1
|
Belli O, Karava K, Farouni R, Platt RJ. Multimodal scanning of genetic variants with base and prime editing. Nat Biotechnol 2024:10.1038/s41587-024-02439-1. [PMID: 39533106 DOI: 10.1038/s41587-024-02439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/18/2024] [Indexed: 11/16/2024]
Abstract
Mutational scanning connects genetic variants to phenotype, enabling the interrogation of protein functions, interactions and variant pathogenicity. However, current methodologies cannot efficiently engineer customizable sets of diverse genetic variants in endogenous loci across cellular contexts in high throughput. Here, we combine cytosine and adenine base editors and a prime editor to assess the pathogenicity of a broad spectrum of variants in the epithelial growth factor receptor gene (EGFR). Using pooled base editing and prime editing guide RNA libraries, we install tens of thousands of variants spanning the full coding sequence of EGFR in multiple cell lines and assess the role of these variants in tumorigenesis and resistance to tyrosine kinase inhibitors. Our EGFR variant scan identifies important hits, supporting the robustness of the approach and revealing underappreciated routes to EGFR activation and drug response. We anticipate that multimodal precision mutational scanning can be applied broadly to characterize genetic variation in any genetic element of interest at high and single-nucleotide resolution.
Collapse
Affiliation(s)
- Olivier Belli
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kyriaki Karava
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Rick Farouni
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Basel Research Centre for Child Health, Basel, Switzerland.
- Department of Chemistry, University of Basel, Basel, Switzerland.
- NCCR Molecular Systems Engineering, Basel, Switzerland.
| |
Collapse
|
2
|
Coelho MA, Strauss ME, Watterson A, Cooper S, Bhosle S, Illuzzi G, Karakoc E, Dinçer C, Vieira SF, Sharma M, Moullet M, Conticelli D, Koeppel J, McCarten K, Cattaneo CM, Veninga V, Picco G, Parts L, Forment JV, Voest EE, Marioni JC, Bassett A, Garnett MJ. Base editing screens define the genetic landscape of cancer drug resistance mechanisms. Nat Genet 2024; 56:2479-2492. [PMID: 39424923 PMCID: PMC11549056 DOI: 10.1038/s41588-024-01948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Drug resistance is a principal limitation to the long-term efficacy of cancer therapies. Cancer genome sequencing can retrospectively delineate the genetic basis of drug resistance, but this requires large numbers of post-treatment samples to nominate causal variants. Here we prospectively identify genetic mechanisms of resistance to ten oncology drugs from CRISPR base editing mutagenesis screens in four cancer cell lines using a guide RNA library predicted to install 32,476 variants in 11 cancer genes. We identify four functional classes of protein variants modulating drug sensitivity and use single-cell transcriptomics to reveal how these variants operate through distinct mechanisms, including eliciting a drug-addicted cell state. We identify variants that can be targeted with alternative inhibitors to overcome resistance and functionally validate an epidermal growth factor receptor (EGFR) variant that sensitizes lung cancer cells to EGFR inhibitors. Our variant-to-function map has implications for patient stratification, therapy combinations and drug scheduling in cancer treatment.
Collapse
Affiliation(s)
- Matthew A Coelho
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK.
- Cancer Genome Editing, Wellcome Sanger Institute, Hinxton, UK.
- Open Targets, Cambridge, UK.
| | - Magdalena E Strauss
- EMBL-European Bioinformatics Institute, Cambridge, UK
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK
- Department of Mathematics and Statistics, University of Exeter, Exeter, UK
| | - Alex Watterson
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Sarah Cooper
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK
| | - Shriram Bhosle
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | | | - Emre Karakoc
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
- Open Targets, Cambridge, UK
| | - Cansu Dinçer
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Sara F Vieira
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
- Open Targets, Cambridge, UK
| | - Mamta Sharma
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Marie Moullet
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Daniela Conticelli
- Department of Oncology, University of Turin, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Jonas Koeppel
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Katrina McCarten
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Chiara M Cattaneo
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vivien Veninga
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Gabriele Picco
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
- Open Targets, Cambridge, UK
| | - Leopold Parts
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Hinxton, UK
| | | | - Emile E Voest
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - John C Marioni
- EMBL-European Bioinformatics Institute, Cambridge, UK
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Genentech, South San Francisco, CA, USA
| | - Andrew Bassett
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK
| | - Mathew J Garnett
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK.
- Open Targets, Cambridge, UK.
| |
Collapse
|
3
|
Picco G, Rao Y, Al Saedi A, Lee Y, Vieira SF, Bhosle S, May K, Herranz-Ors C, Walker SJ, Shenje R, Dincer C, Gibson F, Banerjee R, Hewitson Z, Werner T, Cottom JE, Peng Y, Deng N, Zhang Y, Nartey E, Nickels L, Landis P, Conticelli D, McCarten K, Bush J, Sharma M, Lightfoot H, House D, Milford E, Grant EK, Glogowski MP, Wagner CD, Bantscheff M, Rutkowska-Klute A, Cell Model Network UK Group, Zappacosta F, Pettinger J, Barthorpe S, Eberl HC, Jones BT, Schneck JL, Murphy DJ, Voest EE, Taygerly JP, DeMartino MP, Coelho MA, Houseley J, Sharma G, Schwartz B, Garnett MJ. Novel WRN Helicase Inhibitors Selectively Target Microsatellite-Unstable Cancer Cells. Cancer Discov 2024; 14:1457-1475. [PMID: 38587317 PMCID: PMC7616858 DOI: 10.1158/2159-8290.cd-24-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Microsatellite-unstable (MSI) cancers require WRN helicase to resolve replication stress due to expanded DNA (TA)n dinucleotide repeats. WRN is a promising synthetic lethal target for MSI tumors, and WRN inhibitors are in development. In this study, we used CRISPR-Cas9 base editing to map WRN residues critical for MSI cells, validating the helicase domain as the primary drug target. Fragment-based screening led to the development of potent and highly selective WRN helicase covalent inhibitors. These compounds selectively suppressed MSI model growth in vitro and in vivo by mimicking WRN loss, inducing DNA double-strand breaks at expanded TA repeats and DNA damage. Assessment of biomarkers in preclinical models linked TA-repeat expansions and mismatch repair alterations to compound activity. Efficacy was confirmed in immunotherapy-resistant organoids and patient-derived xenograft models. The discovery of potent, selective covalent WRN inhibitors provides proof of concept for synthetic lethal targeting of WRN in MSI cancer and tools to dissect WRN biology. Significance: We report the discovery and characterization of potent, selective WRN helicase inhibitors for MSI cancer treatment, with biomarker analysis and evaluation of efficacy in vivo and in immunotherapy-refractory preclinical models. These findings pave the way to translate WRN inhibition into MSI cancer therapies and provide tools to investigate WRN biology. See related commentary by Wainberg, p. 1369.
Collapse
Affiliation(s)
| | | | | | - Yang Lee
- GSK, Upper Providence, PA, US 19426
| | | | | | - Kieron May
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cell Model Network UK Group
- Wellcome Sanger Institute, Cambridge, UK
- GSK, Upper Providence, PA, US 19426
- GSK, Stevenage, UK, SG1 2NY
- GSK, 69117 Heidelberg, Germany
- GSK, Cambridge, MA, US 02139
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Candiolo Cancer Institute, Italy
- IDEAYA Biosciences, South San Francisco, CA 94080
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | - Emile E. Voest
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Cooper S, Obolenski S, Waters AJ, Bassett AR, Coelho MA. Analyzing the functional effects of DNA variants with gene editing. CELL REPORTS METHODS 2024; 4:100776. [PMID: 38744287 PMCID: PMC11133854 DOI: 10.1016/j.crmeth.2024.100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Continual advancements in genomics have led to an ever-widening disparity between the rate of discovery of genetic variants and our current understanding of their functions and potential roles in disease. Systematic methods for phenotyping DNA variants are required to effectively translate genomics data into improved outcomes for patients with genetic diseases. To make the biggest impact, these approaches must be scalable and accurate, faithfully reflect disease biology, and define complex disease mechanisms. We compare current methods to analyze the function of variants in their endogenous DNA context using genome editing strategies, such as saturation genome editing, base editing and prime editing. We discuss how these technologies can be linked to high-content readouts to gain deep mechanistic insights into variant effects. Finally, we highlight key challenges that need to be addressed to bridge the genotype to phenotype gap, and ultimately improve the diagnosis and treatment of genetic diseases.
