1
|
Mohamed EM, Elmaidomy AH, Farhan SM, Abou-Zied HA, Bedaiwi RI, Alsenani F, Rabeh MA, Abbas GM, Abdelmohsen UR, Zarka MA. Antimicrobial potential of Citrus australasica F. Muell. against methicillin-resistant Staphylococcus aureus supported by in silico analysis. Sci Rep 2025; 15:17474. [PMID: 40394198 PMCID: PMC12092683 DOI: 10.1038/s41598-025-88113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/24/2025] [Indexed: 05/22/2025] Open
Abstract
The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) has been steadily increasing over the past few decades, prompting an urgent need to develop novel antibiotic classes to combat the growing threat of multidrug-resistant bacteria. In this context, a phytochemical investigation of Citrus australasica F. Muell. (finger lime, Rutaceae) leaves yielded seven metabolites (1-7), including coumarins and flavonoid glycosides. These compounds were identified as marmin (1), xanthyletin (2), rutin (3), narcissin (4), lactic acid (5), glycerol (6), and β-sitosterol (7). The structures of these isolated compounds were elucidated using 1D and 2D NMR. The compounds were evaluated against the MRSA strain (ATCC 33591) using the agar well diffusion method, and compound 1 was the most active. Using a comprehensive protein-protein interaction (PPI) network constructed from the STRING database and visualized using Cytoscape software, we identified key proteins involved in MRSA pathogenesis and potential therapeutic targets. Molecular docking simulations assessed these compounds' binding interactions and affinities with PBP2a, a critical protein in MRSA resistance. Among the tested compounds, marmin exhibited a notable docking score of -6.488 kcal/mol and a low RMSD value of 0.956, indicating a strong and stable interaction. To validate the docking results, molecular dynamics (MD) simulations were conducted to provide insights into the stability and efficacy of these interactions over time. The MD simulations revealed that the protein-ligand complex of PBP2a and marmin (1) maintained stability throughout a 10-nanosecond simulation, with minor fluctuations indicating consistent binding interactions. Based on our findings, the compounds isolated from C. australasica showed promise as potential anti-MRSA therapeutic leads for future development.
Collapse
Affiliation(s)
- Esraa M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, MUST, 6th of October City, 12566, Giza, Egypt
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Sara Mahmoud Farhan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
| | - Hesham A Abou-Zied
- Department of Medicinal Chemistry, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
| | - Ruqaiah I Bedaiwi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal Alsenani
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Mohamed A Rabeh
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 65251, Saudi Arabia
| | - Ghada M Abbas
- Department of Pharmacognosy, Faculty of Pharmacy, Horus University- Egypt (HUE), New Damietta, 34517, Egypt.
| | - Usama Ramadan Abdelmohsen
- Deraya Center for Scientific Research, Deraya University, New Minia, 61111, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| | - Mohamed A Zarka
- Department of pharmacognosy, College of Pharmacy, The Islamic University, Najaf, Iraq
| |
Collapse
|
2
|
Al-Naqeb G, Zorzi G, Oldani A, Azzalin A, Avesani L, Guzzo F, Pascale A, De Giuseppe R, Cena H. Phytochemical Profile and In Vitro Cytotoxic, Genotoxic, and Antigenotoxic Evaluation of Cistus monspeliensis L. Leaf Extract. Int J Mol Sci 2024; 25:13707. [PMID: 39769467 PMCID: PMC11676674 DOI: 10.3390/ijms252413707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Cistus monspeliensis L. (C. monspeliensis) is used in Italian folk medicine. This study was performed to determine genotoxic and antigenotoxic effects of C. monspeliensis leaf extract against mitomycin C (MMC) using an in vitro cytokinesis-block micronucleus assay (CBMN) in the Chinese Hamster Ovarian K1 (CHO-K1) cell line. The phytochemical composition of C. monspeliensis extract was evaluated using an untargeted metabolomic approach by employing UPLC-PDA-ESI/MS. The automated in vitro CBMN assay was carried out using image analysis systems with a widefield fluorescence microscope and the ImageStreamX imaging flow cytometer. The phytochemical profile of C. monspeliensis extract showed, as the most abundant metabolites, punicalagin, myricetin, gallocathechin, and a labdane-type diterpene. C. monspeliensis, at the tested concentrations of 50, 100, and 200 μg/mL, did not induce significant micronuclei frequency, thus indicating the absence of a genotoxic potential. When testing the C. monspeliensis extract for antigenotoxicity in the presence of MMC, we observed a hormetic concentration-dependent effect, where low concentrations resulted in a significant protective effect against MMC-induced micronuclei frequency, and higher concentrations resulted in no effect. In conclusion, our findings demonstrate that C. monspeliensis extract is not genotoxic and, at low concentration, exhibits an antigenotoxic effect. In relation to this final point, C. monspeliensis may act as a potential chemo-preventive against genotoxic agents.
