1
|
Grassi A, Rocca MS, Noventa M, Pozzato G, Pozzato A, Scioscia M, Andrisani A, Pontrelli G, Foresta C, De Toni L. In Vitro Gene Expression Profiling of Quantum Molecular Resonance Effects on Human Endometrium Models: A Preliminary Study. Genes (Basel) 2025; 16:290. [PMID: 40149442 PMCID: PMC11942151 DOI: 10.3390/genes16030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
OBJECTIVES The identification of methods to improve the endometrial receptivity (ER) is increasingly of interest. The effect of the electromagnetic field associated with Quantum Molecular Resonance (QMR) on ER was investigated here. METHODS Ishikawa cells were used to evaluate the effects of QMR both on the expression of a group of genes involved in ER, i.e., HOXA10, HOXA11, LIF, ITGB3, and ITGAV, and on cell toxicity. Endometrial samples were obtained from six patients during routine diagnostic procedures, four of which were subsequently used to assess the transcriptional response to QMR through microarray. RESULTS Compared to unexposed controls, a single exposure of Ishikawa cells to QMR for 20 min was associated with a significant and power-dependent up-regulation of all the selected ER-related genes up to 8 power units (PU). Repeated exposure to QMR, up to three consecutive days, showed a significant up-regulation of all the selected genes at power values of 4 PU, from day two onwards. Negligible cytotoxicity was observed. Gene set enrichment analysis, on microarray data of endometrial biopsies stimulated for three consecutive days at 4 PU, showed a significant enrichment of specific gene sets, related to the proteasome system, the cell adhesion, the glucocorticoid receptor, and cell cycle pathways. CONCLUSIONS Our results suggest a possible favorable impact of QMR on ER.
Collapse
Affiliation(s)
- Angela Grassi
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Maria Santa Rocca
- Department of Medicine, University of Padova, 35128 Padova, Italy; (M.S.R.); (C.F.)
| | - Marco Noventa
- Unit of Gynecology and Obstetrics, Department of Women and Children’s Health, University of Padova, 35100 Padova, Italy; (M.N.); (A.A.)
| | | | - Alessandro Pozzato
- Telea Electronic Engineering S.r.l., 36066 Sandrigo, Italy; (G.P.); (A.P.)
| | - Marco Scioscia
- Unit of Gynecological Surgery, Mater Dei Hospital, 70125 Bari, Italy;
| | - Alessandra Andrisani
- Unit of Gynecology and Obstetrics, Department of Women and Children’s Health, University of Padova, 35100 Padova, Italy; (M.N.); (A.A.)
| | - Giovanni Pontrelli
- Department of Obstetrics and Gynecology, Policlinico Hospital, 35031 Abano Terme, Italy;
| | - Carlo Foresta
- Department of Medicine, University of Padova, 35128 Padova, Italy; (M.S.R.); (C.F.)
| | - Luca De Toni
- Department of Medicine, University of Padova, 35128 Padova, Italy; (M.S.R.); (C.F.)
| |
Collapse
|
2
|
Mishra A, Modi D. Role of HOXA10 in pathologies of the endometrium. Rev Endocr Metab Disord 2025; 26:81-96. [PMID: 39499452 DOI: 10.1007/s11154-024-09923-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/07/2024]
Abstract
HOXA10 belongs to the homeobox gene family and is essential for uterine biogenesis, endometrial receptivity, embryo implantation, and stromal cell decidualization. Available evidence suggests that the expression of HOXA10 is dysregulated in different endometrial disorders like endometrial hyperplasia, endometrial cancer, adenomyosis, endometriosis, recurrent implantation failure, and unexplained infertility. The downregulation of HOXA10 occurs by genetic changes in the HOXA10 gene, methylation of the HOXA10 locus, or selected miRNAs. Endocrine disruptors and organic pollutants also cause the reduced expression of HOXA10 in these conditions. In vivo experiments in mouse models and in vitro studies in human cell lines demonstrate that downregulation of HOXA10 leads to endometrial epithelial cell proliferation, failure of stromal cell decidualization, altered expression of genes involved in cell cycle regulation, immunomodulation, and various signaling pathways. These disruptions are speculated to cause infertility associated with the disorders of the endometrium.
Collapse
Affiliation(s)
- Anuradha Mishra
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive and Child Health, J.M. Street, Parel, Mumbai, 400 012, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive and Child Health, J.M. Street, Parel, Mumbai, 400 012, India.
| |
Collapse
|
3
|
Xu HX, Liu SN, Xiang XY, Lei Y, Li YX, Tang XJ, Yu JM, Tao LM, Wu Z, Li L. Repeated implantation failures and infertility in patients are strongly associated with elevated integrin B3 due to endometrial copy number variation. REPRODUCTION AND FERTILITY 2025; 6:RAF-24-0088. [PMID: 40014397 PMCID: PMC11949522 DOI: 10.1530/raf-24-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/23/2024] [Accepted: 02/27/2025] [Indexed: 03/01/2025] Open
Abstract
This study reveals the association between gene copy number variants (CNVs) and integrin expression in endometrial tissue, especially focusing on patients with repeated implantation failure and unexplained infertility. The CNV expression, integrin αVβ3 (by real-time quantitative polymerase chain reaction and protein immunoblotting), and related clinical indicators were investigated by analyzing endometrial samples from 48 patients with repeated implantation failures and 10 patients with infertility and with no history of implantation issues. The results revealed the presence of CNVs in approximately 31.04% of patients with infertility, mainly affecting chromosomes 2, 5, 6, 7, 10, 11, 15, 19, and X. Age was associated with CNV occurrence. Integrin β3 expression was significantly higher in the CNV group than in the non-CNV group among patients with repeated implant failure. Clinical indicators related to coagulation were significantly different between the CNV and non-CNV groups. The study indicated a potential association between CNVs, increased integrin β3 expression, and recurrent implant failure. The study provides new information for understanding the complex interactions between genetic variants, integrin function, and coagulation factors by integrating advanced molecular diagnostic techniques, thereby emphasizing the need for a personalized approach in reproductive medicine. These results may redefine the diagnostic paradigm for recurrent implantation failure, laying the foundation for future translational applications.
Collapse
Affiliation(s)
- Hong-Xia Xu
- Department of Reproductive Medicine, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Sheng-Ni Liu
- University of Bristol, Faculty of Life Sciences, Bristol, UK
| | - Xiao-Yi Xiang
- Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children’s Hospital, Kunming Medical University, Kunming, Yunnan, China
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming, Yunnan, China
| | - Yan Lei
- Department of Gynecology, Hubei Province Women and Children Hospital, Wuhan, China
| | - Yun-Xiu Li
- Department of Reproductive Medicine, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xiang-Jing Tang
- Department of Reproductive Medicine, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jian-Mei Yu
- Department of Reproductive Medicine, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Li-Mei Tao
- Department of Reproductive Medicine, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ze Wu
- Department of Reproductive Medicine, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Li Li
- Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children’s Hospital, Kunming Medical University, Kunming, Yunnan, China
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming, Yunnan, China
| |
Collapse
|
4
|
Lee JG, Lee SM, Hyun M, Heo JD. Tire rubber-derived contaminants 6PPD and 6PPD-quinone reduce attachment and outgrowth of trophoblast spheroids onto endometrial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117744. [PMID: 39818141 DOI: 10.1016/j.ecoenv.2025.117744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a synthetic additive widely used in the rubber industry, and its oxidized product 6PPD-quinone (6PPDQ), have garnered widespread attention as an emerging hazardous chemicals owing to their potential detrimental effects on aquatic ecosystem and human health. The effects of 6PPD and 6PPDq on the female reproductive tract, especially embryo implantation, remain unknown and were investigated in this study. We used the spheroid attachment and outgrowth models of BeWo trophoblastic spheroids and Ishikawa cells as surrogates for the human blastocyst and endometrial epithelium, respectively. Treatment with the chemicals for up to 48 h decreased the viability of the cells in a dose- and cell line-dependent manner (20-100 μM 6PPD and 10-100 μM 6PPDQ for both the cell lines). At a noncytotoxic concentration, exposure of Ishikawa cells to 1 and 10 μM 6PPD reduced the attachment of BeWo spheroids and further inhibited their invasion and outgrowth on the endometrial epithelial monolayer. A similar result was observed in 1 μM 6PPDQ-exposed groups. Gene expression profiling of 6PPD- and 6PPDQ-exposed endometrial epithelial cells revealed that both 6PPD and 6PPDQ differentially regulated a panel of transcript markers toward overall downregulation of receptivity and invasion. The study provides the first proof of the adverse effects of 6PPD and 6PPDQ on human endometrial receptivity and trophoblast invasion during the window of implantation, warranting the need for further in vivo and clinical studies.
Collapse
Affiliation(s)
- Jong Geol Lee
- Center for Bio-Health Research, Division of Gyeongnam Bio-Environmental Research, Korea Institute of Toxicology, Jinju 52834, Republic of Korea.
| | - Seon Min Lee
- Center for Bio-Health Research, Division of Gyeongnam Bio-Environmental Research, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Moonjung Hyun
- Center for Bio-Health Research, Division of Gyeongnam Bio-Environmental Research, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Jeong Doo Heo
- Korea Institute of Toxicology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
5
|
Zhou X, Xiang J, Su A. Decoction of Yougui Wan combined with Wuzi Yanzong Wan ameliorates thin endometrium in a mouse model. J OBSTET GYNAECOL 2024; 44:2391062. [PMID: 39150162 DOI: 10.1080/01443615.2024.2391062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND This study aimed to determine the effect and mechanism of the Decoction of Yougui Wan combined with Wuzi Yanzong Wan (DYWWYW), a traditional Chinese herbal formula, in a mouse model with thin endometrium induced by 95% ethanol. METHODS Thin endometrium mice were treated with progynova (0.002 mg) as well as a low and high dose of DYWWYW (0.05 and 0.5 mL DYWWYW, respectively, diluted in 2 mL normal saline). Western blotting and qRT-PCR analyses were performed to determine the protein and mRNA expression levels, respectively, of integrin αγβ3 and leukaemia inhibitor factor (LIF) in uterus tissues. Serum oestradiol and progesterone concentrations were determined via ELISA. The remaining thin endometrium mice were mated with male mice, and the number of embryos implanted in the different groups was calculated. RESULTS A high dose of DYWWYW effectively ameliorated the injury of endometrium caused by 95% ethanol. The levels of oestradiol, progesterone, αγβ3 and LIF in thin endometrium mice treated with a high dose of DYWWYW were also significantly elevated. Additionally, a high dose of DYWWYW remarkably increased the number of embryo implantations in mice with thin endometrium. CONCLUSION DYWWYW has improvement effects on thin endometrium by elevating the levels of endogenous oestradiol, progesterone, αγβ3, and LIF in a mouse model.
