1
|
Fan C, Huang S, Xiang C, Song Y. Evaluating the effect of metformin on sarcopenia: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e42880. [PMID: 40550098 PMCID: PMC12187259 DOI: 10.1097/md.0000000000042880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 05/29/2025] [Indexed: 06/28/2025] Open
Abstract
Sarcopenia is prevalent among elder patients with type 2 diabetes. As a first-line medication for managing type 2 diabetes, metformin has shown controversial effects on sarcopenia. This study aims to analyze the impact of metformin on sarcopenia using Mendelian randomization analysis. We selected 30 single nucleotide polymorphisms associated with metformin used as instrumental variables from genome-wide association studies. Mendelian randomization was conducted using inverse variance weighted (IVW), Mendelian randomization Egger, and weighted median methods. Additionally, we performed heterogeneity tests, Pleiotropy analyses, and sensitivity analyses to validate our findings. The IVW method indicated a P-value of .63 and an odds ratio (OR) of 0.93 (95% CI: 0.69-1.25) for the relationship between metformin use and walking pace. For appendicular lean mass, the IVW method showed a P-value of .42 and an OR of 0.69 (95% CI: 0.28-1.70). In contrast, the IVW analysis indicated a significant relationship between metformin use and right hand grip strength, with P-value of .01 and OR (95% CI) = 0.64 (0.45-0.91), as well as for left hand grip strength, with P-value of .01 and OR (95% CI) = 0.65 (0.45-0.92). Notably, a causal relationship was established between metformin use and lower hand grip strength, while no causal relationship was found between metformin use and walking pace or appendicular lean mass. This study suggests that caution is needed regarding long-term metformin use in the context of sarcopenia.
Collapse
Affiliation(s)
- Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyuan Huang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunhua Xiang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Song
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Liou Y, Giovannucci E, Chien W, Wu L. Evaluation of Dietary Guideline Adherence and Risk of Sarcopenia in Elder Taiwanese. Food Sci Nutr 2025; 13:e70343. [PMID: 40444129 PMCID: PMC12121529 DOI: 10.1002/fsn3.70343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 05/09/2025] [Indexed: 06/02/2025] Open
Abstract
Dietary strategies play an important role in determining longevity and healthy aging. There is an increasing awareness of dietary factors and sarcopenia, which presents as a decline in muscle mass and function, mainly in the senior population. The aim of this study is to explore the association of adherence to the Dietary Guideline (DG) on muscle health in the elder Taiwanese. We included 410 adults aged 65 or older, of whom 189 (46.1%) were women, in the Nutrition and Health Survey in Taiwan (NAHSIT) during 2014-2016 with comprehensive records of food frequency questionnaires and 24-h dietary recalls, as well as measurements of dual-energy X-ray absorptiometry (DXA) for muscle mass and 8-m gait speed for physical performance. A novel indicator, named Healthy Eating Index for Taiwanese (HEI-TW), was developed as an amended version of HEI-2015 to assess how dietary patterns adhere to the DG of Taiwan. Participants who fulfilled "low muscle mass" and "poor physical performance" defined by the Asian Working Group for Sarcopenia (AWGS) criteria were recognized as having sarcopenia; others, in contrast, were recognized as healthy controls. Seventy-one (17.3%) participants categorized into the sarcopenia group had significantly lower mean scores of overall HEI-TW, total vegetables, unrefined grains, and dairy products. The adjusted odds ratios (95% confidence intervals) for sarcopenia were 0.98 (0.95-1.00) for overall HEI-TW, 0.78 (0.66-0.94) for total vegetables, and 0.85 (0.76-0.95) for dairy, respectively, for one unit increase in these components. In subgroup analysis stratified by sex and age, the overall HEI-TW was inversely associated with the odds of sarcopenia among men and individuals aged 75 or older. This study showed that a higher HEI-TW score adhering to Taiwan DG and abundant consumption of total vegetables and dairy products is associated with lower prevalence of muscle loss and sarcopenia in elder Taiwanese.
Collapse
Affiliation(s)
- Yih‐Jin Liou
- Department of General MedicineTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan, ROC
| | - Edward Giovannucci
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Wu‐Chien Chien
- Department of Medical ResearchTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan, ROC
- School of Public HealthNational Defense Medical CenterTaipeiTaiwan, ROC
| | - Li‐Wei Wu
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
- Division of Family Medicine, Department of Family and Community MedicineTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan, ROC
- Division of Geriatric Medicine, Department of Family and Community MedicineTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan, ROC
| |
Collapse
|
3
|
Gao Y, Liu D, Xiao Q, Huang S, Li L, Xie B, Zhou L, Qi Y, Liu Y. Exploration of Pathogenesis and Cutting-Edge Treatment Strategies of Sarcopenia: A Narrative Review. Clin Interv Aging 2025; 20:659-684. [PMID: 40438271 PMCID: PMC12117577 DOI: 10.2147/cia.s517833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 05/12/2025] [Indexed: 06/01/2025] Open
Abstract
Sarcopenia a progressive and multifactorial musculoskeletal syndrome characterized by loss of muscle mass and function, poses a significant global health challenge, particularly in aging populations. Epidemiological studies reveal that sarcopenia affects approximately 5-10% of the general population, with prevalence rates escalating dramatically after age 60 to reach 10-27% in older adults. This age-associated increase contributes significantly to healthcare burdens by elevating risks of disability, frailty, and mortality. Despite its profound impact, current clinical approaches to sarcopenia remain limited. While resistance exercise and protein supplementation form the cornerstone of management, their efficacy is often constrained by poor long-term adherence and variable individual responses, highlighting the urgent need for more comprehensive and personalized treatment strategies. The pathogenesis of sarcopenia is complex and influenced by various factors, including aging, inflammation, nutritional deficits, physical inactivity, and mitochondrial dysfunction. However, the precise molecular mechanisms underlying this condition are still not fully understood. Recent research has made significant strides in elucidating the intricate mechanisms contributing to sarcopenia, revealing novel insights into its molecular and cellular underpinnings. Notably, emerging evidence points to the pivotal role of mitochondrial dysfunction, altered myokine profiles, and neuromuscular junction degeneration in sarcopenia progression. Additionally, breakthroughs in stem cell therapy, exosome-based treatments, and precision nutrition offer promising avenues for clinical intervention. This review aims to synthesize the latest advancements in sarcopenia research, focusing on the novel contributions to its pathogenesis and treatment strategies. We explore emerging trends such as the role of cellular senescence, epigenetic regulation, and targeted therapeutic interventions that could reshape future approaches to managing sarcopenia. By highlighting recent breakthroughs and cutting-edge research, we hope to advance the understanding of sarcopenia and foster the translation of these findings into effective clinical therapies.
Collapse
Affiliation(s)
- Yin Gao
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Di Liu
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Qixian Xiao
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
| | - Shan Huang
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Li Li
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Baocheng Xie
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, 52305, People’s Republic of China
| | - Limin Zhou
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, 52305, People’s Republic of China
| | - Yi Qi
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Yanzhi Liu
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
| |
Collapse
|
4
|
Teixeira AM, Nosrani SE, Parvani M, Viola J, Mohammadi S. Sarcopenia: an Aging Perspective and Management Options. Int J Sports Med 2025. [PMID: 40199507 DOI: 10.1055/a-2577-2577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
There is no doubt that sarcopenia is one of the most defining characteristics of aging that negatively impacts the people's health and quality of life. The condition is characterized by the progressive and generalized loss of muscle mass and strength, affecting physical performance. It is part of aging but can be exacerbated by pathophysiological conditions like cancer and several factors such as a sedentary lifestyle, poor nutrition, chronic diseases, falls and immobilization. Numerous cellular mechanisms have been implicated in its pathogenesis, including hormonal changes, mitochondrial dysfunctions, altered apoptotic and autophagic signaling, muscle fiber composition, and inflammatory pathways. To prevent sarcopenia, exercise is one of the most effective strategies as it has a strong influence on both anabolic and catabolic muscle pathways and helps improve skeletal muscle function. A well-rounded, multicomponent exercise program that targets muscle strength, aerobic capacity, and balance is recommended for optimal results. While nutrition is essential for muscle maintenance, relying solely on dietary interventions is unlikely to fully address sarcopenia. Therefore, a combination of adequate nutrition and regular exercise is recommended to promote muscle health and function. The purpose of this study is to review sarcopenia from an aging viewpoint and discuss the role of exercise and nutrition as prevention and management options.
Collapse
Affiliation(s)
- Ana M Teixeira
- Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
- Research Center for Sport and Physical Activity (doi: 10.54499/UIDP/04213/2020), CIDAF-UC, Coimbra, Portugal
| | - Shiva E Nosrani
- Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
- Research Center for Sport and Physical Activity (doi: 10.54499/UIDP/04213/2020), CIDAF-UC, Coimbra, Portugal
| | - Mohsen Parvani
- Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
- Research Center for Sport and Physical Activity (doi: 10.54499/UIDP/04213/2020), CIDAF-UC, Coimbra, Portugal
| | - João Viola
- Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | - Shaghayegh Mohammadi
- Faculty of Physical Education, Department of Pathology and Corrective Exercises, University of Guilan, Rasht, Iran (the Islamic Republic of)
| |
Collapse
|
5
|
Caputo V, Letteri I, Santini SJ, Sinatti G, Balsano C. Towards Precision in Sarcopenia Assessment: The Challenges of Multimodal Data Analysis in the Era of AI. Int J Mol Sci 2025; 26:4428. [PMID: 40362666 PMCID: PMC12073030 DOI: 10.3390/ijms26094428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Sarcopenia, a condition characterised by the progressive decline in skeletal muscle mass and function, presents significant challenges in geriatric healthcare. Despite advances in its management, complex etiopathogenesis and the heterogeneity of diagnostic criteria underlie the limited precision of existing assessment methods. Therefore, efforts are needed to improve the knowledge and pave the way for more effective management and a more precise diagnosis. To this purpose, emerging technologies such as artificial intelligence (AI) can facilitate the identification of novel and accurate biomarkers by modelling complex data resulting from high-throughput technologies, fostering the setting up of a more precise approach. Based on such considerations, this review explores AI's transformative potential, illustrating studies that integrate AI, especially machine learning and deep learning, with heterogeneous data such as clinical, anthropometric and molecular data. Overall, the present review will highlight the relevance of large-scale, standardised studies to validate biomarker signatures using AI-driven approaches.
Collapse
Affiliation(s)
- Valerio Caputo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, P.le Salvatore Tommasi, 67100 L’Aquila, Italy; (V.C.); (I.L.); (S.J.S.); (G.S.)
| | - Ivan Letteri
- Department of Life, Health and Environmental Sciences, University of L’Aquila, P.le Salvatore Tommasi, 67100 L’Aquila, Italy; (V.C.); (I.L.); (S.J.S.); (G.S.)
| | - Silvano Junior Santini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, P.le Salvatore Tommasi, 67100 L’Aquila, Italy; (V.C.); (I.L.); (S.J.S.); (G.S.)
| | - Gaia Sinatti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, P.le Salvatore Tommasi, 67100 L’Aquila, Italy; (V.C.); (I.L.); (S.J.S.); (G.S.)
| | - Clara Balsano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, P.le Salvatore Tommasi, 67100 L’Aquila, Italy; (V.C.); (I.L.); (S.J.S.); (G.S.)
- Geriatric Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, P.le Salvatore Tommasi, 67100 L’Aquila, Italy
- Fondazione Francesco Balsano, via Giovanni Battista Martini, 00198 Rome, Italy
| |
Collapse
|
6
|
Fritzenschaft L, Boehm F, Rothenbacher D, Denkinger M, Dallmeier D. Association of blood biomarkers with frailty-A mapping review. Ageing Res Rev 2025; 109:102761. [PMID: 40318768 DOI: 10.1016/j.arr.2025.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/17/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Frailty describes a geriatric syndrome characterized by an increased vulnerability. Although a variety of potential blood-based biomarkers have been discussed for its characterization, a reliable protocol considering blood-based biomarkers for this purpose is still missing. However, a comprehensive overview on these biomarkers is necessary to understand potential molecular pathways to frailty. We, therefore, performed a mapping review to identify those blood-based biomarkers most consistently associated with frailty in community-dwelling older adults as well as possible analytical gaps according to the available literature. A proposed weighted correlation index (CI) describing the direction and consistency of the association considering the number of available publications as well as the size of the study populations was calculated for each biomarker. Overall, 72 manuscripts were critically reviewed reporting on a total of 82 biomarkers. The most consistent positive association with at least 3 articles addressing the respective biomarker in unadjusted and fully adjusted models was shown for interleukin 6 (IL-6), high-sensitivity C-reactive protein (hs-CRP), neopterin, white blood cells count, glycated hemoglobin A1c (HbA1c) and sex hormone binding-globuline (SHBG) with a CI ≥ 0.7, while for negative association hemoglobin, 25-hydroxy vitamin D, free testosterone in men and albumin with a CI ≤ -0.7 were identified.
