1
|
Stenger PL, Tribollet A, Guilhaumon F, Cuet P, Pennober G, Jourand P. A Multimarker Approach to Identify Microbial Bioindicators for Coral Reef Health Monitoring-Case Study in La Réunion Island. MICROBIAL ECOLOGY 2025; 87:179. [PMID: 39870904 PMCID: PMC11772467 DOI: 10.1007/s00248-025-02495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/11/2025] [Indexed: 01/29/2025]
Abstract
The marine microbiome arouses an increasing interest, aimed at better understanding coral reef biodiversity, coral resilience, and identifying bioindicators of ecosystem health. The present study is a microbiome mining of three environmentally contrasted sites along the Hermitage fringing reef of La Réunion Island (Western Indian Ocean). This mining aims to identify bioindicators of reef health to assist managers in preserving the fringing reefs of La Réunion. The watersheds of the fringing reefs are small, steeply sloped, and are impacted by human activities with significant land use changes and hydrological modifications along the coast and up to mid-altitudes. Sediment, seawater, and coral rubble were sampled in austral summer and winter at each site. For each compartment, bacterial, fungal, microalgal, and protist communities were characterized by high throughput DNA sequencing methodology. Results show that the reef microbiome composition varied greatly with seasons and reef compartments, but variations were different among targeted markers. No significant variation among sites was observed. Relevant bioindicators were highlighted per taxonomic groups such as the Firmicutes:Bacteroidota ratio (8.4%:7.0%), the genera Vibrio (25.2%) and Photobacterium (12.5%) dominating bacteria; the Ascomycota:Basidiomycota ratio (63.1%:36.1%), the genera Aspergillus (40.9%) and Cladosporium (16.2%) dominating fungi; the genus Ostreobium (81.5%) in Chlorophyta taxon for microalgae; and the groups of Dinoflagellata (63.3%) and Diatomea (22.6%) within the protista comprising two dominant genera: Symbiodinium (41.7%) and Pelagodinium (27.8%). This study highlights that the identified bioindicators, mainly in seawater and sediment reef compartments, could be targeted by reef conservation stakeholders to better monitor La Réunion Island's reef state of health and to improve management plans.
Collapse
Affiliation(s)
- Pierre-Louis Stenger
- IRD, CS 41095 - 2 Rue Joseph Wetzell, Parc Technologique Universitaire, 97495 Sainte Clotilde Cedex, La Réunion, France
- Omicsphere Analytics, 19 Rue Philippe Maupas, 37250, Montbazon, France
| | - Aline Tribollet
- IRD, UMR LOCEAN-IPSL (Sorbonne Université-IRD-CNRS-MNHN), Parc Technologique Universitaire, CS 41095 - 2 Rue Joseph Wetzell, 97495 Sainte Clotilde Cedex, La Réunion, France
| | - François Guilhaumon
- IRD, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France
| | - Pascale Cuet
- Université de La Réunion, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France
| | - Gwenaelle Pennober
- Université de La Réunion, UMR ESPACE-DEV, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France
| | - Philippe Jourand
- IRD, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France.
| |
Collapse
|
2
|
Fang J, Hu Y, Hu Z. Comparative analysis of codon usage patterns in 16 chloroplast genomes of suborder Halimedineae. BMC Genomics 2024; 25:945. [PMID: 39379800 PMCID: PMC11459826 DOI: 10.1186/s12864-024-10825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
The Halimedineae are marine green macroalgae that play crucial roles as primary producers in various habitats, including coral reefs, rocky shores, embayments, lagoons, and seagrass beds. Several tropical species have calcified thalli, which contribute significantly to the formation of coral reefs. In this study, we investigated the codon usage patterns and the main factors influencing codon usage bias in 16 chloroplast genomes of the suborder Halimedineae. Nucleotide composition analysis revealed that the codons of these species were enriched in A/U bases and preferred to end in A/U bases, and the distribution of GC content followed a trend of GC1 > GC2 > GC3. 30 optimal codons encoding 17 amino acids were identified, and most of the optimal codons and all of the over-expressed codons preferentially ended with A/U. The neutrality plot, effective number of codons (ENc) plot, and parity rule 2 (PR2) plot analysis indicated that natural selection played a major role in shaping codon usage bias of the most Halimedineae species. The genetic relationships based on their RSCU values and chloroplast protein-coding genes showed the closely related species have similar codon usage patterns. This study describes, for the first time, the codon usage patterns and characterization of Halimedineae chloroplast genomes, and provides new insights into the evolution of this suborder.
Collapse
Affiliation(s)
- Jiao Fang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, China.
| | - Yuquan Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, College of Life Science, Jianghan University, Wuhan, Hubei, China
| | - Zhangfeng Hu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, China.
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, College of Life Science, Jianghan University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Hidalgo-Arias A, Muñoz-Hisado V, Valles P, Geyer A, Garcia-Lopez E, Cid C. Adaptation of the Endolithic Biome in Antarctic Volcanic Rocks. Int J Mol Sci 2023; 24:13824. [PMID: 37762127 PMCID: PMC10530270 DOI: 10.3390/ijms241813824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Endolithic microorganisms, ranging from microeukaryotes to bacteria and archaea, live within the cracks and crevices of rocks. Deception Island in Antarctica constitutes an extreme environment in which endoliths face environmental threats such as intense cold, lack of light in winter, high solar radiation in summer, and heat emitted as the result of volcanic eruptions. In addition, the endolithic biome is considered the harshest one on Earth, since it suffers added threats such as dryness or lack of nutrients. Even so, samples from this hostile environment, collected at various points throughout the island, hosted diverse and numerous microorganisms such as bacteria, fungi, diatoms, ciliates, flagellates and unicellular algae. These endoliths were first identified by Scanning Electron Microscopy (SEM). To understand the molecular mechanisms of adaptation of these endoliths to their environment, genomics techniques were used, and prokaryotic and eukaryotic microorganisms were identified by metabarcoding, sequencing the V3-V4 and V4-V5 regions of the 16S and 18S rRNA genes, respectively. Subsequently, the sequences were analyzed by bioinformatic methods that allow their metabolism to be deduced from the taxonomy. The results obtained concluded that some of these microorganisms have activated the biosynthesis routes of pigments such as prodigiosin or flavonoids. These adaptation studies also revealed that microorganisms defend themselves against environmental toxins by activating metabolic pathways for the degradation of compounds such as ethylbenzene, xylene and dioxins and for the biosynthesis of antioxidant molecules such as glutathione. Finally, these Antarctic endolithic microorganisms are of great interest in astrobiology since endolithic settings are environmentally analogous to the primitive Earth or the surfaces of extraterrestrial bodies.
Collapse
Affiliation(s)
- Andrea Hidalgo-Arias
- Center for Astrobiology (CAB), CSIC-INTA, Torrejón de Ardoz, 28850 Madrid, Spain; (A.H.-A.); (V.M.-H.); (E.G.-L.)
| | - Víctor Muñoz-Hisado
- Center for Astrobiology (CAB), CSIC-INTA, Torrejón de Ardoz, 28850 Madrid, Spain; (A.H.-A.); (V.M.-H.); (E.G.-L.)
| | - Pilar Valles
- Materials and Structures Department, National Institute of Aerospace Technology (INTA), Torrejón de Ardoz, 28850 Madrid, Spain;
| | - Adelina Geyer
- Geosciences Barcelona (GEO3BCN), CSIC, Lluís Solé Sabarís s/n, 08028 Barcelona, Spain;
| | - Eva Garcia-Lopez
- Center for Astrobiology (CAB), CSIC-INTA, Torrejón de Ardoz, 28850 Madrid, Spain; (A.H.-A.); (V.M.-H.); (E.G.-L.)
| | - Cristina Cid
- Center for Astrobiology (CAB), CSIC-INTA, Torrejón de Ardoz, 28850 Madrid, Spain; (A.H.-A.); (V.M.-H.); (E.G.-L.)
| |
Collapse
|
4
|
Massé A, Detang J, Duval C, Duperron S, Woo AC, Domart-Coulon I. Bacterial Microbiota of Ostreobium, the Coral-Isolated Chlorophyte Ectosymbiont, at Contrasted Salinities. Microorganisms 2023; 11:1318. [PMID: 37317290 DOI: 10.3390/microorganisms11051318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Microscopic filaments of the siphonous green algae Ostreobium (Ulvophyceae, Bryopsidales) colonize and dissolve the calcium carbonate skeletons of coral colonies in reefs of contrasted salinities. Here, we analyzed their bacterial community's composition and plasticity in response to salinity. Multiple cultures of Pocillopora coral-isolated Ostreobium strains from two distinct rbcL lineages representative of IndoPacific environmental phylotypes were pre-acclimatized (>9 months) to three ecologically relevant reef salinities: 32.9, 35.1, and 40.2 psu. Bacterial phylotypes were visualized for the first time at filament scale by CARD-FISH in algal tissue sections, within siphons, at their surface or in their mucilage. Ostreobium-associated microbiota, characterized by bacterial 16S rDNA metabarcoding of cultured thalli and their corresponding supernatants, were structured by host genotype (Ostreobium strain lineage), with dominant Kiloniellaceae or Rhodospirillaceae (Alphaproteobacteria, Rhodospirillales) depending on Ostreobium lineage, and shifted Rhizobiales' abundances in response to the salinity increase. A small core microbiota composed of seven ASVs (~1.5% of thalli ASVs, 19-36% cumulated proportions) was persistent across three salinities in both genotypes, with putative intracellular Amoebophilaceae and Rickettsiales_AB1, as well as Hyphomonadaceae and Rhodospirillaceae also detected within environmental (Ostreobium-colonized) Pocillopora coral skeletons. This novel knowledge on the taxonomic diversity of Ostreobium bacteria paves the way to functional interaction studies within the coral holobiont.