Collapse
Affiliation(s)
- Sarah Cooper
- Cellular and Gene Editing Research, Wellcome Sanger Institute, Hinxton, UK
| | - Sofia Obolenski
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, UK; Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrew J Waters
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Andrew R Bassett
- Cellular and Gene Editing Research, Wellcome Sanger Institute, Hinxton, UK.
| | | |
Collapse
|
5
|
Xin Y, Feng H, He C, Lu H, Zuo E, Yan N. Development of a universal antibiotic resistance screening system for efficient enrichment of C-to-G and A-to-G base editing. Int J Biol Macromol 2024; 268:131785. [PMID: 38679258 DOI: 10.1016/j.ijbiomac.2024.131785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/31/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
To expand the scope of genomic editing, a C-to-G transversion-based editor called CGBE has been developed for precise single-nucleotide genomic editing. However, limited editing efficiency and product purity have hindered the development and application of CGBE. In this study, we introduced the Puromycin-Resistance Screening System, referred to as CGBE/ABE-PRSS, to select genetically modified cells via the CGBE or ABE editors. The CGBE/ABE-PRSS system significantly improves the enrichment efficiency of CGBE- or ABE-modified cells, showing enhancements of up to 59.6 % compared with the controls. Our findings indicate that the CGBE/ABE-PRSS, when driven by the CMV promoter, results in a higher enrichment of edited cells compared to the CAG and EF1α promoters. Furthermore, we demonstrate that this system is compatible with different versions of both CGBE and ABE, enabling various cell species and simultaneous multiplexed genome editing without any detectable random off-targets. In conclusion, our developed CGBE/ABE-PRSS system facilitates the selection of edited cells and holds promise in both basic engineering and gene therapy applications.
Collapse
Affiliation(s)
- Ying Xin
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hu Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chenfei He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongjiang Lu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Nana Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China..
| |
Collapse
|
6
|
Li J, Fan G, Sakari M, Tsukahara T. Improvement of C-to-U RNA editing using an artificial MS2-APOBEC system. Biotechnol J 2024; 19:e2300321. [PMID: 38010373 DOI: 10.1002/biot.202300321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
RNA cytidine deamination (C-to-U editing) has been achieved using the MS2-apolipoprotein B-editing catalytic polypeptide-like (APOBEC)1 editing system. Here, we fused the cytidine deaminase (CDA) enzymes APOBEC3A and APOBEC3G with the MS2 system and examined their RNA editing efficiencies in transfected HEK 293T cells. Given the single-stranded RNA preferences of APOBEC3A and APOBEC3G, we designed unconventional guide RNAs that induced a loop at the target sequence, allowing the target to form a single-stranded structure. Because APOBEC3A and APOBEC3G have different base preferences (5'-TC and 5'-CC, respectively), we introduced the D317W mutation into APOBEC3G to convert its base preference to that of APOBEC3A. Upon co-transfection with a guide RNA that induced the formation of a 14 nt loop on the target sequence, MS2-fused APOBEC3A and APOBEC3G showed high editing efficiency. While the D317W mutation of APOBEC3G led to a slight improvement in editing efficiency, the difference was not statistically significant. These findings indicate that APOBEC3A and APOBEC3G can induce C-to-U RNA editing when transfected with a loop guide RNA. Moreover, the editing efficiency of APOBEC3G can be enhanced by site-specific mutation to alter the base preference. Overall, our results demonstrate that the MS2 system can fuse and catalyze reactions with different enzymes, suggesting that it holds an even greater potential for RNA editing than is utilized currently.
Collapse
Affiliation(s)
- Jiarui Li
- Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Guangyao Fan
- Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Matomo Sakari
- Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Toshifumi Tsukahara
- Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
- GeCoRT Co. Ltd., Nishi-ku, Yokohama, Japan
| |
Collapse
|
7
|
Rieffer AE, Chen Y, Salamango DJ, Moraes SN, Harris RS. APOBEC Reporter Systems for Evaluating diNucleotide Editing Levels. CRISPR J 2023; 6:430-446. [PMID: 37672599 PMCID: PMC10611974 DOI: 10.1089/crispr.2023.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Abstract
Precision genome editing has become a reality with the discovery of base editors. Cytosine base editor (CBE) technologies are improving rapidly but are mostly optimized for TC dinucleotide targets. Here, we report the development and implementation of APOBEC Reporter Systems for Evaluating diNucleotide Editing Levels (ARSENEL) in living cells. The ARSENEL panel is comprised of four constructs that quantitatively report editing of each of the four dinucleotide motifs (AC/CC/GC/TC) through real-time accumulation of eGFP fluorescence. Editing rates of APOBEC3Bctd and AIDΔC CBEs reflect established mechanistic preferences with intrinsic biases to TC and GC, respectively. Twelve different (new and established) base editors are tested here using this system with a full-length APOBEC3B CBE showing the greatest on-target TC specificity and an APOBEC3A construct showing the highest editing efficiency. In addition, ARSENEL enables real-time assessment of natural and synthetic APOBEC inhibitors with the most potent to-date being the large subunit of the Epstein-Barr virus ribonucleotide reductase. These reporters have the potential to play important roles in research and development as precision genome engineering technologies progress toward achieving maximal specificity and efficiency.
Collapse
Affiliation(s)
- Amanda E. Rieffer
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota—Twin Cities, Minneapolis, Minnesota, USA; University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Yanjun Chen
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA; and University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Daniel J. Salamango
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota—Twin Cities, Minneapolis, Minnesota, USA; University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Sofia N. Moraes
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota—Twin Cities, Minneapolis, Minnesota, USA; University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota—Twin Cities, Minneapolis, Minnesota, USA; University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA; and University of Texas Health San Antonio, San Antonio, Texas, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
8
|
Peters CW, Hanlon KS, Ivanchenko MV, Zinn E, Linarte EF, Li Y, Levy JM, Liu DR, Kleinstiver BP, Indzhykulian AA, Corey DP. Rescue of hearing by adenine base editing in a humanized mouse model of Usher syndrome type 1F. Mol Ther 2023; 31:2439-2453. [PMID: 37312453 PMCID: PMC10421997 DOI: 10.1016/j.ymthe.2023.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/03/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
Usher syndrome type 1F (USH1F), characterized by congenital lack of hearing and balance and progressive loss of vision, is caused by mutations in the PCDH15 gene. In the Ashkenazi population, a recessive truncation mutation accounts for a large proportion of USH1F cases. The truncation is caused by a single C→T mutation, which converts an arginine codon to a stop (R245X). To test the potential for base editors to revert this mutation, we developed a humanized Pcdh15R245X mouse model for USH1F. Mice homozygous for the R245X mutation were deaf and exhibited profound balance deficits, while heterozygous mice were unaffected. Here we show that an adenine base editor (ABE) is capable of reversing the R245X mutation to restore the PCDH15 sequence and function. We packaged a split-intein ABE into dual adeno-associated virus (AAV) vectors and delivered them into cochleas of neonatal USH1F mice. Hearing was not restored in a Pcdh15 constitutive null mouse despite base editing, perhaps because of early disorganization of cochlear hair cells. However, injection of vectors encoding the split ABE into a late-deletion conditional Pcdh15 knockout rescued hearing. This study demonstrates the ability of an ABE to correct the PCDH15 R245X mutation in the cochlea and restore hearing.
Collapse
Affiliation(s)
- Cole W Peters
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Killian S Hanlon
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Eric Zinn
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | | | - Yaqiao Li
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan M Levy
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Artur A Indzhykulian
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Abstract
Genome editing technologies hold great promise for numerous applications including the understanding of cellular and disease mechanisms and the development of gene and cellular therapies. Achieving high editing frequencies is critical to these research areas and to achieve the overall goal of being able to manipulate any target with any desired genetic outcome. However, gene editing technologies sometimes suffer from low editing efficiencies due to several challenges. This is often the case for emerging gene editing technologies, which require assistance for translation into broader applications. Enrichment strategies can support this goal by selecting gene edited cells from non-edited cells. In this review, we elucidate the different enrichment strategies, their many applications in non-clinical and clinical settings, and the remaining need for novel strategies to further improve genome research and gene and cellular therapy studies.