Collapse
Affiliation(s)
- Lea Fritzenschaft
- Institute for Geriatric Research Ulm University Medical Center Ulm, Germany
| | - Felix Boehm
- Institute for Geriatric Research Ulm University Medical Center Ulm, Germany
| | | | - Michael Denkinger
- Institute for Geriatric Research Ulm University Medical Center Ulm, Germany; Department of Research on Ageing, AGAPLESION Bethesda Clinic Ulm, Ulm, Germany; Medical Faculty, Ulm University, Ulm, Germany
| | - Dhayana Dallmeier
- Institute for Geriatric Research Ulm University Medical Center Ulm, Germany; Department of Research on Ageing, AGAPLESION Bethesda Clinic Ulm, Ulm, Germany; Medical Faculty, Ulm University, Ulm, Germany; Department of Epidemiology, Boston University School of Public Health, Boston, USA.
| |
Collapse
|
7
|
Nyul-Toth A, Shanmugarama S, Patai R, Gulej R, Faakye J, Nagy D, Nagykaldi M, Kiss T, Csipo T, Milan M, Ekambaram S, Negri S, Nagaraja RY, Csiszar A, Brown JL, Van Remmen H, Ungvari A, Yabluchanskiy A, Tarantini S, Ungvari Z. Endothelial IGF- 1R deficiency disrupts microvascular homeostasis, impairing skeletal muscle perfusion and endurance: implications for age-related sarcopenia. GeroScience 2025:10.1007/s11357-025-01653-2. [PMID: 40199795 DOI: 10.1007/s11357-025-01653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025] Open
Abstract
Aging is associated with a progressive decline in circulating insulin-like growth factor- 1 (IGF- 1) levels in humans, which has been implicated in the pathogenesis of sarcopenia. IGF- 1 is an anabolic hormone that plays a dual role in maintaining skeletal muscle health, acting both directly on muscle fibers to promote growth and indirectly by supporting the vascular network that sustains muscle perfusion. However, the microvascular consequences of IGF- 1 deficiency in aging muscle remain poorly understood. To elucidate how impaired IGF- 1 input affects skeletal muscle vasculature, we examined the effects of endothelial-specific IGF- 1 receptor (IGF- 1R) deficiency using a mouse model of endothelial IGF- 1R knockdown (VE-Cadherin-CreERT2/Igf1rf/f mice). These mice exhibited significantly reduced skeletal muscle endurance and attenuated hyperemic response to acetylcholine, an endothelium-dependent vasodilator. Additionally, they displayed microvascular rarefaction and impaired nitric oxide-dependent vasorelaxation, indicating a significant decline in microvascular health in skeletal muscle. These findings suggest that endothelial IGF- 1R signaling is critical for maintaining microvascular integrity, muscle perfusion, and function. Impaired IGF- 1 input to the microvascular endothelium may contribute to reduced muscle blood flow and exacerbate age-related sarcopenia. Enhancing vascular health by modulating IGF- 1 signaling could represent a potential therapeutic strategy to counteract age-related muscle decline.
Collapse
Affiliation(s)
- Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College, Health Sciences Division, Semmelweis University, Budapest, Hungary
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College, Health Sciences Division/Institute of Public Health and Preventive Medicine, Semmelweis University, Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College, Health Sciences Division/Institute of Public Health and Preventive Medicine, Semmelweis University, Budapest, Hungary
| | - Janet Faakye
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dorina Nagy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College, Health Sciences Division/Institute of Public Health and Preventive Medicine, Semmelweis University, Budapest, Hungary
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, Budapest, Hungary
| | - Mark Nagykaldi
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Kiss
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, Budapest, Hungary
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Tamas Csipo
- Institute of Public Health and Preventive Medicine, Semmelweis University, Budapest, Hungary
| | - Madison Milan
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shoba Ekambaram
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Raghavendra Y Nagaraja
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College, Health Sciences Division/Institute of Public Health and Preventive Medicine, Semmelweis University, Budapest, Hungary
| | - Jacob L Brown
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Institute of Public Health and Preventive Medicine, Semmelweis University, Budapest, Hungary.
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College, Health Sciences Division/Institute of Public Health and Preventive Medicine, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College, Health Sciences Division/Institute of Public Health and Preventive Medicine, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College, Health Sciences Division/Institute of Public Health and Preventive Medicine, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
8
|
Fernández-Garza LE, Guillen-Silva F, Sotelo-Ibarra MA, Domínguez-Mendoza AE, Barrera-Barrera SA, Barrera-Saldaña HA. Growth hormone and aging: a clinical review. FRONTIERS IN AGING 2025; 6:1549453. [PMID: 40260058 PMCID: PMC12009952 DOI: 10.3389/fragi.2025.1549453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025]
Abstract
Aging is a complex biological process characterized by functional decline, reduced quality of life, and increased vulnerability to diseases such as type 2 diabetes, cardiovascular conditions, neurodegeneration, and cancer. Advances in medical technology have introduced the concept of aging therapies, with growth hormone (GH) and its primary mediator, insulin-like growth factor 1 (IGF-1), receiving considerable attention for their potential to counteract age-related physiological and metabolic changes. GH plays a multifaceted role in the human body, primarily influencing body composition by increasing muscle mass, reducing fat tissue, promoting bone formation, and regulating the metabolism of proteins, lipids, and glucose. Additional effects have been noted on endothelial function, cognitive performance, and circadian rhythms. This review examines the molecular mechanisms of GH in aging, its potential as an anti-aging therapy, and findings from clinical trials involving these hormones for this purpose. It also addresses the associated adverse effects, limitations, and controversies. While some studies report significant benefits, these therapies' long-term safety and efficacy in promoting healthy aging remain uncertain, highlighting the need for further research.
Collapse
Affiliation(s)
- Luis E. Fernández-Garza
- Innbiogem SC, Monterrey, Mexico
- Servicio de Medicina Interna, Hospital General de Zona No. 2, Instituto Mexicano del Seguro Social, Monterrey, Mexico
- LANSEIDI-CONAHCyT, Monterrey, Mexico
| | | | - Marcos A. Sotelo-Ibarra
- Innbiogem SC, Monterrey, Mexico
- Facultad de Ciencias Biológicas de la Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de Los Garza, Mexico
| | | | | | - Hugo A. Barrera-Saldaña
- Innbiogem SC, Monterrey, Mexico
- LANSEIDI-CONAHCyT, Monterrey, Mexico
- Facultad de Ciencias Biológicas de la Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de Los Garza, Mexico
- Facultad de Medicina de la Universidad Autónoma de Nuevo León, Monterrey, Mexico
- Dirección de Investigación Científica de Laboratorios Columbia, Coyoacán, Mexico
| |
Collapse
|
9
|
Su C, Zhang S, Zheng Q, Miao J, Guo J. Prevalence and correlation of sarcopenia with Alzheimer's disease: A systematic review and meta-analysis. PLoS One 2025; 20:e0318920. [PMID: 40029915 PMCID: PMC11875368 DOI: 10.1371/journal.pone.0318920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Sarcopenia, which is defined by a decline in skeletal muscle mass and strength associated with aging, is common among older individuals and presents considerable health dangers. Alzheimer's disease (AD) is a prevalent degenerative brain condition linked to a decrease in cognitive function. The intersection of these conditions remains underexplored. The goal of this systematic review and meta-analysis was to establish the frequency of sarcopenia in individuals with AD and investigate the relationship between sarcopenia and AD. METHODS We performed an extensive review of literature databases, including PubMed, Embase, Web of Science, and the Cochrane Library, through April 2024. The inclusion criteria included studies that provided data on the frequency of sarcopenia in patients with AD or that examined the odds ratios (ORs) associated with these comorbidities. R Studio (4.3.1) was utilized for conducting the statistical analyses. RESULTS A total of 27 studies, comprising 3902 AD patients were included. In patients with AD, the combined occurrence of sarcopenia was 33.9%, with a confidence interval (CI) of 95%, ranging from 27.6% to 40.2%. Sarcopenia was found in 31.2% (95% CI: 0.223-0.402) and 41.9% (95% CI: 0.321-0.516) of patients with mild and moderate AD, respectively. The OR for the association between AD and sarcopenia was 2.670 (95% CI: 1.566-4.555), suggesting a robust correlation. CONCLUSION Sarcopenia is highly prevalent in AD patients, highlighting the need for integrated care approaches to address both cognitive and physical health issues. Further research is needed to elucidate the pathophysiological links between AD and sarcopenia.
Collapse
Affiliation(s)
- Chen Su
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
| | - Sen Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
| | - Qiandan Zheng
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
| | - Jie Miao
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
| | - Junhong Guo
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
| |
Collapse
|
10
|
Jiampochaman S, Chuengsaman P, Kanjanabuch T, Susantitaphong P, Sriudom K, Katesomboon S, Metta K, Eiam-Ong S, Kittiskulnam P. A Comparison Between Severity-Dependent Protocol and Fixed-Dose Regimen of Oral Vitamin D Supplementation on Correction of Hypovitaminosis D Among Dialysis Patients. J Ren Nutr 2025; 35:353-363. [PMID: 39549930 DOI: 10.1053/j.jrn.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/23/2024] [Accepted: 11/03/2024] [Indexed: 11/18/2024] Open
Abstract
OBJECTIVE Low vitamin D status is associated with either low muscle mass or impaired muscle function in dialysis patients. However, there is no consensus on how best to correct hypovitaminosis D, defined as serum 25-hydroxyvitamin D level <30 ng/mL, in patients with end-stage kidney disease (ESKD). This study investigated the effect of different vitamin D supplementation regimens on sarcopenia outcomes in dialysis patients. METHODS This was a prospective randomized controlled trial. ESKD patients treated with maintenance hemodialysis (HD) or peritoneal dialysis with low vitamin D status on a ratio of 1:1, were randomized to either receive oral ergocalciferol utilizing a severity-dependent treatment protocol for low vitamin D status suggested by the Kidney Disease Outcomes Quality Initiative as a control group or a fixed-dose regimen of 20,000 international units/week. The changes in muscle mass were measured by bioimpedance spectroscopy, muscle strength was assessed by a hand grip dynamometer, physical performance was determined by gait speed, and muscle-related biomarkers were examined. RESULTS A total of 76 dialysis patients were randomized (HD = 43.4%). Baseline characteristics, including age, dialysis vintage, and muscle parameters were similar. After supplementation, the average serum 25-hydroxyvitamin D levels in the severity-dependent and fixed-dose groups were significantly elevated from 14.5 ± 7.3 to 27.2 ± 13.2 ng/mL, P < .001 and from 15.1 ± 6.4 to 28.8 ± 11.5 ng/mL, P < .001, respectively, and did not differ between groups at 6 months (P = .60). Despite comparable energy and protein intake, the mean bioimpedance spectroscopy-derived total body muscle mass normalized to height squared was significantly increased at 6 months in the fixed-dose group (14.5 ± 3.3 to 15.3 ± 3.0 kg/m2, P = .03) compared with the severity-dependent protocol (13.5 ± 2.7 to 13.7 ± 2.9 kg/m2, P = .58). In the subgroup analysis, muscle mass improvement was statistically elevated in peritoneal dialysis patients (P = .01) while unaltered among HD patients (P = .88) in the fixed-dose group. Muscle strength, gait speed, and serum insulin-like growth factor-1 level, as the mediators of muscle cell growth, were not different between the two groups at 6 months (P > .05). Neither hypercalcemia nor hyperphosphatemia was found throughout the study. CONCLUSION A fixed-dose ergocalciferol supplementation demonstrates similar performance in the correction of low vitamin D status but better muscle mass improvement than a severity-dependent protocol among ESKD patients. Regular dosing intervals of weekly vitamin D supplementation appear to be a promising treatment for sarcopenia among patients undergoing dialysis.
Collapse
Affiliation(s)
- Saranchana Jiampochaman
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn, University, Bangkok, Thailand; Department of Medicine, Thaksin Hospital, Suratthani, Thailand
| | - Piyatida Chuengsaman
- Banphaeo-Charoenkrung Peritoneal Dialysis Center, Banphaeo Dialysis Group, Banphaeo Hospital, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn, University, Bangkok, Thailand
| | - Paweena Susantitaphong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn, University, Bangkok, Thailand
| | - Kanda Sriudom
- Banphaeo-Charoenkrung Peritoneal Dialysis Center, Banphaeo Dialysis Group, Banphaeo Hospital, Bangkok, Thailand
| | - Sirarat Katesomboon
- Banphaeo-Charoenkrung Peritoneal Dialysis Center, Banphaeo Dialysis Group, Banphaeo Hospital, Bangkok, Thailand
| | - Kamonchanok Metta
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn, University, Bangkok, Thailand
| | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn, University, Bangkok, Thailand
| | - Piyawan Kittiskulnam
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn, University, Bangkok, Thailand; Division of Internal Medicine-Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
| |
Collapse
|
11
|
Hu M, Zhang Y, Ding H, Chao R, Cao Z. Effect and mechanism of miRNA-144-5p-regulated autophagy in older adults with Sarcopenia. Immun Ageing 2025; 22:7. [PMID: 39953589 PMCID: PMC11827453 DOI: 10.1186/s12979-025-00499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Advanced aging invariably triggers an overabundance of apoptosis, stemming from diminished autophagy or a disarray in cellular autophagic processes. This, in turn, leads to an accelerated breakdown of muscle proteins, which exacerbates the ongoing deterioration of skeletal muscle and intensifies the severity of senile sarcopenia. This study aimed to investigate the role and mechanism of miRNA-regulated autophagy in senile sarcopenia. METHODS The miRNAs associated with sarcopenia were screened, and the target genes of significant miRNAs were predicted. The effects of significantly differentially expressed miRNA-144-5p on cell aging and autophagy were validated in vivo and in vitro. RESULTS The inhibition of miR-144-5p enhanced the multiplication of mouse myoblasts, increased the expression of MHC and autophagic markers LC3II/LC3I and Beclin-1, facilitated the formation of autophagosomes in mouse myoblasts, and reduced the number of aging cells and the expression of senescence-related proteins acetylated p53, p53, and p21 expression in mouse myoblasts. miR-144-5p affects myoblast senescence, myogenic differentiation, and autophagy by regulating the downstream target gene, Atg2A. Inhibiting miR-144-5p markedly increased the grip strength of the posterior limb in old mice, and the CSA of old mice and young mice was also markedly increased. CONCLUSION All experiments have demonstrated that miRNA-144-5p has a significant impact on the regulation of autophagy and the development of senile sarcopenia.