Collapse
Affiliation(s)
- Xiaohong Zhou
- Department of Gynecology, Jinhua Maternal & Child Health Care Hospital, Jinhua, Zhejiang, China
| | - Jun Xiang
- Department of Gynecology, Jinhua Maternal & Child Health Care Hospital, Jinhua, Zhejiang, China
| | - Aifang Su
- Department of Gynecology, Jinhua Maternal & Child Health Care Hospital, Jinhua, Zhejiang, China
| |
Collapse
|
6
|
Shengnan T, Mei Z, Jiaxing W, Dan L, YanLin M, Huang Y. Cyclosporine A improves the binding of mouse embryos to fibronectin. J Obstet Gynaecol Res 2024; 50:1891-1901. [PMID: 39192493 DOI: 10.1111/jog.16046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
AIM The binding of integrin αvβ3 with endometrial fibronectin (FN) promotes the migration of preimplantation embryos in mice. We have previously shown that cyclosporine A (CsA) improves the adhesion and invasion of mouse preimplantation embryos. In this study, we evaluated the roles of calcium ions and downstream signaling factors in the binding of integrin αvβ3 to FN. METHODS Female Institute of Cancer Research (ICR) mice were superovulated and mated, and two-cell embryos were harvested from the oviducts and cultured to the blastocyst stage The adhesion and stretching growth of hatched embryos in laminin-coated dishes were evaluated, and integrinβ3 expression was determined using qPCR. Blastocytes were cultured with 0 or 1 μM cyclosporine A (CsA) and the attachment of embryonic integrin αvβ3 to FN120 was observed using a fluorescent bead. To further determine the mechanism, the cells were also incubated with calcium ions and protein kinase C and calmodulin antagonists. The binding of integrin αvβ3 to FN120 was examined via confocal laser scanning microscopy. RESULTS The adhesion and stretching growth of peri-implantation embryos were greater and integrinβ3 expression was higher in the 1 μM CsA group than in the 0 μM CsA group (p < 0.05). When incubated with calcium ions and protein kinase C and calmodulin antagonists, the ability of peri-implantation embryos to bind to FN decreased; CsA treatment promoted this binding. CONCLUSION This study revealed that CsA up - regulates integrinβ3 expression in peri - implantation embryos and promotes binding to FN via calcium ions, and protein kinase C, and calmodulin. These findings provide evidence supporting the beneficial effect of CsA on the peri - implantation embryo adhesion.
Collapse
Affiliation(s)
- Tian Shengnan
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Hainan Medical University, Haikou, China
- The Fifth People's Hospital of Jinan, Jinan, China
| | - Zheng Mei
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Hainan Medical University, Haikou, China
- Department of Reproductive Medicine, Haikou Women and Children Hospital, Haikou, China
| | - Wang Jiaxing
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Hainan Medical University, Haikou, China
- Department of Reproductive Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Li Dan
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Hainan Medical University, Haikou, China
- Department of Reproductive Medicine, Haikou Women and Children Hospital, Haikou, China
| | - Ma YanLin
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Hainan Medical University, Haikou, China
- Department of Reproductive Medicine, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Hainan Provincial Clinical Research Center for Thalassemia, and The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Yuanhua Huang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Hainan Medical University, Haikou, China
- Department of Reproductive Medicine, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Hainan Provincial Clinical Research Center for Thalassemia, and The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| |
Collapse
|
7
|
Chen PF, Liang YL, Chuang YJ, Wu MH. Autologous PRP therapy for thin endometrium: A self-controlled case series study across menstrual cycles. Eur J Obstet Gynecol Reprod Biol 2024; 299:12-17. [PMID: 38820688 DOI: 10.1016/j.ejogrb.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVES Thin endometrium (TE) compromises endometrial receptivity, often leading to implantation failure and lower clinical pregnancy rates. As autologous platelet-rich plasma (PRP) emerges as a potential remedy, the present study focused on its therapeutic effects on TE in infertile women who underwent frozen embryo transfer. STUDY DESIGN Patients with TE who underwent frozen embryo transfer treatment in our hospital were included. To diminish individual variability, a self-controlled series approach was used. Two menstrual study cycles were arranged for each participant before the actual embryo transfer cycle; PRP treatment was conducted in the second cycle. Key metrics analyzed included endometrial thickness and the expression of specific endometrial biomarkers including HOXA-10, Ki67, and αvβ3 integrin. Transvaginal ultrasound was employed to measure endometrial thickness on Days 11 and 14, and an endometrial biopsy was conducted on progesterone Day 5 of the first two cycles. Pregnancy outcomes were observed after the embryo transfer cycle. RESULTS PRP treatment significantly increased the median endometrial thickness, from 5.8 mm to 6.5 mm (P = 0.0066). Additionally, PRP treatment resulted in a statistically significant increase in the H-score for all endometrial markers. Importantly, during the subsequent embryo transfer cycle with PRP treatment, two patients successfully achieved pregnancies, both culminating in live births. CONCLUSIONS These findings emphasize the potential of PRP in improving endometrial conditions, especially for individuals grappling with thin endometrium issues, as underscored by this self-comparison methodology.
Collapse
Affiliation(s)
- Po-Fan Chen
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ling Liang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Jhe Chuang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Hsing Wu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
8
|
Xiong Y, Shi L, Zhang M, Zhou C, Mao Y, Hong Z, Wang Z, Ma L. Differential expression of tsRNAs and miRNAs in embryo culture medium: potential impact on embryo implantation. J Assist Reprod Genet 2024; 41:781-793. [PMID: 38270749 PMCID: PMC10957807 DOI: 10.1007/s10815-024-03034-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
PURPOSE Can small RNA derived from embryos in conditioned embryo culture medium (ECM) influence embryo implantation? METHODS We employed small RNA sequencing to investigate the expression profiles of transfer RNA-derived small RNA (tsRNA) and microRNA (miRNA) in ECM from high-quality and low-quality embryos. Quantitative real-time PCR was employed to validate the findings of small RNA sequencing. Additionally, we conducted bioinformatics analysis to predict the potential functions of these small RNAs in embryo implantation. To establish the role of tiRNA-1:35-Leu-TAG-2 in embryonic trophoblast cell adhesion, we utilized co-culture systems involving JAR and Ishikawa cells. RESULTS Our analysis revealed upregulation of nine tsRNAs and four miRNAs in ECM derived from high-quality embryos, whereas 37 tsRNAs and 12 miRNAs exhibited upregulation in ECM from low-quality embryos. The bioinformatics analysis of tsRNA, miRNA, and mRNA pathways indicated that their respective target genes may play pivotal roles in both embryo development and endometrial receptivity. Utilizing tiRNA mimics, we demonstrated that the prominently expressed tiRNA-1:35-Leu-TAG-2 in the low-quality ECM group can be internalized by Ishikawa cells. Notably, transfection of tiRNA-1:35-Leu-TAG-2 into Ishikawa cells reduced the attachment rate of JAR spheroids. CONCLUSION Our investigation uncovers significant variation in the expression profiles of tsRNAs and miRNAs between ECM derived from high- and low-quality embryos. Intriguingly, the release of tiRNA-1:35-Leu-TAG-2 by low-quality embryos detrimentally affects embryo implantation and endometrial receptivity. These findings provide fresh insights into understanding the molecular foundations of embryo-endometrial communication.
Collapse
Affiliation(s)
- Yao Xiong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei Province, 430071, People's Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Lei Shi
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Chun Zhou
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Yanhong Mao
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Zihan Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei Province, 430071, People's Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Ling Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China.
| |
Collapse
|
9
|
Lacconi V, Massimiani M, Carriero I, Bianco C, Ticconi C, Pavone V, Alteri A, Muzii L, Rago R, Pisaturo V, Campagnolo L. When the Embryo Meets the Endometrium: Identifying the Features Required for Successful Embryo Implantation. Int J Mol Sci 2024; 25:2834. [PMID: 38474081 DOI: 10.3390/ijms25052834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Evaluation of the optimal number of embryos, their quality, and the precise timing for transfer are critical determinants in reproductive success, although still remaining one of the main challenges in assisted reproduction technologies (ART). Indeed, the success of in vitro fertilization (IVF) treatments relies on a multitude of events and factors involving both the endometrium and the embryo. Despite concerted efforts on both fronts, the overall success rates of IVF techniques continue to range between 25% and 30%. The role of the endometrium in implantation has been recently recognized, leading to the hypothesis that both the "soil" and the "seed" play a central role in a successful pregnancy. In this respect, identification of the molecular signature of endometrial receptivity together with the selection of the best embryo for transfer become crucial in ART. Currently, efforts have been made to develop accurate, predictive, and personalized tests to identify the window of implantation and the best quality embryo. However, the value of these tests is still debated, as conflicting results are reported in the literature. The purpose of this review is to summarize and critically report the available criteria to optimize the success of embryo transfer and to better understand current limitations and potential areas for improvement.