Collapse
Affiliation(s)
- Ghanya Al-Naqeb
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (R.D.G.); (H.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (G.Z.); (L.A.); (F.G.)
- Department of Food Sciences and Nutrition, Faculty of Agriculture Food and Environment, University of Sana’a, Sana’a P.O. Box 1247, Yemen
| | - Gianluca Zorzi
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (G.Z.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Amanda Oldani
- PASS-Bio Med, Centro Grandi Strumenti, University of Pavia, 27100 Pavia, Italy;
| | - Alberto Azzalin
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | - Linda Avesani
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (G.Z.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Flavia Guzzo
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (G.Z.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (R.D.G.); (H.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (G.Z.); (L.A.); (F.G.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (R.D.G.); (H.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (G.Z.); (L.A.); (F.G.)
- Clinical Nutrition Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
3
|
Kumar A, Verma H, Gangwar P, Jangid K, Kumar V, Dhiman M, Jaitak V. Estrogen receptor alpha (ER-α) antagonistic activity of phytoconstituents from Potentilla atrosanguinea and Potentilla fulgens in breast cancer. Fitoterapia 2024; 177:106123. [PMID: 39004288 DOI: 10.1016/j.fitote.2024.106123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
The Potentilla genus has long been used traditionally as food and a folklore medicine. In the present study, aerial parts of two Potentilla species, Potentilla fulgens and Potentilla atrosanguinea, of western Himalayan origin, were studied for their anti-breast cancer activity. Ethyl acetate (PAA-EA, PFA-EA), methanolic (PAA-ME, PFA-ME) and hydro-methanolic extract (PAA-HM, PFA-HM) of the plants were tested for their antiproliferative activities against MCF-7 and T-47D breast cancer cell lines. The extracts showed good antiproliferative activity against ER-α dominant breast cancer cell line T-47D, having IC50 values 6.19 ± 0.01 to 33.23 ± 0.04 μg/ml. Eight compounds were isolated, characterized, and quantified from ethyl acetate and methanolic extracts by column chromatography, 1D, 2D-NMR, HRMS and TLC densitometric analysis. Two compounds (4 and 6) have shown better antiproliferative activity than standard bazedoxifene and were further evaluated for their ER-α binding affinity via-fluorescence polarization-based competitive binding assay. The antiestrogenic properties of both compounds were assessed using western blotting. Compounds 4 and 6 were found to have significant affinity for the ER-α and managed to decrease its expression by 38 and 54% respectively. Compounds 4 and 6 also had good stability and reactivity as measured by minimal fluctuations in molecular dynamic simulation analysis, a good dock score in molecular docking, and a respectable HOMO-LUMO energy gap in DFT calculations. Compounds 4 and 6 have shown reliable results and can be used in the development of natural product-based anti-breast cancer agents.
Collapse
Affiliation(s)
- Amit Kumar
- Natural Products Chemistry Lab, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Harkomal Verma
- Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Prabhakar Gangwar
- Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Kailash Jangid
- Department of Chemistry, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Monisha Dhiman
- Department of Microbiology, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Vikas Jaitak
- Natural Products Chemistry Lab, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India..
