1
|
Martínez-Flores D, Sampieri A, Juárez-Barragán A, Hernández-García A, Vaca L. A secondary structure within small peptides guiding spontaneous self-aggregation and nanoparticle formation. NANOSCALE ADVANCES 2024; 7:269-280. [PMID: 39600823 PMCID: PMC11587146 DOI: 10.1039/d4na00614c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Polyhedrin from Autographa californica baculovirus is a protein that self-aggregates forming a crystal structure known as polyhedra. Baculovirus occluded inside the crystal withstand for years at room temperature retaining infectivity. By investigating the smallest fragment from polyhedrin retaining the self-aggregation properties we identified a 29 amino acid sequence that spontaneously forms nanoparticles. This small sequence contains a β-sheet followed by an α-helix. We synthesized a variety of peptides with different amino acid sequences but similar secondary structure and discovered that the peptides self-aggregate forming nanoparticles of different geometries and sizes. Furthermore, peptides containing only the β-sheet or the α-helix aggregate also. This study led to the discovery of secondary structures that spontaneously self-aggregate forming nanoparticles even when fused to the green fluorescent protein.
Collapse
Affiliation(s)
- Daniel Martínez-Flores
- Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico Ciudad de México Mexico
| | - Alicia Sampieri
- Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico Ciudad de México Mexico
| | - Alan Juárez-Barragán
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Armando Hernández-García
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Luis Vaca
- Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico Ciudad de México Mexico
| |
Collapse
|
2
|
López MG, López CA, Gravisaco MJ, Alfonso V, Taboga O. Comparison between different conditions for the incorporation of foreign proteins into Autographa californica multiple polyhedrovirus polyhedra for biotechnological purposes. Arch Virol 2024; 169:108. [PMID: 38658418 DOI: 10.1007/s00705-024-06015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/02/2024] [Indexed: 04/26/2024]
Abstract
The occlusion bodies of Autographa californica multiple nucleopolyhedrovirus are proteinaceous formations with significant biotechnological potential owing to their capacity to integrate foreign proteins through fusion with polyhedrin, their primary component. However, the strategy for successful heterologous protein inclusion still requires further refinement. In this study, we conducted a comparative assessment of various conditions to achieve the embedding of recombinant proteins within polyhedra. Two baculoviruses were constructed: AcPHGFP (polh+), with GFP as a fusion to wild type (wt) polyhedrin and AcΔPHGFP (polh+), with GFP fused to a fragment corresponding to amino acids 19 to 110 of polyhedrin. These baculoviruses were evaluated by infecting Sf9 cells and stably transformed Sf9, Sf9POLH, and Sf9POLHE44G cells. The stably transformed cells contributed another copy of wt or a mutant polyhedrin, respectively. Polyhedra of each type were isolated and characterized by classical methods. The fusion PHGFP showed more-efficient incorporation into polyhedra than ΔPHGFP in the three cell lines assayed. However, ΔPHGFP polyhedron yields were higher than those of PHGFP in Sf9 and Sf9POLH cells. Based on an integral analysis of the studied parameters, it can be concluded that, except for the AcΔPHGFP/Sf9POLHE44G combination, deficiencies in one factor can be offset by improved performance by another. The combinations AcPHGFP/Sf9POLHE44G and AcΔPHGFP/Sf9POLH stand out due to their high level of incorporation and the large number of recombinant polyhedra produced, respectively. Consequently, the choice between these approaches becomes dependent on the intended application.
Collapse
Affiliation(s)
- María Gabriela López
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, B1686IGC, Hurlingham, Buenos Aires, Argentina.