Collapse
Affiliation(s)
- Mengdie Hu
- Department of Orthopedics, Central Hospital of Chongqing University, Chongqing, 400030, China
| | - Ying Zhang
- Department of Orthopedics, Central Hospital of Chongqing University, Chongqing, 400030, China
| | - Hong Ding
- Department of Orthopedics, Central Hospital of Chongqing University, Chongqing, 400030, China
| | - Rui Chao
- Department of Orthopedics, Central Hospital of Chongqing University, Chongqing, 400030, China
| | - Zhidong Cao
- Department of Orthopedics, Central Hospital of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
12
|
Xu J, Jia S, Xie R, Yan X, Chen L, Cheng X, Bai L, Li Y, Wang Y, Qiao Y. Associations of nutritional intake and inflammatory factors with sarcopenia in community-dwelling older adults: a cross-sectional study. Eur Geriatr Med 2025; 16:33-44. [PMID: 39797921 DOI: 10.1007/s41999-024-01147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
PURPOSE Sarcopenia is an age-related disease that is related to nutritional intake and chronic low-grade inflammation. The aim of this study was to investigate the association of dietary intake, inflammatory markers and sarcopenia among the community-dwelling older adults. METHODS A total of 1001 older adults aged 60 and above were recruited. According to the criteria established by the Asian Working Group for Sarcopenia 2019, this paper assessed the presence of sarcopenia and using a Food Frequency Questionnaire to evaluate daily dietary intake. Serum levels of inflammatory markers were measured using the ELISA method. RESULTS A total of 1001 participants took part in the study (mean 70.6 years), comprising 396 males and 605 females, the prevalence of sarcopenia was 19.6%. Multivariate analysis revealed that high levels of leucine, methionine, threonine, histidine, aspartic acid, calcium, zinc, and vitamin C were associated with a lower risk of sarcopenia. Higher dietary inflammatory index scores were associated with a higher risk of sarcopenia (OR 1.67, 95% CI 1.12-2.47). Higher tumor necrosis factor-like weak inducer of apoptosis (TWEAK) (OR 1.04, 95% CI 1.02-1.07) was associated with a higher risk of sarcopenia, and a lower skeletal muscle mass, strength, and physical function. Conversely, higher insulin-like growth factor-1 (IGF-1) (OR 0.83, 95% CI 0.74-0.94) and glutathione S-transferase (GST) (OR 0.75, 95% CI 0.61-0.91) were associated with a lower risk of sarcopenia. CONCLUSIONS This cross-sectional study revealed alterations in amino acid and micronutrient intake among older adults with sarcopenia. The levels of TWEAK were associated with an increased risk of sarcopenia, whereas IGF-1 and GST were associated with a reduced risk of sarcopenia.
Collapse
Affiliation(s)
- Jiaqian Xu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shuangshuang Jia
- Department of Public Health, Jining Medical University, Jining, 272000, China
| | - Ruining Xie
- Department of Public Health, Jining Medical University, Jining, 272000, China
| | - Xin Yan
- Department of Public Health, Jining Medical University, Jining, 272000, China
| | - Lingzhi Chen
- Department of Clinical Nutrition, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xiaoyu Cheng
- Department of Public Health, Jining Medical University, Jining, 272000, China
| | - Li Bai
- Department of Public Health, Jining Medical University, Jining, 272000, China
| | - Yaqing Li
- Department of Public Health, Jining Medical University, Jining, 272000, China
| | - Yujing Wang
- Department of Public Health, Jining Medical University, Jining, 272000, China
| | - Yi Qiao
- Department of Public Health, Jining Medical University, Jining, 272000, China.
| |
Collapse
|
13
|
Nishikawa H, Kim SK, Asai A. The Role of Myokines in Liver Diseases. Int J Mol Sci 2025; 26:1043. [PMID: 39940810 PMCID: PMC11817747 DOI: 10.3390/ijms26031043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Myokine is a general term for hormones, peptides, and other substances secreted by skeletal muscle. Myokine has attracted much attention in recent years as a key substance for understanding the mechanism of "exercise and health". Skeletal muscle accounts for about 40% of the total human weight and is now recognized as an endocrine organ that produces myokines, which have physiological activity. Representative myokines include IL-6, myostatin, irisin, brain-derived neurotropic factor, fibroblast growth factor-21, and decorin. On the other hand, sarcopenia, defined by quantitative and qualitative loss of skeletal muscle, is a condition that has received much attention in recent years because of its close correlation with prognosis. In patients with chronic liver disease (CLD), sarcopenia is a common complication. Mechanisms underlying sarcopenia in CLD patients have been reported to involve protein-energy malnutrition, which is characteristic of patients with cirrhosis, signaling involved in protein synthesis and degradation, myokines such as myostatin and decorin, the ubiquitin-proteasome pathway, sex hormones such as testosterone, dysbiosis, and insulin resistance, etc., in addition to aging. Each of these pathological conditions is thought to be intricately related to each other, leading to sarcopenia. This review will summarize the relationship between CLD and myokines.
Collapse
Affiliation(s)
- Hiroki Nishikawa
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, 2-7, Daigakumachi, Takatsuki 569-8686, Osaka, Japan;
| | - Soo Ki Kim
- Department of Gastroenterology, Kobe Asahi Hospital, Kobe 653-8501, Hyogo, Japan
| | - Akira Asai
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, 2-7, Daigakumachi, Takatsuki 569-8686, Osaka, Japan;
| |
Collapse
|
14
|
Meiliana A, Dewi NM, Latarissa IR, Barliana MI, Alfian SD, Yulianti T, Wijaya A. Yoga Practice as a Potential Sarcopenia Prevention Strategy in Indonesian Older Adults: A Cross-Sectional Study. Open Access J Sports Med 2025; 16:3-13. [PMID: 39816476 PMCID: PMC11733206 DOI: 10.2147/oajsm.s494489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025] Open
Abstract
Background Sarcopenia is characterized by the progressive loss of skeletal muscle mass and poses a significant health challenge for older adults by increasing the risk of disability and decreasing quality of life. Yoga considers as a low-risk and beneficial exercise for older adults. This research aims to evaluate the potential of yoga practice as a preventive strategy against sarcopenia in Indonesian older adults. Methods An observational cross-sectional research was conducted including 41 older adults aged 60-87 years. The research focused on key biomarkers and functional assessments, including serum insulin-like growth factor 1 (IGF-1) levels, telomere length, gait speed, hand grip strength, and SARC-F questionnaire scores. Results The results showed that participants aged 71-80 years who practiced yoga for more than a year had significantly higher IGF-1 levels (p=0.04). While improvements in gait speed, hand grip strength, and SARC-F scores were observed, these changes were not statistically significant, and no significant differences were found in telomere length. Conclusion Yoga in older adults was associated with higher IGF-1 levels and potential improvements in upper and lower extremity strength, though these findings were not statistically significant and did not influence telomere length. Yoga practice shows potential as an emerging adjuvant option but can not be applied as a single strategy for sarcopenia prevention in older adults.
Collapse
Affiliation(s)
- Anna Meiliana
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Prodia Clinical Laboratory, Jakarta, Indonesia
| | - Nurrani Mustika Dewi
- Prodia Clinical Laboratory, Jakarta, Indonesia
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Irma Rahayu Latarissa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia
| | - Sofa Dewi Alfian
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia
| | | | - Andi Wijaya
- Prodia Clinical Laboratory, Jakarta, Indonesia
| |
Collapse
|
15
|
Abdul Hafizz AMH, Mohd Mokthar N, Md Zin RR, P. Mongan N, Mamat @ Yusof MN, Kampan NC, Chew KT, Shafiee MN. Insulin-like Growth Factor 1 (IGF1) and Its Isoforms: Insights into the Mechanisms of Endometrial Cancer. Cancers (Basel) 2025; 17:129. [PMID: 39796756 PMCID: PMC11720045 DOI: 10.3390/cancers17010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/25/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Endometrial cancer (EC) is a common gynaecological malignancy associated with metabolic dysfunctions such as obesity, diabetes and insulin resistance, as well as hormonal imbalances, particularly involving oestrogen and progesterone. These factors disrupt normal cellular metabolism, heightening the risk of developing endometrioid EC (EEC), the most prevalent subtype of EC. The insulin-like growth factor-1 (IGF1) pathway, a key regulator of growth, metabolism, and organ function, is implicated in EC progression. Recent research highlights the distinct roles of IGF1 isoforms, including IGF1-Ea, IGF1-Eb, and IGF1-Ec, in promoting tumour growth, metastasis, and hormone signalling interactions, particularly with oestrogen. This review examines the function and clinical significance of IGF-1 isoforms, emphasising their mechanisms in gynaecological physiology and their contributions to EC pathogenesis. Evidence from other cancers further underscores the relevance of IGF1 isoforms in driving tumour behaviours, offering valuable insights into their potential as biomarkers and therapeutic targets. Understanding these mechanisms provides opportunities for novel approaches to the prevention, diagnosis, and treatment of EC, improving patient outcomes and advancing the broader field of hormone-driven cancers.
Collapse
Affiliation(s)
| | - Norfilza Mohd Mokthar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Reena Rahayu Md Zin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nigel P. Mongan
- Biodiscovery Institute, Faculty of Medicine and Health Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Mohd Nazzary Mamat @ Yusof
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kah Teik Chew
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mohamad Nasir Shafiee
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
16
|
Crişan D, Avram L, Morariu-Barb A, Grapa C, Hirişcau I, Crăciun R, Donca V, Nemeş A. Sarcopenia in MASLD-Eat to Beat Steatosis, Move to Prove Strength. Nutrients 2025; 17:178. [PMID: 39796612 PMCID: PMC11722590 DOI: 10.3390/nu17010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
The connections between sarcopenia and various chronic conditions, including type 2 diabetes (T2DM), metabolic syndrome (MetS), and liver disease have been highlighted recently. There is also a high occurrence of sarcopenia in metabolic dysfunction-associated steatotic liver disease (MASLD) patients, who are often disregarded. Both experimental and clinical findings suggest a complex, bidirectional relationship between MASLD and sarcopenia. While vitamin D, testosterone, and specific drug therapies show promise in mitigating sarcopenia, consensus on effective treatments is lacking. Recent focus on lifestyle interventions emphasizes dietary therapy and exercise for sarcopenic obesity in MASLD. Challenges arise as weight loss, a primary MASLD treatment, may lead to muscle mass reduction. The therapeutic approach to sarcopenia in morbidly obese MASLD patients also includes bariatric surgery (BS). BS induces weight loss and stabilizes metabolic imbalances, but its impact on sarcopenia is nuanced, underscoring the need for further research. Our aim is to provide a comprehensive review of the interplay between sarcopenia and MASLD and offer insight into the most recent therapeutic challenges and discoveries, as sarcopenia is often overlooked or unrecognized and poses significant challenges for managing these patients.
Collapse
Affiliation(s)
- Dana Crişan
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Lucreţia Avram
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Andreea Morariu-Barb
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400162 Cluj-Napoca, Romania
| | - Cristiana Grapa
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400162 Cluj-Napoca, Romania
| | - Ioana Hirişcau
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
| | - Rareş Crăciun
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400162 Cluj-Napoca, Romania
| | - Valer Donca
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Andrada Nemeş
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| |
Collapse
|
17
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
18
|
Nunes-Pinto M, Bandeira de Mello RG, Pinto MN, Moro C, Vellas B, Martinez LO, Rolland Y, de Souto Barreto P. Sarcopenia and the biological determinants of aging: A narrative review from a geroscience perspective. Ageing Res Rev 2025; 103:102587. [PMID: 39571617 DOI: 10.1016/j.arr.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND The physiopathology of sarcopenia shares common biological cascades with the aging process, as does any other age-related condition. However, our understanding of the interconnected pathways between diagnosed sarcopenia and aging remains limited, lacking sufficient scientific evidence. METHODS This narrative review aims to gather and describe the current evidence on the relationship between biological aging determinants, commonly referred to as the hallmarks of aging, and diagnosed sarcopenia in humans. RESULTS Among the twelve hallmarks of aging studied, there appears to be a substantial association between sarcopenia and mitochondrial dysfunction, epigenetic alterations, deregulated nutrient sensing, and altered intercellular communication. Although limited, preliminary evidence suggests a promising association between sarcopenia and genomic instability or stem cell exhaustion. DISCUSSION Overall, an imbalance in energy regulation, characterized by impaired mitochondrial energy production and alterations in circulatory markers, is commonly associated with sarcopenia and may reflect the interplay between aging physiology and sarcopenia biology.