| |
Collapse
|
4
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. RUTIN, a widely consumed flavonoid, that commonly induces hormetic effects. Food Chem Toxicol 2024; 187:114626. [PMID: 38556157 DOI: 10.1016/j.fct.2024.114626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Rutin is a flavonoid present in numerous fruits and vegetables and therefore widely consumed by humans. It is also a popular dietary supplement of 250-500 mg/day. There is considerable consumer interest in rutin due to numerous reports in the biomedical literature of its multi-system chemo-preventive properties. The present paper provides the first assessment of rutin-induced hormetic concentration/dose responses, their quantitative features and mechanistic basis, along with their biological, biomedical, clinical, and public health implications. The findings indicate that rutin-induced hormetic dose responses are widespread, being reported in numerous biological models and cell types for a wide range of endpoints. Of critical importance is that the optimal hormetic findings shown in in vitro systems are currently not achievable for human populations due to low gastrointestinal tract bioavailability. These findings have the potential to strengthen future experimental studies with rutin, particularly concerning study design parameters.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
5
|
Grande F, Marrelli M, Amodeo V, Occhiuzzi MA, Pinzaru I, Fucile M, Dehelean CA, Alexa E, Conforti F, Statti G. Molecular Docking Studies and In Vitro Activity of Paliurus spina-christi Mill Extracts as Pancreatic Lipase Inhibitors. Antioxidants (Basel) 2024; 13:160. [PMID: 38397758 PMCID: PMC10885981 DOI: 10.3390/antiox13020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Obesity is a risk factor for the onset of chronic diseases. One of the most promising approaches to treating obesity consists of reducing dietary fat absorption using extracts from plants because they contain phenolic compounds, especially flavonoids. Paliurus spina-christi, belonging to the Rhamnaceae family, is one of the five species belonging to the Paliurus genus. Herein, the aerial parts of the plant were extracted with methanol through the pressurized cyclic solid-liquid extraction using the Naviglio extractor®. The extracts were analyzed with High Performance Thin Layer Chromatography and investigated for their in vitro biological potential. The phytochemical analysis revealed that rutin has been shown to be the most abundant flavonoid component. The best antiradical activity was observed for the fruit extract with an IC50 value of 53.41 ± 1.24 µg/mL. This extract also has a better inhibitory capacity on lipid peroxidation evaluated at a different time of incubation. Potent lipase inhibitor activity of the extract from fruits was also demonstrated with in vitro experiments. This property can be attributed to a direct interaction of main components of P. spina-christi extract with the human pancreatic enzyme as demonstrated by the results of molecular docking experiments conducted on the crystallographic structures of lipase.
Collapse
Affiliation(s)
- Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Cosenza, Italy; (F.G.); (M.M.); (V.A.); (M.A.O.); (M.F.); (G.S.)
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Cosenza, Italy; (F.G.); (M.M.); (V.A.); (M.A.O.); (M.F.); (G.S.)
| | - Valentina Amodeo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Cosenza, Italy; (F.G.); (M.M.); (V.A.); (M.A.O.); (M.F.); (G.S.)
| | - Maria Antonietta Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Cosenza, Italy; (F.G.); (M.M.); (V.A.); (M.A.O.); (M.F.); (G.S.)
| | - Iulia Pinzaru
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (I.P.); (C.A.D.)
| | - Mary Fucile
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Cosenza, Italy; (F.G.); (M.M.); (V.A.); (M.A.O.); (M.F.); (G.S.)
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (I.P.); (C.A.D.)
| | - Ersilia Alexa
- Faculty of Food Engineering, University of Life Sciences King Mihai I of Romania, Calea Aradului 119, 300641 Timisoara, Romania;
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Cosenza, Italy; (F.G.); (M.M.); (V.A.); (M.A.O.); (M.F.); (G.S.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Cosenza, Italy; (F.G.); (M.M.); (V.A.); (M.A.O.); (M.F.); (G.S.)