Collapse
Affiliation(s)
- Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Micol Massimiani
- Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Ilenia Carriero
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Claudia Bianco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Carlo Ticconi
- Department of Surgical Sciences, Section of Gynaecology and Obstetrics, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Valentina Pavone
- Reproductive Sciences Laboratory, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Alteri
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Rocco Rago
- Physiopathology of Reproduction and Andrology Unit, Sandro Pertini Hospital, Via dei Monti Tiburtini 385/389, 00157 Rome, Italy
| | - Valerio Pisaturo
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
10
|
Pan X, Qing Q, Zhou J, Sun H, Li L, Cao W, Ye F, Zhu J, Sun Y, Wang L. Effect of Chinese patent medicine Kunling Pill on endometrial receptivity: A clinical trial, network pharmacology, and animal-based study. Drug Discov Ther 2023; 17:257-269. [PMID: 37599077 DOI: 10.5582/ddt.2023.01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Although pregnancy success rates are raised with assisted reproductive technology, it still cannot meet clinical demands. Kunling Pill (KLP), a traditional Chinese medicine, is widely used in various gynecological disorders, particularly in improving fertility and pregnancy rates. However, the underlying mechanism of how KLP affects pregnancy outcomes remains unclear. This study aimed to explore the effects and mechanisms of KLP on endometrial receptivity. Firstly, a retrospective trial was conducted to validate the efficacy of KLP on repeated implantation failure (RIF) patients. The result indicated a significant increase in the proportion of live birth in KLP group (30.56%) compared to the control group (16.89%). Secondly, network pharmacology methods predicted the active components and network targets of KLP. Endometrial receptivity is closely associated with the activation of inflammatory factors, predicting the function of KLP on the immune system. The estrogen and apoptotic signaling pathways were also highlighted in the gene ontology enrichment analysis. Thirdly, a decreased endometrial receptivity model was established by controlled ovarian hyperstimulation (COH) in female C57BL/6 mice, divided into the COH and KLP groups. Normal female mice are as control group. In vivo, KLP administration could increase endometrial thickness and the number of endometrial glands and pinopodes. In the endometrium, KLP supplementation upregulated the expressions of estrogen receptor α, progesterone receptor, endothelial nitric oxide synthase, and integrin αVβ3 in the murine uterus and reduced serum levels of estrogen and progesterone. KLP regulated the uterine immune cells and inhibited cell apoptosis in the ovary via Bcl-2/Bax/caspase-3 pathway. In conclusion, KLP administration raised the live birth rate in RIF patients to optimize medication regimens, mainly because KLP ameliorated impaired endometrial receptivity.
Collapse
Affiliation(s)
- Xinyao Pan
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Qi Qing
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Hongmei Sun
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Wenli Cao
- Reproductive Medicine Center, Zhoushan Maternal and Child Health Care Hospital, Zhoushan, Zhejiang, China
| | - Feijun Ye
- Reproductive Medicine Center, Zhoushan Maternal and Child Health Care Hospital, Zhoushan, Zhejiang, China
| | - Jun Zhu
- Department of Obstetrics and Gynecology, Wenling People's Hospital, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Yan Sun
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
11
|
Vaigauskaitė-Mažeikienė B, Baušytė R, Valatkaitė E, Maželytė R, Kazėnaitė E, Ramašauskaitė D, Navakauskienė R. Assisted reproductive technology outcomes and gene expression in unexplained infertility patients. Front Cell Dev Biol 2023; 11:1217808. [PMID: 37576599 PMCID: PMC10416262 DOI: 10.3389/fcell.2023.1217808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Unexplained infertility (UI) can be a frustrating and challenging diagnosis for doctors and couples as it can be difficult to understand why they are unable to conceive despite increasing diagnostic tools. Assisted reproductive technology (ART) procedures have been successfully applied to many couples aiming to overcome UI. However, they can be not only expensive but also require multiple cycles to achieve a successful pregnancy. The endometrium and the follicular fluid have been investigated as target tissues not only to determine the cause of UI but also to increase conception rates. Results: In this study, we analyzed the outcomes of ART in 223 UI couples and gene expression associated with DNA modification, cell death, immune response and senescence (TET1, TET2, BCL2, BAK1, HMGA2, IL-6, IL-8) in infertile women's endometrium and follicular fluid. We found significant differences in women who successfully got pregnant compared to women unable to conceive depending on age, duration of infertility, number of retrieved oocytes, zygotes, transferred embryos. Further, the expression of genes BAK1 (pro-apoptotic), TET2 (associated with epigenetic DNA modification) and IL-6 (associated with immune responses) were significantly higher in the endometrium of women who successfully got pregnant. Conclusion: Younger parental age couples showed higher ART success rates, shorter duration of infertility, higher number of retrieved oocytes, zygotes and transferred embryos. The gene expression analysis revealed significant changes in the endometrium depending on genes associated with cell death and immune response which were upregulated in females with diagnosed unexplained infertility.
Collapse
Affiliation(s)
- Brigita Vaigauskaitė-Mažeikienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Centre of Obstetrics and Gynaecology of the Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Raminta Baušytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Centre of Obstetrics and Gynaecology of the Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Elvina Valatkaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rūta Maželytė
- Centre of Obstetrics and Gynaecology of the Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Edita Kazėnaitė
- Faculty of Medicine, Vilnius University Hospital Santaros Klinikos, Vilnius University, Vilnius, Lithuania
| | - Diana Ramašauskaitė
- Centre of Obstetrics and Gynaecology of the Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
12
|
Elçi B, Yalçınkaya Z, Tekin E, Bakırcı Ş, Sayan CD, Kısa Ü, Kurdoğlu M, Özkan ZS, Sağsöz N. Could maternal serum MFG-E8 level predict adverse first trimester pregnancy outcome? A preliminary study. Turk J Med Sci 2023; 53:536-543. [PMID: 37476868 PMCID: PMC10388033 DOI: 10.55730/1300-0144.5614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/15/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Milk fat globule-epidermal growth factor 8 (MFG-E8) is expressed in the endometrial epithelium and its expression increases during the implantation process. Due to this knowledge, we aimed to investigate the maternal serum MFG-E8 levels on both healthy pregnant women in the first trimester and pregnant women complicated with missed abortion and threatened abortion in the first trimester. METHODS This prospective, cross-sectional study was conducted in a tertiary referral hospital, department of obstetrics between July 2020 and February 2021 after ethical committee approval. The study population was consisted of 30 healthy pregnant women (HP) in the first trimester, 30 pregnant women suffering from threatened abortion (TA) in the first trimester and 30 pregnant women suffering from missed abortion (MA) in the first trimester. Maternal serum MFG-E8 levels were analyzed with enzyme linked immunosorbent assay. Delivery and neonatal outcomes of the study population was evaluated. The continuous variables were compared among three groups with variance analysis with post hoc tests. The categorical variables were compared with chi-square and Fisher's exact tests where applicable. RESULTS The mean age of the study population was 29.36 ± 5.31 years. There was no significant difference among three groups for parameters of age, body mass index, parity number, and gestational week. Despite being within normal ranges, the mean neutrophil and international normalized ratio values of the three groups showed statistically significant difference (p < 0.05). The mean maternal serum MFG-E8 levels of MA, TA, and HP groups were 270 ± 152.3, 414.7 ± 236.7, and 474 ± 222.5 ng/mL, respectively (p = 0.001). It was found that mean of MFG-E8 of the MA group was statistically significantly lower than those of the other two groups (p < 0.05). DISCUSSION Although maternal serum MFG-E8 level seems to be a parameter that differ between live and nonlive pregnancies, studies with large number of cases are needed to discuss our results and to determine a cut-off value for prediction.
Collapse
Affiliation(s)
- Bircan Elçi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Zeynep Yalçınkaya
- Department of Public Health, Afyonkarahisar State Hospital, Afyonkarahisar, Turkey
| | - Ercan Tekin
- Department of Biochemistry, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Şükrü Bakırcı
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Cemile Dayangan Sayan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Üçler Kısa
- Department of Biochemistry, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Mertihan Kurdoğlu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Zehra Sema Özkan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Nevin Sağsöz
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| |
Collapse
|
13
|
Carolina V, Mariangeles C, Delia W, Monica G, Mirta K, Claudio B. Integrins and ligands, are correlated at pig placental interface during pregnancy? REPRODUCTION AND FERTILITY 2023; 4:RAF-22-0079. [PMID: 36795678 PMCID: PMC10083652 DOI: 10.1530/raf-22-0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/16/2023] [Indexed: 02/17/2023] Open
Abstract
In the present work, we emphasize the studies about integrins and their receptors in pig placental interface at different times of gestation. Uterine placental interface (n=24) of 17-, 30-, 60- and 70-days gestation (dg) and non-pregnant uterus (n=4) of crossbred sows were used. The presence of αvβ3 and α5β1 integrins, and their ligands fibronectin (FN), and osteopontin (OPN) were detected by immunohistochemistry, and the immunolabelled area percentage (IAP) and the optical density (OD) were determined. The integrins and its ligands analyzed have presented peaks of expression in early and mid-gestation, both in IAP and the OD area decreasing at 70 dg. These temporal changes showed us that the molecules studied in this work participate in embryo/feto-maternal attachment, variably. Besides, we found a significant correlation both in the intensity and in the extension of immunostaining for trophoblastic FN and endometrial αvβ3, and trophoblastic OPN and endometrial α5β1, throughout the entire pig pregnancy. At late gestation, take place a notable placental remodelation with subsequent removal or renewal of folds at the uterine-placental interface that results in the loss of focal adhesions. The decrease of the expression of some integrins and their ligands in late gestation, particularly at 70 dg, would demonstrate that there would be other adhesion molecules and other ligands that could be participating in the establishment of the maternal-fetal interface.
Collapse
Affiliation(s)
- Velez Carolina
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Argentina
- National Scientific and Technical Research Council of Argentina (CONICET), Argentina
| | - Clauzure Mariangeles
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Argentina
- National Scientific and Technical Research Council of Argentina (CONICET), Argentina
| | - Williamson Delia
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Argentina
| | - Garcia Monica
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Argentina
| | - Koncurat Mirta
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Argentina
| | - Barbeito Claudio
- National Scientific and Technical Research Council of Argentina (CONICET), Argentina
- Laboratory of Descriptive, Comparative and Experimental Histology and Embriology (LHYEDEC). Faculty of Veterinary Science, National University of La Plata (UNLP), Argentina
| |
Collapse
|
14
|
Siriwardena D, Boroviak TE. Evolutionary divergence of embryo implantation in primates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210256. [PMID: 36252209 DOI: 10.1098/rstb.2021.0256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Implantation of the conceptus into the uterus is absolutely essential for successful embryo development. In humans, our understanding of this process has remained rudimentary owing to the inaccessibility of early implantation stages. Non-human primates recapitulate many aspects of human embryo development and provide crucial insights into trophoblast development, uterine receptivity and embryo invasion. Moreover, primate species exhibit a variety of implantation strategies and differ in embryo invasion depths. This review examines conservation and divergence of the key processes required for embryo implantation in different primates and in comparison with the canonical rodent model. We discuss trophectoderm compartmentalization, endometrial remodelling and embryo adhesion and invasion. Finally, we propose that studying the mechanism controlling invasion depth between different primate species may provide new insights and treatment strategies for placentation disorders in humans. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Dylan Siriwardena
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| |
Collapse
|
15
|
Chen X, Fernando SR, Lee YL, Yeung WSB, Ng EHY, Li RHW, Lee KF. High-Throughput In Vitro Screening Identified Nemadipine as a Novel Suppressor of Embryo Implantation. Int J Mol Sci 2022; 23:5073. [PMID: 35563464 PMCID: PMC9103851 DOI: 10.3390/ijms23095073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 02/01/2023] Open
Abstract
Current contraceptive methods interfere with folliculogenesis, fertilization, and embryo implantation by physical or hormonal approaches. Although hormonal contraceptive pills are effective in regulating egg formation, they are less effective in preventing embryo implantation. To explore the use of non-hormonal compounds that suppress embryo implantation, we established a high-throughput spheroid-endometrial epithelial cell co-culture assay to screen the Library of Pharmacologically Active Compounds (LOPAC) for compounds that affect trophoblastic spheroid (blastocyst surrogate) attachment onto endometrial epithelial Ishikawa cells. We identified 174 out of 1280 LOPAC that significantly suppressed BeWo spheroid attachment onto endometrial Ishikawa cells. Among the top 20 compounds, we found the one with the lowest cytotoxicity in Ishikawa cells, P11B5, which was later identified as Nemadipine-A. Nemadipine-A at 10 µM also suppressed BeWo spheroid attachment onto endometrial epithelial RL95-2 cells and primary human endometrial epithelial cells (hEECs) isolated from LH +7/8-day endometrial biopsies. Mice at 1.5 days post coitum (dpc) treated with a transcervical injection of 100 µg/kg Nemadipine-A or 500 µg/kg PRI-724 (control, Wnt-inhibitor), but not 10 µg/kg Nemadipine-A, suppressed embryo implantation compared with controls. The transcript expressions of endometrial receptivity markers, integrin αV (ITGAV) and mucin 1 (MUC1), but not β-catenin (CTNNB1), were significantly decreased at 2.5 dpc in the uterus of treated mice compared with controls. The reduction of embryo implantation by Nemadipine-A was likely mediated through suppressing endometrial receptivity molecules ITGAV and MUC1. Nemadipine-A is a potential novel non-hormonal compound for contraception.