Collapse
Affiliation(s)
- Mariá Nunes-Pinto
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; Postgraduate Program in Medical Sciences (Endocrinology), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Renato Gorga Bandeira de Mello
- Postgraduate Program in Medical Sciences (Endocrinology), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Master of Public Health Program, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Milena Nunes Pinto
- School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cédric Moro
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse UMR1297, France
| | - Bruno Vellas
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| | - Laurent O Martinez
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse UMR1297, France; IHU HealthAge, Toulouse, France
| | - Yves Rolland
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| | - Philipe de Souto Barreto
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| |
Collapse
|
19
|
Lee DH, Lee HJ, Yang G, Kim DY, Kim JU, Yook TH, Lee JH, Kim HJ. A novel treatment strategy targeting cellular pathways with natural products to alleviate sarcopenia. Phytother Res 2024; 38:5033-5051. [PMID: 39099170 DOI: 10.1002/ptr.8301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
Sarcopenia is a condition marked by a significant reduction in muscle mass and strength, primarily due to the aging process, which critically impacts muscle protein dynamics, metabolic functions, and overall physical functionality. This condition leads to increased body fat and reduced daily activity, contributing to severe health issues and a lower quality of life among the elderly. Recognized in the ICD-10-CM only in 2016, sarcopenia lacks definitive treatment options despite its growing prevalence and substantial social and economic implications. Given the aging global population, addressing sarcopenia has become increasingly relevant and necessary. The primary causes include aging, cachexia, diabetes, and nutritional deficiencies, leading to imbalances in protein synthesis and degradation, mitochondrial dysfunction, and hormonal changes. Exercise remains the most effective intervention, but it is often impractical for individuals with limited mobility, and pharmacological options such as anabolic steroids and myostatin inhibitors are not FDA-approved and are still under investigation. This review is crucial as it examines the potential of natural products as a novel treatment strategy for sarcopenia, targeting multiple mechanisms involved in its pathogenesis. By exploring natural products' multi-targeted effects, this study aims to provide innovative and practical solutions for sarcopenia management. Therefore, this review indicates significant improvements in muscle mass and function with the use of specific natural compounds, suggesting promising alternatives for those unable to engage in regular physical activity.
Collapse
Affiliation(s)
- Da Hee Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Hye Jin Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Gabsik Yang
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Dae Yong Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Jong Uk Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Tae Han Yook
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Jun Ho Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
- Da Capo Co., Ltd., Jeonju-si, Republic of Korea
| | - Hong Jun Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| |
Collapse
|
20
|
Liu J, Chen M, Xia X, Wang Z, Wang Y, Xi L. Causal associations between the insulin-like growth factor family and sarcopenia: a bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1422472. [PMID: 39507055 PMCID: PMC11537870 DOI: 10.3389/fendo.2024.1422472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Objective Insulin-like growth factor (IGF) is closely associated with sarcopenia, yet the causal relationship of this association remains unclear. This study aims to explore the potential causal relationship between members of the IGF family and sarcopenia from a genetic perspective through bidirectional Mendelian randomization (MR) analysis using two-sample datasets. Methods Five genetically predicted factors of the IGF family (IGF-1, IGF-1R, IGF-2R, IGFBP-3, IGFBP-7) as one sample, while four relevant features of sarcopenia (low hand grip strength, appendicular lean mass, whole body fat-free mass, and walking pace) as another sample, in conducting a two-sample MR analysis. Results The forward MR results of the relationship between IGF and sarcopenia showed that elevated levels of IGF-1 reduced the risk of low hand grip strength (OR = 0.936, 95% CI=0.892-0.983, P = 0.008) and increased appendicular lean mass of the extremities and whole body fat-free mass (OR = 1.125, 95% CI=1.070-1.182,P = 0.000; OR =1.076, 95% CI=1.047-1.106, P=0.000), reduced the risk of sarcopenia. Elevated IGF-1R also favored an increase in whole body fat-free mass (OR=1.023, 95% CI=1.008-1.038, P =0.002), and the appendicular lean mass trait was more pronounced with elevated IGFBP-3 and IGFBP-7 (OR=1.034, 95% CI=1.024-1.044, P =0.000; OR=1.020, 95% CI=1.010-1.030, P=0.000). Inverse MR results of the effect of sarcopenia on IGF showed that decreased hand grip strength may elevate IGF-1 levels (OR=1.243, 95% CI=1.026-1.505,P =0.027), whereas improvements in appendicular lean mass, whole body fat-free mass traits, and increased walking pace decreased IGF-1 levels (OR=0.902, 95% CI: 0.877-0.927, P = 0.000; OR=0.903, 95% CI=0.859-0.949,P = 0.000; OR=0.209, 95% CI=0.051-0.862,P = 0.045). Also decreased hand grip strength may elevate IGF-1R levels (OR=1.454, 95% CI=1.108-1.909, P =0.007), and appendicular lean mass stimulated high expression of IGFBP-1 (OR=1.314, 95% CI=1.003-1.722, P =0.047). Heterogeneity and pleiotropy were not detected in all results, and the results were stable and reliable. Conclusion There is a bi-directional causal association between IGF family members and the risk of sarcopenia, which provides a more adequate basis for early biological monitoring of sarcopenia and may provide new targets for early intervention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Jili Liu
- Department of Geriatrics, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meng Chen
- Department of Geriatrics and Special Needs Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xin Xia
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaolin Wang
- Department of Traditional Chinese Medicine, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanqin Wang
- Department of Hematology, Shanxi Hospital of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Ling Xi
- Department of Geriatrics, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
21
|
Mayakrishnan V, Kannappan P, Balakarthikeyan J, Kim CY. Rodent model intervention for prevention and optimal management of sarcopenia: A systematic review on the beneficial effects of nutrients & non-nutrients and exercise to improve skeletal muscle health. Ageing Res Rev 2024; 102:102543. [PMID: 39427886 DOI: 10.1016/j.arr.2024.102543] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Sarcopenia is a common musculoskeletal disorder characterized by degenerative processes and is strongly linked to an increased susceptibility to falls, fractures, physical limitations, and mortality. Several models have been used to explore therapeutic and preventative measures as well as to gain insight into the molecular mechanisms behind sarcopenia. With novel experimental methodologies emerging to design foods or novel versions of conventional foods, understanding the impact of nutrition on the prevention and management of sarcopenia has become important. This review provides a thorough assessment of the use of rodent models of sarcopenia for understanding the aging process, focusing the effects of nutrients, plant extracts, exercise, and combined interventions on skeletal muscle health. According to empirical research, nutraceuticals and functional foods have demonstrated potential benefits in enhancing physical performance. In preclinical investigations, the administration of herbal extracts and naturally occurring bioactive compounds yielded advantageous outcomes such as augmented muscle mass and strength generation. Furthermore, herbal treatments exhibited inhibitory effects on muscle atrophy and sarcopenia. A substantial body of information establishes a connection between diet and the muscle mass, strength, and functionality of older individuals. This suggests that nutrition has a major impact in both the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Vijayakumar Mayakrishnan
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Priya Kannappan
- PSG College of Arts & Science, Civil Aerodrome, Coimbatore, Tamil Nadu 641014, India
| | | | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Department of Food and Nutrition, Yeungnam University Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
22
|
Najm A, Moldoveanu ET, Niculescu AG, Grumezescu AM, Beuran M, Gaspar BS. Advancements in Drug Delivery Systems for the Treatment of Sarcopenia: An Updated Overview. Int J Mol Sci 2024; 25:10766. [PMID: 39409095 PMCID: PMC11476378 DOI: 10.3390/ijms251910766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Since sarcopenia is a progressive condition that leads to decreased muscle mass and function, especially in elderly people, it is a public health problem that requires attention from researchers. This review aims to highlight drug delivery systems that have a high and efficient therapeutic potential for sarcopenia. Current as well as future research needs to consider the barriers encountered in the realization of delivery systems, such as the route of administration, the interaction of the systems with the aggressive environment of the human body, the efficient delivery and loading of the systems with therapeutic agents, and the targeted delivery of therapeutic agents into the muscle tissue without creating undesirable adverse effects. Thus, this paper sets the framework of existing drug delivery possibilities for the treatment of sarcopenia, serving as an inception point for future interdisciplinary studies.
Collapse
Affiliation(s)
- Alfred Najm
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Elena-Theodora Moldoveanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Romania Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Romania Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Mircea Beuran
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
23
|
Fan X, Wang Y, Zhang Z, Yang R, Zhou Y, Gu J. Assessing the causal relationship between frailty and sex hormone-binding globulin or insulin-like growth factor-1 levels: A sex-stratified bidirectional Mendelian Randomization study. Exp Gerontol 2024; 195:112545. [PMID: 39154868 DOI: 10.1016/j.exger.2024.112545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/07/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND The association between frailty and sex hormone-binding globulin (SHBG) or insulin-like growth factor-1(IGF-1) levels demonstrates sex differences with inconsistent conclusions. This study aims to explore the causal relationship between frailty and SHBG or IGF-1 levels through bidirectional Mendelian randomization (MR). METHODS We conducted two-sample bidirectional sex-stratified MR analyses using summary-level data from genome-wide association studies (GWASs) to examine the causal relationship between frailty and IGF-1 or SHBG levels, as measured by frailty index (FI) and frailty phenotype (FP). We use the random-effects inverse-variance weighted (IVW), weighted median, MR-Egger, MR-Egger intercept, and leave-one-out approaches. RESULT The relationship between frailty and SHBG or IGF-1 levels is inversely related, with a significant decrease in SHBG levels in females. Specifically, SHBG levels significantly decrease with FI (β = -5.49; 95 % CI: -9.67 to -1.32; FDR = 0.02) and more pronounced with FP (β = -10.14; 95 % CI: -16.16 to -4.13; FDR = 0.01), as determined by the IVW approach. However, reverse analysis shows no significant effect of IGF-1 or SHBG levels on either FI or FP (p > 0.05). CONCLUSION Our study indicates a negative correlation between frailty and the levels of SHBG and IGF-1. It is suggested that further research is required to establish cut-off values for SHBG and IGF-1 levels in the frailty population. This is particularly important for females at higher risk, such as those undergoing menopause, to enable comprehensive assessment and early prevention efforts. While the findings imply that reduced IGF-1 and SHBG levels may not directly contribute to frailty, it is important not to overlook the underlying mechanisms through which they may indirectly influence frailty.
Collapse
Affiliation(s)
- Xinying Fan
- Department of General Practice, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Yuxin Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, Zhejiang, China
| | - Zhaoyu Zhang
- Department of General Practice, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Runjun Yang
- Department of Nuclear Medicine, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Yajing Zhou
- Department of Biostatistics, NHC Key Laboratory for Health Technology Assessment, Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jie Gu
- Department of General Practice, Zhongshan Hospital of Fudan University, Shanghai 200032, China; International Medical Center, Zhongshan Hospital of Fudan University, Shanghai 200032, China.
| |
Collapse
|
24
|
Sarkar S, Prasanna VS, Das P, Suzuki H, Fujihara K, Kodama S, Sone H, Sreedhar R, Velayutham R, Watanabe K, Arumugam S. The onset and the development of cardiometabolic aging: an insight into the underlying mechanisms. Front Pharmacol 2024; 15:1447890. [PMID: 39391689 PMCID: PMC11464448 DOI: 10.3389/fphar.2024.1447890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024] Open
Abstract
Metabolic compromise is crucial in aggravating age-associated chronic inflammation, oxidative stress, mitochondrial damage, increased LDL and triglycerides, and elevated blood pressure. Excessive adiposity, hyperglycemia, and insulin resistance due to aging are associated with elevated levels of damaging free radicals, inducing a proinflammatory state and hampering immune cell activity, leading to a malfunctioning cardiometabolic condition. The age-associated oxidative load and redox imbalance are contributing factors for cardiometabolic morbidities via vascular remodelling and endothelial damage. Recent evidence has claimed the importance of gut microbiota in maintaining regular metabolic activity, which declines with chronological aging and cardiometabolic comorbidities. Genetic mutations, polymorphic changes, and environmental factors strongly correlate with increased vulnerability to aberrant cardiometabolic changes by affecting key physiological pathways. Numerous studies have reported a robust link between biological aging and cardiometabolic dysfunction. This review outlines the scientific evidence exploring potential mechanisms behind the onset and development of cardiovascular and metabolic issues, particularly exacerbated with aging.