| |
Collapse
|
6
|
Aydemir ME, Arslan A, Takım K, Kılıç Altun S, Yılmaz MA, Çakır O. Inhibitory effect of Paliurus spina-christi Mill., Celtis tournefortii L. and Nigella sativa L. on N ε-(Carboxymethyl) lysine in meatballs. Meat Sci 2024; 207:109362. [PMID: 37871485 DOI: 10.1016/j.meatsci.2023.109362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/15/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
This study was conducted to examine the effect of cooking at different temperatures on the formation of Nε-(carboxymethyl) lysine (CML) after adding Paliurus spina-christi Mill. (PSC), Celtis tournefortii L. (CT) fruits, and Nigella Sativa L. (NS) seeds to the meatballs. Phytochemical and bioactivity properties were determined before adding PSC, CT fruits, and NS seeds to the meatballs. Then, PSC, CT fruits, and NS seeds were added to the meatballs at a rate of 2% and stored at 4 ± 1 °C for 16 days. CML, TBARS, pH, and aw analyses were performed on the meatballs. The highest phytochemical and bioactivity levels were detected in PSC fruit. The aw values detected in the meatball groups were found to be between 0.931 and 0.951 on the 0th day and between 0.963 and 0.985 on the 16th day, and the pH values ranged from 5.66 to 6.06 on the 0th day and from 6.10 to 6.74 on the 16th day. TBARS values of the meatballs were found to be between 1.17 and 1.98 on day 0 and 1.70-3.34 mg MDA/kg on day 16. CML levels in the meatballs were determined to be between 11.15 and 13.45 on day 0 and between 13.43 and 18.17 μg/g on day 16. The highest a* value was found in the meatballs with added CT fruit. It was determined that NS seeds had a negative effect on the a* value of the meatballs. In conclusion, adding PSC, CT fruits, and NS seeds can imbue meatballs with functional properties, thereby creating a more health-beneficial product for humans.
Collapse
Affiliation(s)
- Mehmet Emin Aydemir
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey.
| | - Ali Arslan
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Firat University, Elazıg, Turkey
| | - Kasım Takım
- Department of Basic Sciences, Faculty of Veterinary, Harran University, Şanlıurfa, Turkey
| | - Serap Kılıç Altun
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey
| | - Mustafa Abdullah Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey
| | - Oğuz Çakır
- Dicle University Science and Technology Research and Application Center, Diyarbakir, Turkey
| |
Collapse
|
7
|
Esfahani SMM, Tarighi P, Dianat K, Ashour TM, Mottaghi-Dastjerdi N, Aghsami M, Sabernavaei M, Montazeri H. Paliurus spina-christi Mill fruit extracts improve glucose uptake and activate the insulin signaling pathways in HepG2 insulin-resistant cells. BMC Complement Med Ther 2023; 23:151. [PMID: 37158952 PMCID: PMC10165757 DOI: 10.1186/s12906-023-03977-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Paliurus spina-christi Mill. (PSC) fruit is frequently used in the treatment of diabetes mellitus in Mediterranean regions. Here, we investigated the effects of various PSC fruit extracts (PSC-FEs) on glucose consumption and some key mediators of insulin signaling pathways in high glucose and high insulin-induced insulin-resistant HepG2 cells. METHODS The effects of methanolic, chloroform and total extracts on cell proliferation were assessed by the MTT assay. The potential of non-toxic extracts on glucose utilization in insulin-resistant HepG2 cells was checked using a glucose oxidase assay. AKT and AMP-activated protein kinase (AMPK) pathway activation and mRNA expression levels of insulin receptor (INSR), glucose transporter 1 (GLUT1), and glucose transporters 4 (GLUT4) were determined by western blotting and real-time PCR, respectively. RESULTS We found that high concentrations of methanolic and both low and high concentrations of total extracts were able to enhance glucose uptake in an insulin-resistant cell line model. Moreover, AKT and AMPK phosphorylation were significantly increased by the high strength of methanolic extract, while total extract raised AMPK activation at low and high concentrations. Also, GLUT 1, GLUT 4, and INSR were elevated by both methanolic and total extracts. CONCLUSIONS Ultimately, our results shed new light on methanolic and total PSC-FEs as sources of potential anti-diabetic medications, restoring glucose consumption and uptake in insulin-resistant HepG2 cells. These could be at least in part due to re-activating AKT and AMPK signaling pathways and also increased expression of INSR, GLUT1, and GLUT4. Overall, active constituents present in methanolic and total extracts of PCS are appropriate anti-diabetic agents and explain the use of these PSC fruits in traditional medicine for the treatment of diabetes.