Collapse
Affiliation(s)
- Nanna S Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Bldg. 1115, 8000, Aarhus C., Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Bldg. 1115, 8000, Aarhus C., Denmark.
| |
Collapse
|
10
|
Abstract
DNA-editing enzymes perform chemical reactions on DNA nucleobases. These reactions can change the genetic identity of the modified base or modulate gene expression. Interest in DNA-editing enzymes has burgeoned in recent years due to the advent of clustered regularly interspaced short palindromic repeat-associated (CRISPR-Cas) systems, which can be used to direct their DNA-editing activity to specific genomic loci of interest. In this review, we showcase DNA-editing enzymes that have been repurposed or redesigned and developed into programmable base editors. These include deaminases, glycosylases, methyltransferases, and demethylases. We highlight the astounding degree to which these enzymes have been redesigned, evolved, and refined and present these collective engineering efforts as a paragon for future efforts to repurpose and engineer other families of enzymes. Collectively, base editors derived from these DNA-editing enzymes facilitate programmable point mutation introduction and gene expression modulation by targeted chemical modification of nucleobases.
Collapse
Affiliation(s)
- Kartik L Rallapalli
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA;
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
11
|
Fong JHC, Chu HY, Zhou P, Wong ASL. Parallel engineering and activity profiling of a base editor system. Cell Syst 2023; 14:392-403.e4. [PMID: 37164010 DOI: 10.1016/j.cels.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/14/2023] [Accepted: 03/29/2023] [Indexed: 05/12/2023]
Abstract
Selecting the most suitable existing base editors and engineering new variants for installing specific base conversions with maximal efficiency and minimal undesired edits are pivotal for precise genome editing applications. Here, we present a platform for creating and analyzing a library of engineered base editor variants to enable head-to-head evaluation of their editing performance at scale. Our comprehensive comparison provides quantitative measures on each variant's editing efficiency, purity, motif preference, and bias in generating single and multiple base conversions, while uncovering undesired higher indel generation rate and noncanonical base conversion for some of the existing base editors. In addition to engineering the base editor protein, we further applied this platform to investigate a hitherto underexplored engineering route and created guide RNA scaffold variants that augment the editor's base-editing activity. With the unknown performance and compatibility of the growing number of engineered parts including deaminase, CRISPR-Cas enzyme, and guide RNA scaffold variants for assembling the expanding collection of base editor systems, our platform addresses the unmet need for an unbiased, scalable method to benchmark their editing outcomes and accelerate the engineering of next-generation precise genome editors.
Collapse
Affiliation(s)
- John H C Fong
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Hoi Yee Chu
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Peng Zhou
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Alan S L Wong
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
12
|
Yu SY, Carlaw T, Thomson T, Birkenshaw A, Basha G, Kurek D, Huang C, Kulkarni J, Zhang LH, Ross CJD. A luciferase reporter mouse model to optimize in vivo gene editing validated by lipid nanoparticle delivery of adenine base editors. Mol Ther 2023; 31:1159-1166. [PMID: 36793209 PMCID: PMC10124072 DOI: 10.1016/j.ymthe.2023.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The rapid development of CRISPR genome editing technology has provided the potential to treat genetic diseases effectively and precisely. However, efficient and safe delivery of genome editors to affected tissues remains a challenge. Here, we developed luminescent ABE (LumA), a luciferase reporter mouse model containing the R387X mutation (c.A1159T) in the luciferase gene located in the Rosa26 locus of the mouse genome. This mutation eliminates luciferase activity but can be restored upon A-to-G correction by SpCas9 adenine base editors (ABEs). The LumA mouse model was validated through intravenous injection of two FDA-approved lipid nanoparticle (LNP) formulations consisting of either MC3 or ALC-0315 ionizable cationic lipids, encapsulated with ABE mRNA and LucR387X-specific guide RNA (gRNA). Whole-body bioluminescence live imaging showed consistent restoration of luminescence lasting up to 4 months in treated mice. Compared with mice carrying the wild-type luciferase gene, the ALC-0315 and MC3 LNP groups showed 83.5% ± 17.5% and 8.4% ± 4.3% restoration of luciferase activity in the liver, respectively, as measured by tissue luciferase assays. These results demonstrated successful development of a luciferase reporter mouse model that can be used to evaluate the efficacy and safety of different genome editors, LNP formulations, and tissue-specific delivery systems for optimizing genome editing therapeutics.
Collapse
Affiliation(s)
- Si-Yue Yu
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Tiffany Carlaw
- Department of Medical Genetics, Faculty of Science, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Tyler Thomson
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Alexandra Birkenshaw
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Genc Basha
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Daniel Kurek
- Nanovation Therapeutics, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Cassie Huang
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jayesh Kulkarni
- Nanovation Therapeutics, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Lin-Hua Zhang
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Colin J D Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
13
|
Coelho MA, Cooper S, Strauss ME, Karakoc E, Bhosle S, Gonçalves E, Picco G, Burgold T, Cattaneo CM, Veninga V, Consonni S, Dinçer C, Vieira SF, Gibson F, Barthorpe S, Hardy C, Rein J, Thomas M, Marioni J, Voest EE, Bassett A, Garnett MJ. Base editing screens map mutations affecting interferon-γ signaling in cancer. Cancer Cell 2023; 41:288-303.e6. [PMID: 36669486 PMCID: PMC9942875 DOI: 10.1016/j.ccell.2022.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
Interferon-γ (IFN-γ) signaling mediates host responses to infection, inflammation and anti-tumor immunity. Mutations in the IFN-γ signaling pathway cause immunological disorders, hematological malignancies, and resistance to immune checkpoint blockade (ICB) in cancer; however, the function of most clinically observed variants remains unknown. Here, we systematically investigate the genetic determinants of IFN-γ response in colorectal cancer cells using CRISPR-Cas9 screens and base editing mutagenesis. Deep mutagenesis of JAK1 with cytidine and adenine base editors, combined with pathway-wide screens, reveal loss-of-function and gain-of-function mutations, including causal variants in hematological malignancies and mutations detected in patients refractory to ICB. We functionally validate variants of uncertain significance in primary tumor organoids, where engineering missense mutations in JAK1 enhanced or reduced sensitivity to autologous tumor-reactive T cells. We identify more than 300 predicted missense mutations altering IFN-γ pathway activity, generating a valuable resource for interpreting gene variant function.
Collapse
Affiliation(s)
- Matthew A Coelho
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | - Sarah Cooper
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | | | - Emre Karakoc
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | - Shriram Bhosle
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Emanuel Gonçalves
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Instituto Superior Técnico, Universidade de Lisboa, 1049-001, and, INESC-ID, 1000-029, Lisbon, Portugal
| | - Gabriele Picco
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | - Thomas Burgold
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK
| | - Chiara M Cattaneo
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Open Targets, Cambridge, UK
| | - Vivien Veninga
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Open Targets, Cambridge, UK
| | - Sarah Consonni
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | - Cansu Dinçer
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Sara F Vieira
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | - Freddy Gibson
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Syd Barthorpe
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Claire Hardy
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, UK
| | - Joel Rein
- Cellular Operations and Stem Cell Informatics, Wellcome Sanger Institute, Hinxton, UK
| | - Mark Thomas
- Cellular Operations and Stem Cell Informatics, Wellcome Sanger Institute, Hinxton, UK
| | - John Marioni
- EMBL-European Bioinformatics Institute, Cambridge, UK
| | - Emile E Voest
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands; Open Targets, Cambridge, UK
| | - Andrew Bassett
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | - Mathew J Garnett
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK.
