in the medial femoral and tibial compartments and in the posterolateral femur of basketball players in comparison to relaxation times in the same cartilage compartments of swimmers. The compositional analysis also showed depth-dependent differences with prolongation of the superficial layer in basketball players. For subchondral bone shape, three total modes were found to be significantly different between groups and related to the relative sizes of the tibial plateaus, intercondylar eminences, and the curvature and concavity of the patellar lateral facet. In summary, this study identified several characteristics associated with a high-knee impact which may expand our understanding of local degenerative patterns in this population.
Collapse
Affiliation(s)
- Kenneth T. Gao
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Valentina Pedoia
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Feliks Kogan
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Matthew F. Koff
- Department of Radiology and ImagingHospital for Special SurgeryNew York CityNew YorkUSA
| | - Garry E. Gold
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Hollis G. Potter
- Department of Radiology and ImagingHospital for Special SurgeryNew York CityNew YorkUSA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
46
|
Lee LS, Chan PK, Fung WC, Chan VWK, Yan CH, Chiu KY. Imaging of knee osteoarthritis: A review of current evidence and clinical guidelines. Musculoskeletal Care 2021; 19:363-374. [PMID: 33387447 DOI: 10.1002/msc.1536] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Knee osteoarthritis (OA) is one of the most common and debilitating degenerative joint diseases worldwide. While radiography is the most commonly used imaging modality, it is associated with drawbacks which newer modalities such as magnetic resonance imaging (MRI) and ultrasound could overcome. Nevertheless, the role of imaging in clinical practice and research in knee OA has not been clearly defined. Furthermore, guidelines on imaging in knee OA from different authoritative bodies have not been compared in previous studies. Therefore, the present review aims to summarise existing evidence and compare guidelines on the use of different imaging modalities in evaluating knee OA. METHODS This is a narrative review based on a search of published clinical guidelines and the PubMed database for articles published between 1 January 1990 and 31 May 2020. RESULTS There is no broad consensus on the value of imaging in patients with typical OA presentation. If imaging is required, current evidence and clinical guidelines support the use of radiography and MRI as first- and second-line diagnostic modalities respectively. Since radiographic OA features have limited sensitivity and do not manifest in early stages, MRI is the preferred option for whole-joint evaluation in OA research. Discrepancies exist regarding the use of alternative imaging modalities including ultrasound, computed tomography and nuclear medicine. CONCLUSION Radiography and MRI are the imaging modalities of choice. Other modalities have their respective advantages, and more research is warranted for the standardisation of image acquisition and interpretation methodology, in order to evaluate their validity, reliability and responsiveness in OA research.
Collapse
Affiliation(s)
- Lok Sze Lee
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ping Keung Chan
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, Hong Kong SAR, China
| | - Wing Chiu Fung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Vincent Wai Kwan Chan
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, Hong Kong SAR, China
| | - Chun Hoi Yan
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kwong Yuen Chiu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
47
|
Wang Q, Xiao H, Yu X, Lin H, Yang B, Zhang Y, Feng D, Yan F, Wang H. R1ρ at high spin-lock frequency could be a complementary imaging biomarker for liver iron overload quantification. Magn Reson Imaging 2021; 75:141-148. [PMID: 33129937 DOI: 10.1016/j.mri.2020.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/16/2023]
Abstract
PURPOSE To compare the correlations among the R1ρ, R2, and R2* relaxation rates with liver iron concentration (LIC) in the assessment of rat liver iron content and explore the application potential of R1ρ in assessing liver iron content. METHODS Iron dextran (dosage of 0, 25, 50, 100, and 200 mg/kg body weight) was injected into 35 male rats to increase the amount of iron storage in the liver. After one week, all rats were euthanized with isoflurane. A portion of the largest hepatic lobe was extracted to quantify the LIC by inductively coupled plasma, and the remaining liver tissue was stored in 4% buffered paraformaldehyde for 24 h before MRI. Spin-lock preparation with a RARE (rapid acquisition with relaxation enhancement) readout (9 different spin-lock times and 7 different spin-lock frequencies (FSLs)) and multi-echo UTE (ultrashort TE) pulses were developed to quantify R1ρ and R2 * on a Bruker 11.7 T MR system. For comparisons with R1ρ and R2*, R2 was acquired using the CPMG sequence. RESULTS Mean R1ρ values displayed dispersion, with decrease in R1ρ at higher FSLs. Spearman's correlation analysis (two-tailed) indicated that the R1ρ values were significantly associated with LIC at FSL = 2000, 2500, and 3000 Hz (r = 0.365 and P = 0.031, r = 0.608 and P < 0.001, and r = 0.764 and P < 0.001, respectively), and were not significantly associated with LIC at FSL = 500, 1000, 1250, and 1500 Hz (all P > 0.05). R2 and R2* showed significant linear correlations with LIC (r = 0.787 and P < 0.001, and r = 0.859 and P < 0.001, respectively). Correlation analysis across R1ρ, R2, and R* also suggested that the correlation strength between R1ρ and R2 and between R1ρ and R* showed an increasing trend with increase in FSL. CONCLUSION In this study, a strong association was observed between R1ρ and LIC at high FSLs further confirming previous findings. The results demonstrated that R1ρ at high FSL might serve as a complementary imaging biomarker for liver iron overload quantification.