Collapse
Affiliation(s)
- Anaïs Massé
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS (UMR7245), CP54, 63 Rue Buffon, 75005 Paris, France
| | - Juliette Detang
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS (UMR7245), CP54, 63 Rue Buffon, 75005 Paris, France
| | - Charlotte Duval
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS (UMR7245), CP54, 63 Rue Buffon, 75005 Paris, France
| | - Sébastien Duperron
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS (UMR7245), CP54, 63 Rue Buffon, 75005 Paris, France
| | - Anthony C Woo
- Pôle Analyse de Données UAR 2700 2AD, Muséum National d'Histoire Naturelle (MNHN), 43 Rue Cuvier, 75005 Paris, France
| | - Isabelle Domart-Coulon
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS (UMR7245), CP54, 63 Rue Buffon, 75005 Paris, France
| |
Collapse
|
5
|
Every refuge has its price: Ostreobium as a model for understanding how algae can live in rock and stay in business. Semin Cell Dev Biol 2023; 134:27-36. [PMID: 35341677 DOI: 10.1016/j.semcdb.2022.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022]
Abstract
Ostreobium is a siphonous green alga in the Bryopsidales (Chlorophyta) that burrows into calcium carbonate (CaCO3) substrates. In this habitat, it lives under environmental conditions unusual for an alga (i.e., low light and low oxygen) and it is a major agent of carbonate reef bioerosion. In coral skeletons, Ostreobium can form conspicuous green bands recognizable by the naked eye and it is thought to contribute to the coral's nutritional needs. With coral reefs in global decline, there is a renewed focus on understanding Ostreobium biology and its roles in the coral holobiont. This review summarizes knowledge on Ostreobium's morphological structure, biodiversity and evolution, photosynthesis, mechanism of bioerosion and its role as a member of the coral holobiont. We discuss the resources available to study Ostreobium biology, lay out some of the uncharted territories in Ostreobium biology and offer perspectives for future research.
Collapse
|
6
|
Inventory of the Seaweeds and Seagrasses of the Hawaiian Islands. BIOLOGY 2023; 12:biology12020215. [PMID: 36829491 PMCID: PMC9953416 DOI: 10.3390/biology12020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023]
Abstract
This updated list is composed of a total of 661 records, which includes 71 brown algae, 450 red algae, 137 green algae, and three seagrasses, with an overall rate of endemism of 13.2%. Almost half (46.7%) of the Hawaiian records presented here are represented by at least one DNA sequence, while 16.3% are confirmed through a DNA sequence match to a topotype, and 6.7% are confirmed through a DNA sequence match to a type specimen. The data are presented in the context of the natural history of the Hawaiian Islands, which is heavily influenced by the volcanic hotspot origin of the archipelago in the middle of the Pacific Ocean, as well as the important cultural role of seaweeds and other marine plants in Hawai'i, and the current threats to marine ecosystems, which include the introduction and proliferation of a number of invasive marine macroalgae.
Collapse
|
7
|
Cárdenas A, Raina JB, Pogoreutz C, Rädecker N, Bougoure J, Guagliardo P, Pernice M, Voolstra CR. Greater functional diversity and redundancy of coral endolithic microbiomes align with lower coral bleaching susceptibility. THE ISME JOURNAL 2022; 16:2406-2420. [PMID: 35840731 PMCID: PMC9478130 DOI: 10.1038/s41396-022-01283-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 04/14/2023]
Abstract
The skeleton of reef-building coral harbors diverse microbial communities that could compensate for metabolic deficiencies caused by the loss of algal endosymbionts, i.e., coral bleaching. However, it is unknown to what extent endolith taxonomic diversity and functional potential might contribute to thermal resilience. Here we exposed Goniastrea edwardsi and Porites lutea, two common reef-building corals from the central Red Sea to a 17-day long heat stress. Using hyperspectral imaging, marker gene/metagenomic sequencing, and NanoSIMS, we characterized their endolithic microbiomes together with 15N and 13C assimilation of two skeletal compartments: the endolithic band directly below the coral tissue and the deep skeleton. The bleaching-resistant G. edwardsi was associated with endolithic microbiomes of greater functional diversity and redundancy that exhibited lower N and C assimilation than endoliths in the bleaching-sensitive P. lutea. We propose that the lower endolithic primary productivity in G. edwardsi can be attributed to the dominance of chemolithotrophs. Lower primary production within the skeleton may prevent unbalanced nutrient fluxes to coral tissues under heat stress, thereby preserving nutrient-limiting conditions characteristic of a stable coral-algal symbiosis. Our findings link coral endolithic microbiome structure and function to bleaching susceptibility, providing new avenues for understanding and eventually mitigating reef loss.
Collapse
Affiliation(s)
- Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany.
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Claudia Pogoreutz
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Nils Rädecker
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Jeremy Bougoure
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, 6009, Australia
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, 6009, Australia
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Christian R Voolstra
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany.
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
8
|
Brumley DA, Gunasekera SP, Sauvage T, dos Santos LAH, Chen QY, Paul VJ, Luesch H. Discovery, Synthesis, and Biological Evaluation of Anaenamides C and D from a New Marine Cyanobacterium, Hormoscilla sp. JOURNAL OF NATURAL PRODUCTS 2022; 85:581-589. [PMID: 35167289 PMCID: PMC9128392 DOI: 10.1021/acs.jnatprod.1c01073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Our ongoing efforts to explore the chemical space associated with marine cyanobacteria from coral reefs of Guam have yielded two new members of the anaenamide family of natural products, anaenamides C (3) and D (4). These compounds were isolated from a novel Hormoscilla sp. (VPG16-58). Our phylogenetic profiling (16S rDNA) of this cyanobacterium indicated that VPG16-58 is taxonomically distinct from the previously reported producer of the anaephenes, VPG16-59 (Hormoscilla sp.), and other previously documented species of the genus Hormoscilla. The planar structures of 3 and 4 were determined via spectroscopic methods, and absolute configurations of the α-hydroxy acids were assigned by enantioselective HPLC analysis. To address the requirement for sufficient material for testing, we first adapted our published linear synthetic approach for 1 and 2 to generate anaenoic acid (7), which served as a point for diversification, providing the primary amides 3 and 4 from synthetic intermediates 5 and 6, respectively. The compounds were then tested for effects on HCT116 colon cancer cell viability and in an ARE-luciferase reporter gene assay for Nrf2 modulation using HEK293 human embryonic kidney cells. Our findings indicate that, in contrast to cytotoxic methyl esters 1 and 2, the primary amides 3 and 4 activate the Nrf2 pathway at noncytotoxic concentrations. Overall, our data suggest that the anaenamide scaffold is tunable to produce differential biological outcomes.