Collapse
Affiliation(s)
- Xian Chen
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.C.); (S.R.F.); (Y.-L.L.); (W.S.-B.Y.); (E.H.-Y.N.); (R.H.-W.L.)
| | - Sudini Ranshaya Fernando
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.C.); (S.R.F.); (Y.-L.L.); (W.S.-B.Y.); (E.H.-Y.N.); (R.H.-W.L.)
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Yin-Lau Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.C.); (S.R.F.); (Y.-L.L.); (W.S.-B.Y.); (E.H.-Y.N.); (R.H.-W.L.)
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
| | - William Shu-Biu Yeung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.C.); (S.R.F.); (Y.-L.L.); (W.S.-B.Y.); (E.H.-Y.N.); (R.H.-W.L.)
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
| | - Ernest Hung-Yu Ng
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.C.); (S.R.F.); (Y.-L.L.); (W.S.-B.Y.); (E.H.-Y.N.); (R.H.-W.L.)
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
| | - Raymond Hang-Wun Li
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.C.); (S.R.F.); (Y.-L.L.); (W.S.-B.Y.); (E.H.-Y.N.); (R.H.-W.L.)
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (X.C.); (S.R.F.); (Y.-L.L.); (W.S.-B.Y.); (E.H.-Y.N.); (R.H.-W.L.)
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
| |
Collapse
|
16
|
Gambioli R, Montanino Oliva M, Nordio M, Chiefari A, Puliani G, Unfer V. New Insights into the Activities of D-Chiro-Inositol: A Narrative Review. Biomedicines 2021; 9:biomedicines9101378. [PMID: 34680494 PMCID: PMC8533370 DOI: 10.3390/biomedicines9101378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
D-chiro-inositol (DCI) is a natural compound detectable in cell membranes, which is highly conserved as a biological signaling molecule. In mammals, its function is primarily characterized in the intracellular transduction cascade of insulin. In particular, insulin signal promotes the release of pivotal DCI-containing molecules. In fact, impaired release of DCI is a common feature of insulin-resistant tissues, and insulin-sensitizing pharmaceuticals induce higher concentrations of free DCI. Moreover, it also plays important roles in several other processes. DCI is involved in the regulation of steroidogenesis, due to its regulatory effects on steroidogenic enzymes, including 17α-hydroxylase, 3β-hydroxysteroid dehydrogenase, and aromatase. Such regulation of various enzymes indicates a mechanism by which the body regulates different processes via a single molecule, depending on its concentration. DCI also reduces the expression of integrin β3, which is an adhesion molecule involved in embryo implantation and cellular phenomena such as survival, stemness, and invasiveness. In addition, DCI seems to have important anti-inflammatory activities, like its 3-O-methyl-ether, called pinitol. In vitro evidence demonstrates that treatment with both compounds induces a reduction in pro-inflammatory factors—such as Nf-κB—and cytokines—such as TNF-α. DCI then plays important roles in several fundamental processes in physiology. Therefore, research on such molecule is of primary importance.
Collapse
Affiliation(s)
| | - Mario Montanino Oliva
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.M.O.); (M.N.)
- Department of Obstetrics and Gynecology, Santo Spirito Hospital, 00193 Rome, Italy
| | - Maurizio Nordio
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.M.O.); (M.N.)
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy
| | - Alfonsina Chiefari
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.); (G.P.)
| | - Giulia Puliani
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.); (G.P.)
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.M.O.); (M.N.)
- System Biology Group Lab, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
17
|
Fraser R, Smith R, Lin CJ. A 3D endometrial organotypic model simulating the acute inflammatory decidualisation initiation phase with epithelial induction of the key endometrial receptivity marker, integrin αVβ3. Hum Reprod Open 2021; 2021:hoab034. [PMID: 34532597 PMCID: PMC8438487 DOI: 10.1093/hropen/hoab034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
STUDY QUESTION Is it possible to develop a simplified physiological in vitro system representing the key cell-types associated with a receptive endometrial phenotype? SUMMARY ANSWER We present a new concept to investigate endometrial receptivity, with a 3D organotypic co-culture model to simulate an early and transient acute autoinflammatory decidual status that resolves in the induction of a receptive endometrial phenotype. WHAT IS KNOWN ALREADY Embryo implantation is dependent on a receptive uterine environment. Ovarian steroids drive post-ovulation structural and functional changes in the endometrium, which becomes transiently receptive for an implanting conceptus, termed the ‘window of implantation’, and dysregulation of endometrial receptivity is implicated in a range of reproductive, obstetric, and gynaecological disorders and malignancies. The interactions that take place within the uterine microenvironment during this time are not fully understood, and human studies are constrained by a lack of access to uterine tissue from specific time-points during the menstrual cycle. Physiologically relevant in vitro model systems are therefore fundamental for conducting investigations to better understand the cellular and molecular mechanisms controlling endometrial receptivity. STUDY DESIGN, SIZE, DURATION We conducted an in vitro cell culture study using human cell lines and primary human cells isolated from endometrial biopsy tissue. The biopsy tissue samples were obtained from three women attending gynaecological outpatient departments in NHS Lothian. The work was carried out between December 2016 and April 2019, at the MRC Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh. PARTICIPANTS/MATERIALS, SETTING, METHODS An endometrial stromal cell (ESC) line, and endometrial epithelial cells (EECs) isolated from endometrial biopsy tissue and expanded in vitro by conditional reprogramming, were used throughout the study. Immunocytochemical and flow cytometric analyses were used to confirm epithelial phenotype following conditional reprogramming of EECs. To construct an endometrial organotypic co-culture model, ESCs were embedded within a 3D growth factor-reduced Matrigel structure, with a single layer of conditionally reprogrammed EECs seeded on top. Cells were stimulated with increasing doses of medroxyprogesterone acetate, cAMP and oestradiol, in order to induce ESC decidual transformation and endometrial receptivity. Decidual response and the induction of a receptive epithelial phenotype were assessed by immunocytochemical detection and quantitative in-cell western analyses, respectively. MAIN RESULTS AND THE ROLE OF CHANCE A transient up-regulation of the interleukin-33 receptor protein, ST2L, was observed in ESCs, indicating a transient autoinflammatory decidual response to the hormonal stimulation, known to induce receptivity gene expression in the overlying epithelium. Hormonal stimulation increased the EEC protein levels of the key marker of endometrial receptivity, integrin αVβ3 (n = 8; *P < 0.05; ***P < 0.0001). To our knowledge, this is the first demonstration of a dedicated endometrial organotypic model, which has been developed to investigate endometrial receptivity, via the recapitulation of an early decidual transitory acute autoinflammatory phase and induction of an epithelial phenotypic change, to represent a receptive endometrial status. LIMITATIONS, REASONS FOR CAUTION This simplified in vitro ESC-EEC co-culture system may be only partly representative of more complex in vivo conditions. WIDER IMPLICATIONS OF THE FINDINGS The 3D endometrial organotypic model presented here may offer a valuable tool for investigating a range of reproductive, obstetric, and gynaecological disorders, to improve outcomes for assisted reproductive technologies, and for the development of advances in contraceptive methods. STUDY FUNDING/COMPETING INTEREST(S) This work was supported in part by a Medical Research Council Centre Grant (project reference MR/N022556/1). R.F. was the recipient of a Moray Endowment award and a Barbour Watson Trust award. C.-J.L. is a Royal Society of Edinburgh Personal Research Fellow, funded by the Scottish Government. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- R Fraser
- The University of Edinburgh, MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh, UK
| | - R Smith
- The University of Edinburgh, MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh, UK
| | - C-J Lin
- The University of Edinburgh, MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
18
|
Isbilen E, Kulaksizoglu S, Kirmizioglu M, Karuserci Komurcu O, Tabur S. Role of prolidase activity and oxidative stress biomarkers in unexplained infertility. Int J Gynaecol Obstet 2021; 156:430-435. [PMID: 34449881 DOI: 10.1002/ijgo.13899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Our aim was to explore the significance of serum prolidase enzyme activity and oxidative stress in women with unexplained infertility (UEI). METHODS In this case-control study (n = 160; 86 cases; 74 controls) prolidase enzyme activity and total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), and vitamin E were measured in plasma using enzyme-linked immunosorbent assays. RESULTS Prolidase enzyme activity and TAS levels were particularly higher in the patient group (P = 0.013, P = 0.001, respectively). Decreased OSI levels were detected in the patient group (P = 0.001). There was a positive relationship of prolidase with vitamin E in both patient and control groups (r = 0.892, P = 0.001, and r = 0.659, P = 0.001, respectively). A positive, but weak, relationship was identified between prolidase activity and TOS levels and also between vitamin E and TOS levels in the UEI group (r = 0.265, P = 0.049, and r = 0.288, P = 0.014, respectively). No association was found between prolidase and TOS levels or between vitamin E and TOS levels in the control group (r = 0.0097, P = 0.527, and r = 0.085, P = 0.610, respectively). CONCLUSION Our results showed an association between serum prolidase activity and oxidative stress in UEI patients. Further studies including greater groups are required to show the role of reactive oxygen species in UEI.