Collapse
Affiliation(s)
- Seyedeh Mona Mousavi Esfahani
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Kosar Dianat
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Tabarek Mahdi Ashour
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Mottaghi-Dastjerdi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Aghsami
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Sabernavaei
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Montazeri
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Comprehensive estrogenic/anti-estrogenic, anticancer, mutagenic/anti-mutagenic, and genotoxic/anti-genotoxic activity studies on chemically characterized black poplar and Eurasian aspen propolis types. J Pharm Biomed Anal 2023; 226:115241. [PMID: 36641962 DOI: 10.1016/j.jpba.2023.115241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Propolis is mainly composed of plant resins, and its type is named according to the primary plant origin in its composition. Identification of propolis botanical origin is essential for predicting and repeating its pharmacological activity because of the variations in chemical composition. This study aimed to compare chemical composition of black poplar (Populus nigra L.) type-propolis (PR1 and PR2) and Eurasian aspen (P. tremula L.)-type propolis (PR3) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique and to evaluate their biological activity profiles. According to LC-MS/MS results, in addition to marked caffeic acid phenethyl ester content in PR1 and PR2, flavonoid aglycones such as pinocembrin, chrysin, pinobanksin, and galangin were found to be dominant in these samples. On the other hand, PR3 contained relatively high concentrations of phenolic acids such as ferulic acid, p-coumaric acid, and trans-cinnamic acid. The anti-estrogenic activity test showed that PR2 exerted the highest anti-estrogenic activity by inhibiting cell proliferation by 44.6%. All propolis extracts showed anticancer activity, which was justified by decreasing activity on the 3D spheroid size in a concentration-dependent manner. Besides, all extracts showed moderate or potent antimutagenic activity in Salmonella typhimurium TA98 and TA100 strains with and without metabolic activation, respectively. In addition, the Comet assay results revealed that propolis extracts have a geno-protective effect against H2O2-induced DNA damage in CHO-K1 cells at 0.625 and 1.25 μg/mL concentrations. Overall, the result of this study may help in preparing standardized propolis extracts and developing products with defined pharmacological benefits in the food supplements industry.
Collapse
|
9
|
Zengin G, Fernández-Ochoa Á, Cádiz-Gurrea MDLL, Leyva-Jiménez FJ, Segura-Carretero A, Elbasan F, Yildiztugay E, Malik S, Khalid A, Abdalla AN, Fawzi Mahomoodally M. Phytochemical Profile and Biological Activities of Different Extracts of Three Parts of Paliurus spina-christi: A Linkage between Structure and Ability. Antioxidants (Basel) 2023; 12:antiox12020255. [PMID: 36829813 PMCID: PMC9952067 DOI: 10.3390/antiox12020255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Paliurus spina-christi Mill., a member of the Rhamnaceae family, is a traditionally used medicinal plant in the management of a panoply of human ailments. The current research focused on its phytochemical profile and biological properties evaluated by its antioxidant and enzyme inhibitory properties. The methanol extract was found to be the most effective antioxidant as evidenced by its DPPH and ABTS scavenging activities, cupric and ferric reducing power (CUPRAC and FRAP), and high activity in phosphomolybdenum (PBD) assay, and also displayed the highest anti-tyrosinase activity. The n-hexane extract was the most effective AChE inhibitor (8.89 ± 0.08 mg GALAE/g) followed by the methanol (8.64 ± 0.01 mg GALAE/g) while the latter showed the highest BChE inhibition (2.50 ± 0.05 mg GALAE/g). Among the different solvent extracts of the stem, the methanolic extract showed highest antioxidant activity in the following assays: DPPH (909.88 ± 4.25 mg TE/g), ABTS (3358.33 ± 51.14 mg TE/g), CUPRAC (781.88 ± 16.37 mg TE/g), FRAP (996.70 ± 47.28 mg TE/g), and PBD (4.96 ± 0.26 mmol TE/g), while the dichloromethane extract showed the highest MCA (28.80 ± 0.32 mg EDTAE/g). The methanol extracts revealed the highest TPC and TFC among the different solvents used, and as for plant part, the stem extracts had the highest TPC ranging from 22.36 ± 0.26 to 121.78 ± 1.41 (mg GAE/g), while the leaf extracts showed the highest TFC ranging from 8.43 ± 0.03 to 75.36 ± 0.92 (mg RE/g). Our findings tend to provide additional scientific evidence on the biological and chemical activities of P. spina-christi, which may serve as a source of naturally occurring bioactive chemicals with potential biomedical applications.