Collapse
Affiliation(s)
- David A. Brumley
- Department of Medicinal Chemistry, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Sarath P. Gunasekera
- Smithsonian Marine Station at Ft. Pierce, 701 Seaway Drive, Ft. Pierce, FL 34949, United States
| | - Thomas Sauvage
- Smithsonian Marine Station at Ft. Pierce, 701 Seaway Drive, Ft. Pierce, FL 34949, United States
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90650-001 Brazil
| | | | - Qi-Yin Chen
- Department of Medicinal Chemistry, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Valerie J. Paul
- Smithsonian Marine Station at Ft. Pierce, 701 Seaway Drive, Ft. Pierce, FL 34949, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| |
Collapse
|
9
|
Lagourgue L, Leliaert F, Payri CE. Historical biogeographical analysis of the Udoteaceae (Bryopsidales, Chlorophyta) elucidates origins of high species diversity in the Central Indo-Pacific, Western Indian Ocean and Greater Caribbean regions. Mol Phylogenet Evol 2022; 169:107412. [PMID: 35031470 DOI: 10.1016/j.ympev.2022.107412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022]
Abstract
There is a growing interest in elucidating the biogeographical processes underlying biodiversity patterns of seaweeds, with recent studies largely focusing on red and brown macroalgae. This study focuses on the siphonous green algal family Udoteaceae, which is diverse and globally distributed in tropical to warm-temperate seas, and includes species that form important components of tropical reefs. We explored the historical processes that have shaped current biodiversity patterns in the family by analyzing a comprehensive dataset of 568 specimens sampled across its geographical range, and including 45 species, corresponding to 59% of the known diversity. Historical biogeographical analysis was based on a three-locus time-calibrated phylogeny, and probabilistic modeling of geographical range evolution. Many species were found to have restricted ranges, indicative of low dispersal capacity. Our analysis points toward a Western Tethys origin and early diversification of the Udoteaceae in the Triassic period. Three centers of diversity were identified, which are, in order of highest species richness, the Central Indo-Pacific, the Western Indian Ocean, and the Greater Caribbean. Different drivers have likely played a role in shaping these diversity centres. Species richness in the Central Indo-Pacific likely resulted from speciation within the region, as well as recolonization from neighbouring regions, and overlap of some wider ranged species, corroborating the "biodiversity feedback" model. Species richness in the Western Indian Ocean can be explained by ancient and more recent diversification within the region, and dispersal from the Central Indo-Pacific. The Greater Caribbean region was colonized more recently, followed by diversification within the region.
Collapse
Affiliation(s)
- Laura Lagourgue
- Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, 75252 Paris Cedex 05, France; UMR ENTROPIE (IRD, UR, UNC, CNRS, IFREMER), Institut de Recherche pour le Développement, B.P. A5 Nouméa Cedex, Nouvelle-Calédonie, 98848, France.
| | | | - Claude E Payri
- UMR ENTROPIE (IRD, UR, UNC, CNRS, IFREMER), Institut de Recherche pour le Développement, B.P. A5 Nouméa Cedex, Nouvelle-Calédonie, 98848, France
| |
Collapse
|
10
|
Lagourgue L, Payri CE. Diversity and taxonomic revision of tribes Rhipileae and Rhipiliopsideae (Halimedaceae, Chlorophyta) based on molecular and morphological data. JOURNAL OF PHYCOLOGY 2021; 57:1450-1471. [PMID: 34003495 DOI: 10.1111/jpy.13186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Genera and species of the tribes Rhipileae and Rhipiliopsideae are abundant in most coral reef ecosystems worldwide. However, the group has been largely overlooked, and very little genetic data is available to accurately assess its diversity, phylogenetic relationships, and geographic distribution. Our study provided an in-depth reassessment of tribes Rhipileae and Rhipiliopsideae based on a species-rich dataset and the combination of molecular species delimitation, multilocus phylogenetic analyses (tufA, rbcL, and 18S rDNA), and morpho-anatomic observations. Our results revealed an unexpected diversity of 38 morphologically validated species hypotheses, including 20 new species, two of which are described in this paper and one resurrected species (Rhipilia diaphana). Based on our phylogenetic results we proposed to redefine the genera Rhipilia and Rhipiliopsis and described two new genera, Kraftalia gen. nov. (Rhipileae) and Rhipiliospina gen. nov. (Rhipiliopsideae). Finally, we validated Rhipiliella Kraft and included it in the tribe Rhipileae. Although Rhipilia and Rhipiliopsis have a pantropical distribution, none of the species studied here appeared cosmopolitan; instead, they have restricted distributions.
Collapse
Affiliation(s)
- Laura Lagourgue
- Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, Paris Cedex 05, 75252, France
- UMR ENTROPIE (IRD, UR, UNC, Ifremer, CNRS), Institut de Recherche pour le Développement, B.P. A5 Nouméa Cedex, Nouvelle-Calédonie, 98848, France
| | - Claude E Payri
- UMR ENTROPIE (IRD, UR, UNC, Ifremer, CNRS), Institut de Recherche pour le Développement, B.P. A5 Nouméa Cedex, Nouvelle-Calédonie, 98848, France
| |
Collapse
|
11
|
Schoenrock KM, McHugh TA, Krueger-Hadfield SA. Revisiting the 'bank of microscopic forms' in macroalgal-dominated ecosystems. JOURNAL OF PHYCOLOGY 2021; 57:14-29. [PMID: 33135166 DOI: 10.1111/jpy.13092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Theoretical ecological models, such as succession and facilitation, were defined in terrestrial habitats, and subsequently applied to marine and freshwater habitats in intertidal and then subtidal realms. One such model is the soil seed bank, defined as all viable seeds (or fruits) found near the soil surface that facilitate community restoration/recovery. "Banks of microscopic forms" have been hypothesized in aquatic habitats and recent work from aquaculture has highlighted dormancy in algal life cycle stages. To reinvigorate the discussions about these algal banks, we discuss differences in life cycles, dispersal, and summarize research on banks of macroalgal stages in aquatic ecosystems that may be easier to explore with modern advances in molecular technology. With focus on seminal work in global kelp forest ecosystems, we present a pilot study in northern California as proof of concept that Nereocystis luetkeana and Alaria marginata stages can be detected within kelp forests in the biofilm of rocks and bedrock using targeted primers long after zoospore release. Considering the increased interest in algae as an economic resource, [blue] carbon sink, and as ecosystem engineers, the potential for "banking" macroalgal forms could be a mechanism of resilience and recovery in aquatic populations that have complex life cycles and environmental cues for reproduction. Molecular barcoding is becoming an important tool for identifying banks of macroalgal forms in marine communities. Understanding banks of macroalgal stages, especially in deforested habitats with intense disturbance and grazer pressure, will allow researchers and marine resource managers to facilitate this natural process in recovery of the aquatic system.
Collapse
Affiliation(s)
- Kathryn M Schoenrock
- Department of Zoology, Ryan Institute, National University of Ireland, Galway, University Rd., Galway, H91 TK33, Ireland
| | - Tristin Anoush McHugh
- Long Marine Laboratory, Reef Check Foundation, 115 McAllister Road, Santa Cruz, California, 95060, USA
| | - Stacy A Krueger-Hadfield
- Department of Biology, University of Alabama at Birmingham, Campbell Hall, Room 464, Birmingham, Alabama, 35294, USA
| |
Collapse
|
12
|
Bombin S, Wysor B, Lopez-Bautista JM. Assessment of littoral algal diversity from the northern Gulf of Mexico using environmental DNA metabarcoding. JOURNAL OF PHYCOLOGY 2021; 57:269-278. [PMID: 33107058 DOI: 10.1111/jpy.13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Traditional methods for algal biodiversity monitoring are costly and time inefficient because they rely on high-level taxonomic expertise to address species identity problems involving phenotypic plasticity and morphological convergence. These problems are exacerbated in regions such as the Gulf of Mexico, that has a limited history of phycological exploration, but that are economically important or threatened by numerous anthropogenic stressors. Given the high pace of disturbance to natural systems, there is a critical need for expedient and cost-effective tools for the study of benthic algal communities. Here we document the use of environmental DNA metabarcoding, using the partial LSU rDNA and 23S rDNA plastid molecular markers, to elucidate littoral algal diversity in the Northern Gulf of Mexico. We assigned 73.7% of algal OTUs to genus and 59.6% to species ranks. Our current study detected molecular signals for 35 algal/protist species with no previous reports in the Gulf of Mexico, thus providing an important, molecular-validated, baseline of species richness for this region. We also make several bioinformatic recommendations for the efficient use of high-throughput sequence data to assess biological communities.