Collapse
Affiliation(s)
- Elif Isbilen
- Department of Medical Biochemistry, School of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Sevsen Kulaksizoglu
- Department of Medical Biochemistry, School of Medicine, Başkent University, Konya, Turkey
| | - Mahmut Kirmizioglu
- Department of Medical Biochemistry, School of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ozge Karuserci Komurcu
- Department of Gynecology and Obstetrics, School of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Suzan Tabur
- Department of Endocrinology and Metabolism, School of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
19
|
Zhang Z, Li T, Xu L, Wang Q, Li H, Wang X. Extracellular superoxide produced by Enterococcus faecalis reduces endometrial receptivity via inflammatory injury. Am J Reprod Immunol 2021; 86:e13453. [PMID: 33991362 DOI: 10.1111/aji.13453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
PROBLEM Chronic endometritis (CE) can cause infertility. Enterococcus faecalis is an opportunistic pathogen that is often found in the endometrium of CE patients. However, the mechanisms by which E. faecalis affects endometrial health are still unclear. In this study, we investigated the mechanism how extracellular superoxide produced by E. faecalis affected the endometrial receptivity. METHOD OF STUDY Superoxide production was blocked by deleting menB gene in E. faecalis OG1RF. Endometrial epithelial cells were infected by superoxide-producing E. faecalis OG1RF and superoxide-deficient strain WY84. Inflammatory cytokines, apoptosis, and biomarkers for the endometrial receptivity were analyzed. RESULTS Infection of endometrial epithelial cells with superoxide-producing E. faecalis OG1RF induced expression of inflammatory cytokines, promoted apoptosis, and down-regulated expression of receptivity biomarkers compared to uninfected control. In contrast, superoxide-deficient E. faecalis WY84 had little effect on inflammatory cytokine production, apoptosis, and endometrial receptivity biomarkers. CONCLUSIONS Extracellular superoxide produced by E. faecalis is an important virulence factor for E. faecalis-induced endometritis leading to reduced receptivity of endometrial epithelial cells.
Collapse
Affiliation(s)
- Zhanhu Zhang
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Tianqi Li
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lili Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qiuhong Wang
- Department of Clinical Laboratory, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Haibo Li
- Department of Clinical Laboratory, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xingmin Wang
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
20
|
Xi J, Cheng J, Jin CC, Liu JY, Shen ZR, Xia LJ, Li Q, Shen J, Xia YB, Xu B. Electroacupuncture Improves Pregnancy Outcomes in Rats with Thin Endometrium by Promoting the Expression of Pinopode-Related Molecules. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6658321. [PMID: 33937407 PMCID: PMC8062184 DOI: 10.1155/2021/6658321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/27/2021] [Accepted: 04/03/2021] [Indexed: 11/21/2022]
Abstract
A thin endometrium affects the success of assisted reproduction due to low endometrial receptivity. Acupuncture improves endometrial receptivity and promotes the formation of pinopodes, the ultrastructure marker implantation window. However, the specific underlying mechanisms remain unclear. In this study, the efficacy of acupuncture treatment and its underlying mechanism were investigated by analyzing pregnancy rate, pinopode formation, and related molecular markers in thin endometrium model rats. Absolute ethanol (95%) was injected into the uteruses of female Sprague-Dawley rats to construct a thin endometrium model. In this model, acupuncture stimulation at EX-CA1, SP6, and CV4 ameliorated the pregnancy rate. Significantly increased embryo implantation, endometrial thickness, numbers of glands, and blood vessels were observed in the electroacupuncture (EA) group compared to the model group. The number of pinopodes in the EA group was abundant, with a shape similar to that of the control group. Additionally, significantly higher expression levels of pinopode-related markers, including integrin αvβ3, homeobox A10 (HOXA10), heparin-binding EGF-like growth factor (HBEGF), estrogen receptor alpha (ERα), and progesterone receptor (PR), were observed in the EA group than those in the model group. In conclusion, EA had a positive effect on the endometrial receptivity of thin endometrium model rats by improving pinopode formation through multiple molecular targets.
Collapse
Affiliation(s)
- Jin Xi
- Acupuncture and Tuina College, Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
| | - Jie Cheng
- Acupuncture and Tuina College, Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
| | - Chun-chun Jin
- Acupuncture and Tuina College, Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
| | - Jing-yu Liu
- Acupuncture and Tuina College, Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
| | - Zhen-ru Shen
- Acupuncture and Tuina College, Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
| | - Liang-jun Xia
- Acupuncture and Tuina College, Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
| | - Qian Li
- Acupuncture and Tuina College, Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
| | - Jie Shen
- Acupuncture and Tuina College, Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
| | - You-bing Xia
- Acupuncture and Tuina College, Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
- Xuzhou Medical University, Xuzhou 221004, China
| | - Bin Xu
- Acupuncture and Tuina College, Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
21
|
Luo X, Yang R, Bai Y, Li L, Lin N, Sun L, Liu J, Wu Z. Binding of microRNA-135a (miR-135a) to homeobox protein A10 ( HOXA10) mRNA in a high-progesterone environment modulates the embryonic implantation factors beta3-integrin (ITGβ3) and empty spiracles homeobox-2 (EMX2). ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:662. [PMID: 33987360 PMCID: PMC8106024 DOI: 10.21037/atm-21-596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Patients with elevated circulating progesterone concentrations on the day of the human chorionic gonadotropin (hCG) trigger had relatively low implantation rates during assisted reproductive treatments. In this study, we assess the hypothesis that different concentrations of progesterone regulate the expression of homeobox protein A10 (HOXA10) and its downstream genes through miRNA-135a. Methods MicroRNA-135a (miR-135a), HOXA10, beta3-integrin (ITGβ3), and empty spiracles homeobox-2 (EMX2) expression levels in endometrial tissues from patients with elevated progesterone were measured. To determine the threshold of progesterone level which can impair implantation, Ishikawa cells were used to determine the expression of the aforementioned 4 genes after exposure to 5 graded concentrations of progesterone. The dual-luciferase reporter assay was used to verify whether miR-135a regulated the expression of HOXA10. Furthermore, the effects of HOXA10 on the expression of key endometrial receptivity genes ITGβ3 and EMX2 were confirmed. Results High progesterone levels promoted miR-135a expression in vivo, and miR-135a bound to the 3'-untranslated region (3'-UTR) of HOXA10 mRNA to inhibit HOXA10 expression. Reduction of HOXA10 promoted EMX2 expression and inhibited ITG-3 production. Progesterone promoted the expression of HOXA10 in vitro at low concentrations. However, when the concentration was greater than 10−7 ng/mL, progesterone inhibited HOXA10 by promoting miR-135a expression, thereby altering the expression of related genes and affecting endometrial receptivity. Conclusions In vitro, the trend in miR-135a expression (which first decreased and then increased) was in direct contrast to that of HOXA10 expression (which first increased and then decreased) as progesterone levels increased. The key factors regulating endometrial receptivity included ITGβ3 and EMX2, which were confirmed to be regulated by HOXA10. High progesterone levels affected miR-135a expression, and miR-135a inhibited HOXA10 expression, thereby affecting endometrial receptivity.
Collapse
Affiliation(s)
- Xi Luo
- Faculty of Life science and Technology, Kunming University of Science and Technology, Kunming, China.,Medical School, Kunming University of Science and Technology, Kunming, China.,Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming, China.,Reproductive Medical Center of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Renxiang Yang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yun Bai
- Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming, China.,Reproductive Medical Center of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lei Li
- Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming, China.,Reproductive Medical Center of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Na Lin
- Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming, China.,Reproductive Medical Center of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lan Sun
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jianjun Liu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Research Center of Biomedical Engineering, Kunming Medical University, Kunming, China
| | - Ze Wu
- Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming, China.,Reproductive Medical Center of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
22
|
Moharrami T, Ai J, Ebrahimi-Barough S, Nouri M, Ziadi M, Pashaiefar H, Yazarlou F, Ahmadvand M, Najafi S, Modarressi MH. Influence of Follicular Fluid and Seminal Plasma on The Expression of Endometrial Receptivity Genes in Endometrial Cells. CELL JOURNAL 2021; 22:457-466. [PMID: 32347039 PMCID: PMC7211287 DOI: 10.22074/cellj.2021.6851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/24/2019] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Endometrial receptivity plays a key role in pregnancy success in assisted reproduction cycles. Recent evidence suggests that seminal plasma (SP) and follicular fluid (FF) influence the uterine endometrium to improve implantation of the embryo and the establishment of pregnancy. In this study, we attempt to assess the influence of FF and SP on the expression levels of main endometrial receptivity genes (HOXA10, HOXA11, ITGAV, ITGB3 and LIF) in endometrial stromal cells. MATERIALS AND METHODS In this experimental study, SP and FF were collected from 15 healthy fertile men and 15 healthy fertile women, respectively. Tissue specimens of the endometrium were obtained from 12 women undergoing hysterectomy for benign conditions. After endometrial stromal cell isolation and culture, dose- and time-dependent cytotoxic effects of pooled FF and SP on 3D-cultured endometrial cells were evaluated. A second independent set of 12 endometrium samples was treated under determined optimum conditions and evaluated for gene expression analysis using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The results of this study indicated that exposure of endometrial stromal cells to FF resulted in the elevated expression of HOXA10 (fold change=2.6, P=0.02), HOXA11 (fold change=3.3, P=0.002), LIF (fold change=4.6, P=0.0003), ITGB3 (fold change=3.5, P=0.012), and ITGAV (fold change=2.8, P=0.001) compared to untreated cells. In addition, we found that SP-treated endometrial cells showed increased mRNA levels of only the LIF gene (fold change=2.5, P=0.008) compared to untreated cells. CONCLUSION Human SP and FF may modulate the endometrial receptivity and improve the implantation rate in assisted reproduction cycles through the up-regulation of endometrial receptivity genes.