| | - Cinthia Ayelén López
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, B1686IGC, Hurlingham, Buenos Aires, Argentina
| | - María José Gravisaco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, B1686IGC, Hurlingham, Buenos Aires, Argentina
| | - Victoria Alfonso
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, B1686IGC, Hurlingham, Buenos Aires, Argentina
| | - Oscar Taboga
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto S/N, B1686IGC, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Yinur D, Moges B, Hassen A, Tessema TS. Loop mediated isothermal amplification as a molecular diagnostic assay: Application and evaluation for detection of Enterohaemorrhagic Escherichia coli (O157:H7). Pract Lab Med 2023; 37:e00333. [PMID: 37693632 PMCID: PMC10492192 DOI: 10.1016/j.plabm.2023.e00333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/27/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose This study aimed at evaluating the performance of the Loop Mediated Isothermal Amplification (LAMP) diagnostic test, which targets the putative Fimbria protein-encoding gene (Z3276) for rapid and specific detection of locally isolated enterohemorrhagic Escherichia coli (EHEC) O157:H7. Results A total number of 40 locally available bacteria isolates and standard strains, among them 6 entrohemorrhagic (O157:H7) and 10 entropathogenic E. coli, 7 non diarrheic E. coli strains and 13 non entrohemorrhagic shiga toxic (stx) E. coli isolates as well as 4 pathogenic non E. coli species were used to optimize and evaluate the LAMP assay. The LAMP amplified DNA samples were visualized as turbid DNA both by naked eye and gel electrophoresis followed by staining. The assay had a sensitivity of 100% (6/6), a specificity of 97.05% (33/34), and an efficiency of 97.5% (39/40). The assay was also exhibited with 100% negative predicted value and 85.7% positive predicted value. The LAMP assay was also 10-fold more sensitive than the conventional PCR assay; sensitivity was determined by serial dilution. The results of LAMP and the PCR tests showed very high agreement (k = 0.97) in the detection of the bacteria studied. Conclusion Compared with the performance of PCR and SMAC, LAMP assay was better in terms of efficiency, rapidity and cost-effectiveness, which can be used as a point-care diagnostic test in resource-limited laboratories.
Collapse
Affiliation(s)
- Degisew Yinur
- Department of Medical Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Biniam Moges
- Department of Biotechnology, Debre Berhan University, Debre Berhan, Ethiopia
| | - Aliyi Hassen
- Department of Biotechnology, Ambo University, Ambo, Ethiopia
| | | |
Collapse
|
4
|
Kabiraz MP, Majumdar PR, Mahmud MC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023; 9:e15482. [PMID: 37151686 PMCID: PMC10161726 DOI: 10.1016/j.heliyon.2023.e15482] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne pathogens are a major public health concern and have a significant economic impact globally. From harvesting to consumption stages, food is generally contaminated by viruses, parasites, and bacteria, which causes foodborne diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS), typhoid, acute, gastroenteritis, diarrhea, and thrombotic thrombocytopenic purpura (TTP). Hence, early detection of foodborne pathogenic microbes is essential to ensure a safe food supply and to prevent foodborne diseases. The identification of foodborne pathogens is associated with conventional (e.g., culture-based, biochemical test-based, immunological-based, and nucleic acid-based methods) and advances (e.g., hybridization-based, array-based, spectroscopy-based, and biosensor-based process) techniques. For industrial food applications, detection methods could meet parameters such as accuracy level, efficiency, quickness, specificity, sensitivity, and non-labor intensive. This review provides an overview of conventional and advanced techniques used to detect foodborne pathogens over the years. Therefore, the scientific community, policymakers, and food and agriculture industries can choose an appropriate method for better results.
Collapse
Affiliation(s)
- Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Priyanka Rani Majumdar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - M.M. Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, VIC, 3125, Australia
| | - Shuva Bhowmik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author. Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand.
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author.
| |
Collapse
|
5
|
Hasanin MS, Abdelraof M, Hashem AH, El Saied H. Sustainable bacterial cellulose production by Achromobacter using mango peel waste. Microb Cell Fact 2023; 22:24. [PMID: 36747200 PMCID: PMC9901133 DOI: 10.1186/s12934-023-02031-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/21/2023] [Indexed: 02/08/2023] Open
Abstract
Bacterial Cellulose (BC) is still the most renewable available biopolymer produced in fine nature from alternative microbial sources as bacteria. In the present study, newly BC producing bacteria were successfully isolated from acidic fruits. The most potent producer was isolated from strawberry and identified genetically using 16 s rRNA technique as Achromobacter S3. Different fruit peels were screened to produce BC using the cheapest culture medium. Among them, Mango peel waste (MPW) hydrolysate proved to be the significant inducible alternative medium without any extra nutrients for the maximum productivity. Improvement of the BC yield was successfully achieved via statistical optimization of the MPW culture medium, from 0.52 g/L to 1.22 g/L with 2.5-fold increased about the standard HS culture medium. Additionally, the physicochemical analysis affirmed the cellulose molecular structure as well as observed the crystallinity of nanofiber as 72 and 79% for BC produced by Achromobacter S33 on HS and MPW media, respectively. Moreover, the topographical study illustrated that the BC nanofibers had close characteristics upon fiber dimeter and length as about 10 and 200 nm, respectively.