Collapse
Affiliation(s)
- Sergei Bombin
- Department of Biological Sciences, The University of Alabama, 1325 Science and Engineering Complex (SEC), 300 Hackberry Lane, Tuscaloosa, Alabama, 35487-0344, USA
| | - Brian Wysor
- Department of Biology, Marine Biology & Environmental Science, Roger Williams University, 1 Old Ferry Road, Bristol, Rhode Island, 02809, USA
| | - Juan M Lopez-Bautista
- Department of Biological Sciences, The University of Alabama, 1325 Science and Engineering Complex (SEC), 300 Hackberry Lane, Tuscaloosa, Alabama, 35487-0344, USA
| |
Collapse
|
13
|
Piombo E, Abdelfattah A, Droby S, Wisniewski M, Spadaro D, Schena L. Metagenomics Approaches for the Detection and Surveillance of Emerging and Recurrent Plant Pathogens. Microorganisms 2021; 9:188. [PMID: 33467169 PMCID: PMC7830299 DOI: 10.3390/microorganisms9010188] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/28/2022] Open
Abstract
Globalization has a dramatic effect on the trade and movement of seeds, fruits and vegetables, with a corresponding increase in economic losses caused by the introduction of transboundary plant pathogens. Current diagnostic techniques provide a useful and precise tool to enact surveillance protocols regarding specific organisms, but this approach is strictly targeted, while metabarcoding and shotgun metagenomics could be used to simultaneously detect all known pathogens and potentially new ones. This review aims to present the current status of high-throughput sequencing (HTS) diagnostics of fungal and bacterial plant pathogens, discuss the challenges that need to be addressed, and provide direction for the development of methods for the detection of a restricted number of related taxa (specific surveillance) or all of the microorganisms present in a sample (general surveillance). HTS techniques, particularly metabarcoding, could be useful for the surveillance of soilborne, seedborne and airborne pathogens, as well as for identifying new pathogens and determining the origin of outbreaks. Metabarcoding and shotgun metagenomics still suffer from low precision, but this issue can be limited by carefully choosing primers and bioinformatic algorithms. Advances in bioinformatics will greatly accelerate the use of metagenomics to address critical aspects related to the detection and surveillance of plant pathogens in plant material and foodstuffs.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, 10095 Grugliasco, Italy;
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, 75007 Uppsala, Sweden
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria;
- Department of Ecology, Environment and Plant Sciences, University of Stockholm, Svante Arrhenius väg 20A, Stockholm 11418, Sweden
| | - Samir Droby
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion 7505101, Israel;
| | - Michael Wisniewski
- U.S. Department of Agriculture—Agricultural Research Service (USDA-ARS), Kearneysville, WV 25430, USA;
- Department of Biological Sciences, Virginia Technical University, Blacksburg, VA 24061, USA
| | - Davide Spadaro
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, 10095 Grugliasco, Italy;
- AGROINNOVA—Centre of Competence for the Innovation in the Agroenvironmental Sector, University of Torino, 10095 Grugliasco, Italy
| | - Leonardo Schena
- Department of Agriculture, Università Mediterranea, 89122 Reggio Calabria, Italy;
| |
Collapse
|
14
|
Identification of plastic-associated species in the Mediterranean Sea using DNA metabarcoding with Nanopore MinION. Sci Rep 2020; 10:17533. [PMID: 33067509 PMCID: PMC7568539 DOI: 10.1038/s41598-020-74180-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/25/2020] [Indexed: 01/16/2023] Open
Abstract
Plastic debris in the ocean form a new ecosystem, termed ‘plastisphere’, which hosts a variety of marine organisms. Recent studies implemented DNA metabarcoding to characterize the taxonomic composition of the plastisphere in different areas of the world. In this study, we used a modified metabarcoding approach which was based on longer barcode sequences for the characterization of the plastisphere biota. We compared the microbiome of polyethylene food bags after 1 month at sea to the free-living biome in two proximal but environmentally different locations on the Mediterranean coast of Israel. We targeted the full 1.5 kb-long 16S rRNA gene for bacteria and 0.4–0.8 kb-long regions within the 18S rRNA, ITS, tufA and COI loci for eukaryotes. The taxonomic barcodes were sequenced using Oxford Nanopore Technology with multiplexing on a single MinION flow cell. We identified between 1249 and 2141 species in each of the plastic samples, of which 61 species (34 bacteria and 27 eukaryotes) were categorized as plastic-specific, including species that belong to known hydrocarbon-degrading genera. In addition to a large prokaryotes repertoire, our results, supported by scanning electron microscopy, depict a surprisingly high biodiversity of eukaryotes within the plastisphere with a dominant presence of diatoms as well as other protists, algae and fungi.
Collapse
|
15
|
Massé A, Tribollet A, Meziane T, Bourguet-Kondracki ML, Yéprémian C, Sève C, Thiney N, Longeon A, Couté A, Domart-Coulon I. Functional diversity of microboring Ostreobium algae isolated from corals. Environ Microbiol 2020; 22:4825-4846. [PMID: 32990394 DOI: 10.1111/1462-2920.15256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
Abstract
The filamentous chlorophyte Ostreobium sp. dominates shallow marine carbonate microboring communities, and is one of the major agents of reef bioerosion. While its large genetic diversity has emerged, its physiology remains little known, with unexplored relationship between genotypes and phenotypes (endolithic versus free-living growth forms). Here, we isolated nine strains affiliated to two lineages of Ostreobium (>8% sequence divergence of the plastid gene rbcL), one of which was assigned to the family Odoaceae, from the fast-growing coral host Pocillopora acuta Lamarck 1816. Free-living isolates maintained their bioerosive potential, colonizing pre-bleached coral carbonate skeletons. We compared phenotypes, highlighting shifts in pigment and fatty acid compositions, carbon to nitrogen ratios and stable isotope compositions (δ13 C and δ15 N). Our data show a pattern of higher chlorophyll b and lower arachidonic acid (20:4ω6) content in endolithic versus free-living Ostreobium. Photosynthetic carbon fixation and nitrate uptake, quantified via 8 h pulse-labeling with 13 C-bicarbonate and 15 N-nitrate, showed lower isotopic enrichment in endolithic compared to free-living filaments. Our results highlight the functional plasticity of Ostreobium phenotypes. The isotope tracer approach opens the way to further study the biogeochemical cycling and trophic ecology of these cryptic algae at coral holobiont and reef scales.
Collapse
Affiliation(s)
- Anaïs Massé
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France.,IRD-Sorbonne Université (UPMC-CNRS-MNHN), Laboratoire IPSL-LOCEAN, 4 Place Jussieu, Tour 46-00, 5éme étage, Paris Cedex, 75005, France
| | - Aline Tribollet
- IRD-Sorbonne Université (UPMC-CNRS-MNHN), Laboratoire IPSL-LOCEAN, 4 Place Jussieu, Tour 46-00, 5éme étage, Paris Cedex, 75005, France
| | - Tarik Meziane
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum national d'Histoire naturelle (MNHN), SU, UNICAEN, UA, CNRS (UMR7208), IRD; CP53, 61 rue Buffon, Paris, 75005, France
| | - Marie-Lise Bourguet-Kondracki
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Claude Yéprémian
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Charlotte Sève
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Najet Thiney
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum national d'Histoire naturelle (MNHN), SU, UNICAEN, UA, CNRS (UMR7208), IRD; CP53, 61 rue Buffon, Paris, 75005, France
| | - Arlette Longeon
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Alain Couté
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Isabelle Domart-Coulon
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| |
Collapse
|
16
|
Djemiel C, Plassard D, Terrat S, Crouzet O, Sauze J, Mondy S, Nowak V, Wingate L, Ogée J, Maron PA. µgreen-db: a reference database for the 23S rRNA gene of eukaryotic plastids and cyanobacteria. Sci Rep 2020; 10:5915. [PMID: 32246067 PMCID: PMC7125122 DOI: 10.1038/s41598-020-62555-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/09/2020] [Indexed: 11/29/2022] Open
Abstract
Studying the ecology of photosynthetic microeukaryotes and prokaryotic cyanobacterial communities requires molecular tools to complement morphological observations. These tools rely on specific genetic markers and require the development of specialised databases to achieve taxonomic assignment. We set up a reference database, called µgreen-db, for the 23S rRNA gene. The sequences were retrieved from generalist (NCBI, SILVA) or Comparative RNA Web (CRW) databases, in addition to a more original approach involving recursive BLAST searches to obtain the best possible sequence recovery. At present, µgreen-db includes 2,326 23S rRNA sequences belonging to both eukaryotes and prokaryotes encompassing 442 unique genera and 736 species of photosynthetic microeukaryotes, cyanobacteria and non-vascular land plants based on the NCBI and AlgaeBase taxonomy. When PR2/SILVA taxonomy is used instead, µgreen-db contains 2,217 sequences (399 unique genera and 696 unique species). Using µgreen-db, we were able to assign 96% of the sequences of the V domain of the 23S rRNA gene obtained by metabarcoding after amplification from soil DNA at the genus level, highlighting good coverage of the database. µgreen-db is accessible at http://microgreen-23sdatabase.ea.inra.fr.