Collapse
Affiliation(s)
- Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Selcuklu, Konya 42130, Turkey
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
- Correspondence:
| | - Francisco Javier Leyva-Jiménez
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Avenida Camilo Jose Cela, 10, 13071 Ciudad Real, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Fevzi Elbasan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, Konya 42130, Turkey
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, Konya 42130, Turkey
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi 834001, India
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum P.O. Box 2404, Sudan
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 230, Mauritius
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 600077, India
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North West University, Potchefstroom 2520, South Africa
| |
Collapse
|
10
|
Michel O, Szlasa W, Baczyńska D, Saczko J, Tarek M, Kulbacka J. The role of catechin in electroporation of pancreatic cancer cells - Effects on pore formation and multidrug resistance proteins. Bioelectrochemistry 2022; 147:108199. [PMID: 35841647 DOI: 10.1016/j.bioelechem.2022.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
Catechin is a bioflavonoid known for its anti-cancer properties. In the present study, we combined theoretical and experimental approaches to reveal the potential of catechin application in the electroporation (EP) or electrochemotherapy (ECT) of pancreatic cancer cells. The molecular dynamics simulations were implemented to examine the interactions of catechin with a model of a membrane, its influence on the membrane's thickness, and the impact of the catechin-membrane interaction on the pore formation. The data were confronted with experimental measurement of the threshold electric field required for permeabilization of pancreatic cancer cells to a fluorescent dye YO-PRO-1. Further, we examined the influence of catechin on cell viability following electroporation with cisplatin or calcium ions. Finally, we investigated the catechin impact on four proteins associated with multidrug resistance: P-glycoprotein, MRP1, BCRP, and LRP. We demonstrated that catechin may boost the effects of electroporation through various mechanisms: i) increasing the cell permeability prior to electroporation ii) increasing the electroporation threshold iii) sensitization of cells to chemotherapeutic compounds. We showed that catechin incubation influences mRNA levels and mitigates the immunoreactivity of Pgp, MRP1, BCRP, and LRP but these changes did not translate to the efficacy of electrochemotherapy.
Collapse
Affiliation(s)
- Olga Michel
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland.
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland.
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Mounir Tarek
- CNRS, Université de Lorraine, Campus Sciences BP 70239 54506, Vandœuvre-lès-Nancy, France.
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| |
Collapse
|
11
|
Inhibition of α-Glucosidase, Acetylcholinesterase, and Nitric Oxide Production by Phytochemicals Isolated from Millettia speciosa—In Vitro and Molecular Docking Studies. PLANTS 2022; 11:plants11030388. [PMID: 35161369 PMCID: PMC8840612 DOI: 10.3390/plants11030388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
The phytochemical constituents from the roots of Millettia speciosa were investigated by chromatographic isolation, and their chemical structures were characterized using the MS and NMR spectroscopic methods. A total of 10 compounds, including six triterpenoids, two flavonoids, and two phenolic compounds, were identified from the roots of M. speciosa. Out of the isolated compounds, eight showed inhibitory effects on NO production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, with IC50 values ranging from 43.9 to 449.5 µg/mL. Ursane-type triterpenes significantly suppressed NO production compared to the remaining compounds. In addition, these compounds also exhibited remarkable inhibitory effects on α-glucosidase. Among the tested compounds, 4, 5, and 10 exhibited excellent α-glucosidase inhibition, with IC50 values ranging from 1.1 to 2.2 µg/mL. Almost all of the test compounds showed little or no acetylcholinesterase inhibition, except for 5, which showed moderate anti-acetylcholinesterase activity in vitro. The molecular docking study of α-glucosidase inhibition by 3–5 and 10 was conducted to observe the interactions of these molecules with the enzyme. Compounds 4, 5, and 10 exhibited a better binding affinity toward the targeted receptor and the H-bond interactions located at the entrance of the enzyme active site pocket in comparison to those of 3 and the positive control acarbose. Our findings evidence the pharmacological potential of this species and suggest that the phytochemicals derived from the roots of M. speciosa may be promising lead molecules for further studies on the development of anti-inflammatory and anti-diabetes drugs.