Collapse
Affiliation(s)
- Mohamed S. Hasanin
- grid.419725.c0000 0001 2151 8157Cellulose and Paper Department, National Research Centre, Cairo, 12622 Dokki Egypt
| | - Mohamed Abdelraof
- Microbial Chemistry Department, National Research Centre, Cairo, 12622, Dokki, Egypt.
| | - Amr H. Hashem
- grid.411303.40000 0001 2155 6022Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884 Egypt
| | - Houssni El Saied
- grid.419725.c0000 0001 2151 8157Cellulose and Paper Department, National Research Centre, Cairo, 12622 Dokki Egypt
| |
Collapse
|
6
|
Malik MS, Rehman A, Khan IU, Khan TA, Jamil M, Rha ES, Anees M. Thermo-neutrophilic cellulases and chitinases characterized from a novel putative antifungal biocontrol agent: Bacillus subtilis TD11. PLoS One 2023; 18:e0281102. [PMID: 36706132 PMCID: PMC9882894 DOI: 10.1371/journal.pone.0281102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Cellulose and chitin are the most abundant naturally occurring biopolymers synthesized in plants and animals and are used for synthesis of different organic compounds and acids in the industry. Therefore, cellulases and chitinases are important for their multiple uses in industry and biotechnology. Moreover, chitinases have a role in the biological control of phytopathogens. A bacterial strain Bacillus subtilis TD11 was previously isolated and characterized as a putative biocontrol agent owing to its significant antifungal potential. In this study, cellulase and chitinase produced by the strain B. subtilis TD11 were purified and characterized. The activity of the cellulases and chitinases were optimized at different pH (2 to 10) and temperatures (20 to 90°C). The substrate specificity of cellulases was evaluated using different substances including carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), and crystalline substrates. The cellulase produced by B. subtilis TD11 had a molecular mass of 45 kDa while that of chitinase was 55 kDa. The optimal activities of the enzymes were found at neutral pH (6.0 to 7.0). The optimum temperature for the purified cellulases was in the range of 50 to 70°C while, purified chitinases were optimally active at 50°C. The highest substrate specificity of the purified cellulase was found for CMC (100%) followed by HEC (>50% activity) while no hydrolysis was observed against the crystalline substrates. Moreover, it was observed that the purified chitinase was inhibitory against the fungi containing chitin in their hyphal walls i.e., Rhizoctonia, Colletotrichum, Aspergillus and Fusarium having a dose-effect relationship.
Collapse
Affiliation(s)
- Muhammad Saqib Malik
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Abdul Rehman
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Irfan Ullah Khan
- Vaccine Development Group, Animal Sciences Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Taj Ali Khan
- Department of Microbiology, Khyber Medical University Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Jamil
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Eui Shik Rha
- Department of Well-Being Resources, Sunchon National University, Suncheon, Republic of Korea
- * E-mail: (MA); (ESR)
| | - Muhammad Anees
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
- * E-mail: (MA); (ESR)
| |
Collapse
|
7
|
Cruz-Resendiz A, Acero G, Sampieri A, Gevorkian G, Salvador C, Escobar L, Rosendo-Pineda MJ, Medeiros M, Vaca L. An ambient-temperature stable nanoparticle-based vaccine for nasal application that confers long-lasting immunogenicity to carried antigens. Front Immunol 2022; 13:1057499. [DOI: 10.3389/fimmu.2022.1057499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Polyhedrins are viral proteins present in a large family of baculoviruses that form occlusion bodies (polyhedra). These structures protect the virus particles from the outside environment until they are ingested by susceptible insects. Occluded viruses can sustain inclement weather for long periods of time. Therefore, the polyhedra is a natural preservative that keeps the viral structure intact at ambient temperature for years. In a previous study we identified the first 110 amino acids from polyhedrin (PH(1-110)) as a good candidate to carry antigens of interest. As a proof of concept, we produced a fusion protein with PH(1-110) and the green fluorescent protein (PH(1-110)GFP). The fusion protein associates spontaneously during its synthesis resulting in the formation of nanoparticles. Nasal immunization with these nanoparticles and in the absence of any adjuvant, results in a robust immune response with the production of IgG immunoglobulins that remained elevated for months and that selectively recognize the GFP but not PH(1-110). These results indicate that PH(1-110) is poorly immunogenic but capable of enhancing the immune response to GFP.