Collapse
Affiliation(s)
- Qianfeng Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Hong Xiao
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuchen Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Huimin Lin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baofeng Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Danyang Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Human Phenome Institute, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China.
| |
Collapse
|
48
|
Multi-vendor multi-site T 1ρ and T 2 quantification of knee cartilage. Osteoarthritis Cartilage 2020; 28:1539-1550. [PMID: 32739341 PMCID: PMC8094841 DOI: 10.1016/j.joca.2020.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/03/2020] [Accepted: 07/22/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To develop 3D T1ρ and T2 imaging based on the same sequence structure on MR systems from multiple vendors, and to evaluate intra-site repeatability and inter-site inter-vendor reproducibility of T1ρ and T2 measurements of knee cartilage. METHODS 3D magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots (3D MAPSS) were implemented on MR systems from Siemens, GE and Philips. Phantom and human subject data were collected at four sites using 3T MR systems from the three vendors with harmonized protocols. Phantom data were collected by means of different positioning of the coil. Volunteers were scanned and rescanned after repositioning. Two traveling volunteers were scanned at all sites. Data were transferred to one site for centralized processing. RESULTS Intra-site average coefficient of variations (CVs) ranged from 1.09% to 3.05% for T1ρ and 1.78-3.30% for T2 in phantoms, and 1.60-3.93% for T1ρ and 1.44-4.08% for T2 in volunteers. Inter-site average CVs were 5.23% and 6.45% for MAPSS T1ρ and T2, respectively in phantoms, and 8.14% and 10.06% for MAPSS T1ρ and T2, respectively, In volunteers. CONCLUSION This study showed promising results of multi-site, multi-vendor reproducibility of T1ρ and T2 values in knee cartilage. These quantitative measures may be applied in large-scale multi-site, multi-vendor trials with controlled sequence structure and scan parameters and centralized data processing.
Collapse
|
49
|
Zelenski N, Falk DP, D'Aquilla K, Borthakur A, Bannister E, Kneeland B, Reddy R, Zgonis M. Zone- and layer-specific differences in proteoglycan content in patellofemoral pain syndrome are detectable on T1ρ MRI. Skeletal Radiol 2020; 49:1397-1402. [PMID: 32253471 DOI: 10.1007/s00256-020-03418-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Determine if differences in T1ρ would be detected in specific regions or layers of patellofemoral cartilage between patients with symptomatic patellofemoral pain syndrome and asymptomatic control subjects. MATERIALS AND METHODS Ten subjects diagnosed with patellofemoral pain syndrome were compared with ten age-, gender-, and BMI-matched control subjects with no knee pain or prior trauma. Conventional turbo (fast) spin echo sequences and T1ρ-weighted imaging were performed on the symptomatic knee in each of the ten subjects. At the patella and distal femur, cartilage regions of interest were divided into medial and lateral sub-regions, each then further sub-divided by layer (superficial, middle, or deep). Two-tailed t test and chi-squared tests were used to analyze demographic data. A mixed effect model was run for each sub-region of T1ρ imaging. Statistical significance was determined using the likelihood ratio test against reduced models without patellofemoral pain syndrome symptomatic status as a fixed effect. RESULTS There was no difference in age, sex, or BMI between symptomatic and control patients. T1ρ values were significantly higher among patellofemoral pain syndrome patients when compared with controls in the superficial zone of the lateral patella (58.43 vs. 50.83, p = 0.03) and the middle zone of the lateral patella (52.67 vs. 43.60, p = 0.03). T1ρ was also higher in the superficial zone of the medial femur (50.94 vs. 46.70, p = 0.09) with a value approaching statistical significance. CONCLUSION We report statistically significant differences in the T1ρ value in the superficial and middle zones of the lateral patella in patients with patellofemoral pain syndrome who had no abnormalities seen on conventional MRI sequences, suggesting an alteration the macromolecular structure of the cartilage in this population.