Collapse
|
12
|
Takım K. Bioactive component analysis and investigation of antidiabetic effect of Jerusalem thorn (Paliurus spina-christi) fruits in diabetic rats induced by streptozotocin. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113263. [PMID: 32818572 DOI: 10.1016/j.jep.2020.113263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The extracts of Jerusalem thorn fruits (JT-FE) have been commonly used for the treatment of diabetes mellitus in Turkey. AIM OF THE STUDY In this study, it is aimed to investigate the effects of the JT-FE, prepared by decoction, on blood glucose, insulin and glycated haemoglobin levels of diabetic rats induced with streptozotocin (STZ). Hypoglycemic activity of the extracts was examined in streptozotocin-induced diabetic rats. MATERIALS AND METHODS For this purpose, pre-prandial blood sugar, insulin and glycated hemoglobin levels were measured. To investigate active substances that were responsible for the antidiabetic activity, phytochemical analysis was carried out with optimized and validated LC-MS/MS method using 53 phytochemicals in JT-FE. In addition, ICP-OES analysis was performed to determine the mineral content. RESULTS The findings of the study demonstrate that when insulin and JT-FE applied groups were compared with the diabetic control group, their blood sugar and glycated hemoglobin levels were seen to statistically decrease (p < 0,001). Morewer, When JT-FE treated groups were compared with insulin-treated groups, a statistically decrease (p < 0,05) in their levels was observed. On the other hand, it was also found that the increase in extract concentration didn't contribute significantly to antidiabetic activity. As a result of the phytochemical analysis, total of 31 different phenolic compounds were defined in JT-FE. The major components of JT-FE (as analyte/g extract) were; rutin (98753.4 ± 24.39 μg), catechin (58695.3 ± 12.971 μg), hesperidin (47445.2 ± 15.894 μg), quinic acid (38279.5 ± 14.239 μg) and malic acid (17536.8 ± 2.279 μg). In the mineral analysis we made; Sodium, calcium, magnesium and phosphorus elements were found at macro level, Zn and Cr3+ minerals were found at trace level. CONCLUSION Our findings show that JT-FE, prepared by decoction, is rich in phenolic and mineral content and strong in antihyperglycemic activity. That's why Jerusalem thorn fruits can be a useful antidiabetic phytotherapy agent.
Collapse
Affiliation(s)
- Kasım Takım
- Department of Biochemistry, Veterinary Faculty, Harran University, Sanlıurfa, Turkey.
| |
Collapse
|
13
|
Catechol-Type Flavonoids from the Branches of Elaeagnus glabra f. oxyphylla Exert Antioxidant Activity and an Inhibitory Effect on Amyloid-β Aggregation. Molecules 2020; 25:molecules25214917. [PMID: 33114256 PMCID: PMC7660689 DOI: 10.3390/molecules25214917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Elaeagnus glabra f. oxyphylla (Elaeagnaceae) is a small evergreen tree with narrow lanceolate leaves that is native to Korea. In this work, we studied the chemical composition of E. glabra f. oxyphylla branches (EGFOB) for the first time. Additionally, we evaluated the effects of the ethanol extract of EGFOB and each of its chemical components on key mediators of Alzheimer’s disease (AD), namely, amyloid-β (Aβ) aggregation and oxidative stress. The ethanol extract of EGFOB decreased Aβ aggregation (IC50 = 32.01 µg/mL) and the levels of the oxidative free radicals 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 11.35 and 12.32 µg/mL, respectively). Sixteen compounds were isolated from EGFOB. Among them, procyanidin B3 (8), procyanidin B4 (9), and helichrysoside (13) significantly inhibited Aβ aggregation (IC50 = 14.59, 32.64, and 44.45 μM, respectively), indicating their potential as bioactive compounds to control Aβ aggregation. Furthermore, these compounds markedly enhanced in vitro scavenging activity against ABTS (IC50 = 3.21–4.61 µM). In the DPPH test, they showed lower scavenging activity than in the ABTS test (IC50 ≥ 54.88 µM). Thus, these results suggest that EGFOB and specifically compounds 8, 9, and 13 may be beneficial in AD prevention and treatment through their antioxidant and anti-Aβ aggregation activities.