| |
Collapse
|
14
|
Gaillochet C, Peña Fernández A, Goossens V, D'Halluin K, Drozdzecki A, Shafie M, Van Duyse J, Van Isterdael G, Gonzalez C, Vermeersch M, De Saeger J, Develtere W, Audenaert D, De Vleesschauwer D, Meulewaeter F, Jacobs TB. Systematic optimization of Cas12a base editors in wheat and maize using the ITER platform. Genome Biol 2023; 24:6. [PMID: 36639800 PMCID: PMC9838060 DOI: 10.1186/s13059-022-02836-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Testing an ever-increasing number of CRISPR components is challenging when developing new genome engineering tools. Plant biotechnology has few high-throughput options to perform iterative design-build-test-learn cycles of gene-editing reagents. To bridge this gap, we develop ITER (Iterative Testing of Editing Reagents) based on 96-well arrayed protoplast transfections and high-content imaging. RESULTS We validate ITER in wheat and maize protoplasts using Cas9 cytosine and adenine base editors (ABEs), allowing one optimization cycle - from design to results - within 3 weeks. Given that previous LbCas12a-ABEs have low or no activity in plants, we use ITER to develop an optimized LbCas12a-ABE. We show that sequential improvement of five components - NLS, crRNA, LbCas12a, adenine deaminase, and linker - leads to a remarkable increase in activity from almost undetectable levels to 40% on an extrachromosomal GFP reporter. We confirm the activity of LbCas12a-ABE at endogenous targets in protoplasts and obtain base-edited plants in up to 55% of stable wheat transformants and the edits are transmitted to T1 progeny. We leverage these improvements to develop a highly mutagenic LbCas12a nuclease and a LbCas12a-CBE demonstrating that the optimizations can be broadly applied to the Cas12a toolbox. CONCLUSION Our data show that ITER is a sensitive, versatile, and high-throughput platform that can be harnessed to accelerate the development of genome editing technologies in plants. We use ITER to create an efficient Cas12a-ABE by iteratively testing a large panel of vector components. ITER will likely be useful to create and optimize genome editing reagents in a wide range of plant species.
Collapse
Affiliation(s)
- Christophe Gaillochet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Alexandra Peña Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Vera Goossens
- Screening Core, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Katelijn D'Halluin
- BASF Belgium Coordination Center CommV, Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052, Ghent, Belgium
| | - Andrzej Drozdzecki
- Screening Core, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Myriam Shafie
- BASF Belgium Coordination Center CommV, Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052, Ghent, Belgium
| | - Julie Van Duyse
- VIB Flow Core, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | | | - Camila Gonzalez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Mattias Vermeersch
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Jonas De Saeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Ward Develtere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Dominique Audenaert
- Screening Core, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - David De Vleesschauwer
- BASF Belgium Coordination Center CommV, Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052, Ghent, Belgium
| | - Frank Meulewaeter
- BASF Belgium Coordination Center CommV, Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052, Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
| |
Collapse
|
15
|
Lim CKW, McCallister TX, Saporito-Magriña C, McPheron GD, Krishnan R, Zeballos C MA, Powell JE, Clark LV, Perez-Pinera P, Gaj T. CRISPR base editing of cis-regulatory elements enables the perturbation of neurodegeneration-linked genes. Mol Ther 2022; 30:3619-3631. [PMID: 35965414 PMCID: PMC9734028 DOI: 10.1016/j.ymthe.2022.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
CRISPR technology has demonstrated broad utility for controlling target gene expression; however, there remains a need for strategies capable of modulating expression via the precise editing of non-coding regulatory elements. Here, we demonstrate that CRISPR base editors, a class of gene-modifying proteins capable of creating single-base substitutions in DNA, can be used to perturb gene expression via their targeted mutagenesis of cis-acting sequences. Using the promoter region of the human huntingtin (HTT) gene as an initial target, we show that editing of the binding site for the transcription factor NF-κB led to a marked reduction in HTT gene expression in base-edited cell populations. We found that these gene perturbations were persistent and specific, as a transcriptome-wide RNA analysis revealed minimal off-target effects resulting from the action of the base editor protein. We further demonstrate that this base-editing platform could influence gene expression in vivo as its delivery to a mouse model of Huntington's disease led to a potent decrease in HTT mRNA in striatal neurons. Finally, to illustrate the applicability of this concept, we target the amyloid precursor protein, showing that multiplex editing of its promoter region significantly perturbed its expression. These findings demonstrate the potential for base editors to regulate target gene expression.
Collapse
Affiliation(s)
- Colin K W Lim
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | | | | | - Garrett D McPheron
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | - Ramya Krishnan
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | | | - Jackson E Powell
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | - Lindsay V Clark
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL 61801, USA
| | - Pablo Perez-Pinera
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA; Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois, Urbana, IL 61801, USA.
| | - Thomas Gaj
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
16
|
Tan J, Forner J, Karcher D, Bock R. DNA base editing in nuclear and organellar genomes. Trends Genet 2022; 38:1147-1169. [PMID: 35853769 DOI: 10.1016/j.tig.2022.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/12/2022] [Accepted: 06/24/2022] [Indexed: 01/24/2023]
Abstract
Genome editing continues to revolutionize biological research. Due to its simplicity and flexibility, CRISPR/Cas-based editing has become the preferred technology in most systems. Cas nucleases tolerate fusion to large protein domains, thus allowing combination of their DNA recognition properties with new enzymatic activities. Fusion to nucleoside deaminase or reverse transcriptase domains has produced base editors and prime editors that, instead of generating double-strand breaks in the target sequence, induce site-specific alterations of single (or a few adjacent) nucleotides. The availability of protein-only genome editing reagents based on transcription activator-like effectors has enabled the extension of base editing to the genomes of chloroplasts and mitochondria. In this review, we summarize currently available base editing methods for nuclear and organellar genomes. We highlight recent advances with improving precision, specificity, and efficiency and discuss current limitations and future challenges. We also provide a brief overview of applications in agricultural biotechnology and gene therapy.
Collapse
Affiliation(s)
- Junjie Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Innovation Center for Genome Editing and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Joachim Forner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
17
|
Ma L, Xing J, Li Q, Zhang Z, Xu K. Development of a universal antibiotic resistance screening reporter for improving efficiency of cytosine and adenine base editing. J Biol Chem 2022; 298:102103. [PMID: 35671823 PMCID: PMC9287484 DOI: 10.1016/j.jbc.2022.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Base editing has emerged as a revolutionary technology for single nucleotide modifications. The cytosine and adenine base editors (CBEs and ABEs) have demonstrated great potential in clinical and fundamental research. However, screening and isolating target-edited cells remains challenging. In the current study, we developed a universal Adenine and Cytosine Base-Editing Antibiotic Resistance Screening Reporter (ACBE-ARSR) for improving the editing efficiency. To develop the reporter, the CBE-ARSR was first constructed and shown to be capable of enriching cells for those that had undergone CBE editing activity. Then, the ACBE-ARSR was constructed and was further validated in the editing assays by four different CBEs and two versions of ABE at several different genomic loci. Our results demonstrated that ACBE-ARSR, compared to the reporter of transfection (RoT) screening strategy, improved the editing efficiency of CBE and ABE by 4.6- and 1.9-fold on average, respectively. We found the highest CBE and ABE editing efficiencies as enriched by ACBE-ARSR reached 90% and 88.7%. Moreover, we also demonstrated ACBE-ARSR could be employed for enhancing simultaneous multiplexed genome editing. In conclusion, both CBE and ABE activity can be improved significantly using our novel ACBE-ARSR screening strategy, which we believe will facilitate the development of base editors and their application in biomedical and fundamental research studies.
Collapse
Affiliation(s)
- Lixia Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China; Central Laboratory, Changzhi Medical College, Changzhi, Shanxi, China
| | - Jiani Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiying Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Kun Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
18
|
Schene IF, Joore IP, Baijens JHL, Stevelink R, Kok G, Shehata S, Ilcken EF, Nieuwenhuis ECM, Bolhuis DP, van Rees RCM, Spelier SA, van der Doef HPJ, Beekman JM, Houwen RHJ, Nieuwenhuis EES, Fuchs SA. Mutation-specific reporter for optimization and enrichment of prime editing. Nat Commun 2022; 13:1028. [PMID: 35232966 PMCID: PMC8888566 DOI: 10.1038/s41467-022-28656-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/04/2022] [Indexed: 12/23/2022] Open
Abstract
Prime editing is a versatile genome-editing technique that shows great promise for the generation and repair of patient mutations. However, some genomic sites are difficult to edit and optimal design of prime-editing tools remains elusive. Here we present a fluorescent prime editing and enrichment reporter (fluoPEER), which can be tailored to any genomic target site. This system rapidly and faithfully ranks the efficiency of prime edit guide RNAs (pegRNAs) combined with any prime editor variant. We apply fluoPEER to instruct correction of pathogenic variants in patient cells and find that plasmid editing enriches for genomic editing up to 3-fold compared to conventional enrichment strategies. DNA repair and cell cycle-related genes are enriched in the transcriptome of edited cells. Stalling cells in the G1/S boundary increases prime editing efficiency up to 30%. Together, our results show that fluoPEER can be employed for rapid and efficient correction of patient cells, selection of gene-edited cells, and elucidation of cellular mechanisms needed for successful prime editing.