Collapse
Affiliation(s)
- Tamouchin Moharrami
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ziadi
- Department of Medical Genetics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Pashaiefar
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yazarlou
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Najafi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
23
|
Isbilen E, Ulusal H, Karaer K, Kul S, Yaman DM, Tepe NB, Kanbur HC, Tarakcioglu M, Ozyurt AB. VDR gene polymorphisms as a significant factor in unexplained infertility. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Wang L, Lv S, Mao W, Pei M, Yang X. Assessment of endometrial receptivity during implantation window in women with unexplained infertility. Gynecol Endocrinol 2020; 36:917-921. [PMID: 32070163 DOI: 10.1080/09513590.2020.1727433] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
This study aimed to assess the endometrial receptivity during implantation window in women with unexplained infertility. A prospective study recruited 168 women with unexplained infertility and 169 fertile women. Ultrasonic parameters and biomarkers in the uterine fluid were detected. The endometrial vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were significantly higher in fertile women as compared with unexplained infertile women, and the integrin αvβ3, vascular endothelial growth factor (VEGF), tumor necrosis factor alpha (TNF-α), and leukemia inhibitory factor (LIF) levels in uterine fluid were significantly higher in fertile women. The biochemical pregnancy rate, clinical pregnancy rate, and ongoing pregnancy rate in fertile women were 20.12%, 18.34%, and 17.75%, respectively, which were significantly higher compared with unexplained infertile women (7.14%, 5.36%, and 4.17%, respectively). Endometrial thickness (ET), endometrial volume (EV), VI, FI, and VFI measured by ultrasound, and the integrin αvβ3, VEGF, TNF-α, and LIF levels in uterine fluid were all significantly higher in pregnant women as compared with nonpregnant women. The best parameters of ultrasonic indicators for predicting endometrial receptivity in women with unexplained infertility were FI(AUC = 0.894, sensitivity 93.8%, and specificity 83.1%). Integrin αvβ3 had the best predictive value for endometrial receptivity among biomarkers in the uterine fluid (AUC = 0.921, sensitivity 96.7%, and specificity 89.5%). Women with unexplained infertility present declined endometrial receptivity. Endometrial ultrasonic parameters detected by three-dimensional power Doppler and biomarkers in the uterine fluid may be effective indicators to predict endometrial receptivity.
Collapse
Affiliation(s)
- Li Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shulan Lv
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenjun Mao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Meili Pei
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
25
|
Gheibi P, Eftekhari Z, Doroud D, Parivar K. Chlorpyrifos effects on integrin alpha v and beta 3 in implantation window phase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29530-29538. [PMID: 32440878 DOI: 10.1007/s11356-020-08288-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Chlorpyrifos (CPF), as a worldwide pesticide, can effect on the integrins αv and β3 which play a main role in the implantation window. Therefore, the aim of this study was to consider CPF effects on integrin alpha v and beta 3 in implantation window phase. Thirty female NMRI mice were separated into groups of CPF, sham, and control. After 6 weeks, each group was mated, and on the 5th day of gestation, all mice were euthanized. Estradiol and progesterone levels were detected by the enzyme-linked immunosorbent assay (ELISA) test; two subunits of integrins (αv and β3) genes and proteins of endometrium were analyzed by real-time polymerase chain reaction (RT-PCR) and immunohistochemistry method, respectively. Fibrosis of the liver which evaluated by Masson's trichrome stain was increased in the CPF group compared with the others. But estradiol and progesterone levels were significantly decreased in CPF groups. Based on the findings, the proportion of genes' expressions of integrin subunits declined by the effect of CPF, while there was not any notable consequence on mice in the sham group. Alpha v and beta 3 integrin proteins expressed in all groups, but the concentration of these proteins in CPF groups was lower than in other groups. This study has shown that the decline of estradiol and progesterone downregulates the expression of αv and β3 integrins which were influenced by CPF exposure. Changing these patterns of proteins could have numerous influences on unsuccessful implantation. Therefore, this experimental study recommends that inclusive consideration of the effects of insecticides may be crucial to women's unrecognized cause of infertility.
Collapse
Affiliation(s)
- Parisa Gheibi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Zohre Eftekhari
- Research & Production Complex, Quality Control Department, Pasteur Institute of Iran, Tehran, Alborz, 3159915111, Iran.
| | - Delaram Doroud
- Research & Production Complex, Quality Control Department, Pasteur Institute of Iran, Tehran, Alborz, 3159915111, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| |
Collapse
|
26
|
Wang L, Lv S, Mao W, Bai E, Yang X. Fecundity disorders in older women: declines in follicular development and endometrial receptivity. BMC WOMENS HEALTH 2020; 20:115. [PMID: 32487204 PMCID: PMC7268486 DOI: 10.1186/s12905-020-00979-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/24/2020] [Indexed: 02/07/2023]
Abstract
Background Little research is available on follicular development and endometrial receptivity in older women. This study aimed to assess follicular development and endometrial receptivity, and to evaluate ultrasonic parameters in predicting endometrial receptivity during the implantation window in older women. Methods For this prospective case-control study, 224 older women and 215 young women were recruited. The follicular development and endometrial thickness were monitored by transvaginal ultrasound. During the implantation window, the pulsatility index (PI) and resistance index (RI) of the uterine arteries and subendometrial region, endometrial volume, vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were calculated between the two groups. The ultrasonic parameters were used to assess endometrial receptivity in older women. Results The serum anti-Mullerian hormone (AMH) concentration and antral follicle count (AFC) were significantly lower in older women than in young women. The average diameter of the dominant follicle on days 14, 16, and 18 of the menstrual cycle were significantly smaller, and the subendometrial region RI on days 12, 14, 16, and 18 of the menstrual cycle were significantly higher in older women than in young women. The normal ovulation rate was significantly lower in older women than in young women. The subendometrial region RI was significantly higher, and the endometrial VI, FI, and VFI were significantly lower in older women compared with young women. The biochemical pregnancy rate, clinical pregnancy rate and ongoing pregnancy rate of older women were significantly lower than in young women. The best ultrasonic parameter for predicting endometrial receptivity during the implantation window in older women was VI (AUC =0.889, sensitivity 92.6% and specificity 85.4%). Conclusions Older women present decreased serum AMH concentrations and AFC, defined as indicators of ovarian reserve function. Older women are characterized by decreased follicular development and endometrial receptivity, which may lead to fecundity disorders.
Collapse
Affiliation(s)
- Li Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shulan Lv
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenjun Mao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - E Bai
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
27
|
Fujiwara H, Ono M, Sato Y, Imakawa K, Iizuka T, Kagami K, Fujiwara T, Horie A, Tani H, Hattori A, Daikoku T, Araki Y. Promoting Roles of Embryonic Signals in Embryo Implantation and Placentation in Cooperation with Endocrine and Immune Systems. Int J Mol Sci 2020; 21:ijms21051885. [PMID: 32164226 PMCID: PMC7084435 DOI: 10.3390/ijms21051885] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Embryo implantation in the uterus is an essential process for successful pregnancy in mammals. In general, the endocrine system induces sufficient embryo receptivity in the endometrium, where adhesion-promoting molecules increase and adhesion-inhibitory molecules decrease. Although the precise mechanisms remain unknown, it is widely accepted that maternal–embryo communications, including embryonic signals, improve the receptive ability of the sex steroid hormone-primed endometrium. The embryo may utilize repulsive forces produced by an Eph–ephrin system for its timely attachment to and subsequent invasion through the endometrial epithelial layer. Importantly, the embryonic signals are considered to act on maternal immune cells to induce immune tolerance. They also elicit local inflammation that promotes endometrial differentiation and maternal tissue remodeling during embryo implantation and placentation. Additional clarification of the immune control mechanisms by embryonic signals, such as human chorionic gonadotropin, pre-implantation factor, zona pellucida degradation products, and laeverin, will aid in the further development of immunotherapy to minimize implantation failure in the future.
Collapse
Affiliation(s)
- Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; (M.O.); (T.I.); (K.K.)
- Correspondence: or ; Tel.: +81-(0)76-265-2425; Fax: +81-(0)76-234-4266
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; (M.O.); (T.I.); (K.K.)
| | - Yukiyasu Sato
- Department of Obstetrics and Gynecology, Takamatsu Red Cross Hospital, Takamatsu 760-0017, Japan;
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto 862-8652, Japan;
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; (M.O.); (T.I.); (K.K.)
| | - Kyosuke Kagami
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; (M.O.); (T.I.); (K.K.)
| | - Tomoko Fujiwara
- Department of Home Science and Welfare, Kyoto Notre Dame University, Kyoto 606-0847, Japan;
| | - Akihito Horie
- Department of Obstetrics and Gynecology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (A.H.); (H.T.)
| | - Hirohiko Tani
- Department of Obstetrics and Gynecology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (A.H.); (H.T.)
| | - Akira Hattori
- Department of System Chemotherapy and Molecular Sciences, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501, Japan;
| | - Takiko Daikoku
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa 920-8640, Japan;
| | - Yoshihiko Araki
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu 279-0021, Japan;
- Department of Obstetrics and Gynecology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
28
|
Zarrin Y, Bakhteyari A, Nikpour P, Mostafavi FS, Eskandari N, Matinfar M, Aboutorabi R. A Study on the Presence of Osteopontin and α3β1 Integrin in the Endometrium of Diabetic Rats at the Time of Embryo Implantation. J Reprod Infertil 2020; 21:87-93. [PMID: 32500011 PMCID: PMC7253937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Embryo implantation is a critical and multifactorial phenomenon which can be affected by any alteration in molecular micro construction of endometrium. The aim of the current study was to evaluate the effects of diabetes on osteopontin (OPN) and α3β1 integrin proteins level at the time of endometrial receptivity. METHODS Twenty-eight female rats were divided into control, diabetic, pioglitazone-treated and metformin-treated groups. Western blot was performed to determine the OPN and α3β1 integrin proteins in rats' endometrium at the time of implantation. Data were analyzed by analysis of variance (ANOVA) and p<0.05 was considered statistically significant. RESULTS OPN increased significantly in the diabetic group in comparison with control (p<0.001), metformin-treated (p=0.008) and pioglitazone-treated groups (p< 0.001). Furthermore, α3β1 integrin protein level in diabetic group had a significant difference in comparison with that of the control (p<0.001), metformin-treated (p= 0.026) and pioglitazone-treated groups (p<0.001). CONCLUSION OPN and α3β1 integrin proteins are involved in embryo implantation and their changes in diabetic condition can affect fertility. Treatment with pioglitazone and metformin improved the level of OPN and α3β1 integrin proteins while pioglitazone was more effective.