Collapse
Affiliation(s)
- Sulogna Sarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Vani S. Prasanna
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Pamelika Das
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Hiroshi Suzuki
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuya Fujihara
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoru Kodama
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Remya Sreedhar
- School of Pharmacy, Sister Nivedita University, Kolkata, West Bengal, India
| | - Ravichandiran Velayutham
- Director, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| | - Kenichi Watanabe
- Department of Laboratory Medicine and Clinical Epidemiology for Prevention of Noncommunicable Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Somasundaram Arumugam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
25
|
Suda M, Paul KH, Tripathi U, Minamino T, Tchkonia T, Kirkland JL. Targeting Cell Senescence and Senolytics: Novel Interventions for Age-Related Endocrine Dysfunction. Endocr Rev 2024; 45:655-675. [PMID: 38500373 PMCID: PMC11405506 DOI: 10.1210/endrev/bnae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Multiple changes occur in hormonal regulation with aging and across various endocrine organs. These changes are associated with multiple age-related disorders and diseases. A better understanding of responsible underling biological mechanisms could help in the management of multiple endocrine disorders over and above hormone replacement therapy (HRT). Cellular senescence is involved in multiple biological aging processes and pathologies common in elderly individuals. Cellular senescence, which occurs in many older individuals but also across the lifespan in association with tissue damage, acute and chronic diseases, certain drugs, and genetic syndromes, may contribute to such endocrine disorders as osteoporosis, metabolic syndrome, and type 2 diabetes mellitus. Drugs that selectively induce senescent cell removal, "senolytics,", and drugs that attenuate the tissue-destructive secretory state of certain senescent cells, "senomorphics," appear to delay the onset of or alleviate multiple diseases, including but not limited to endocrine disorders such as diabetes, complications of obesity, age-related osteoporosis, and cancers as well as atherosclerosis, chronic kidney disease, neurodegenerative disorders, and many others. More than 30 clinical trials of senolytic and senomorphic agents have already been completed, are underway, or are planned for a variety of indications. Targeting senescent cells is a novel strategy that is distinct from conventional therapies such as HRT, and thus might address unmet medical needs and can potentially amplify effects of established endocrine drug regimens, perhaps allowing for dose decreases and reducing side effects.
Collapse
Affiliation(s)
- Masayoshi Suda
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Karl H Paul
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Utkarsh Tripathi
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Tamara Tchkonia
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L Kirkland
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
26
|
Sharma AR, Chatterjee S, Lee YH, Lee SS. Targeting Crosstalk of Signaling Pathways among Muscles-Bone-Adipose Tissue: A Promising Therapeutic Approach for Sarcopenia. Aging Dis 2024; 15:1619-1645. [PMID: 37815907 PMCID: PMC11272187 DOI: 10.14336/ad.2023.00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/03/2023] [Indexed: 10/12/2023] Open
Abstract
The aging process is associated with the development of a wide range of degenerative disorders in mammals. These diseases are characterized by a progressive decline in function at multiple levels, including the molecular, cellular, tissue, and organismal. Furthermore, it is responsible for various healthcare costs in developing and developed countries. Sarcopenia is the deterioration in the quality and functionality of muscles, which is extremely concerning as it manages many functions in the human body. This article reviews the molecular crosstalk involved in sarcopenia and the specific roles of many mediator molecules in establishing cross-talk between muscles, bone, and fatty tissues, eventually leading to sarcopenia. Besides, the involvement of various etiological factors, such as neurology, endocrinology, lifestyle, etc., makes it exceedingly difficult for clinicians to develop a coherent hypothesis that may lead to the well-organized management system required to battle this debilitating disease. The several hallmarks contributing to the progression of the disease is a vital question that needs to be addressed to ensure an efficient treatment for sarcopenia patients. Also, the intricate molecular mechanism involved in developing this disease requires more studies. The direct relationship of cellular senescence with aging is one of the pivotal issues contributing to disease pathophysiology. Some patented treatment strategies have been discussed, including drugs undergoing clinical trials and emerging options like miRNA and protein-enclosed extracellular vesicles. A clear understanding of the secretome, including the signaling pathways involved between muscles, bone, and fatty tissues, is extremely beneficial for developing novel therapeutics for curing sarcopenia.
Collapse
Affiliation(s)
| | | | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| |
Collapse
|
27
|
Li Z, Wu X, Yan Z, Cui Y, Liu Y, Cui S, Wang Y, Liu T. Unveiling the muscle-brain axis: A bidirectional mendelian randomization study investigating the causal relationship between sarcopenia-related traits and brain aging. Arch Gerontol Geriatr 2024; 123:105412. [PMID: 38513381 DOI: 10.1016/j.archger.2024.105412] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Observational studies suggest an association between sarcopenia-related traits and brain aging, but whether this association reflects a causal relationship remains unclear. This study aims to employ Mendelian randomization (MR) methods to investigate the causal impact of sarcopenia-related traits on brain aging. METHODS This study presents a comprehensive analysis of genome-wide association study (GWAS) summary data associated with sarcopenia-related traits. The data were derived from a large-scale cohort, encompassing measures such as grip strength, lean body mass, and walking pace. Measurements of brain aging were obtained from neuroimaging genetics, utilizing meta-analysis (ENIGMA) to combine magnetic resonance imaging (MRI) data from 33,992 participants. The primary methodology employed in this analysis was the inverse-variance-weighted method (IVW). Additionally, sensitivity analyses were conducted, to assess heterogeneity and pleiotropy. RESULT Appendicular lean mass(ALM) is negatively correlated with Pallidum aging; Whole body fat-free mass shows a negative correlation with Amygdala aging; Leg fat-free mass (left) and Leg fat-free mass (right) are negatively correlated with Pallidum aging; Usual walking pace is positively correlated with Nucleus Accumbens aging. Cerebellum WM aging is negatively correlated with Leg fat-free mass (left) and Leg fat-free mass (right); Hippocampus aging is negatively correlated with Hand grip strength (left) and Hand grip strength (right). Ventricles aging is positively correlated with Usual walking pace; Nucleus Accumbens aging is positively correlated with Leg fat-free mass (left) and Leg fat-free mass (right); Putamen aging is positively correlated with ALM. CONCLUSION Our study confirms that reduced muscle mass speeds up brain aging. Walking too fast raises the risk of brain aging, while maintaining or increasing appendicular lean mass, overall muscle mass, and muscle mass in both legs lowers the risk of brain aging.
Collapse
Affiliation(s)
- Zefang Li
- Department of The First Clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xueqiang Wu
- Department of Health Science, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Zhaojun Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine,Jinan, China.
| | - Yiping Cui
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yueling Liu
- School of mental health and psychological science, Anhui Medical University,Hefei, China
| | - Song Cui
- Department of The First Clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yining Wang
- Department of The First Clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyu Liu
- Department of The First Clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
28
|
Inojosa AC, Ribeiro AVH, Araújo TF, Xavier ME, Rêgo D, Bandeira F. Body Composition, Sarcopenia, and Serum Myokines in Acromegaly: A Narrative Review. J Bone Metab 2024; 31:182-195. [PMID: 39307519 PMCID: PMC11416875 DOI: 10.11005/jbm.2024.31.3.182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024] Open
Abstract
Patients with active acromegaly have a higher percentage of lean body mass, a lower percentage of fat body mass, and an increase in their extracellular water compartment compared to healthy individuals. However, muscle function appears to be compromised in patients with acromegaly, with some experiencing worsened physical performance and sarcopenia. Myokine alterations, insulin resistance, dysregulation of protein metabolism, muscle oxidative stress, neuromuscular junction impairment, and increased ectopic intramuscular fat deposits may play roles in muscle dysfunction in patients with acromegaly.
Collapse
Affiliation(s)
- Arthur Costa Inojosa
- Division of Endocrinology, Agamenon Magalhães Hospital, University of Pernambuco Medical School, Recife,
Brazil
- FBandeira Endocrine Institute, Recife,
Brazil
| | - Ana Vitória Hirt Ribeiro
- Division of Endocrinology, Agamenon Magalhães Hospital, University of Pernambuco Medical School, Recife,
Brazil
- FBandeira Endocrine Institute, Recife,
Brazil
| | - Thaís Florêncio Araújo
- Division of Endocrinology, Agamenon Magalhães Hospital, University of Pernambuco Medical School, Recife,
Brazil
- FBandeira Endocrine Institute, Recife,
Brazil
| | - Maria Eduarda Xavier
- Division of Endocrinology, Agamenon Magalhães Hospital, University of Pernambuco Medical School, Recife,
Brazil
- FBandeira Endocrine Institute, Recife,
Brazil
| | - Daniella Rêgo
- Division of Endocrinology, Agamenon Magalhães Hospital, University of Pernambuco Medical School, Recife,
Brazil
- FBandeira Endocrine Institute, Recife,
Brazil
| | - Francisco Bandeira
- Division of Endocrinology, Agamenon Magalhães Hospital, University of Pernambuco Medical School, Recife,
Brazil
- FBandeira Endocrine Institute, Recife,
Brazil
| |
Collapse
|
29
|
Jeong I, Cho EJ, Yook JS, Choi Y, Park DH, Kang JH, Lee SH, Seo DY, Jung SJ, Kwak HB. Mitochondrial Adaptations in Aging Skeletal Muscle: Implications for Resistance Exercise Training to Treat Sarcopenia. Life (Basel) 2024; 14:962. [PMID: 39202704 PMCID: PMC11355854 DOI: 10.3390/life14080962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Sarcopenia, the age-related decline in muscle mass and function, poses a significant health challenge as the global population ages. Mitochondrial dysfunction is a key factor in sarcopenia, as evidenced by the role of mitochondrial reactive oxygen species (mtROS) in mitochondrial biogenesis and dynamics, as well as mitophagy. Resistance exercise training (RET) is a well-established intervention for sarcopenia; however, its effects on the mitochondria in aging skeletal muscles remain unclear. This review aims to elucidate the relationship between mitochondrial dynamics and sarcopenia, with a specific focus on the implications of RET. Although aerobic exercise training (AET) has traditionally been viewed as more effective for mitochondrial enhancement, emerging evidence suggests that RET may also confer beneficial effects. Here, we highlight the potential of RET to modulate mtROS, drive mitochondrial biogenesis, optimize mitochondrial dynamics, and promote mitophagy in aging skeletal muscles. Understanding this interplay offers insights for combating sarcopenia and preserving skeletal muscle health in aging individuals.
Collapse
Affiliation(s)
- Ilyoung Jeong
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
| | - Eun-Jeong Cho
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
| | - Jang-Soo Yook
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
| | - Youngju Choi
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Institute of Specialized Teaching and Research, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Ho Park
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Department of Kinesiology, Inha University, Incheon 22212, Republic of Korea
| | - Ju-Hee Kang
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Seok-Hun Lee
- Combat Institute of Australia, Leederville, WA 6007, Australia;
| | - Dae-Yun Seo
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Core Research Support Center, Inje University, Busan 47392, Republic of Korea
| | - Su-Jeen Jung
- Department of Leisure Sports, Seoil University, Seoul 02192, Republic of Korea
| | - Hyo-Bum Kwak
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Department of Kinesiology, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
30
|
Nasso R, D'Errico A, Motti ML, Masullo M, Arcone R. Dietary Protein and Physical Exercise for the Treatment of Sarcopenia. Clin Pract 2024; 14:1451-1467. [PMID: 39194921 DOI: 10.3390/clinpract14040117] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Sarcopenia is a multifactorial age-related disorder that causes a decrease in muscle mass, strength, and function, leading to alteration of movement, risk of falls, and hospitalization. This article aims to review recent findings on the factors underlying sarcopenia and the strategies required to delay and counteract its symptoms. We focus on molecular factors linked to ageing, on the role of low-grade chronic and acute inflammatory conditions such as cancer, which contributes to the onset of sarcopenia, and on the clinical criteria for its diagnosis. The use of drugs against sarcopenia is still subject to debate, and the suggested approaches to restore muscle health are based on adequate dietary protein intake and physical exercise. We also highlight the difference in the amount and quality of amino acids within animal- and plant-based diets, as studies have often shown varying results regarding their effect on sarcopenia in elderly people. In addition, many studies have reported that non-pharmacological approaches, such as an optimization of dietary protein intake and training programs based on resistance exercise, can be effective in preventing and delaying sarcopenia. These approaches not only improve the maintenance of skeletal muscle function, but also reduce health care costs and improve life expectancy and quality in elderly people.
Collapse
Affiliation(s)
- Rosarita Nasso
- Department of Medical, Movement and Well-Being Sciences (DiSMMeB), University of Naples "Parthenope", Via Medina 40, 80133 Napoli, Italy
| | - Antonio D'Errico
- Department of Medical, Movement and Well-Being Sciences (DiSMMeB), University of Naples "Parthenope", Via Medina 40, 80133 Napoli, Italy
| | - Maria Letizia Motti
- Department of Medical, Movement and Well-Being Sciences (DiSMMeB), University of Naples "Parthenope", Via Medina 40, 80133 Napoli, Italy
| | - Mariorosario Masullo
- Department of Medical, Movement and Well-Being Sciences (DiSMMeB), University of Naples "Parthenope", Via Medina 40, 80133 Napoli, Italy
| | - Rosaria Arcone
- Department of Medical, Movement and Well-Being Sciences (DiSMMeB), University of Naples "Parthenope", Via Medina 40, 80133 Napoli, Italy
| |
Collapse
|
31
|
Sato R, Vatic M, Peixoto da Fonseca GW, Anker SD, von Haehling S. Biological basis and treatment of frailty and sarcopenia. Cardiovasc Res 2024:cvae073. [PMID: 38828887 DOI: 10.1093/cvr/cvae073] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 06/05/2024] Open
Abstract
In an ageing society, the importance of maintaining healthy life expectancy has been emphasized. As a result of age-related decline in functional reserve, frailty is a state of increased vulnerability and susceptibility to adverse health outcomes with a serious impact on healthy life expectancy. The decline in skeletal muscle mass and function, also known as sarcopenia, is key in the development of physical frailty. Both frailty and sarcopenia are highly prevalent in patients not only with advanced age but also in patients with illnesses that exacerbate their progression like heart failure (HF), cancer, or dementia, with the prevalence of frailty and sarcopenia in HF patients reaching up to 50-75% and 19.5-47.3%, respectively, resulting in 1.5-3 times higher 1-year mortality. The biological mechanisms of frailty and sarcopenia are multifactorial, complex, and not yet fully elucidated, ranging from DNA damage, proteostasis impairment, and epigenetic changes to mitochondrial dysfunction, cellular senescence, and environmental factors, many of which are further linked to cardiac disease. Currently, there is no gold standard for the treatment of frailty and sarcopenia, however, growing evidence supports that a combination of exercise training and nutritional supplement improves skeletal muscle function and frailty, with a variety of other therapies being devised based on the underlying pathophysiology. In this review, we address the involvement of frailty and sarcopenia in cardiac disease and describe the latest insights into their biological mechanisms as well as the potential for intervention through exercise, diet, and specific therapies.