Collapse
Affiliation(s)
- I F Schene
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - I P Joore
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - J H L Baijens
- Utrecht University Graduate School of Life Sciences, Heidelberglaan 8, 3584 CS, Utrecht, The Netherlands
| | - R Stevelink
- Department of Genetics, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - G Kok
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - S Shehata
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - E F Ilcken
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - E C M Nieuwenhuis
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - D P Bolhuis
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - R C M van Rees
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - S A Spelier
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA, Utrecht, The Netherlands
| | - H P J van der Doef
- Department of Pediatric Gastroenterology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - J M Beekman
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA, Utrecht, The Netherlands
| | - R H J Houwen
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - E E S Nieuwenhuis
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
- Department of Sciences, University College Roosevelt, Lange Noordstraat 1, 4331 CB, Middelburg, The Netherlands
| | - S A Fuchs
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA, Utrecht, The Netherlands.
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Simon DA, Tálas A, Kulcsár PI, Biczók Z, Krausz SL, Várady G, Welker E. PEAR, a flexible fluorescent reporter for the identification and enrichment of successfully prime edited cells. eLife 2022; 11:69504. [PMID: 35196219 PMCID: PMC8865850 DOI: 10.7554/elife.69504] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 02/09/2022] [Indexed: 12/26/2022] Open
Abstract
Prime editing is a recently developed CRISPR/Cas9 based gene engineering tool that allows the introduction of short insertions, deletions, and substitutions into the genome. However, the efficiency of prime editing, which typically achieves editing rates of around 10%–30%, has not matched its versatility. Here, we introduce the prime editor activity reporter (PEAR), a sensitive fluorescent tool for identifying single cells with prime editing activity. PEAR has no background fluorescence and specifically indicates prime editing events. Its design provides apparently unlimited flexibility for sequence variation along the entire length of the spacer sequence, making it uniquely suited for systematic investigation of sequence features that influence prime editing activity. The use of PEAR as an enrichment marker for prime editing can increase the edited population by up to 84%, thus significantly improving the applicability of prime editing for basic research and biotechnological applications.
Collapse
Affiliation(s)
- Dorottya Anna Simon
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.,ProteoScientia, Budapest, Hungary.,School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - András Tálas
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter István Kulcsár
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.,Biospiral-2006, Szeged, Hungary
| | - Zsuzsanna Biczók
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.,School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - Sarah Laura Krausz
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.,School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - György Várady
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ervin Welker
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.,Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
20
|
Wimmer T, Bonthu D, Moeschl V, Kleekamp P, Thiel C, Lytvynchuk L, Ellinwood M, Stieger K. A Bioluminescence Resonance Energy Transfer-Based Reporter System: Characterization and Applications. CRISPR J 2021; 4:884-895. [PMID: 34847743 DOI: 10.1089/crispr.2021.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genome editing strategies and DNA repair research need powerful analytical tools. We generated a bioluminescence resonance energy transfer (BRET)-based reporter for the quantification of indel frequencies induced by DNA repair. The BRET reporter, expressed as a single molecule, consists of a mutated Renilla reniformis luciferase domain and a GFP2 domain separated by a shuttle-cloning box for the integration of any given endonuclease target sequence. The luciferase activity acts both as energy donor and as the internal standard, while the loss of GFP2 fluorescence acts as a reporter for the out-of-frame sequence alterations that result from the DNA repair via the non-homologous end joining/microhomology-mediated end joining DNA repair pathways of the endonuclease-mediated DNA double-strand break. This results in a decrease of the fluorescence/luminescence ratio. Employing this reporter in different experimental scenarios, using different cell lines and diseases targeted, we quantified the influence of both protein knockdown of DNA repair pathways as well as guide RNA mismatches on CRISPR-mediated nuclease activity and subsequent repair based on mutagenic repair on the reporter. In conclusion, we demonstrated this BRET-based reporter to be a robust and sensitive analytical tool for assessment of variety of different genome editing-based approaches.
Collapse
Affiliation(s)
- Tobias Wimmer
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dileep Bonthu
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Vincent Moeschl
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Philip Kleekamp
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christian Thiel
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | - Knut Stieger
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
21
|
BEAR reveals that increased fidelity variants can successfully reduce the mismatch tolerance of adenine but not cytosine base editors. Nat Commun 2021; 12:6353. [PMID: 34732717 PMCID: PMC8566456 DOI: 10.1038/s41467-021-26461-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
Adenine and cytosine base editors (ABE, CBE) allow for precision genome engineering. Here, Base Editor Activity Reporter (BEAR), a plasmid-based fluorescent tool is introduced, which can be applied to report on ABE and CBE editing in a virtually unrestricted sequence context or to label base edited cells for enrichment. Using BEAR-enrichment, we increase the yield of base editing performed by nuclease inactive base editors to the level of the nickase versions while maintaining significantly lower indel background. Furthermore, by exploiting the semi-high-throughput potential of BEAR, we examine whether increased fidelity SpCas9 variants can be used to decrease SpCas9-dependent off-target effects of ABE and CBE. Comparing them on the same target sets reveals that CBE remains active on sequences, where increased fidelity mutations and/or mismatches decrease the activity of ABE. Our results suggest that the deaminase domain of ABE is less effective to act on rather transiently separated target DNA strands, than that of CBE explaining its lower mismatch tolerance.
Collapse
|
22
|
Fu J, Li Q, Liu X, Tu T, Lv X, Yin X, Lv J, Song Z, Qu J, Zhang J, Li J, Gu F. Human cell based directed evolution of adenine base editors with improved efficiency. Nat Commun 2021; 12:5897. [PMID: 34625552 PMCID: PMC8501064 DOI: 10.1038/s41467-021-26211-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Adenine base editors (ABE) are genome-editing tools that have been harnessed to introduce precise A•T to G•C conversion. However, the low activity of ABE at certain sites remains a major bottleneck that precludes efficacious applications. Here, to address it, we develop a directional screening system in human cells to evolve the deaminase component of the ABE, and identify three high-activity NG-ABEmax variants: NG-ABEmax-SGK (R101S/D139G/E140K), NG-ABEmax-R (Q154R) and NG-ABEmax-K (N127K). With further engineering, we create a consolidated variant [NG-ABEmax-KR (N127K/Q154R)] which exhibit superior editing activity both in human cells and in mouse disease models, compared to the original NG-ABEmax. We also find that NG-ABEmax-KR efficiently introduce natural mutations in gamma globin gene promoters with more than four-fold increase in editing activity. This work provides a broadly applicable, rapidly deployable platform to directionally screen and evolve user-specified traits in base editors that extend beyond augmented editing activity.
Collapse
Affiliation(s)
- Junhao Fu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Qing Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyu Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Tianxiang Tu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xiujuan Lv
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xidi Yin
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jineng Lv
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Zongming Song
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
- Henan Eye Hospital, Henan Eye Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China.
| |
Collapse
|
23
|
Tekel SJ, Brookhouser N, Standage-Beier K, Wang X, Brafman DA. Cytosine and adenosine base editing in human pluripotent stem cells using transient reporters for editing enrichment. Nat Protoc 2021; 16:3596-3624. [PMID: 34172975 DOI: 10.1038/s41596-021-00552-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Deaminase fused-Cas9 base editing technologies have enabled precise single-nucleotide genomic editing without the need for the introduction of damaging double-stranded breaks and inefficient homology-directed repair. However, current methods to isolate base-edited cell populations are ineffective, especially when utilized with human pluripotent stem cells, a cell type resistant to genome modification. Here, we outline a series of methods that employ transient reporters of editing enrichment (TREE) to facilitate the highly efficient single-base editing of human cells at precise genomic loci. Briefly, these transient reporters of editing enrichment based methods employ a transient episomal fluorescent reporter that allows for the real-time, flow-cytometry-based enrichment of cells that have had single nucleotide changes at precise genomic locations. This protocol details how these approaches can enable the rapid (~3-4 weeks) and efficient (clonal editing efficiencies >80%) generation of biallelic or multiplexed edited isogenic hPSC lines using adenosine and cytosine base editors.