Collapse
Affiliation(s)
- Christophe Djemiel
- Agroécologie, AgroSup Dijon, INRA, University Bourgogne Franche-Comté, Dijon, France
| | | | - Sébastien Terrat
- Agroécologie, AgroSup Dijon, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Olivier Crouzet
- Univ. Paris Saclay, AgroParisTech, UMR ECOSYS, INRA, F-78206, Versailles, France
| | - Joana Sauze
- INRA, Bordeaux Science Agro, UMR 1391 ISPA, 33140, Villenave d'Ornon, France
| | - Samuel Mondy
- Agroécologie, AgroSup Dijon, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Virginie Nowak
- Agroécologie, AgroSup Dijon, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Lisa Wingate
- INRA, Bordeaux Science Agro, UMR 1391 ISPA, 33140, Villenave d'Ornon, France
| | - Jérôme Ogée
- INRA, Bordeaux Science Agro, UMR 1391 ISPA, 33140, Villenave d'Ornon, France
| | - Pierre-Alain Maron
- Agroécologie, AgroSup Dijon, INRA, University Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
17
|
Ermis H, Guven-Gulhan U, Cakir T, Altinbas M. Effect of iron and magnesium addition on population dynamics and high value product of microalgae grown in anaerobic liquid digestate. Sci Rep 2020; 10:3510. [PMID: 32103096 PMCID: PMC7044283 DOI: 10.1038/s41598-020-60622-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/28/2020] [Indexed: 11/08/2022] Open
Abstract
In this study, FeSO4 supplementation ranging from 0 to 4.5 mM, and MgSO4 supplementation ranging from 0 to 5.1 mM were investigated to observe the effect on the population dynamics, biochemical composition and fatty acid content of mixed microalgae grown in Anaerobic Liquid Digestate (ALD). Overall, 3.1 mM FeSO4 addition into ALD increased the total protein content 60% and led to highest biomass (1.56 g L-1) and chlorophyll-a amount (18.7 mg L-1) produced. Meanwhile, 0.4 mM MgSO4 addition increased the total carotenoid amount 2.2 folds and slightly increased the biomass amount. According to the microbial community analysis, Diphylleia rotans, Synechocystis PCC-6803 and Chlorella sorokiniana were identified as mostly detected species after confirmation with 4 different markers. The abundance of Chlorella sorokiniana and Synechocystis PCC-6803 increased almost 2 folds both in iron and magnesium addition. On the other hand, the dominancy of Diphylleia rotans was not affected by iron addition while drastically decreased (95%) with magnesium addition. This study helps to understand how the dynamics of symbiotic life changes if macro elements are added to the ALD and reveal that microalgae can adapt to adverse environmental conditions by fostering the diversity with a positive effect on high value product.
Collapse
Affiliation(s)
- Hande Ermis
- Department of Environmental Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| | | | - Tunahan Cakir
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Mahmut Altinbas
- Department of Environmental Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| |
Collapse
|
18
|
Pernice M, Raina JB, Rädecker N, Cárdenas A, Pogoreutz C, Voolstra CR. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME JOURNAL 2019; 14:325-334. [PMID: 31690886 PMCID: PMC6976677 DOI: 10.1038/s41396-019-0548-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023]
Abstract
Reef-building corals harbour an astonishing diversity of microorganisms, including endosymbiotic microalgae, bacteria, archaea, and fungi. The metabolic interactions within this symbiotic consortium are fundamental to the ecological success of corals and the unique productivity of coral reef ecosystems. Over the last two decades, scientific efforts have been primarily channelled into dissecting the symbioses occurring in coral tissues. Although easily accessible, this compartment is only 2–3 mm thick, whereas the underlying calcium carbonate skeleton occupies the vast internal volume of corals. Far from being devoid of life, the skeleton harbours a wide array of algae, endolithic fungi, heterotrophic bacteria, and other boring eukaryotes, often forming distinct bands visible to the bare eye. Some of the critical functions of these endolithic microorganisms in coral health, such as nutrient cycling and metabolite transfer, which could enable the survival of corals during thermal stress, have long been demonstrated. In addition, some of these microorganisms can dissolve calcium carbonate, weakening the coral skeleton and therefore may play a major role in reef erosion. Yet, experimental data are wanting due to methodological limitations. Recent technological and conceptual advances now allow us to tease apart the complex physical, ecological, and chemical interactions at the heart of coral endolithic microbial communities. These new capabilities have resulted in an excellent body of research and provide an exciting outlook to further address the functional microbial ecology of the “overlooked” coral skeleton.
Collapse
Affiliation(s)
- Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia.
| | - Nils Rädecker
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Anny Cárdenas
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Claudia Pogoreutz
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Christian R Voolstra
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. .,Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
19
|
Camacho O, Fernández-García C, Vieira C, Gurgel CFD, Norris JN, Freshwater DW, Fredericq S. The systematics of Lobophora (Dictyotales, Phaeophyceae) in the western Atlantic and eastern Pacific oceans: eight new species. JOURNAL OF PHYCOLOGY 2019; 55:611-624. [PMID: 30805921 DOI: 10.1111/jpy.12850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 12/12/2018] [Indexed: 05/21/2023]
Abstract
Lobophora is a common tropical to temperate genus of brown algae found in a plethora of habitats including shallow and deep-water coral reefs, rocky shores, mangroves, seagrass beds, and rhodoliths beds. Recent molecular studies have revealed that Lobophora species diversity has been severely underestimated. Current estimates of the species numbers range from 100 to 140 species with a suggested center of diversity in the Central Indo-Pacific. This study used three molecular markers (cox3, rbcL, psbA), different single-marker species delimitation methods (GMYC, ABGD, PTP), and morphological evidence to evaluate Lobophora species diversity in the Western Atlantic and the Eastern Pacific oceans. Cox3 provided the greatest number of primary species hypotheses(PSH), followed by rbcL and then psbA. GMYC species delimitation analysis was the most conservative across all three markers, followed by PTP, and then ABGD. The most informative diagnostic morphological characters were thallus thickness and number of cell layers in both the medulla and the dorsal/ventral cortices. Following a consensus approach, 14 distinct Lobophora species were identified in the Western Atlantic and five in the Eastern Pacific. Eight new species from these two oceans were herein described: L. adpressa sp. nov., L. cocoensis sp. nov., L. colombiana sp. nov., L. crispata sp. nov., L. delicata sp. nov., L. dispersa sp. nov., L. panamensis sp. nov., and L. tortugensis sp. nov. This study showed that the best approach to confidently identify Lobophora species is to analyze DNA sequences (preferably cox3 and rbcL) followed by comparative morphological and geographical assessment.
Collapse
Affiliation(s)
- Olga Camacho
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, 70504-3602, USA
- Programa de Pós-Graduação em Biologia de Fungos, Algas e Plantas, Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Cindy Fernández-García
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, 11501-2060, Costa Rica
| | - Christophe Vieira
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281 (S8), B-9000, Ghent, Belgium
| | - Carlos Frederico D Gurgel
- Programa de Pós-Graduação em Biologia de Fungos, Algas e Plantas, Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - James N Norris
- Department of Botany, NHB166, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, 20013-7012, USA
| | - David Wilson Freshwater
- Center for Marine Science, University of North Carolina at Wilmington, Wilmington, North Carolina, 28403, USA
| | - Suzanne Fredericq
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, 70504-3602, USA
| |
Collapse
|
20
|
|
21
|
Cremen MCM, Leliaert F, West J, Lam DW, Shimada S, Lopez-Bautista JM, Verbruggen H. Reassessment of the classification of Bryopsidales (Chlorophyta) based on chloroplast phylogenomic analyses. Mol Phylogenet Evol 2018; 130:397-405. [PMID: 30227214 DOI: 10.1016/j.ympev.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 01/12/2023]
Abstract
The Bryopsidales is a morphologically diverse group of mainly marine green macroalgae characterized by a siphonous structure. The order is composed of three suborders - Ostreobineae, Bryopsidineae, and Halimedineae. While previous studies improved the higher-level classification of the order, the taxonomic placement of some genera in Bryopsidineae (Pseudobryopsis and Lambia) as well as the relationships between the families of Halimedineae remains uncertain. In this study, we re-assess the phylogeny of the order with datasets derived from chloroplast genomes, drastically increasing the taxon sampling by sequencing 32 new chloroplast genomes. The phylogenies presented here provided good support for the major lineages (suborders and most families) in Bryopsidales. In Bryopsidineae, Pseudobryopsis hainanensis was inferred as a distinct lineage from the three established families allowing us to establish the family Pseudobryopsidaceae. The Antarctic species Lambia antarctica was shown to be an early-branching lineage in the family Bryopsidaceae. In Halimedineae, we revealed several inconsistent phylogenetic positions of macroscopic taxa, and several entirely new lineages of microscopic species. A new classification scheme is proposed, which includes the merger of the families Pseudocodiaceae, Rhipiliaceae and Udoteaceae into a more broadly circumscribed Halimedaceae, and the establishment of tribes for the different lineages found therein. In addition, the deep-water genus Johnson-sea-linkia, currently placed in Rhipiliopsis, was reinstated based on our phylogeny.