Collapse
|
8
|
Bustos C, Quezada J, Veas R, Altamirano C, Braun-Galleani S, Fickers P, Berrios J. Advances in Cell Engineering of the Komagataella phaffii Platform for Recombinant Protein Production. Metabolites 2022; 12:346. [PMID: 35448535 PMCID: PMC9027633 DOI: 10.3390/metabo12040346] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/11/2022] Open
Abstract
Komagataella phaffii (formerly known as Pichia pastoris) has become an increasingly important microorganism for recombinant protein production. This yeast species has gained high interest in an industrial setting for the production of a wide range of proteins, including enzymes and biopharmaceuticals. During the last decades, relevant bioprocess progress has been achieved in order to increase recombinant protein productivity and to reduce production costs. More recently, the improvement of cell features and performance has also been considered for this aim, and promising strategies with a direct and substantial impact on protein productivity have been reported. In this review, cell engineering approaches including metabolic engineering and energy supply, transcription factor modulation, and manipulation of routes involved in folding and secretion of recombinant protein are discussed. A lack of studies performed at the higher-scale bioreactor involving optimisation of cultivation parameters is also evidenced, which highlights new research aims to be considered.
Collapse
Affiliation(s)
- Cristina Bustos
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Av. de la Faculté 2B, 5030 Gembloux, Belgium;
| | - Johan Quezada
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Rhonda Veas
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Claudia Altamirano
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Stephanie Braun-Galleani
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Av. de la Faculté 2B, 5030 Gembloux, Belgium;
| | - Julio Berrios
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| |
Collapse
|
9
|
Mahmoud LM, Kaur P, Stanton D, Grosser JW, Dutt M. A cationic lipid mediated CRISPR/Cas9 technique for the production of stable genome edited citrus plants. PLANT METHODS 2022; 18:33. [PMID: 35303912 PMCID: PMC8932238 DOI: 10.1186/s13007-022-00870-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/05/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND The genetic engineering of crops has enhanced productivity in the face of climate change and a growing global population by conferring desirable genetic traits, including the enhancement of biotic and abiotic stress tolerance, to improve agriculture. The clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system has been found to be a promising technology for genomic editing. Protoplasts are often utilized for the development of genetically modified plants through in vitro integration of a recombinant DNA fragment into the plant genome. We targeted the citrus Nonexpressor of Pathogenesis-Related 3 (CsNPR3) gene, a negative regulator of systemic acquired resistance (SAR) that governs the proteasome-mediated degradation of NPR1 and developed a genome editing technique targeting citrus protoplast DNA to produce stable genome-edited citrus plants. RESULTS Here, we determined the best cationic lipid nanoparticles to deliver donor DNA and described a protocol using Lipofectamine™ LTX Reagent with PLUS Reagent to mediate DNA delivery into citrus protoplasts. A Cas9 construct containing a gRNA targeting the CsNPR3 gene was transfected into citrus protoplasts using the cationic lipid transfection agent Lipofectamine with or without polyethylene glycol (PEG, MW 6000). The optimal transfection efficiency for the encapsulation was 30% in Lipofectamine, 51% in Lipofectamine with PEG, and 2% with PEG only. Additionally, plasmid encapsulation in Lipofectamine resulted in the highest cell viability percentage (45%) compared with PEG. Nine edited plants were obtained and identified based on the T7EI assay and Sanger sequencing. The developed edited lines exhibited downregulation of CsNPR3 expression and upregulation of CsPR1. CONCLUSIONS Our results demonstrate that utilization of the cationic lipid-based transfection agent Lipofectamine is a viable option for the successful delivery of donor DNA and subsequent successful genome editing in citrus.