Collapse
Affiliation(s)
- Stefan J Tekel
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Kylie Standage-Beier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, USA
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
24
|
Kuang J, Lyu Q, Wang J, Cui Y, Zhao J. Advances in base editing with an emphasis on an AAV-based strategy. Methods 2021; 194:56-64. [PMID: 33774157 DOI: 10.1016/j.ymeth.2021.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/07/2021] [Accepted: 03/21/2021] [Indexed: 01/01/2023] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based base editors have been developed for precisely installing point mutations in genomes with high efficiency. Two editing systems of cytosine base editors (CBEs) and adenine base editors (ABEs) have been developed for conversion of C.G-to-T.A and A.T-to-G.C, respectively, showing the prominence in genomic DNA correction and mutation. Here, we summarize recent optimized approaches in improving base editors, including the evolution of Cas proteins, the choice of deamination enzymes, modification on linker length, base-editor expression, and addition of functional domains. Specifically, in this paper we highlight a strategy of split-intein mediated base-editor reconstitution for its adeno-associated virus (AAV) delivery. The purpose of this article is to offer readers with a better understanding of AAV-mediated base editors, and facilitate them to use this tool in in vivo experiments and potential clinical applications.
Collapse
Affiliation(s)
- Jiajie Kuang
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen 518000, China; Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Qinghua Lyu
- School of Ophthalmology & Optometry, Shenzhen Eye Hospital, Shenzhen University, Shenzhen 518000, China; Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiao Wang
- School of Ophthalmology & Optometry, Shenzhen Eye Hospital, Shenzhen University, Shenzhen 518000, China
| | - Yubo Cui
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jun Zhao
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen 518000, China; Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| |
Collapse
|
25
|
Vaclova T, Grazini U, Ward L, O'Neill D, Markovets A, Huang X, Chmielecki J, Hartmaier R, Thress KS, Smith PD, Barrett JC, Downward J, de Bruin EC. Clinical impact of subclonal EGFR T790M mutations in advanced-stage EGFR-mutant non-small-cell lung cancers. Nat Commun 2021; 12:1780. [PMID: 33741979 PMCID: PMC7979775 DOI: 10.1038/s41467-021-22057-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Advanced non-small-cell lung cancer (NSCLC) patients with EGFR T790M-positive tumours benefit from osimertinib, an epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI). Here we show that the size of the EGFR T790M-positive clone impacts response to osimertinib. T790M subclonality, as assessed by a retrospective NGS analysis of 289 baseline plasma ctDNA samples from T790M-positive advanced NSCLC patients from the AURA3 phase III trial, is associated with shorter progression-free survival (PFS), both in the osimertinib and the chemotherapy-treated patients. Both baseline and longitudinal ctDNA profiling indicate that the T790M subclonal tumours are enriched for PIK3CA alterations, which we demonstrate to confer resistance to osimertinib in vitro that can be partially reversed by PI3K pathway inhibitors. Overall, our results elucidate the impact of tumour heterogeneity on response to osimertinib in advanced stage NSCLC patients and could help define appropriate combination therapies in these patients.
Collapse
Affiliation(s)
- Tereza Vaclova
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Lewis Ward
- Discovery Science, BioPharmaceutical R&D, AstraZeneca, Cambridge, UK
| | - Daniel O'Neill
- Discovery Science, BioPharmaceutical R&D, AstraZeneca, Cambridge, UK
| | | | - Xiangning Huang
- Biometrics Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Ryan Hartmaier
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Kenneth S Thress
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
- Global Marketing Diagnostics, Oncology Business, AstraZeneca, Gaithersburg, MD, USA
| | - Paul D Smith
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - J Carl Barrett
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
| | | | - Elza C de Bruin
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
26
|
Huang TP, Newby GA, Liu DR. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat Protoc 2021; 16:1089-1128. [PMID: 33462442 DOI: 10.1038/s41596-020-00450-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/20/2020] [Indexed: 01/29/2023]
Abstract
Genome editing has transformed the life sciences and has exciting prospects for use in treating genetic diseases. Our laboratory developed base editing to enable precise and efficient genome editing while minimizing undesired byproducts and toxicity associated with double-stranded DNA breaks. Adenine and cytosine base editors mediate targeted A•T-to-G•C or C•G-to-T•A base pair changes, respectively, which can theoretically address most human disease-associated single-nucleotide polymorphisms. Current base editors can achieve high editing efficiencies-for example, approaching 100% in cultured mammalian cells or 70% in adult mouse neurons in vivo. Since their initial description, a large set of base editor variants have been developed with different on-target and off-target editing characteristics. Here, we describe a protocol for using base editing in cultured mammalian cells. We provide guidelines for choosing target sites, appropriate base editor variants and delivery strategies to best suit a desired application. We further describe standard base-editing experiments in HEK293T cells, along with computational analysis of base-editing outcomes using CRISPResso2. Beginning with target DNA site selection, base-editing experiments in mammalian cells can typically be completed within 1-3 weeks and require only standard molecular biology techniques and readily available plasmid constructs.
Collapse
Affiliation(s)
- Tony P Huang
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
27
|
Li S, Akrap N, Cerboni S, Porritt MJ, Wimberger S, Lundin A, Möller C, Firth M, Gordon E, Lazovic B, Sieńska A, Pane LS, Coelho MA, Ciotta G, Pellegrini G, Sini M, Xu X, Mitra S, Bohlooly-Y M, Taylor BJM, Sienski G, Maresca M. Universal toxin-based selection for precise genome engineering in human cells. Nat Commun 2021; 12:497. [PMID: 33479216 PMCID: PMC7820243 DOI: 10.1038/s41467-020-20810-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Prokaryotic restriction enzymes, recombinases and Cas proteins are powerful DNA engineering and genome editing tools. However, in many primary cell types, the efficiency of genome editing remains low, impeding the development of gene- and cell-based therapeutic applications. A safe strategy for robust and efficient enrichment of precisely genetically engineered cells is urgently required. Here, we screen for mutations in the receptor for Diphtheria Toxin (DT) which protect human cells from DT. Selection for cells with an edited DT receptor variant enriches for simultaneously introduced, precisely targeted gene modifications at a second independent locus, such as nucleotide substitutions and DNA insertions. Our method enables the rapid generation of a homogenous cell population with bi-allelic integration of a DNA cassette at the selection locus, without clonal isolation. Toxin-based selection works in both cancer-transformed and non-transformed cells, including human induced pluripotent stem cells and human primary T-lymphocytes, as well as it is applicable also in vivo, in mice with humanized liver. This work represents a flexible, precise, and efficient selection strategy to engineer cells using CRISPR-Cas and base editing systems.
Collapse
Affiliation(s)
- Songyuan Li
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Nina Akrap
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Silvia Cerboni
- Translational Science and Experimental Medicine, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Michelle J Porritt
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sandra Wimberger
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Chemistry & Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anders Lundin
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Carl Möller
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mike Firth
- R&D Data Infrastructure & Tools, AstraZeneca, Cambridge, UK
| | - Euan Gordon
- Discovery Biology SWE, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bojana Lazovic
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Aleksandra Sieńska
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Luna Simona Pane
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Giovanni Ciotta
- Discovery Biology UK, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Giovanni Pellegrini
- CVRM pathology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marcella Sini
- CVRM pathology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xiufeng Xu
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Suman Mitra
- Inserm UMR1277 CNRS UMR9020 - CANTHER, Institut pour la Recherche sur le Cancer de Lille, Lille, France
| | - Mohammad Bohlooly-Y
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Benjamin J M Taylor
- Discovery Biology UK, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Grzegorz Sienski
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Marcello Maresca
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
28
|
Brookhouser N, Nguyen T, Tekel SJ, Standage-Beier K, Wang X, Brafman DA. A Cas9-mediated adenosine transient reporter enables enrichment of ABE-targeted cells. BMC Biol 2020. [PMID: 33317513 DOI: 10.1186/s12915-020-00929-7.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adenine base editors (ABE) enable single nucleotide modifications without the need for double-stranded DNA breaks (DSBs) induced by conventional CRIPSR/Cas9-based approaches. However, most approaches that employ ABEs require inefficient downstream technologies to identify desired targeted mutations within large populations of manipulated cells. In this study, we developed a fluorescence-based method, named "Cas9-mediated adenosine transient reporter for editing enrichment" (CasMAs-TREE; herein abbreviated XMAS-TREE), to facilitate the real-time identification of base-edited cell populations. RESULTS To establish a fluorescent-based assay able to detect ABE activity within a cell in real time, we designed a construct encoding a mCherry fluorescent protein followed by a stop codon (TGA) preceding the coding sequence for a green fluorescent protein (GFP), allowing translational readthrough and expression of GFP after A-to-G conversion of the codon to "TGG." At several independent loci, we demonstrate that XMAS-TREE can be used for the highly efficient purification of targeted cells. Moreover, we demonstrate that XMAS-TREE can be employed in the context of multiplexed editing strategies to simultaneous modify several genomic loci. In addition, we employ XMAS-TREE to efficiently edit human pluripotent stem cells (hPSCs), a cell type traditionally resistant to genetic modification. Furthermore, we utilize XMAS-TREE to generate clonal isogenic hPSCs at target sites not editable using well-established reporter of transfection (RoT)-based strategies. CONCLUSION We established a method to detect adenosine base-editing activity within a cell, which increases the efficiency of editing at multiple genomic locations through an enrichment of edited cells. In the future, XMAS-TREE will greatly accelerate the application of ABEs in biomedical research.