Collapse
Affiliation(s)
- Ma Chiela M Cremen
- School of BioSciences, University of Melbourne, Parkville, 3010 Victoria, Australia.
| | - Frederik Leliaert
- Botanic Garden Meise, 1860 Meise, Belgium; Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium
| | - John West
- School of BioSciences, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Daryl W Lam
- Department of Biological Sciences, The University of Alabama, 35487 AL, USA
| | - Satoshi Shimada
- Faculty of Core Research, Natural Science Division, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan
| | | | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, 3010 Victoria, Australia
| |
Collapse
|
22
|
Briand JF, Pochon X, Wood SA, Bressy C, Garnier C, Réhel K, Urvois F, Culioli G, Zaiko A. Metabarcoding and metabolomics offer complementarity in deciphering marine eukaryotic biofouling community shifts. BIOFOULING 2018; 34:657-672. [PMID: 30185057 DOI: 10.1080/08927014.2018.1480757] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Metabarcoding and metabolomics were used to explore the taxonomic composition and functional diversity of eukaryotic biofouling communities on plates with antifouling paints at two French coastal sites: Lorient (North Eastern Atlantic Ocean; temperate and eutrophic) and Toulon (North-Western Mediterranean Sea; mesotrophic but highly contaminated). Four distinct coatings were tested at each site and season for one month. Metabarcoding showed biocidal coatings had less impact on eukaryotic assemblages compared to spatial and temporal effects. Ciliophora, Chlorophyceae or Cnidaria (mainly hydrozoans) were abundant at Lorient, whereas Arthropoda (especially crustaceans), Nematoda, and Ochrophyta dominated less diversified assemblages at Toulon. Seasonal shifts were observed at Lorient, but not Toulon. Metabolomics also showed clear site discrimination, but these were associated with a coating and not season dependent clustering. The meta-omics analysis enabled identifications of some associative patterns between metabolomic profiles and specific taxa, in particular those colonizing the plates with biocidal coatings at Lorient.
Collapse
Affiliation(s)
| | - Xavier Pochon
- b Coastal and Freshwater Group , Cawthron Institute , Private Bag 2 , Nelson 7042 , New Zealand
- c Institute of Marine Science , University of Auckland , Private Bag 349 , Warkworth 0941 , New Zealand
| | - Susanna A Wood
- b Coastal and Freshwater Group , Cawthron Institute , Private Bag 2 , Nelson 7042 , New Zealand
| | | | - Cédric Garnier
- d Université de Toulon , PROTEE-EA 3819 , Toulon , France
| | - Karine Réhel
- e Université de Bretagne Sud , LBCM-EA 3883 , IUEM , Lorient , France
| | - Félix Urvois
- a Université de Toulon , MAPIEM-EA 4323 , Toulon , France
| | - Gérald Culioli
- a Université de Toulon , MAPIEM-EA 4323 , Toulon , France
| | - Anastasija Zaiko
- b Coastal and Freshwater Group , Cawthron Institute , Private Bag 2 , Nelson 7042 , New Zealand
- c Institute of Marine Science , University of Auckland , Private Bag 349 , Warkworth 0941 , New Zealand
| |
Collapse
|
23
|
Sauvage T, Plouviez S, Schmidt WE, Fredericq S. TREE2FASTA: a flexible Perl script for batch extraction of FASTA sequences from exploratory phylogenetic trees. BMC Res Notes 2018; 11:164. [PMID: 29506565 PMCID: PMC5838971 DOI: 10.1186/s13104-018-3268-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/24/2018] [Indexed: 11/16/2022] Open
Abstract
Objective The body of DNA sequence data lacking taxonomically informative sequence headers is rapidly growing in user and public databases (e.g. sequences lacking identification and contaminants). In the context of systematics studies, sorting such sequence data for taxonomic curation and/or molecular diversity characterization (e.g. crypticism) often requires the building of exploratory phylogenetic trees with reference taxa. The subsequent step of segregating DNA sequences of interest based on observed topological relationships can represent a challenging task, especially for large datasets. Results We have written TREE2FASTA, a Perl script that enables and expedites the sorting of FASTA-formatted sequence data from exploratory phylogenetic trees. TREE2FASTA takes advantage of the interactive, rapid point-and-click color selection and/or annotations of tree leaves in the popular Java tree-viewer FigTree to segregate groups of FASTA sequences of interest to separate files. TREE2FASTA allows for both simple and nested segregation designs to facilitate the simultaneous preparation of multiple data sets that may overlap in sequence content. Electronic supplementary material The online version of this article (10.1186/s13104-018-3268-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Sauvage
- Department of Biology, University of Louisiana at Lafayette, 410 E. Saint Mary Boulevard, Lafayette, LA, 70503, USA. .,Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL, 34949, USA.
| | - Sophie Plouviez
- Department of Biology, University of Louisiana at Lafayette, 410 E. Saint Mary Boulevard, Lafayette, LA, 70503, USA
| | - William E Schmidt
- Department of Biology, University of Louisiana at Lafayette, 410 E. Saint Mary Boulevard, Lafayette, LA, 70503, USA
| | - Suzanne Fredericq
- Department of Biology, University of Louisiana at Lafayette, 410 E. Saint Mary Boulevard, Lafayette, LA, 70503, USA
| |
Collapse
|
24
|
Finding Evolutionary Processes Hidden in Cryptic Species. Trends Ecol Evol 2018; 33:153-163. [DOI: 10.1016/j.tree.2017.11.007] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022]
|
25
|
Massé A, Domart-Coulon I, Golubic S, Duché D, Tribollet A. Early skeletal colonization of the coral holobiont by the microboring Ulvophyceae Ostreobium sp. Sci Rep 2018; 8:2293. [PMID: 29396559 PMCID: PMC5797222 DOI: 10.1038/s41598-018-20196-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/11/2018] [Indexed: 11/24/2022] Open
Abstract
Ostreobium sp. (Bryopsidales, Ulvophyceae) is a major microboring alga involved in tropical reef dissolution, with a proposed symbiotic lifestyle in living corals. However, its diversity and colonization dynamics in host’s early life stages remained unknown. Here, we mapped microborer distribution and abundance in skeletons of the branching coral Pocillopora damicornis from the onset of calcification in primary polyps (7 days) to budding juvenile colonies (1 and 3 months) growing on carbonate and non-carbonate substrates pre-colonized by natural biofilms, and compared them to adult colonies (in aquarium settings). Primary polyps were surprisingly already colonized by microboring filaments and their level of invasion depended on the nature of settlement substrate and the extent of its pre-colonization by microborers. Growth of early coral recruits was unaffected even when microborers were in close vicinity to the polyp tissue. In addition to morphotype observations, chloroplast-encoded rbcL gene sequence analyses revealed nine new Ostreobium clades (OTU99%) in Pocillopora coral. Recruits and adults shared one dominant rbcL clade, undetected in larvae, but also present in aquarium seawater, carbonate and non-carbonate settlement substrates, and in corals from reef settings. Our results show a substratum-dependent colonization by Ostreobium clades, and indicate horizontal transmission of Ostreobium-coral associations.
Collapse
Affiliation(s)
- A Massé
- Sorbonne Universités - Muséum National d'Histoire Naturelle, Laboratoire MCAM UMR7245 CNRS-MNHN, 63 rue Buffon, 75005, Paris, France.,IRD-Sorbonne Universités (UPMC Univ, Paris 06), Laboratoire LOCEAN UMR7159 CNRS-MNHN, 4 Place Jussieu, 75005, Paris, Cedex, France
| | - I Domart-Coulon
- Sorbonne Universités - Muséum National d'Histoire Naturelle, Laboratoire MCAM UMR7245 CNRS-MNHN, 63 rue Buffon, 75005, Paris, France
| | - S Golubic
- Biological Science Center, Boston University, Boston, MA, USA
| | - D Duché
- Aquarium Tropical, Palais de la Porte Dorée, 293 Avenue Daumesnil, 75012, Paris, France
| | - A Tribollet
- IRD-Sorbonne Universités (UPMC Univ, Paris 06), Laboratoire LOCEAN UMR7159 CNRS-MNHN, 4 Place Jussieu, 75005, Paris, Cedex, France.
| |
Collapse
|
26
|
Dal Grande F, Rolshausen G, Divakar PK, Crespo A, Otte J, Schleuning M, Schmitt I. Environment and host identity structure communities of green algal symbionts in lichens. THE NEW PHYTOLOGIST 2018; 217:277-289. [PMID: 28892165 DOI: 10.1111/nph.14770] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
An understanding of how biotic interactions shape species' distributions is central to predicting host-symbiont responses under climate change. Switches to locally adapted algae have been proposed to be an adaptive strategy of lichen-forming fungi to cope with environmental change. However, it is unclear how lichen photobionts respond to environmental gradients, and whether they play a role in determining the fungal host's upper and lower elevational limits. Deep-coverage Illumina DNA metabarcoding was used to track changes in the community composition of Trebouxia algae associated with two phylogenetically closely related, but ecologically divergent fungal hosts along a steep altitudinal gradient in the Mediterranean region. We detected the presence of multiple Trebouxia species in the majority of thalli. Both altitude and host genetic identity were strong predictors of photobiont community assembly in these two species. The predominantly clonally dispersing fungus showed stronger altitudinal structuring of photobiont communities than the sexually reproducing host. Elevation ranges of the host were not limited by the lack of compatible photobionts. Our study sheds light on the processes guiding the formation and distribution of specific fungal-algal combinations in the lichen symbiosis. The effect of environmental filtering acting on both symbiotic partners appears to shape the distribution of lichens.