Collapse
Affiliation(s)
- Ryosuke Sato
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Mirela Vatic
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Guilherme Wesley Peixoto da Fonseca
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité; German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
32
|
Liu Z, Guo Y, Zheng C. Type 2 diabetes mellitus related sarcopenia: a type of muscle loss distinct from sarcopenia and disuse muscle atrophy. Front Endocrinol (Lausanne) 2024; 15:1375610. [PMID: 38854688 PMCID: PMC11157032 DOI: 10.3389/fendo.2024.1375610] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/05/2024] [Indexed: 06/11/2024] Open
Abstract
Muscle loss is a significant health concern, particularly with the increasing trend of population aging, and sarcopenia has emerged as a common pathological process of muscle loss in the elderly. Currently, there has been significant progress in the research on sarcopenia, including in-depth analysis of the mechanisms underlying sarcopenia caused by aging and the development of corresponding diagnostic criteria, forming a relatively complete system. However, as research on sarcopenia progresses, the concept of secondary sarcopenia has also been proposed. Due to the incomplete understanding of muscle loss caused by chronic diseases, there are various limitations in epidemiological, basic, and clinical research. As a result, a comprehensive concept and diagnostic system have not yet been established, which greatly hinders the prevention and treatment of the disease. This review focuses on Type 2 Diabetes Mellitus (T2DM)-related sarcopenia, comparing its similarities and differences with sarcopenia and disuse muscle atrophy. The review show significant differences between the three muscle-related issues in terms of pathological changes, epidemiology and clinical manifestations, etiology, and preventive and therapeutic strategies. Unlike sarcopenia, T2DM-related sarcopenia is characterized by a reduction in type I fibers, and it differs from disuse muscle atrophy as well. The mechanism involving insulin resistance, inflammatory status, and oxidative stress remains unclear. Therefore, future research should further explore the etiology, disease progression, and prognosis of T2DM-related sarcopenia, and develop targeted diagnostic criteria and effective preventive and therapeutic strategies to better address the muscle-related issues faced by T2DM patients and improve their quality of life and overall health.
Collapse
Affiliation(s)
- Zhenchao Liu
- Institute of Integrative Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yunliang Guo
- Institute of Integrative Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chongwen Zheng
- Department of Neurology, The 2 Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
33
|
Luo YE, Villani KR, Lei H, Kuo LY, Imery I, Stoker BE, Fatima N, Noles SM, Moore CM, Barton ER. Ablation of specific insulin-like growth factor I forms reveals the importance of cleavage for regenerative capacity and glycosylation for skeletal muscle storage. FASEB J 2024; 38:e23634. [PMID: 38679876 PMCID: PMC11107140 DOI: 10.1096/fj.202302512rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
Insulin-like growth factor-I (IGF-I) facilitates mitotic and anabolic actions in all tissues. In skeletal muscle, IGF-I can promote growth and resolution of damage by promoting satellite cell proliferation and differentiation, suppressing inflammation, and enhancing fiber formation. While the most well-characterized form of IGF-I is the mature protein, alternative splicing and post-translational modification complexity lead to several additional forms of IGF-I. Previous studies showed muscle efficiently stores glycosylated pro-IGF-I. However, non-glycosylated forms display more efficient IGF-I receptor activation in vitro, suggesting that the removal of the glycosylated C terminus is a necessary step to enable increased activity. We employed CRISPR-Cas9 gene editing to ablate IGF-I glycosylation sites (2ND) or its cleavage site (3RA) in mice to determine the necessity of glycosylation or cleavage for IGF-I function in postnatal growth and during muscle regeneration. 3RA mice had the highest circulating and muscle IGF-I content, whereas 2ND mice had the lowest levels compared to wild-type mice. After weaning, 4-week-old 2ND mice exhibited higher body and skeletal muscle mass than other strains. However, by 16 weeks of age, muscle and body size differences disappeared. Even though 3RA mice had more IGF-I stored in muscle in homeostatic conditions, regeneration was delayed after cardiotoxin-induced injury, with prolonged necrosis most evident at 5 days post injury (dpi). In contrast, 2ND displayed improved regeneration with reduced necrosis, and greater fiber size and muscle mass at 11 and 21 dpi. Overall, these results demonstrate that while IGF-I glycosylation may be important for storage, cleavage is needed to enable IGF-I to be used for efficient activity in postnatal growth and following acute injury.
Collapse
Affiliation(s)
- Yangyi E. Luo
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL USA
- Myology Institute, University of Florida, Gainesville, FL USA
| | - Katelyn R. Villani
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL USA
- Myology Institute, University of Florida, Gainesville, FL USA
| | - Hanqin Lei
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL USA
| | - Li-Ying Kuo
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL USA
| | - Ian Imery
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL USA
| | - Bradley E. Stoker
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL USA
| | - Naureen Fatima
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL USA
| | - Steven M. Noles
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL USA
| | - Cara M. Moore
- Animal Care Services, University of Florida, Gainesville, FL USA
| | - Elisabeth R. Barton
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL USA
- Myology Institute, University of Florida, Gainesville, FL USA
| |
Collapse
|
34
|
Engelen MPKJ, van der Meij BS. Role of sex in nutrition research in aging and wasting disease. Curr Opin Clin Nutr Metab Care 2024; 27:207-209. [PMID: 38573747 DOI: 10.1097/mco.0000000000001025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Affiliation(s)
- Mariëlle P K J Engelen
- Center for Translational Research in Aging and Longevity, Depts. Kinesiology & Sport Management, and Primary Care & Rural Medicine, Texas A&M University, USA
| | - Barbara S van der Meij
- HAN University of Applied Sciences, Nijmegen
- Wageningen University and Research, Wageningen, The Netherlands
- Bond University Nutrition and Dietetics Research Group, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
35
|
Gökçe E, Kaushal N, Fontanille T, Vrinceanu T, Saillant K, Vints WAJ, Freret T, Gauthier A, Bherer L, Langeard A. The mediating role of lower body muscle strength and IGF-1 level in the relationship between age and cognition. A MIDUS substudy. Exp Gerontol 2024; 189:112399. [PMID: 38484906 DOI: 10.1016/j.exger.2024.112399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
OBJECTIVE Aging is a natural process associated with a decline in cognition. However, the mediating effect of physical function and circulating myokines on this relationship has yet to be fully clarified. This study investigated how muscle strength and circulating insulin-like growth factor-1 (IGF-1) levels mediate the relationship between age and cognitive functions. SUBJECTS AND METHODS A total of 1255 participants aged 25-74 years included in the Midlife in the United States II study were retrospectively analyzed. In this cross-sectional analysis, we applied a serial mediation model to explore the mediating effects of muscle strength and circulating IGF-1 levels on the relationship between age and cognitive functions. We included potential confounding factors related to sociodemographics, lifestyle, and health status as covariates in the model. RESULTS The results showed that aging had both direct and indirect effects on cognition. As predicted, muscle strength and IGF-1 levels mediated the relationship between age and specific cognitive functions. In addition, mediation analyses indicated that the association between aging and cognitive flexibility, immediate and delayed memory, and inductive reasoning were partially mediated by muscle strength and IGF-1 levels in a serial manner. CONCLUSIONS Our study demonstrated the serial multiple mediation roles of muscle strength and IGF-1 levels on the relationship between age and specific cognitive functions. Further longitudinal research should be performed to confirm the serial mediation results.
Collapse
Affiliation(s)
- Evrim Gökçe
- Université de Caen Normandie, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, Caen, France.
| | - Navin Kaushal
- School of Health & Human Sciences, Indiana University, Indiana, USA
| | - Theo Fontanille
- Université de Caen Normandie, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, Caen, France
| | - Tudor Vrinceanu
- Research Center of the Montreal Heart Institute, Montréal, Québec, Canada
| | - Kathia Saillant
- Research Center of the Montreal Heart Institute, Montréal, Québec, Canada; Department of Psychology, Université du Québec à Montréal, Québec, Canada
| | - Wouter A J Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania; Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, Maastricht, Netherlands
| | - Thomas Freret
- Université de Caen Normandie, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, Caen, France
| | - Antoine Gauthier
- Université de Caen Normandie, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, Caen, France
| | - Louis Bherer
- Research Center of the Montreal Heart Institute, Montréal, Québec, Canada
| | - Antoine Langeard
- Université de Caen Normandie, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, Caen, France
| |
Collapse
|
36
|
He L, Shi K, Chen X, Gao M, Han Y, Fang Y. Blood Profiles of Community-Dwelling People with Sarcopenia: Analysis Based on the China Health and Retirement Longitudinal Study. Gerontology 2024; 70:561-571. [PMID: 38657571 DOI: 10.1159/000537936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 02/15/2024] [Indexed: 04/26/2024] Open
Abstract
INTRODUCTION Routine blood factors can be economical and easily accessible candidates for sarcopenia screening and monitoring. The associations between sarcopenia and routine blood factors remain unclear. This study aimed to examine sarcopenia and blood factor associations based on a nation-wide cohort in China. METHODS A total of 1,307 participants and 17 routine blood indices were selected from two waves (year 2011 and year 2015) of the China Health and Retirement Longitudinal Study (CHARLS). The diagnosis of sarcopenia was based on the criteria proposed by the Asian Working Group for Sarcopenia (AWGS 2019). Generalized mixed-effects models were performed for association analyses. A logistic regression (LR) model was conducted to examine the predictive power of identifying significant blood factors for sarcopenia. RESULTS A higher sarcopenia risk was cross-sectionally associated with elevated blood concentrations of high-sensitivity C-reactive protein (hsCRP) (OR = 1.030, 95% CI [1.007, 1.053]), glycated hemoglobin (HbA1c) (OR = 1.407, 95% CI [1.126, 1.758]) and blood urea nitrogen (BUN) (OR = 1.044, 95% CI [1.002, 1.089]), and a decreased level of glucose (OR = 0.988, 95% CI [0.979, 0.997]). A higher baseline hsCRP value (OR = 1.034, 95% CI [1.029, 1.039]) and a greater over time change in hsCRP within 4 years (OR = 1.034, 95% CI [1.029, 1.039]) were associated with a higher sarcopenia risk. A higher BUN baseline value was related to a decreased sarcopenia risk over time (OR = 0.981, 95% CI [0.976, 0.986]), while a greater over time changes in BUN (OR = 1.034, 95% CI [1.029, 1.040]) and a smaller over time change in glucose (OR = 0.992, 95% CI [0.984, 0.999]) within 4 years were also related to a higher sarcopenia risk. LR based on significant blood factors (i.e., hsCRP, HbA1c, BUN, and glucose), and sarcopenia status in year 2015 yielded an area under the curve of 0.859 (95% CI: 0.836-0.882). CONCLUSION Routine blood factors involved in inflammation, protein metabolism, and glucose metabolism are significantly associated with sarcopenia. In clinical practice, plasma hsCRP, BUN, blood sugar levels, sex, age, marital status, height, and weight might be helpful for sarcopenia evaluation and monitoring.