Collapse
Affiliation(s)
- Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA.,Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Toan Nguyen
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA
| | - Stefan J Tekel
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA
| | - Kylie Standage-Beier
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA.,Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, 85287, USA
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA.
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA.
| |
Collapse
|
29
|
Brookhouser N, Nguyen T, Tekel SJ, Standage-Beier K, Wang X, Brafman DA. A Cas9-mediated adenosine transient reporter enables enrichment of ABE-targeted cells. BMC Biol 2020; 18:193. [PMID: 33317513 PMCID: PMC7737295 DOI: 10.1186/s12915-020-00929-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Adenine base editors (ABE) enable single nucleotide modifications without the need for double-stranded DNA breaks (DSBs) induced by conventional CRIPSR/Cas9-based approaches. However, most approaches that employ ABEs require inefficient downstream technologies to identify desired targeted mutations within large populations of manipulated cells. In this study, we developed a fluorescence-based method, named "Cas9-mediated adenosine transient reporter for editing enrichment" (CasMAs-TREE; herein abbreviated XMAS-TREE), to facilitate the real-time identification of base-edited cell populations. RESULTS To establish a fluorescent-based assay able to detect ABE activity within a cell in real time, we designed a construct encoding a mCherry fluorescent protein followed by a stop codon (TGA) preceding the coding sequence for a green fluorescent protein (GFP), allowing translational readthrough and expression of GFP after A-to-G conversion of the codon to "TGG." At several independent loci, we demonstrate that XMAS-TREE can be used for the highly efficient purification of targeted cells. Moreover, we demonstrate that XMAS-TREE can be employed in the context of multiplexed editing strategies to simultaneous modify several genomic loci. In addition, we employ XMAS-TREE to efficiently edit human pluripotent stem cells (hPSCs), a cell type traditionally resistant to genetic modification. Furthermore, we utilize XMAS-TREE to generate clonal isogenic hPSCs at target sites not editable using well-established reporter of transfection (RoT)-based strategies. CONCLUSION We established a method to detect adenosine base-editing activity within a cell, which increases the efficiency of editing at multiple genomic locations through an enrichment of edited cells. In the future, XMAS-TREE will greatly accelerate the application of ABEs in biomedical research.
Collapse
Affiliation(s)
- Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA
- Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Toan Nguyen
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA
| | - Stefan J Tekel
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA
| | - Kylie Standage-Beier
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, 85287, USA
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA.
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, ECG 334A, Tempe, AZ, 85287, USA.
| |
Collapse
|
30
|
Vasquez CA, Cowan QT, Komor AC. Base Editing in Human Cells to Produce Single-Nucleotide-Variant Clonal Cell Lines. ACTA ACUST UNITED AC 2020; 133:e129. [PMID: 33151638 DOI: 10.1002/cpmb.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Base-editing technologies enable the introduction of point mutations at targeted genomic sites in mammalian cells, with higher efficiency and precision than traditional genome-editing methods that use DNA double-strand breaks, such as zinc finger nucleases (ZFNs), transcription-activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (CRISPR-Cas9) system. This allows the generation of single-nucleotide-variant isogenic cell lines (i.e., cell lines whose genomic sequences differ from each other only at a single, edited nucleotide) in a more time- and resource-effective manner. These single-nucleotide-variant clonal cell lines represent a powerful tool with which to assess the functional role of genetic variants in a native cellular context. Base editing can therefore facilitate genotype-to-phenotype studies in a controlled laboratory setting, with applications in both basic research and clinical applications. Here, we provide optimized protocols (including experimental design, methods, and analyses) to design base-editing constructs, transfect adherent cells, quantify base-editing efficiencies in bulk, and generate single-nucleotide-variant clonal cell lines. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Design and production of plasmids for base-editing experiments Basic Protocol 2: Transfection of adherent cells and harvesting of genomic DNA Basic Protocol 3: Genotyping of harvested cells using Sanger sequencing Alternate Protocol 1: Next-generation sequencing to quantify base editing Basic Protocol 4: Single-cell isolation of base-edited cells using FACS Alternate Protocol 2: Single-cell isolation of base-edited cells using dilution plating Basic Protocol 5: Clonal expansion to generate isogenic cell lines and genotyping of clones.
Collapse
Affiliation(s)
- Carlos A Vasquez
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Quinn T Cowan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| |
Collapse
|
31
|
Coelho MA, De Braekeleer E, Firth M, Bista M, Lukasiak S, Cuomo ME, Taylor BJM. CRISPR GUARD protects off-target sites from Cas9 nuclease activity using short guide RNAs. Nat Commun 2020; 11:4132. [PMID: 32807781 PMCID: PMC7431537 DOI: 10.1038/s41467-020-17952-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/23/2020] [Indexed: 11/16/2022] Open
Abstract
Precise genome editing using CRISPR-Cas9 is a promising therapeutic avenue for genetic diseases, although off-target editing remains a significant safety concern. Guide RNAs shorter than 16 nucleotides in length effectively recruit Cas9 to complementary sites in the genome but do not permit Cas9 nuclease activity. Here we describe CRISPR Guide RNA Assisted Reduction of Damage (CRISPR GUARD) as a method for protecting off-targets sites by co-delivery of short guide RNAs directed against off-target loci by competition with the on-target guide RNA. CRISPR GUARD reduces off-target mutagenesis while retaining on-target editing efficiencies with Cas9 and base editor. However, we discover that short guide RNAs can also support base editing if they contain cytosines within the deaminase activity window. We explore design rules and the universality of this method through in vitro studies and high-throughput screening, revealing CRISPR GUARD as a rapidly implementable strategy to improve the specificity of genome editing for most genomic loci. Finally, we create an online tool for CRISPR GUARD design.
Collapse
Affiliation(s)
- Matthew A Coelho
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1RQ, UK.
| | | | - Mike Firth
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Michal Bista
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | | |
Collapse
|
32
|
Wang P, Xu L, Gao Y, Han R. BEON: A Functional Fluorescence Reporter for Quantification and Enrichment of Adenine Base-Editing Activity. Mol Ther 2020; 28:1696-1705. [PMID: 32353322 PMCID: PMC7335737 DOI: 10.1016/j.ymthe.2020.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/12/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Adenine base editor (ABE) is a new generation of genome-editing technology through fusion of Cas9 nickase with an evolved E. coli TadA (TadA∗) and holds great promise as novel genome-editing therapeutics for treating genetic disorders. ABEs can directly convert A-T to G-C in specific genomic DNA targets without introducing double-strand breaks (DSBs). We recently showed that computer program-assisted analysis of Sanger sequencing traces can be used as a low-cost and rapid alternative of deep sequencing to assess base-editing outcomes. Here we developed a rapid fluorescence-based reporter assay (Base Editing ON [BEON]) to quantify ABE efficiency. The assay relies on the restoration of the downstream green fluorescent protein (GFP) in ABE-mediated editing of a stop codon located within the guide RNA (gRNA). We showed that this assay can be used to screen for effective ABE variants, characterize the protospacer adjacent motif (PAM) requirement of a novel NNG-targeting ABE based on ScCas9, and enrich for edited cells. Finally, we demonstrated that the reporter assay allowed us to assess the feasibility of ABE editing to correct point mutations associated with dysferlinopathy. Taken together, the BEON assay would facilitate and simplify the studies with ABEs.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Li Xu
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yandi Gao
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
33
|
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020; 38:824-844. [PMID: 32572269 DOI: 10.1038/s41587-020-0561-9] [Citation(s) in RCA: 1376] [Impact Index Per Article: 275.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
The development of new CRISPR-Cas genome editing tools continues to drive major advances in the life sciences. Four classes of CRISPR-Cas-derived genome editing agents-nucleases, base editors, transposases/recombinases and prime editors-are currently available for modifying genomes in experimental systems. Some of these agents have also moved rapidly into the clinic. Each tool comes with its own capabilities and limitations, and major efforts have broadened their editing capabilities, expanded their targeting scope and improved editing specificity. We analyze key considerations when choosing genome editing agents and identify opportunities for future improvements and applications in basic research and therapeutics.