Collapse
Affiliation(s)
- Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Gregor Rolshausen
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Pradeep K Divakar
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Ana Crespo
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
- Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany
| |
Collapse
|
27
|
Barillé L, Le Bris A, Méléder V, Launeau P, Robin M, Louvrou I, Ribeiro L. Photosynthetic epibionts and endobionts of Pacific oyster shells from oyster reefs in rocky versus mudflat shores. PLoS One 2017; 12:e0185187. [PMID: 28934317 PMCID: PMC5608347 DOI: 10.1371/journal.pone.0185187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/07/2017] [Indexed: 11/18/2022] Open
Abstract
The Pacific oyster, Crassostrea gigas (Thunberg), is the main bivalve species cultivated in the world. With global warming enabling its reproduction and larval survival at higher latitudes, this species is now recognized as invasive and creates wild oyster reefs globally. In this study, the spatial distribution of photosynthetic assemblages colonizing the shells of wild C. gigas was investigated on both a large scale (two contrasting types of reefs found in mudflats and rocky areas) and a small scale (within individual shells) using a hyperspectral imager. The microspatial distribution of all phototrophs was obtained by mapping the Normalized Difference Vegetation Index (NDVI). Second derivative (δδ) analyses of hyperspectral images at 462, 524, 571 and 647 nm were subsequently applied to map diatoms, cyanobacteria, rhodophytes and chlorophytes, respectively. A concomitant pigment analysis was carried out by high performance liquid chromatography and completed by taxonomic observations. This study showed that there was high microalgal diversity associated with wild oyster shells and that there were differences in the structure of the phototropic assemblages depending on the type of reef. Namely, vertically-growing oysters in mudflat areas had a higher biomass of epizoic diatoms (hyperspectral proxy at δδ462 nm) and were mainly colonized by species of the genera Navicula, Nitzschia and Hippodonta, which are epipelic or motile epipsammic. The assemblages on the horizontal oysters contained more tychoplanktonic diatoms (e.g. Thalassiosira pseudonana, T. proschkinae and Plagiogrammopsis vanheurckii). Three species of boring cyanobacteria were observed for both types of reef: Mastigocoleus testarum, Leptolyngbya terrebrans, and Hyella caespistosa, but the second derivative analysis at 524 nm showed a significantly higher biomass for the horizontally-growing oysters. There was no biomass difference for the boring chlorophyte assemblages (δδ647 nm), with two species: Eugomontia testarum and Ostreobium quekettii observed for both types of reef. This study shows that oyster shells are an idiosyncratic but ubiquitous habitat for phototrophic assemblages. The contribution of these assemblages in terms of biomass and production to the functioning of coastal areas, and particularly to shellfish ecosystems, remains to be evaluated.
Collapse
Affiliation(s)
- Laurent Barillé
- Laboratoire Mer Molécules Santé (EA2160), Institut Universitaire Mer et Littoral (FR_C 3473), Université de Nantes, Nantes, France
- * E-mail:
| | - Anthony Le Bris
- Laboratoire Mer Molécules Santé (EA2160), Institut Universitaire Mer et Littoral (FR_C 3473), Université de Nantes, Nantes, France
- LETG-Geolittomer (UMR 6554, CNRS), Institut Universitaire Mer et Littoral (FR_C 3473), Université de Nantes, Nantes, France
| | - Vona Méléder
- Laboratoire Mer Molécules Santé (EA2160), Institut Universitaire Mer et Littoral (FR_C 3473), Université de Nantes, Nantes, France
| | - Patrick Launeau
- Laboratoire de Planétologie et Géodynamique (UMR 6112, CNRS), Institut Universitaire Mer et Littoral (FR_C 3473), Université de Nantes, Nantes, France
| | - Marc Robin
- LETG-Geolittomer (UMR 6554, CNRS), Institut Universitaire Mer et Littoral (FR_C 3473), Université de Nantes, Nantes, France
| | - Ioanna Louvrou
- Department of Ecology and Systematics, Faculty of Biology, Panepistimiopolis, University of Athens, Athens, Greece
| | - Lourenço Ribeiro
- Laboratoire Mer Molécules Santé (EA2160), Institut Universitaire Mer et Littoral (FR_C 3473), Université de Nantes, Nantes, France
- Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
28
|
Marcelino VR, Morrow KM, Oppen MJH, Bourne DG, Verbruggen H. Diversity and stability of coral endolithic microbial communities at a naturally high
p
CO
2
reef. Mol Ecol 2017; 26:5344-5357. [DOI: 10.1111/mec.14268] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022]
Affiliation(s)
| | - Kathleen M. Morrow
- Department of Molecular, Cellular and Biomedical Sciences University of New Hampshire Durham NH USA
- Australian Institute of Marine Science Townsville Qld Australia
| | - Madeleine J. H. Oppen
- School of Biosciences University of Melbourne Melbourne Vic. Australia
- Australian Institute of Marine Science Townsville Qld Australia
| | - David G. Bourne
- Australian Institute of Marine Science Townsville Qld Australia
- College of Science and Engineering James Cook University Townville Qld Australia
| | - Heroen Verbruggen
- School of Biosciences University of Melbourne Melbourne Vic. Australia
| |
Collapse
|
29
|
Verbruggen H, Marcelino VR, Guiry MD, Cremen MCM, Jackson CJ. Phylogenetic position of the coral symbiont Ostreobium (Ulvophyceae) inferred from chloroplast genome data. JOURNAL OF PHYCOLOGY 2017; 53:790-803. [PMID: 28394415 DOI: 10.1111/jpy.12540] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/13/2016] [Indexed: 05/29/2023]
Abstract
The green algal genus Ostreobium is an important symbiont of corals, playing roles in reef decalcification and providing photosynthates to the coral during bleaching events. A chloroplast genome of a cultured strain of Ostreobium was available, but low taxon sampling and Ostreobium's early-branching nature left doubt about its phylogenetic position. Here, we generate and describe chloroplast genomes from four Ostreobium strains as well as Avrainvillea mazei and Neomeris sp., strategically sampled early-branching lineages in the Bryopsidales and Dasycladales respectively. At 80,584 bp, the chloroplast genome of Ostreobium sp. HV05042 is the most compact yet found in the Ulvophyceae. The Avrainvillea chloroplast genome is ~94 kbp and contains introns in infA and cysT that have nearly complete sequence identity except for an open reading frame (ORF) in infA that is not present in cysT. In line with other bryopsidalean species, it also contains regions with possibly bacteria-derived ORFs. The Neomeris data did not assemble into a canonical circular chloroplast genome but a large number of contigs containing fragments of chloroplast genes and showing evidence of long introns and intergenic regions, and the Neomeris chloroplast genome size was estimated to exceed 1.87 Mb. Chloroplast phylogenomics and 18S nrDNA data showed strong support for the Ostreobium lineage being sister to the remaining Bryopsidales. There were differences in branch support when outgroups were varied, but the overall support for the placement of Ostreobium was strong. These results permitted us to validate two suborders and introduce a third, the Ostreobineae.