Collapse
Affiliation(s)
- Yasaman Zarrin
- Isfahan Medical Student Research Center, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Bakhteyari
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Sadat Mostafavi
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Matinfar
- Department of Internal Medicine, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roshanak Aboutorabi
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding Author: Roshanak Aboutorabi, Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran E-mail:
| |
Collapse
|
29
|
Zeng S, Ulbrich SE, Bauersachs S. Spatial organization of endometrial gene expression at the onset of embryo attachment in pigs. BMC Genomics 2019; 20:895. [PMID: 31752681 PMCID: PMC6873571 DOI: 10.1186/s12864-019-6264-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND During the preimplantation phase in the pig, the conceptus trophoblast elongates into a filamentous form and secretes estrogens, interleukin 1 beta 2, interferons, and other signaling molecules before attaching to the uterine epithelium. The processes in the uterine endometrium in response to conceptus signaling are complex. Thus, the objective of this study was to characterize transcriptome changes in porcine endometrium during the time of conceptus attachment considering the specific localization in different endometrial cell types. RESULTS Low-input RNA-sequencing was conducted for the main endometrial compartments, luminal epithelium (LE), glandular epithelium (GE), blood vessels (BV), and stroma. Samples were isolated from endometria collected on Day 14 of pregnancy and the estrous cycle (each group n = 4) by laser capture microdissection. The expression of 12,000, 11,903, 11,094, and 11,933 genes was detectable in LE, GE, BV, and stroma, respectively. Differential expression analysis was performed between the pregnant and cyclic group for each cell type as well as for a corresponding dataset for complete endometrium tissue samples. The highest number of differentially expressed genes (DEGs) was found for LE (1410) compared to GE, BV, and stroma (800, 1216, and 384). For the complete tissue, 3262 DEGs were obtained. The DEGs were assigned to Gene Ontology (GO) terms to find overrepresented functional categories and pathways specific for the individual endometrial compartments. GO classification revealed that DEGs in LE were involved in 'biosynthetic processes', 'related to ion transport', and 'apoptotic processes', whereas 'cell migration', 'cell growth', 'signaling', and 'metabolic/biosynthetic processes' categories were enriched for GE. For blood vessels, categories such as 'focal adhesion', 'actin cytoskeleton', 'cell junction', 'cell differentiation and development' were found as overrepresented, while for stromal samples, most DEGs were assigned to 'extracellular matrix', 'gap junction', and 'ER to Golgi vesicles'. CONCLUSIONS The localization of differential gene expression to different endometrial cell types provided a significantly improved view on the regulation of biological processes involved in conceptus implantation, such as the control of uterine fluid secretion, trophoblast attachment, growth regulation by Wnt signaling and other signaling pathways, as well as the modulation of the maternal immune system.
Collapse
Affiliation(s)
- Shuqin Zeng
- Genetics and Functional Genomics, Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Eschikon 27 AgroVet-Strickhof, Zurich, Switzerland
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Lindau, ZH 8315 Switzerland
| | - Susanne E. Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Lindau, ZH 8315 Switzerland
| | - Stefan Bauersachs
- Genetics and Functional Genomics, Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Eschikon 27 AgroVet-Strickhof, Zurich, Switzerland
| |
Collapse
|
30
|
Kakar‐Bhanot R, Brahmbhatt K, Kumar V, Suryawanshi AR, Srivastava S, Chaudhari U, Sachdeva G. Plasma membrane proteome of adhesion‐competent endometrial epithelial cells and its modulation by Rab11a. Mol Reprod Dev 2019; 87:17-29. [DOI: 10.1002/mrd.23292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Ruchi Kakar‐Bhanot
- Primate Biology LaboratoryIndian Council of Medical Research‐National Institute for Research in Reproductive Health (ICMR‐NIRRH)Mumbai India
| | - Krupanshi Brahmbhatt
- Primate Biology LaboratoryIndian Council of Medical Research‐National Institute for Research in Reproductive Health (ICMR‐NIRRH)Mumbai India
| | - Vipin Kumar
- Proteomics Laboratory, Department of Bioscience and BioengineeringIndian Institute of TechnologyMumbai India
| | | | - Sanjeeva Srivastava
- Proteomics Laboratory, Department of Bioscience and BioengineeringIndian Institute of TechnologyMumbai India
| | - Uddhav Chaudhari
- Primate Biology LaboratoryIndian Council of Medical Research‐National Institute for Research in Reproductive Health (ICMR‐NIRRH)Mumbai India
| | - Geetanjali Sachdeva
- Primate Biology LaboratoryIndian Council of Medical Research‐National Institute for Research in Reproductive Health (ICMR‐NIRRH)Mumbai India
| |
Collapse
|
31
|
Sharma N. GnRH agonist and letrozole in women with recurrent implantation failure. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S209. [PMID: 31656788 DOI: 10.21037/atm.2019.08.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nidhi Sharma
- Department of Obstetrics and Gynecology, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
32
|
Bakhteyari Ph D Candidate A, Zarrin Y, Nikpour P, Sadat Hosseiny Z, Sadat Mostafavi F, Eskandari N, Matinfar M, Aboutorabi R. Diabetes mellitus increased integrins gene expression in rat endometrium at the time of embryo implantation. Int J Reprod Biomed 2019; 17:395-404. [PMID: 31508564 PMCID: PMC6719519 DOI: 10.18502/ijrm.v17i6.4810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/14/2019] [Accepted: 01/30/2019] [Indexed: 11/24/2022] Open
Abstract
Background Diabetes mellitus deeply changes the genes expression of integrin (Itg) subunits in several cells and tissues such as monocytes, arterial endothelium, kidney glomerular cells, retina. Furthermore, hyperglycemia could impress and reduce the rate of successful assisted as well as non-assisted pregnancy. Endometrium undergoes thorough changes in normal menstrual cycle and the question is: What happens in the endometrium under diabetic condition? Objective The aim of the current study was to investigate the endometrial gene expression of α3, α4, αv, Itg β1 and β3 subunits in diabetic rat models at the time of embryo implantation. Materials and Methods Twenty-eight rats were randomly divided into 4 groups: control group, diabetic group, pioglitazone-treated group, and metformin-treated group. Real-time PCR was performed to determine changes in the expression of Itg α3, α4, αv, β1, and β3 genes in rat's endometrium. Results The expression of all Itg subunits increased significantly in diabetic rats' endometrium compared with control group. Treatment with pioglitazone significantly reduced the level of Itg subunits gene expression compared with diabetic rats. While metformin had a different effect on α3 and α4 and elevated these two subunits gene expression. Conclusion Diabetes mellitus significantly increased the expression of studied Itg subunits, therefore untreated diabetes could be potentially assumed as one of the preliminary elements in embryo implantation failure.
Collapse
Affiliation(s)
- Abbas Bakhteyari Ph D Candidate
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Internal Medicine Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Zarrin
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeinab Sadat Hosseiny
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemah Sadat Mostafavi
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Matinfar
- Department of Internal Medicine Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roshanak Aboutorabi
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
33
|
Aberkane A, Essahib W, Spits C, De Paepe C, Sermon K, Adriaenssens T, Mackens S, Tournaye H, Brosens JJ, Van de Velde H. Expression of adhesion and extracellular matrix genes in human blastocysts upon attachment in a 2D co-culture system. Mol Hum Reprod 2019; 24:375-387. [PMID: 29846687 DOI: 10.1093/molehr/gay024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/25/2018] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION What are the changes in human embryos, in terms of morphology and gene expression, upon attachment to endometrial epithelial cells? SUMMARY ANSWER Apposition and adhesion of human blastocysts to endometrial epithelial cells are predominantly initiated at the embryonic pole and these steps are associated with changes in expression of adhesion and extracellular matrix (ECM) genes in the embryo. WHAT IS KNOWN ALREADY Both human and murine embryos have been co-cultured with Ishikawa cells, although embryonic gene expression associated with attachment has not yet been investigated in an in vitro implantation model. STUDY DESIGN, SIZE, DURATION Vitrified human blastocysts were warmed and co-cultured for up to 48 h with Ishikawa cells, a model cell line for receptive endometrial epithelium. PARTICIPANTS/MATERIALS, SETTING, METHODS Six days post-fertilization (6dpf) human embryos were co-cultured with Ishikawa cells for 12, 24 (7dpf) or 48 h (8dpf) and attachment rate and morphological development investigated. Expression of 84 adhesion and ECM genes was analysed by quantitative PCR. Immunofluorescence microscopy was used to assess the expression of three informative genes at the protein level. Data are reported on 145 human embryos. Mann-Whitney U was used for statistical analysis between two groups, with P < 0.05 considered significant. MAIN RESULTS AND THE ROLE OF CHANCE The majority of embryos attached to Ishikawa cells at the level of the polar trophectoderm; 41% of co-cultured embryos were loosely attached after 12 h and 86% firmly attached after 24 h. Outgrowth of hCG-positive embryonic cells at 8dpf indicated differentiation of trophectoderm into invasive syncytiotrophoblast. Gene expression analysis was performed on loosely attached and unattached embryos co-cultured with Ishikawa cells for 12 h. In contrast to unattached embryos, loosely attached embryos expressed THBS1, TNC, COL12A1, CTNND2, ITGA3, ITGAV and LAMA3 and had significantly higher CD44 and TIMP1 transcript levels (P = 0.014 and P = 0.029, respectively). LAMA3, THBS1 and TNC expressions were validated at the protein level in firmly attached 7dpf embryos. Thrombospondin 1 (THBS1) resided in the cytoplasm of embryonic cells whereas laminin subunit alpha 3 (LAMA3) and tenascin C (TNC) were expressed on the cell surface of trophectoderm cells. Incubation with a neutralizing TNC antibody did not affect the rate of embryo attachment or hCG secretion. LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION This in vitro study made use of an endometrial adenocarcinoma cell line to mimic receptive luminal epithelium. Also, the number of embryos was limited. Contamination of recovered embryos with Ishikawa cells was unlikely based on their differential gene expression profiles. WIDER IMPLICATIONS OF THE FINDINGS Taken together, we provide a 'proof of concept' that initiation of the implantation process coincides with the induction of specific embryonic genes. Genome-wide expression profiling of a larger sample set may provide insights into the molecular embryonic pathways underlying successful or failed implantation. STUDY FUNDING AND COMPETING INTEREST(S) A.A. was supported by a grant from the 'Instituut voor Innovatie door Wetenschap en Technologie' (IWT, 121716, Flanders, Belgium). This work was supported by the 'Wetenschappelijk Fonds Willy Gepts' (WFWG G142 and G170, Universitair Ziekenhuis Brussel). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- A Aberkane
- Research Group Reproduction and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - W Essahib
- Research Group Reproduction and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - C Spits
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - C De Paepe
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - K Sermon
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - T Adriaenssens
- Research Group Follicle Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - S Mackens
- Research Group Reproduction and Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Centre for Reproductive Medicine, Brussels University Hospital, Brussels, Belgium
| | - H Tournaye
- Centre for Reproductive Medicine, Brussels University Hospital, Brussels, Belgium
| | - J J Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - H Van de Velde
- Research Group Reproduction and Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Centre for Reproductive Medicine, Brussels University Hospital, Brussels, Belgium
| |
Collapse
|
34
|
Pisarska MD, Chan JL, Lawrenson K, Gonzalez TL, Wang ET. Genetics and Epigenetics of Infertility and Treatments on Outcomes. J Clin Endocrinol Metab 2019; 104:1871-1886. [PMID: 30561694 PMCID: PMC6463256 DOI: 10.1210/jc.2018-01869] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/12/2018] [Indexed: 02/08/2023]
Abstract
CONTEXT Infertility affects 10% of the reproductive-age population. Even the most successful treatments such as assisted reproductive technologies still result in failed implantation. In addition, adverse pregnancy outcomes associated with infertility have been attributed to these fertility treatments owing to the presumed epigenetic modifications of in vitro fertilization and in vitro embryo development. However, the diagnosis of infertility has been associated with adverse outcomes, and the etiologies leading to infertility have been associated with adverse pregnancy and long-term outcomes. EVIDENCE ACQUISITION We have comprehensively summarized the data available through observational, experimental, cohort, and randomized studies to better define the effect of the underlying infertility diagnosis vs the epigenetics of infertility treatments on treatment success and overall outcomes. EVIDENCE SYNTHESIS Most female infertility results from polycystic ovary syndrome, endometriosis, and unexplained infertility, with some cases resulting from a polycystic ovary syndrome phenotype or underlying endometriosis. In addition to failed implantation, defective implantation can lead to problems with placentation that leads to adverse pregnancy outcomes, affecting both mother and fetus. CONCLUSION Current research, although limited, has suggested that genetics and epigenetics of infertility diagnosis affects disease and overall outcomes. In addition, other fertility treatments, which also lead to adverse outcomes, are aiding in the identification of factors, including the supraphysiologic hormonal environment, that might affect the overall success and healthy outcomes for mother and child. Further studies, including genome-wide association studies, epigenomics studies, and experimental studies, are needed to better identify the factors leading to these outcomes.