Collapse
Affiliation(s)
- Lingxiao He
- School of Public Health, Xiamen University, Xiamen, China
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Kewei Shi
- School of Public Health, Xiamen University, Xiamen, China,
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China,
| | - Xiaodong Chen
- School of Public Health, Xiamen University, Xiamen, China
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Mingyue Gao
- School of Public Health, Xiamen University, Xiamen, China
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Yaofeng Han
- School of Public Health, Xiamen University, Xiamen, China
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Ya Fang
- School of Public Health, Xiamen University, Xiamen, China
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
37
|
Zhang Y, Zhang K, Huang S, Li W, He P. A review on associated factors and management measures for sarcopenia in type 2 diabetes mellitus. Medicine (Baltimore) 2024; 103:e37666. [PMID: 38640276 PMCID: PMC11029968 DOI: 10.1097/md.0000000000037666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/28/2024] [Accepted: 02/29/2024] [Indexed: 04/21/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by hyperglycemia, insulin resistance, and insufficient insulin secretion. Sarcopenia, as a new complication of diabetes, is characterized by the loss of muscle mass and the progressive decline of muscle strength and function in T2DM patients, which has a serious impact on the physical and mental health of patients. Insulin resistance, mitochondrial dysfunction, and chronic inflammation are common mechanisms of diabetes and sarcopenia. Reasonable exercise training, nutrition supplement, and drug intervention may improve the quality of life of patients with diabetes combined with sarcopenia. This article reviews the relevant factors and management measures of sarcopenia in T2DM patients, in order to achieve early detection, diagnosis, and intervention.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kemeng Zhang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sui Huang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhan Li
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping He
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
39
|
Hooshmandi Z, Daryanoosh F, Ahmadi Hekmatikar AH, Awang Daud DM. Highlighting the effect of reduced training volume on maintaining hormonal adaptations obtained from periodized resistance training in sarcopenic older women. Expert Rev Endocrinol Metab 2024; 19:187-197. [PMID: 38103186 DOI: 10.1080/17446651.2023.2294091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND This study investigated the impact of the High Intensity Interval Resistance Training (HIIRT) protocol on hormonal changes in older women. RESEARCH DESIGN AND METHODS Forty sarcopenic women were divided into an experimental group (EX = 30) and a control group (C = 10). The EX-group was further divided into Maintenance Training 1 (MT1 = 10), Maintenance Training 2 (MT2 = 10), and Detraining (DT = 10). The participants underwent 8 weeks of resistance training, consisting of hypertrophy and strength cycles. Following this, the EX-group had a 4-week period with no exercise or a reduced training volume. Measurements were taken at three time points. RESULTS After 8 weeks, the EX-group showed significant improvements in Insulin Like Growth Factor-1 (IGF-1), Myostatin (MSTN), Follistatin (Fstn), Growth Hormone (GH) and Cortisol (Cort) compared to the control group. During the volume reduction period, there were no significant differences between MT1 and MT2 groups, but both groups saw increases in IGF-1, Fstn, GH, and decreases in MSTN and Cort compared to the DT group. CONCLUSIONS These findings suggest that performing at least one training session per week with the HIIRT protocol is crucial for maintaining hormonal adaptations in sarcopenic older women.
Collapse
Affiliation(s)
- Zeinab Hooshmandi
- Department of Exercise Physiology, Faculty of Education and Psychology, Payame Noor University, Tehran, Iran
| | - Farhad Daryanoosh
- Department of Exercise Physiology, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| | | | - D Maryama Awang Daud
- Health Through Exercise and Active Living (HEAL) Research Unit, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
40
|
Rentflejsz J, Wojszel ZB. Diabetes Mellitus Should Be Considered While Analysing Sarcopenia-Related Biomarkers. J Clin Med 2024; 13:1107. [PMID: 38398421 PMCID: PMC10889814 DOI: 10.3390/jcm13041107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Sarcopenia is a chronic, progressive skeletal muscle disease characterised by low muscle strength and quantity or quality, leading to low physical performance. Patients with type 2 diabetes mellitus (T2DM) are more at risk of sarcopenia than euglycemic individuals. Because of several shared pathways between the two diseases, sarcopenia is also a risk factor for developing T2DM in older patients. Various biomarkers are under investigation as potentially valuable for sarcopenia diagnosis and treatment monitoring. Biomarkers related to sarcopenia can be divided into markers evaluating musculoskeletal status (biomarkers specific to muscle mass, markers of the neuromuscular junction, or myokines) and markers assuming causal factors (adipokines, hormones, and inflammatory markers). This paper reviews the current knowledge about how diabetes and T2DM complications affect potential sarcopenia biomarker concentrations. This review includes markers recently proposed by the expert group of the European Society for the Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) as those that may currently be useful in phase II and III clinical trials of sarcopenia: myostatin (MSTN); follistatin (FST); irisin; brain-derived neurotrophic factor (BDNF); procollagen type III N-terminal peptide (PIIINP; P3NP); sarcopenia index (serum creatinine to serum cystatin C ratio); adiponectin; leptin; insulin-like growth factor-1 (IGF-1); dehydroepiandrosterone sulphate (DHEAS); C-reactive protein (CRP); interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α). A better understanding of factors influencing these biomarkers' levels, including diabetes and diabetic complications, may lead to designing future studies and implementing results in clinical practice.
Collapse
Affiliation(s)
- Justyna Rentflejsz
- Doctoral School, Medical University of Bialystok, 15-089 Bialystok, Poland
- Department of Geriatrics, Medical University of Bialystok, 15-471 Bialystok, Poland;
| | - Zyta Beata Wojszel
- Department of Geriatrics, Medical University of Bialystok, 15-471 Bialystok, Poland;
| |
Collapse
|
41
|
Li S, Xie K, Xiao X, Xu P, Tang M, Li D. Correlation between sarcopenia and esophageal cancer: a narrative review. World J Surg Oncol 2024; 22:27. [PMID: 38267975 PMCID: PMC10809562 DOI: 10.1186/s12957-024-03304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/13/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND In recent years, the research on the relationship between sarcopenia before and after the treatment of esophageal cancer, as well as its impact on prognosis of esophageal cancer, has increased rapidly, which has aroused people's attention to the disease of patients with esophageal cancer complicated with sarcopenia. This review examines the prevalence of sarcopenia in patients with esophageal cancer, as well as the relationship between sarcopenia (before and after surgery or chemotherapy) and prognosis in patients with esophageal cancer. Moreover, we summarized the potential pathogenesis of sarcopenia and pharmacologic and non-pharmacologic therapies. METHODS A narrative review was performed in PubMed and Web of Science using the keywords ("esophageal cancer" or "esophageal neoplasm" or "neoplasm, esophageal" or "esophagus neoplasm" or "esophagus neoplasms" or "neoplasm, esophagus" or "neoplasms, esophagus" or "neoplasms, esophageal" or "cancer of esophagus" or "cancer of the esophagus" or "esophagus cancer" or "cancer, esophagus" or "cancers, esophagus" or "esophagus cancers" or "esophageal cancer" or "cancer, esophageal" or "cancers, esophageal" or "esophageal cancers") and ("sarcopenia" or "muscular atrophy" or "aging" or "senescence" or "biological aging" or "aging, biological" or "atrophies, muscular" or "atrophy, muscular" or "muscular atrophies" or "atrophy, muscle" or "atrophies, muscle" or "muscle atrophies"). Studies reporting relationship between sarcopenia and esophageal cancer were analyzed. RESULTS The results of the review suggest that the average prevalence of sarcopenia in esophageal cancer was 46.3% ± 19.6% ranging from 14.4 to 81% and sarcopenia can be an important predictor of poor prognosis in patients with esophageal cancer. Patients with esophageal cancer can suffer from sarcopenia due to their nutritional deficiencies, reduced physical activity, chemotherapy, and the effects of certain inflammatory factors and pathways. When classic diagnostic values for sarcopenia such as skeletal muscle index (SMI) are not available clinically, it is also feasible to predict esophageal cancer prognosis using simpler metrics, such as calf circumference (CC), five-count sit-up test (5-CST), and six-minute walk distance (6MWD). CONCLUSIONS Identifying the potential mechanism of sarcopenia in patients with esophageal cancer and implementing appropriate interventions may hold the key to improving the prognosis of these patients.
Collapse
Affiliation(s)
- Shenglan Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, 410008, China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China
| | - Kaiqiang Xie
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, 410008, China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China
| | - Xiaoxiong Xiao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pingsheng Xu
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, 410008, China.
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China.
| | - Dai Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
42
|
Yan P, Ke B, Fang X. Identification of molecular mediators of renal sarcopenia risk: a mendelian randomization analysis. J Nutr Health Aging 2024; 28:100019. [PMID: 38267164 DOI: 10.1016/j.jnha.2023.100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/27/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Observational studies have shown an association between reduced renal function and the risk of sarcopenia. However, the causal relationship and the underlying biological mechanisms remain uncertain. Using a Mendelian randomization (MR) framework, we investigated the causal role of 27 hypothetical risk mediators, including metabolites, hormones, inflammation, and stress traits, on the risk of sarcopenia. METHODS Instrumental variables (IVs) to proxy renal function were identified by selecting single nucleotide polymorphisms (SNPs) reliably associated with creatinine and cystatin C-based glomerular filtration rate (GFR) in CKDGen summary data. IVs for putative risk traits and sarcopenia traits were constructed from relevant genome-wide association studies (GWAS). MR estimated effects were obtained using an inverse-variance weighted effects model, and various sensitivity analyses were performed. The mediating role of hypothetical risk factors in the relationship between GFR and sarcopenia was assessed through multivariate MR. RESULTS Genetically predicted reduced GFRcrea was associated with higher odds of appendicular lean mass (ALM) (odds ratio (OR): 0.64, 95% confidence interval (CI) 0.37 to 0.68) and grip strength (OR: 0.67; 95% CI 0.58 to 0.78). Likewise, GFRcys highlighted a causal relationship with ALM (OR: 0.52; 95% CI 0.42 to 0.65) and grip strength (OR: 0.66; 95% CI 0.59 to 0.74). Both estimated GFR (eGFR) were negatively associated with IGF-1, IL-16, 25(OH)D, triglycerides (range of effect size per standard deviation: -0.81 to -0.30), and positively correlated with HDL cholesterol (0.62, 0.31). There was a positive correlation between IGF-1, fasting insulin and ALM as well as grip strength (OR range: 1.04-1.67) and a negative correlation between serum CRP and ALM (OR: 0.95) as well as grip strength (OR: 0.98). Additionally, genetically predicted IL-1β (OR: 0.95) and total cholesterol (OR: 0.96) were negatively associated with ALM. We found evidence that IGF-1 mediates the relationship between eGFR and risk for muscle mass and strength. CONCLUSIONS This MR study provides insight into the potential causal mechanisms between renal function and the risk of sarcopenia and proposes IGF-1 as a potential target for the prevention of renal sarcopenia.
Collapse
Affiliation(s)
- Peng Yan
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nangchang 330000, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nangchang 330000, China.
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nangchang 330000, China.
| |
Collapse
|
43
|
Johri N, Vengat M, Kumar D, Nagar P, John D, Dutta S, Mittal P. A comprehensive review on the risks assessment and treatment options for Sarcopenia in people with diabetes. J Diabetes Metab Disord 2023; 22:995-1010. [PMID: 37975099 PMCID: PMC10638272 DOI: 10.1007/s40200-023-01262-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/03/2023] [Indexed: 11/19/2023]
Abstract
Objectives This comprehensive review aims to examine the reciprocal interplay between Type 2 diabetes mellitus (T2DM) and sarcopenia, identify prevailing research gaps, and discuss therapeutic approaches and measures to enhance healthcare practices within hospital settings. Methods A thorough literature review was conducted to gather relevant studies and articles on the relationship between T2DM and sarcopenia. Various databases were searched, including Google Scholar, PubMed, Scopus, and Science Direct databases. The search terms included T2DM, sarcopenia, inflammation, insulin resistance, advanced glycation end products, oxidative stress, muscle dimensions, muscle strength, muscle performance, aging, nutrition, hormone levels, and physical activity. The collected articles were critically analysed to extract key findings and identify gaps in current research. Results The prevalence and incidence of metabolic and musculoskeletal disorders, notably T2DM and sarcopenia, have surged in recent years. T2DM is marked by inflammation, insulin resistance, accumulation of advanced glycation end products, and oxidative stress, while sarcopenia involves a progressive decline in skeletal muscle mass and function. The review underscores the age-related correlation between sarcopenia and adverse outcomes like fractures, falls, and mortality. Research gaps regarding optimal nutritional interventions for individuals with T2DM and sarcopenia are identified, emphasizing the necessity for further investigation in this area. Conclusions The reciprocal interplay between T2DM and sarcopenia holds significant importance. Further research is warranted to address knowledge gaps, particularly in utilizing precise measurement tools during clinical trials. Lifestyle modifications appear beneficial for individuals with T2DM and sarcopenia. Additionally, practical nutritional interventions require investigation to optimize healthcare practices in hospital settings. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01262-w.
Collapse
Affiliation(s)
- Nishant Johri
- Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh India
| | | | - Deepanshu Kumar
- Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh India
| | - Priya Nagar
- Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh India
| | - Davis John
- Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh India
| | - Shubham Dutta
- Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh India
| | - Piyush Mittal
- Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh India
| |
Collapse
|
44
|
Aslam MA, Ma EB, Huh JY. Pathophysiology of sarcopenia: Genetic factors and their interplay with environmental factors. Metabolism 2023; 149:155711. [PMID: 37871831 DOI: 10.1016/j.metabol.2023.155711] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Sarcopenia is a geriatric disorder characterized by a progressive decline in muscle mass and function. This disorder has been associated with a range of adverse health outcomes, including fractures, functional deterioration, and increased mortality. The pathophysiology of sarcopenia is highly complex and multifactorial, involving both genetic and environmental factors as key contributors. This review consolidates current knowledge on the genetic factors influencing the pathogenesis of sarcopenia, particularly focusing on the altered gene expression of structural and metabolic proteins, growth factors, hormones, and inflammatory cytokines. While the influence of environmental factors such as physical inactivity, chronic diseases, smoking, alcohol consumption, and sleep disturbances on sarcopenia is relatively well understood, there is a dearth of studies examining their mechanistic roles. Therefore, this review emphasizes the interplay between genetic and environmental factors, elucidating their cumulative role in exacerbating the progression of sarcopenia beyond their individual effects. The unique contribution of this review lies in synthesizing the latest evidence on the genetic factors and their interaction with environmental factors, aiming to inform the development of novel therapeutic or preventive interventions for sarcopenia.