Collapse
Affiliation(s)
- Lamiaa M Mahmoud
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
- Pomology Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Prabhjot Kaur
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Daniel Stanton
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Jude W Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
10
|
Abstract
A favorable outcome of the COVID-19 crisis might be achieved with massive vaccination. The proposed vaccines contain several different vaccine active principles (VAP), such as inactivated virus, antigen, mRNA, and DNA, which are associated with either standard adjuvants or nanomaterials (NM) such as liposomes in Moderna's and BioNTech/Pfizer's vaccines. COVID-19 vaccine adjuvants may be chosen among liposomes or other types of NM composed for example of graphene oxide, carbon nanotubes, micelles, exosomes, membrane vesicles, polymers, or metallic NM, taking inspiration from cancer nano-vaccines, whose adjuvants may share some of their properties with those of viral vaccines. The mechanisms of action of nano-adjuvants are based on the facilitation by NM of targeting certain regions of immune interest such as the mucus, lymph nodes, and zones of infection or blood irrigation, the possible modulation of the type of attachment of the VAP to NM, in particular VAP positioning on the NM external surface to favor VAP presentation to antigen presenting cells (APC) or VAP encapsulation within NM to prevent VAP degradation, and the possibility to adjust the nature of the immune response by tuning the physico-chemical properties of NM such as their size, surface charge, or composition. The use of NM as adjuvants or the presence of nano-dimensions in COVID-19 vaccines does not only have the potential to improve the vaccine benefit/risk ratio, but also to reduce the dose of vaccine necessary to reach full efficacy. It could therefore ease the overall spread of COVID-19 vaccines within a sufficiently large portion of the world population to exit the current crisis.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France. .,Nanobacterie SARL, 36 Boulevard Flandrin, 75116, Paris, France.,Institute of Anatomy, UZH University of Zurich, Instiute of Anatomy, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
11
|
Liu ZH, Xu HL, Han GW, Tao LN, Lu Y, Zheng SY, Fang WH, He F. Self-Assembling Nanovaccine Enhances Protective Efficacy Against CSFV in Pigs. Front Immunol 2021; 12:689187. [PMID: 34367147 PMCID: PMC8334734 DOI: 10.3389/fimmu.2021.689187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/01/2021] [Indexed: 01/01/2023] Open
Abstract
Classical swine fever virus (CSFV) is a highly contagious pathogen, which pose continuous threat to the swine industry. Though most attenuated vaccines are effective, they fail to serologically distinguish between infected and vaccinated animals, hindering CSFV eradication. Beneficially, nanoparticles (NPs)-based vaccines resemble natural viruses in size and antigen structure, and offer an alternative tool to circumvent these limitations. Using self-assembling NPs as multimerization platforms provides a safe and immunogenic tool against infectious diseases. This study presented a novel strategy to display CSFV E2 glycoprotein on the surface of genetically engineered self-assembling NPs. Eukaryotic E2-fused protein (SP-E2-mi3) could self-assemble into uniform NPs as indicated in transmission electron microscope (TEM) and dynamic light scattering (DLS). SP-E2-mi3 NPs showed high stability at room temperature. This NP-based immunization resulted in enhanced antigen uptake and up-regulated production of immunostimulatory cytokines in antigen presenting cells (APCs). Moreover, the protective efficacy of SP-E2-mi3 NPs was evaluated in pigs. SP-E2-mi3 NPs significantly improved both humoral and cellular immunity, especially as indicated by the elevated CSFV-specific IFN-γ cellular immunity and >10-fold neutralizing antibodies as compared to monomeric E2. These observations were consistent to in vivo protection against CSFV lethal virus challenge in prime-boost immunization schedule. Further results revealed single dose of 10 μg of SP-E2-mi3 NPs provided considerable clinical protection against lethal virus challenge. In conclusion, these findings demonstrated that this NP-based technology has potential to enhance the potency of subunit vaccine, paving ways for nanovaccine development.
Collapse
Affiliation(s)
- Ze-Hui Liu
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hui-Ling Xu
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Guang-Wei Han
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Li-Na Tao
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ying Lu
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Su-Ya Zheng
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wei-Huan Fang
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China.,Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Fang He
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China.,Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Martínez-Flores D, Zepeda-Cervantes J, Cruz-Reséndiz A, Aguirre-Sampieri S, Sampieri A, Vaca L. SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New Viral Variants. Front Immunol 2021; 12:701501. [PMID: 34322129 PMCID: PMC8311925 DOI: 10.3389/fimmu.2021.701501] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus 19 Disease (COVID-19) originating in the province of Wuhan, China in 2019, is caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), whose infection in humans causes mild or severe clinical manifestations that mainly affect the respiratory system. So far, the COVID-19 has caused more than 2 million deaths worldwide. SARS-CoV-2 contains the Spike (S) glycoprotein on its surface, which is the main target for current vaccine development because antibodies directed against this protein can neutralize the infection. Companies and academic institutions have developed vaccines based on the S glycoprotein, as well as its antigenic domains and epitopes, which have been proven effective in generating neutralizing antibodies. However, the emergence of new SARS-CoV-2 variants could affect the effectiveness of vaccines. Here, we review the different types of vaccines designed and developed against SARS-CoV-2, placing emphasis on whether they are based on the complete S glycoprotein, its antigenic domains such as the receptor-binding domain (RBD) or short epitopes within the S glycoprotein. We also review and discuss the possible effectiveness of these vaccines against emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Daniel Martínez-Flores
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Zepeda-Cervantes
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adolfo Cruz-Reséndiz
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sergio Aguirre-Sampieri
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alicia Sampieri
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
13
|
Qi Y, Fox CB. Development of thermostable vaccine adjuvants. Expert Rev Vaccines 2021; 20:497-517. [PMID: 33724133 PMCID: PMC8292183 DOI: 10.1080/14760584.2021.1902314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/09/2021] [Indexed: 01/15/2023]
Abstract
INTRODUCTION The importance of vaccine thermostability has been discussed in the literature. Nevertheless, the challenge of developing thermostable vaccine adjuvants has sometimes not received appropriate emphasis. Adjuvants comprise an expansive range of particulate and molecular compositions, requiring innovative thermostable formulation and process development approaches. AREAS COVERED Reports on efforts to develop thermostable adjuvant-containing vaccines have increased in recent years, and substantial progress has been made in enhancing the stability of the major classes of adjuvants. This narrative review summarizes the current status of thermostable vaccine adjuvant development and looks forward to the next potential developments in the field. EXPERT OPINION As adjuvant-containing vaccines become more widely used, the unique challenges associated with developing thermostable adjuvant formulations merit increased attention. In particular, more focused efforts are needed to translate promising proof-of-concept technologies and formulations into clinical products.