Collapse
Affiliation(s)
- Margareta D Pisarska
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jessica L Chan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kate Lawrenson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tania L Gonzalez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Erica T Wang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
- David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
35
|
Piedra-Quintero ZL, Serrano C, Villegas-Sepúlveda N, Maravillas-Montero JL, Romero-Ramírez S, Shibayama M, Medina-Contreras O, Nava P, Santos-Argumedo L. Myosin 1F Regulates M1-Polarization by Stimulating Intercellular Adhesion in Macrophages. Front Immunol 2019; 9:3118. [PMID: 30687322 PMCID: PMC6335276 DOI: 10.3389/fimmu.2018.03118] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Intestinal macrophages are highly mobile cells with extraordinary plasticity and actively contribute to cytokine-mediated epithelial cell damage. The mechanisms triggering macrophage polarization into a proinflammatory phenotype are unknown. Here, we report that during inflammation macrophages enhance its intercellular adhesion properties in order to acquire a M1-phenotype. Using in vitro and in vivo models we demonstrate that intercellular adhesion is mediated by integrin-αVβ3 and relies in the presence of the unconventional class I myosin 1F (Myo1F). Intercellular adhesion mediated by αVβ3 stimulates M1-like phenotype in macrophages through hyperactivation of STAT1 and STAT3 downstream of ILK/Akt/mTOR signaling. Inhibition of integrin-αVβ3, Akt/mTOR, or lack of Myo1F attenuated the commitment of macrophages into a pro-inflammatory phenotype. In a model of colitis, Myo1F deficiency strongly reduces the secretion of proinflammatory cytokines, decreases epithelial damage, ameliorates disease activity, and enhances tissue repair. Together our findings uncover an unknown role for Myo1F as part of the machinery that regulates intercellular adhesion and polarization in macrophages.
Collapse
Affiliation(s)
| | - Carolina Serrano
- Department of Physiology, Biophysics and Neurosciences, Cinvestav Zacatenco, Mexico City, Mexico
| | | | - José L Maravillas-Montero
- Research Support Network, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Sandra Romero-Ramírez
- Research Support Network, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Cinvestav Zacatenco, Mexico City, Mexico
| | - Oscar Medina-Contreras
- Immunology and Proteomics Laboratory, Mexico Children's Hospital Federico Gómez, Mexico City, Mexico
| | - Porfirio Nava
- Department of Physiology, Biophysics and Neurosciences, Cinvestav Zacatenco, Mexico City, Mexico
| | | |
Collapse
|
36
|
Fukushima R, Kasamatsu A, Nakashima D, Higo M, Fushimi K, Kasama H, Endo-Sakamoto Y, Shiiba M, Tanzawa H, Uzawa K. Overexpression of Translocation Associated Membrane Protein 2 Leading to Cancer-Associated Matrix Metalloproteinase Activation as a Putative Metastatic Factor for Human Oral Cancer. J Cancer 2018; 9:3326-3333. [PMID: 30271493 PMCID: PMC6160669 DOI: 10.7150/jca.25666] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
Translocation associated membrane protein 2 (TRAM2) has been characterized as a component of the translocon that is a gated channel at the endoplasmic reticulum (ER) membrane. TRAM2 is expressed in a wide variety of human organs. To date, no information is available regarding TRAM2 function in the genesis of human cancer. The purpose of this study was to investigate the status of the TRAM2 gene in oral squamous cell carcinoma (OSCC) cells and clinical OSCC samples. Using real-time quantitative reverse transcriptase-polymerase chain reaction, Western blotting analysis, and immunohistochemistry, we detected accelerated TRAM2 mRNA and protein expression levels both in OSCC-derived cell lines and primary tumors. Moreover, TRAM2-positive OSCC tissues were correlated closely (P<0.05) with metastasis to regional lymph nodes and vascular invasiveness. Of note, knockdown of TRAM2 inhibited metastatic phenotypes, including siTRAM2 cellular migration, invasiveness, and transendothelial migration activities with a significant (P<0.05) decrease in protein kinase RNA(PKR) - like ER kinase (PERK) and matrix metalloproteinases (MMPs) (MT1-MMP, MMP2, and MMP9). Taken together, our results suggested that TRAM2 might play a pivotal role in OSCC cellular metastasis by controlling major MMPs. This molecule might be a putative therapeutic target for OSCC.
Collapse
Affiliation(s)
- Reo Fukushima
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Dai Nakashima
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Morihiro Higo
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kazuaki Fushimi
- Department of Dentistry and Oral-Maxillofacial Surgery, Eastern Chiba Medical Center, 3-6-2 Okayamadai, Togane, Chiba 283-8686, Japan
| | - Hiroki Kasama
- Department of Dentistry and Oral-Maxillofacial Surgery, Eastern Chiba Medical Center, 3-6-2 Okayamadai, Togane, Chiba 283-8686, Japan
| | - Yosuke Endo-Sakamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masashi Shiiba
- Department of Clinical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
37
|
Oviductal glycoprotein 1 (OVGP1) is expressed by endometrial epithelium that regulates receptivity and trophoblast adhesion. J Assist Reprod Genet 2018; 35:1419-1429. [PMID: 29968069 DOI: 10.1007/s10815-018-1231-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/31/2018] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To study the regulation and functions of oviductal glycoprotein 1 (OVGP1) in endometrial epithelial cells. METHODS Expression of OVGP1 in mouse endometrium during pregnancy and in the endometrial epithelial cell line (Ishikawa) was studied by immunofluorescence, Western blotting, and RT-PCR. Regulation of OVGP1 in response to ovarian steroids and human chorionic gonadotropin (hCG) was studied by real-time RT-PCR. OVGP1 expression was knockdown in Ishikawa cells by shRNA, and expression of receptivity associated genes was studied by real-time RT-PCR. Adhesion of trophoblast cell line (JAr) was studied by in vitro adhesion assays. RESULTS OVGP1 was localized exclusively in the luminal epithelial cells of mouse endometrium at the time of embryo implantation. Along with estrogen and progesterone, hCG induced the expression of OVGP1 in Ishikawa cells. Knockdown of OVGP1 in Ishikawa cells reduced mRNA expression of ITGAV, ITGB3, ITGA5, HOXA10, LIF, and IL15; it increased the expression of HOXA11, MMP9, TIMP1, and TIMP3. Supernatants derived from OVGP1 knockdown Ishikawa cells reduced the adhesiveness of JAr cells in vitro. Expression of OVGP1 mRNA was found to be significantly lowered in the endometrium of women with recurrent implantation failure. CONCLUSION OVGP1 is specifically induced in the luminal epithelium at the time of embryo implantation where it regulates receptivity-related genes and aids in trophoblast adhesion.
Collapse
|
38
|
Rutherford EJ, Hill ADK, Hopkins AM. Adhesion in Physiological, Benign and Malignant Proliferative States of the Endometrium: Microenvironment and the Clinical Big Picture. Cells 2018; 7:E43. [PMID: 29772648 PMCID: PMC5981267 DOI: 10.3390/cells7050043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
Although the developments in cellular and molecular biology over the last few decades have significantly advanced our understanding of the processes and players that regulate invasive disease, many areas of uncertainty remain. This review will discuss the contribution of dysregulated cell⁻cell and cell⁻matrix adhesion to the invasion in both benign and malignant contexts. Using the endometrium as an illustrative tissue that undergoes clinically significant invasion in both contexts, the adhesion considerations in the cells ("seed") and their microenvironment ("soil") will be discussed. We hope to orientate this discussion towards translational relevance for the diagnosis and treatment of endometrial conditions, which are currently associated with significant morbidity and mortality.
Collapse
Affiliation(s)
- Emily J Rutherford
- Department of Surgery, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland.
| | - Arnold D K Hill
- Department of Surgery, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland.
| | - Ann M Hopkins
- Department of Surgery, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|