Collapse
|
14
|
Farha AK, Gan RY, Li HB, Wu DT, Atanasov AG, Gul K, Zhang JR, Yang QQ, Corke H. The anticancer potential of the dietary polyphenol rutin: Current status, challenges, and perspectives. Crit Rev Food Sci Nutr 2020; 62:832-859. [PMID: 33054344 DOI: 10.1080/10408398.2020.1829541] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rutin is one of the most common dietary polyphenols found in vegetables, fruits, and other plants. It is metabolized by the mammalian gut microbiota and absorbed from the intestines, and becomes bioavailable in the form of conjugated metabolites. Rutin exhibits a plethora of bioactive properties, making it an extremely promising phytochemical. Numerous studies demonstrate that rutin can act as a chemotherapeutic and chemopreventive agent, and its anticancer effects can be mediated through the suppression of cell proliferation, the induction of apoptosis or autophagy, and the hindering of angiogenesis and metastasis. Rutin has been found to modulate multiple molecular targets involved in carcinogenesis, such as cell cycle mediators, cellular kinases, inflammatory cytokines, transcription factors, drug transporters, and reactive oxygen species. This review summarizes the natural sources of rutin, its bioavailability, and in particular its potential use as an anticancer agent, with highlighting its anticancer mechanisms as well as molecular targets. Additionally, this review updates the anticancer potential of its analogs, nanoformulations, and metabolites, and discusses relevant safety issues. Overall, rutin is a promising natural dietary compound with promising anticancer potential and can be widely used in functional foods, dietary supplements, and pharmaceuticals for the prevention and management of cancer.
Collapse
Affiliation(s)
- Arakkaveettil Kabeer Farha
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Sun Yat-Sen University, Guangzhou, China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria.,Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - Khalid Gul
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Rong Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiong-Qiong Yang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, China
| |
Collapse
|
15
|
López-Romero D, Izquierdo-Vega JA, Morales-González JA, Madrigal-Bujaidar E, Chamorro-Cevallos G, Sánchez-Gutiérrez M, Betanzos-Cabrera G, Alvarez-Gonzalez I, Morales-González Á, Madrigal-Santillán E. Evidence of Some Natural Products with Antigenotoxic Effects. Part 2: Plants, Vegetables, and Natural Resin. Nutrients 2018; 10:1954. [PMID: 30544726 PMCID: PMC6316078 DOI: 10.3390/nu10121954] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. The agents capable of causing damage to genetic material are known as genotoxins and, according to their mode of action, are classified into mutagens, carcinogens, or teratogens. Genotoxins are also involved in the pathogenesis of several chronic degenerative diseases, including hepatic, neurodegenerative, and cardiovascular disorders; diabetes; arthritis; cancer; chronic inflammation; and ageing. In recent decades, researchers have found novel bioactive phytocompounds able to counteract the effects of physical and chemical mutagens. Several studies have shown the antigenotoxic potential of different fruits and plants (Part 1). In this review (Part 2), we present a research overview conducted on some plants and vegetables (spirulina, broccoli, chamomile, cocoa, ginger, laurel, marigold, roselle, and rosemary), which are frequently consumed by humans. In addition, an analysis of some phytochemicals extracted from those vegetables and the analysis of a resin (propolis),whose antigenotoxic power has been demonstrated in various tests, including the Ames assay, sister chromatid exchange, chromosomal aberrations, micronucleus, and comet assay, was also performed.
Collapse
Affiliation(s)
- David López-Romero
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hgo, Mexico.
| | - Jeannett A Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hgo, Mexico.
| | - José Antonio Morales-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, "Unidad Casco de Santo Tomas". Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, Mexico.
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos". Av. Wilfrido Massieu. Col., Lindavista, Ciudad de México 07738, Mexico.
| | - Germán Chamorro-Cevallos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos". Av. Wilfrido Massieu. Col., Lindavista, Ciudad de México 07738, Mexico.
| | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hgo, Mexico.
| | - Gabriel Betanzos-Cabrera
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hgo, Mexico.
| | - Isela Alvarez-Gonzalez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos". Av. Wilfrido Massieu. Col., Lindavista, Ciudad de México 07738, Mexico.
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos". Av. Juan de Dios Bátiz. Col., Lindavista, Ciudad de México 07738, Mexico.
| | - Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, "Unidad Casco de Santo Tomas". Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, Mexico.
| |
Collapse
|