Collapse
Affiliation(s)
- Nicole Zelenski
- Department of Orthopaedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - David P Falk
- Department of Orthopaedic Surgery, University of Pennsylvania, 3737 Market Street, 6th Floor, Philadelphia, PA, 19104, USA
| | - Kevin D'Aquilla
- Center for Magnetic Resonance & Optical Imaging, 422 Curie Boulevard, B1 Stellar Chance Labs, Philadelphia, PA, 19104, USA
| | - Arijitt Borthakur
- Center for Practice Transformation, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Donner Basement, 34000 Spruce Street, Philadelphia, PA, 19104, USA
| | - Evan Bannister
- Department of Orthopaedic Surgery, University of Pennsylvania, 3737 Market Street, 6th Floor, Philadelphia, PA, 19104, USA
| | - Bruce Kneeland
- Department of Radiology, University of Pennsylvania, 3400 Civic Center Boulevard Atrium, Ground Floor, Philadelphia, PA, 19104, USA
| | - Ravinder Reddy
- Center for Magnetic Resonance & Optical Imaging, 422 Curie Boulevard, B1 Stellar Chance Labs, Philadelphia, PA, 19104, USA
| | - Miltiadis Zgonis
- Department of Orthopaedic Surgery, University of Pennsylvania, 3737 Market Street, 6th Floor, Philadelphia, PA, 19104, USA.
| |
Collapse
|
50
|
Watkins LE, Rubin EB, Mazzoli V, Uhlrich SD, Desai AD, Black M, Ho GK, Delp SL, Levenston ME, Beaupré GS, Gold GE, Kogan F. Rapid volumetric gagCEST imaging of knee articular cartilage at 3 T: evaluation of improved dynamic range and an osteoarthritic population. NMR IN BIOMEDICINE 2020; 33:e4310. [PMID: 32445515 PMCID: PMC7347437 DOI: 10.1002/nbm.4310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 05/22/2023]
Abstract
Chemical exchange saturation transfer of glycosaminoglycans, gagCEST, is a quantitative MR technique that has potential for assessing cartilage proteoglycan content at field strengths of 7 T and higher. However, its utility at 3 T remains unclear. The objective of this work was to implement a rapid volumetric gagCEST sequence with higher gagCEST asymmetry at 3 T to evaluate its sensitivity to osteoarthritic changes in knee articular cartilage and in comparison with T2 and T1ρ measures. We hypothesize that gagCEST asymmetry at 3 T decreases with increasing severity of osteoarthritis (OA). Forty-two human volunteers, including 10 healthy subjects and 32 subjects with medial OA, were included in the study. Knee Injury and Osteoarthritis Outcome Scores (KOOS) were assessed for all subjects, and Kellgren-Lawrence grading was performed for OA volunteers. Healthy subjects were scanned consecutively at 3 T to assess the repeatability of the volumetric gagCEST sequence at 3 T. For healthy and OA subjects, gagCEST asymmetry and T2 and T1ρ relaxation times were calculated for the femoral articular cartilage to assess sensitivity to OA severity. Volumetric gagCEST imaging had higher gagCEST asymmetry than single-slice acquisitions (p = 0.015). The average scan-rescan coefficient of variation was 6.8%. There were no significant differences in average gagCEST asymmetry between younger and older healthy controls (p = 0.655) or between healthy controls and OA subjects (p = 0.310). T2 and T1ρ relaxation times were elevated in OA subjects (p < 0.001 for both) compared with healthy controls and both were moderately correlated with total KOOS scores (rho = -0.181 and rho = -0.332 respectively). The gagCEST technique developed here, with volumetric scan times under 10 min and high gagCEST asymmetry at 3 T, did not vary significantly between healthy subjects and those with mild-moderate OA. This further supports a limited utility for gagCEST imaging at 3 T for assessment of early changes in cartilage composition in OA.
Collapse
Affiliation(s)
| | - Elka B Rubin
- Radiology, Stanford University, Stanford, California, USA
| | | | - Scott D Uhlrich
- Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Arjun D Desai
- Electrical Engineering, Stanford University, Stanford, California, USA
| | - Marianne Black
- Radiology, Stanford University, Stanford, California, USA
- Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Gabe K Ho
- Bioengineering, Stanford University, Stanford, California, USA
| | - Scott L Delp
- Bioengineering, Stanford University, Stanford, California, USA
- Mechanical Engineering, Stanford University, Stanford, California, USA
- Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Marc E Levenston
- Bioengineering, Stanford University, Stanford, California, USA
- Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Gary S Beaupré
- Bioengineering, Stanford University, Stanford, California, USA
- Veteran Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Garry E Gold
- Bioengineering, Stanford University, Stanford, California, USA
- Radiology, Stanford University, Stanford, California, USA
- Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Feliks Kogan
- Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|