Collapse
Affiliation(s)
- Muhammad Arif Aslam
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Eun Bi Ma
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Joo Young Huh
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
45
|
Maurotti S, Pujia R, Mazza E, Pileggi MF, Arturi F, Tarsitano MG, Montalcini T, Pujia A, Ferro Y. Low Relative Handgrip Strength Is Associated with a High Risk of Non-Alcoholic Fatty Liver Disease in Italian Adults: A Retrospective Cohort Study. APPLIED SCIENCES 2023; 13:12489. [DOI: 10.3390/app132212489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) and the presence of low muscle mass (sarcopenia) represent noteworthy health issues. Handgrip strength, a muscle function indicator, is vital for sarcopenia diagnosis. We investigated the link between handgrip strength and hepatic steatosis in Italian adults. Methods: We retrospectively assessed 388 adults (≥50 years), measuring muscle function and hepatic steatosis using a dynamometer and transient elastography. We divided participants into handgrip strength tertiles. Results: 207 had NAFLD. The lowest handgrip strength tertile had a higher NAFLD prevalence (64% vs. 46%, p = 0.02). Tertiles I and II exhibited increased odds of NAFLD in comparison to tertile III, with an odds ratio of 5.30 (95% confidence interval: 2.24–12.57, p < 0.001) and 2.56 (95% confidence interval: 1.17–5.59, p = 0.01), respectively. rHGS predicted NAFLD with an AUC of 0.41 (SE = 0.029, p = 0.003). An rHGS of 1.22 achieved 18% sensitivity and 80% specificity for hepatic steatosis prediction. Conclusion: Low handgrip strength is linked to an increased susceptibility to NAFLD among the Italian population, implying its potential utility in the identification of risk for hepatic steatosis.
Collapse
Affiliation(s)
- Samantha Maurotti
- Department of Clinical and Experimental Medicine, University Magna Græcia, 88100 Catanzaro, Italy
| | - Roberta Pujia
- Department of Medical and Surgical Science, University Magna Græcia, 88100 Catanzaro, Italy
| | - Elisa Mazza
- Department of Medical and Surgical Science, University Magna Græcia, 88100 Catanzaro, Italy
| | | | - Franco Arturi
- Department of Medical and Surgical Science, University Magna Græcia, 88100 Catanzaro, Italy
- Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University Magna Græcia, 88100 Catanzaro, Italy
| | - Maria Grazia Tarsitano
- Department of Medical and Surgical Science, University Magna Græcia, 88100 Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University Magna Græcia, 88100 Catanzaro, Italy
- Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University Magna Græcia, 88100 Catanzaro, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Science, University Magna Græcia, 88100 Catanzaro, Italy
- Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University Magna Græcia, 88100 Catanzaro, Italy
| | - Yvelise Ferro
- Department of Medical and Surgical Science, University Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
46
|
Nakamura A, Yoshimura T, Ichikawa T. Liver Disease-Related Sarcopenia: A Predictor of Poor Prognosis by Accelerating Hepatic Decompensation in Advanced Chronic Liver Disease. Cureus 2023; 15:e49078. [PMID: 38024081 PMCID: PMC10658123 DOI: 10.7759/cureus.49078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background Sarcopenia is considered a prognostic factor for advanced chronic liver disease (ACLD) independent of liver function, but the underlying mechanisms are unknown. Here, we investigated whether sarcopenia contributed to hepatic decompensation and worsened prognosis. Methods This was a single-center retrospective study of 708 patients with chronic liver disease who underwent magnetic resonance elastography (MRE). Magnetic resonance imaging (MRI) was used to diagnose sarcopenia and hepatic decompensation (presence of ascites). Results The incidence of sarcopenia (29% overall) and age were significantly correlated to increased liver stiffness (LS) (p < 0.01 each), but age did not differ for LS ≥ 4 kPa. Rates of thrombocytopenia and varices increased at ≥4 kPa, and ascites (n = 52) accounted for 81% of patients with ≥6 kPa LS. Age, alcoholic liver disease, C-reactive protein, sodium level, and controlling nutritional status score were extracted as factors contributing to sarcopenia (all p < 0.05). In ACLD, sarcopenia was an independent predictor of ascites (p < 0.01), and in a follow-up analysis of 163 patients without ascites at baseline, the incidence of ascites in patients with sarcopenia was significantly higher, even after adjusting for LS and liver severity (p < 0.01). The Cox proportional hazards model indicated albumin-bilirubin score and sarcopenia as independent prognostic factors (p < 0.01 each). Conclusions In ACLD, both portal hypertension and liver disease-related sarcopenia were found to occur at ≥4 kPa. Sarcopenia was accompanied by mildly decreased sodium levels and contributed to the early development of ascites and poor prognosis, independent of liver function.
Collapse
|
47
|
Rivera FB, Escolano BT, Nifas FM, Choi S, Carado GP, Lerma E, Vijayaraghavan K, Yu MG. Interrelationship of Sarcopenia and Cardiovascular Diseases: A Review of Potential Mechanisms and Management. J ASEAN Fed Endocr Soc 2023; 39:69-78. [PMID: 38863922 PMCID: PMC11163321 DOI: 10.15605/jafes.039.01.03] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2024] Open
Abstract
Sarcopenia refers to an age-related reduction of lean body mass. It showed a reciprocal relationship with cardiovascular diseases. Thus, it is imperative to explore pathophysiological mechanisms explaining the relationship between sarcopenia and cardiovascular diseases, along with the clinical assessment, and associated management. In this review, we discuss how processes such as inflammation, oxidative stress, endothelial dysfunction, neural and hormonal modifications, as well as other metabolic disturbances influence sarcopenia as well as its association with cardiovascular diseases. Moreover, this review provides an overview of both non-pharmacological and pharmacological management for patients with sarcopenia and cardiovascular diseases, with a focus on the potential role of cardiovascular drugs to mitigate sarcopenia.
Collapse
Affiliation(s)
| | | | | | - Sarang Choi
- Ateneo de Manila School of Medicine and Public Health, Pasig City, Philippines
| | - Genquen Philip Carado
- College of Medicine, University of the East Ramon Magsaysay Memorial Medical Center, Philippines
| | - Edgar Lerma
- Section of Nephrology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | | - Marc Gregory Yu
- Section of Vascular Cell Biology, Joslin Diabetes Center and Harvard Medical School, Boston, USA
| |
Collapse
|
48
|
Petrashen AP, Lin Y, Kun B, Kreiling JA. A cluster of X-linked miRNAs are de-repressed with age in mouse liver and target growth hormone signaling. FRONTIERS IN AGING 2023; 4:1261121. [PMID: 37881503 PMCID: PMC10594992 DOI: 10.3389/fragi.2023.1261121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
Growth hormone (GH) signaling influences lifespan in a wide variety of mammalian species. We previously reported that a cluster of miRNAs located on the X-chromosome are de-repressed with age in male mouse liver, and a subset, the mir-465 family, can directly attenuate expression of the growth hormone receptor (GHR) in vitro leading to a reduction in GH signaling. Here we show that this cluster of miRNAs is also upregulated in the liver with age in females, and that calorie restriction and the Ames dwarf genotype, both known to delay aging, attenuate the upregulation of the miRNA cluster. Upregulation of mir-465 in vivo leads to a reduction in GHR mRNA in the liver and an attenuation of GH signaling, indicated by a reduction in GHR, IGF-1, IGFBP3, and ALS mRNA expression. There is a corresponding reduction in IGF-1 protein levels in the liver and plasma. These results suggest that the age-associated upregulation of the X-chromosomal cluster of miRNAs could influence lifespan.
Collapse
Affiliation(s)
| | | | | | - Jill A. Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Center for the Biology of Aging, Brown University, Providence, RI, United States
| |
Collapse
|
49
|
Xiao Y, Song D, Fu N, Zhang L, Zhang Y, Shen R, Wang S, Maitiabula G, Zhou D, Liu S, Wang H, Gao X, Wang X. Effects of resistance training on sarcopenia in patients with intestinal failure: A randomized controlled trial. Clin Nutr 2023; 42:1901-1909. [PMID: 37625319 DOI: 10.1016/j.clnu.2023.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND The potential effects of resistance training on sarcopenia in patients with intestinal failure (IF) are not fully elucidated. This study aimed to explore the efficacy of a resistance training program on appendicular skeletal muscle index (ASMI), physical performance, body composition, biochemical parameters, and health-related quality of life (HRQOL) in patients with IF exhibiting sarcopenia. METHODS A single-center randomized controlled trial was conducted in a Chinese tertiary teaching hospital. Patients with IF exhibiting sarcopenia were randomly assigned to the exercise group or control group. Participants in the exercise group incorporated four sets of resistance training involving the limbs and abdominal and lower back muscles, six times weekly for 4 weeks. The control group received no specific intervention. The primary outcome was the between-group difference in ASMI 4 weeks after intervention. Secondary outcomes included handgrip strength, 6-m gait speed, body composition, biochemical parameters, and HRQOL. RESULTS A total of 60 participants (control group 30, age 51.2 ± 12.9 years, women 43.3%; exercise group 30, age 53.9 ± 14.5 years, women 56.7%) completed the 4-week intervention trial. For the primary outcome, significant intervention effects were found in ASMI between the exercise group and the control group (mean difference 0.72, 95% CI, 0.56-0.89, P < 0.001). There were notable differences in handgrip strength (mean difference 2.7, 95% CI, 1.7-3.6, P < 0.001), 6-m gait speed (mean difference 0.08, 95% CI, 0.01-0.35, P = 0.034), body composition (including total cell mass, bone mineral content, skeletal muscle mass, lean mass, visceral fat area, total body water, intracellular water, extracellular water, and segmental water-legs), and biochemical parameters (including IGF-1, prealbumin, and hemoglobin) between the two groups (P < 0.05). No significant intervention benefits were observed for other secondary outcomes, including biochemical parameters (including albumin, total bilirubin, etc.) and HRQOL (P > 0.05). CONCLUSIONS In this randomized clinical trial, we observed that 4 weeks of resistance training was associated with improved ASMI, physical performance, biochemical parameters (including IGF-1, prealbumin, and hemoglobin), and body composition in IF patients with sarcopenia. Resistance training can be recommended as a simple and effective method to improve sarcopenia in patients with IF. CLINICAL TRIAL REGISTRATION www.chictr.org.cn, identifier: ChiCTR2100051727.
Collapse
Affiliation(s)
- Yaqin Xiao
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Deshuai Song
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General Surgery, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Niannian Fu
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Li Zhang
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yupeng Zhang
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ruting Shen
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Siwen Wang
- Department of General Surgery, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Gulisudumu Maitiabula
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Da Zhou
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Sitong Liu
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haoyang Wang
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xuejin Gao
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Xinying Wang
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
50
|
Tarantino G, Sinatti G, Citro V, Santini SJ, Balsano C. Sarcopenia, a condition shared by various diseases: can we alleviate or delay the progression? Intern Emerg Med 2023; 18:1887-1895. [PMID: 37490203 PMCID: PMC10543607 DOI: 10.1007/s11739-023-03339-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/01/2023] [Indexed: 07/26/2023]
Abstract
Sarcopenia is a severe condition common to various chronic diseases and it is reckoned as a major health problem. It encompasses many different molecular mechanisms that have been for a while discovered but not definitely clarified. Although sarcopenia is a disability status that leads to serious health consequences, the scarcity of suitable animal models has curtailed research addressing this disorder. Another limitation in the field of clinical investigation of sarcopenic patients is the lack of a generally accepted definition coupled with the difficulty of adopting common diagnostic criteria. In fact, both do not permit to clarify the exact prevalence rate and consequently limit physicians to establish any kind of therapeutical approach or, when possible, to adopt preventive measures. Unfortunately, there is no standardized cure, apart from doing more physical activity and embracing a balanced diet, but newly discovered substances start being considered. In this review, authors try to give an overview addressing principal pathways of sarcopenia and offer critical features of various possible interventions.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, Naples, Italy
| | - Gaia Sinatti
- Department of Life, Health and Environmental Sciences‑MESVA, School of Emergency‑Urgency Medicine, University of L'Aquila, 67100, L'Aquila, Italy
| | - Vincenzo Citro
- Department of General Medicine, "Umberto I" Hospital, Nocera Inferiore, SA, Italy
| | - Silvano Jr Santini
- Department of Life, Health and Environmental Sciences‑MESVA, School of Emergency‑Urgency Medicine, University of L'Aquila, 67100, L'Aquila, Italy
- Francesco Balsano Foundation, Via Giovanni Battista Martini 6, 00198, Rome, Italy
| | - Clara Balsano
- Department of Life, Health and Environmental Sciences‑MESVA, School of Emergency‑Urgency Medicine, University of L'Aquila, 67100, L'Aquila, Italy.
- Francesco Balsano Foundation, Via Giovanni Battista Martini 6, 00198, Rome, Italy.
| |
Collapse
|