Collapse
Affiliation(s)
- Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Vanessa R Marcelino
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Michael D Guiry
- AlgaeBase, Ryan Institute, National University of Ireland, Galway, H91 TK33, Ireland
| | - Ma Chiela M Cremen
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Christopher J Jackson
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
30
|
Intraspecific differences in molecular stress responses and coral pathobiome contribute to mortality under bacterial challenge in Acropora millepora. Sci Rep 2017; 7:2609. [PMID: 28572677 PMCID: PMC5454005 DOI: 10.1038/s41598-017-02685-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/18/2017] [Indexed: 11/13/2022] Open
Abstract
Disease causes significant coral mortality worldwide; however, factors responsible for intraspecific variation in disease resistance remain unclear. We exposed fragments of eight Acropora millepora colonies (genotypes) to putatively pathogenic bacteria (Vibrio spp.). Genotypes varied from zero to >90% mortality, with bacterial challenge increasing average mortality rates 4–6 fold and shifting the microbiome in favor of stress-associated taxa. Constitutive immunity and subsequent immune and transcriptomic responses to the challenge were more prominent in high-mortality individuals, whereas low-mortality corals remained largely unaffected and maintained expression signatures of a healthier condition (i.e., did not launch a large stress response). Our results suggest that lesions appeared due to changes in the coral pathobiome (multiple bacterial species associated with disease) and general health deterioration after the biotic disturbance, rather than the direct activity of any specific pathogen. If diseases in nature arise because of weaknesses in holobiont physiology, instead of the virulence of any single etiological agent, environmental stressors compromising coral condition might play a larger role in disease outbreaks than is currently thought. To facilitate the diagnosis of compromised individuals, we developed and independently cross-validated a biomarker assay to predict mortality based on genes whose expression in asymptomatic individuals coincides with mortality rates.
Collapse
|
31
|
Krayesky-Self S, Schmidt WE, Phung D, Henry C, Sauvage T, Camacho O, Felgenhauer BE, Fredericq S. Eukaryotic Life Inhabits Rhodolith-forming Coralline Algae (Hapalidiales, Rhodophyta), Remarkable Marine Benthic Microhabitats. Sci Rep 2017; 7:45850. [PMID: 28368049 PMCID: PMC5377461 DOI: 10.1038/srep45850] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/03/2017] [Indexed: 11/21/2022] Open
Abstract
Rhodoliths are benthic calcium carbonate nodules accreted by crustose coralline red algae which recently have been identified as useful indicators of biomineral changes resulting from global climate change and ocean acidification. This study highlights the discovery that the interior of rhodoliths are marine biodiversity hotspots that function as seedbanks and temporary reservoirs of previously unknown stages in the life history of ecologically important dinoflagellate and haptophyte microalgae. Whereas the studied rhodoliths originated from offshore deep bank pinnacles in the northwestern Gulf of Mexico, the present study opens the door to assess the universality of endolithic stages among bloom-forming microalgae spanning different phyla, some of public health concerns (Prorocentrum) in marine ecosystems worldwide.
Collapse
Affiliation(s)
| | - William E Schmidt
- University of Louisiana at Lafayette, Lafayette, Louisiana, 70504-3602, USA
| | - Delena Phung
- University of Louisiana at Lafayette, Lafayette, Louisiana, 70504-3602, USA
| | - Caroline Henry
- University of Louisiana at Lafayette, Lafayette, Louisiana, 70504-3602, USA
| | - Thomas Sauvage
- University of Louisiana at Lafayette, Lafayette, Louisiana, 70504-3602, USA.,Smithsonian Marine Station at Fort Pierce, Fort Pierce, Florida, 34949, USA
| | - Olga Camacho
- University of Louisiana at Lafayette, Lafayette, Louisiana, 70504-3602, USA
| | | | - Suzanne Fredericq
- University of Louisiana at Lafayette, Lafayette, Louisiana, 70504-3602, USA
| |
Collapse
|
32
|
Sherwood AR, Dittbern MN, Johnston ET, Conklin KY. A metabarcoding comparison of windward and leeward airborne algal diversity across the Ko'olau mountain range on the island of O'ahu, Hawai'i 1. JOURNAL OF PHYCOLOGY 2017; 53:437-445. [PMID: 27988936 DOI: 10.1111/jpy.12502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Airborne algae from sites on the windward (n = 3) and leeward (n = 3) sides of the Ko'olau Mountain range of O'ahu, Hawai'i, were sampled for a 16 d period during January and February 2015 using passive collection devices and were characterized using Illumina MiSeq sequencing of the universal plastid amplicon marker. Amplicons were assigned to 3,023 operational taxonomic units (OTUs), which included 1,189 cyanobacteria, 1,009 heterotrophic bacteria, and 304 Eukaryota (of which 284 were algae and land plants). Analyses demonstrated substantially more OTUs at windward than leeward O'ahu sites during the sampling period. Removal of nonalgal OTUs revealed a greater number of algal reads recovered from windward (839,853) than leeward sites (355,387), with the majority of these being cyanobacteria. The 1,234 total algal OTUs included cyanobacteria, diatoms, cryptophytes, brown algae, chlorophyte green algae, and charophyte green algae. A total of 208 algal OTUs were identified from leeward side samplers (including OTUs in common among samplers) and 1,995 algal OTUs were identified from windward samplers. Barcoding analyses of the most abundant algal OTUs indicated that very few were shared between the windward and leeward sides of the Ko'olau Mountains, highlighting the localized scale at which these airborne algae communities differ. Back trajectories of air masses arriving on O'ahu during the sampling period were calculated using the NOAA HY-SPLIT model and suggested that the sampling period was composed of three large-scale meteorological events, indicating a diversity of potential sources of airborne algae outside of the Hawaiian Islands.
Collapse
Affiliation(s)
- Alison R Sherwood
- Department of Botany, University of Hawai'i, 3190 Maile Way, Honolulu, Hawai'i, 96822, USA
| | - Monica N Dittbern
- Department of Botany, University of Hawai'i, 3190 Maile Way, Honolulu, Hawai'i, 96822, USA
| | - Emily T Johnston
- Department of Botany, University of Hawai'i, 3190 Maile Way, Honolulu, Hawai'i, 96822, USA
| | - Kimberly Y Conklin
- Department of Botany, University of Hawai'i, 3190 Maile Way, Honolulu, Hawai'i, 96822, USA
| |
Collapse
|
33
|
R Marcelino V, Cremen MCM, Jackson CJ, Larkum AAW, Verbruggen H. Evolutionary Dynamics of Chloroplast Genomes in Low Light: A Case Study of the Endolithic Green Alga Ostreobium quekettii. Genome Biol Evol 2016; 8:2939-2951. [PMID: 27566760 PMCID: PMC5633697 DOI: 10.1093/gbe/evw206] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Some photosynthetic organisms live in extremely low light environments. Light limitation is associated with selective forces as well as reduced exposure to mutagens, and over evolutionary timescales it can leave a footprint on species’ genomes. Here, we present the chloroplast genomes of four green algae (Bryopsidales, Ulvophyceae), including the endolithic (limestone-boring) alga Ostreobium quekettii, which is a low light specialist. We use phylogenetic models and comparative genomic tools to investigate whether the chloroplast genome of Ostreobium corresponds to our expectations of how low light would affect genome evolution. Ostreobium has the smallest and most gene-dense chloroplast genome among Ulvophyceae reported to date, matching our expectation that light limitation would impose resource constraints reflected in the chloroplast genome architecture. Rates of molecular evolution are significantly slower along the phylogenetic branch leading to Ostreobium, in agreement with the expected effects of low light and energy levels on molecular evolution. We expected the ability of Ostreobium to perform photosynthesis in very low light to be associated with positive selection in genes related to the photosynthetic machinery, but instead, we observed that these genes may be under stronger purifying selection. Besides shedding light on the genome dynamics associated with a low light lifestyle, this study helps to resolve the role of environmental factors in shaping the diversity of genome architectures observed in nature.
Collapse
Affiliation(s)
| | | | | | - Anthony A W Larkum
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, NSW 2007, Australia
| | | |
Collapse
|
34
|
Marcelino VR, Verbruggen H. Multi-marker metabarcoding of coral skeletons reveals a rich microbiome and diverse evolutionary origins of endolithic algae. Sci Rep 2016; 6:31508. [PMID: 27545322 PMCID: PMC4992875 DOI: 10.1038/srep31508] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/21/2016] [Indexed: 02/06/2023] Open
Abstract
Bacteria, fungi and green algae are common inhabitants of coral skeletons. Their diversity is poorly characterized because they are difficult to identify with microscopy or environmental sequencing, as common metabarcoding markers have low phylogenetic resolution and miss a large portion of the biodiversity. We used a cost-effective protocol and a combination of markers (tufA, 16S rDNA, 18S rDNA and 23S rDNA) to characterize the microbiome of 132 coral skeleton samples. We identified a wide range of prokaryotic and eukaryotic organisms, many never reported in corals before. We additionally investigated the phylogenetic diversity of the green algae—the most abundant eukaryotic member of this community, for which previous literature recognizes only a handful of endolithic species. We found more than 120 taxonomic units (near species level), including six family-level lineages mostly new to science. The results suggest that the existence of lineages with an endolithic lifestyle predates the existence of modern scleractinian corals by ca. 250my, and that this particular niche was independently invaded by over 20 lineages in green algae evolution. These results highlight the potential of the multi-marker approach to assist in species discovery and, when combined with a phylogenetic framework, clarify the evolutionary origins of host-microbiota associations.
Collapse
|