Collapse
Affiliation(s)
- Yizhi Qi
- Infectious Disease Research Institute (IDRI), 1616 Eastlake
Ave E, Seattle, WA, USA
| | - Christopher B. Fox
- Infectious Disease Research Institute (IDRI), 1616 Eastlake
Ave E, Seattle, WA, USA
- Department of Global Health, University of Washington,
Seattle, WA, USA
| |
Collapse
|
14
|
Lyophilized yeast powder for adjuvant free thermostable vaccine delivery. Appl Microbiol Biotechnol 2021; 105:3131-3143. [PMID: 33834253 PMCID: PMC8032460 DOI: 10.1007/s00253-021-11259-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 11/25/2022]
Abstract
Thermolabile nature of commercially available vaccines necessitates their storage, transportation, and dissemination under refrigerated condition. Maintenance of continuous cold chain at every step increases the final cost of vaccines. Any breach in the cold chain even for a short duration results in the need to discard the vaccines. As a result, there is a pressing need for the development of thermostable vaccines. In this proof-of-concept study, we showed that E. coli curli-green fluorescent fusion protein remains stable in freeze-dried yeast powder for more than 18 and 12 months when stored at 30 °C and 37 °C respectively. Stability of the heterologous protein remains unaffected during the process of heat-inactivation and lyophilization. The mass of lyophilized yeast powder remains almost unchanged during the entire period of storage and expressed protein remains intact even after two cycles of freeze and thaws. The protease-deficient strain appears ideal for the development of whole recombinant yeast-based vaccines. The cellular abundance of expressed antigen in dry powder after a year was comparable to freshly lyophilized cells. Scanning electron microscopy showed the intact nature of cells in powdered form even after a year of storage at 30 °C. Observation made in this study showed that freeze-dry yeast powder can play a vital role in the development of thermostable vaccines. Key Points • Yeast-based vaccines can overcome problem of cold chain associated with conventional vaccines • Lyophilized yeast powder can be a simple way for long-term storage of immunogen(s) • Protease deficient strain is important for whole recombinant yeast-based vaccines
Collapse
|
15
|
Zhang W, Mo S, Liu M, Liu L, Yu L, Wang C. Rationally Designed Protein Building Blocks for Programmable Hierarchical Architectures. Front Chem 2020; 8:587975. [PMID: 33195088 PMCID: PMC7658299 DOI: 10.3389/fchem.2020.587975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/05/2020] [Indexed: 01/23/2023] Open
Abstract
Diverse natural/artificial proteins have been used as building blocks to construct a variety of well-ordered nanoscale structures over the past couple of decades. Sophisticated protein self-assemblies have attracted great scientific interests due to their potential applications in disease diagnosis, illness treatment, biomechanics, bio-optics and bio-electronics, etc. This review outlines recent efforts directed to the creation of structurally defined protein assemblies including one-dimensional (1D) strings/rings/tubules, two-dimensional (2D) planar sheets and three-dimensional (3D) polyhedral scaffolds. We elucidate various innovative strategies for manipulating proteins to self-assemble into desired architectures. The emergent applications of protein assemblies as versatile platforms in medicine and material science with improved performances have also been discussed.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Mo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingwei Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Liu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|