Collapse
Affiliation(s)
- Andrew V Anzalone
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Luke W Koblan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
34
|
Katti A, Foronda M, Zimmerman J, Diaz B, Zafra MP, Goswami S, Dow LE. GO: a functional reporter system to identify and enrich base editing activity. Nucleic Acids Res 2020; 48:2841-2852. [PMID: 32112097 PMCID: PMC7102966 DOI: 10.1093/nar/gkaa124] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Base editing (BE) is a powerful tool for engineering single nucleotide variants (SNVs) and has been used to create targeted mutations in cell lines, organoids and animal models. Recent development of new BE enzymes has provided an extensive toolkit for genome modification; however, identifying and isolating edited cells for analysis has proven challenging. Here we report a 'Gene On' (GO) reporter system that indicates precise cytosine or adenine base editing in situ with high sensitivity and specificity. We test GO using an activatable GFP and use it to measure the kinetics, efficiency and PAM specificity of a range of new BE variants. Further, GO is flexible and can be easily adapted to induce expression of numerous genetically encoded markers, antibiotic resistance genes or enzymes, such as Cre recombinase. With these tools, GO can be exploited to functionally link BE events at endogenous genomic loci to cellular enzymatic activities in human and mouse cell lines and organoids. Thus, GO provides a powerful approach to increase the practicality and feasibility of implementing CRISPR BE in biomedical research.
Collapse
Affiliation(s)
- Alyna Katti
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Miguel Foronda
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jill Zimmerman
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Bianca Diaz
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Maria Paz Zafra
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sukanya Goswami
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.,Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
35
|
Doman JL, Raguram A, Newby GA, Liu DR. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat Biotechnol 2020; 38:620-628. [PMID: 32042165 PMCID: PMC7335424 DOI: 10.1038/s41587-020-0414-6] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
Abstract
Cytosine base editors (CBEs) enable targeted C•G-to-T•A conversions in genomic DNA. Recent studies report that BE3, the original CBE, induces a low frequency of genome-wide Cas9-independent off-target C•G-to-T•A mutation in mouse embryos and in rice. Here we develop multiple rapid, cost-effective methods to screen the propensity of different CBEs to induce Cas9-independent deamination in Escherichia coli and in human cells. We use these assays to identify CBEs with reduced Cas9-independent deamination and validate via whole-genome sequencing that YE1, a narrowed-window CBE variant, displays background levels of Cas9-independent off-target editing. We engineered YE1 variants that retain the substrate-targeting scope of high-activity CBEs while maintaining minimal Cas9-independent off-target editing. The suite of CBEs characterized and engineered in this study collectively offer ~10-100-fold lower average Cas9-independent off-target DNA editing while maintaining robust on-target editing at most positions targetable by canonical CBEs, and thus are especially promising for applications in which off-target editing must be minimized.
Collapse
Affiliation(s)
- Jordan L Doman
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
36
|
The Prognostic Significance of APOBEC3B and PD-L1/PD-1 in Nasopharyngeal Carcinoma. Appl Immunohistochem Mol Morphol 2020; 29:239-244. [PMID: 32205739 DOI: 10.1097/pai.0000000000000852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/24/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3B (APOBEC3B) is a recently discovered protein that is considered important in causing mutations in tumor cell genome bases. Whether APOBEC3B is expressed in nasopharyngeal carcinoma (NPC) still remains unknown. Studies have shown that programmed-cell-death receptor-1 ligand (PD-L1) is highly expressed in NPC, but its clinical significance has not been fully elucidated. We aimed to evaluate APOBEC3B and PD-L1 protein expression in NPC and also investigate their prognostic significance. MATERIALS AND METHODS One hundred and three patients with NPC were retrospectively collected in this study, and were followed-up for 5 years. The expression of APOBEC3B and PD-L1/PD-1 in NPC was detected by immunohistochemical staining. RESULTS High expression of APOBEC3B was observed in 42.7% of NPC patients. The high expression rate of APOBEC3B was 31.5% in patients without recurrence or metastasis within 5 years, and 55.1% in those patients with recurrence or metastasis, and the difference was statistically significant (P=0.016). There was no significant difference in APOBEC3B expression among patients with different sex, age group, and clinical stage (P>0.05). The positive expression rate of PD-L1 was 55.3% in all patients with NPC. There was no significant difference in PD-L1 expression among patients with different sex, age group, clinical stage, and tumor recurrence or metastasis condition (P> 0.05). There was no significant correlation between the expression of APOBEC3B and PD-L1 in NPC patients. The positive expression rate of PD-1 was 1.9% (2/103) in patients with NPC. CONCLUSIONS APOBEC3B showed association with aggressive behavior and poor outcome in NPC, and is also considered as a potential marker for predicting NPC recurrence or metastasis. PD-L1 is not associated with the aggressive behavior and poor outcome in NPC.
Collapse
|
37
|
McCann JL, Salamango DJ, Law EK, Brown WL, Harris RS. MagnEdit-interacting factors that recruit DNA-editing enzymes to single base targets. Life Sci Alliance 2020; 3:3/4/e201900606. [PMID: 32094150 PMCID: PMC7043409 DOI: 10.26508/lsa.201900606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
This study reports a new, non-covalent strategy—called MagnEdit—that attracts the DNA cytosine deaminase APOBEC3B to a Cas9-directed site for C-to-T editing. Although CRISPR/Cas9 technology has created a renaissance in genome engineering, particularly for gene knockout generation, methods to introduce precise single base changes are also highly desirable. The covalent fusion of a DNA-editing enzyme such as APOBEC to a Cas9 nickase complex has heightened hopes for such precision genome engineering. However, current cytosine base editors are prone to undesirable off-target mutations, including, most frequently, target-adjacent mutations. Here, we report a method to “attract” the DNA deaminase, APOBEC3B, to a target cytosine base for specific editing with minimal damage to adjacent cytosine bases. The key to this system is fusing an APOBEC-interacting protein (not APOBEC itself) to Cas9n, which attracts nuclear APOBEC3B transiently to the target site for editing. Several APOBEC3B interactors were tested and one, hnRNPUL1, demonstrated proof-of-concept with successful C-to-T editing of episomal and chromosomal substrates and lower frequencies of target-adjacent events.
Collapse
Affiliation(s)
- Jennifer L McCann
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
| | - Daniel J Salamango
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Emily K Law
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA .,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
38
|
Liu Z, Chen S, Shan H, Jia Y, Chen M, Song Y, Lai L, Li Z. Efficient base editing with high precision in rabbits using YFE-BE4max. Cell Death Dis 2020; 11:36. [PMID: 31959743 PMCID: PMC6971250 DOI: 10.1038/s41419-020-2244-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
Abstract
Cytidine base editors, composed of a cytidine deaminase fused to Cas9 nickase, enable efficient C-to-T conversion in various organisms. However, current base editors suffer from severe trade-off between editing efficiency and precision. Here, based on rationally mutated cytidine deaminase domain, we develop a new base editor, YFE-BE4max, effectively narrow the editing width to as little as approximately three nucleotides while maintaining high efficiency in rabbits. Moreover, YFE-BE4max successfully mediated the Tyr p. Q68Stop and Lmna p. G607G mutation in F0 rabbit with high efficiency and precision, which precisely recapitulates the pathological features of human OCA1 and HGPS, respectively. Collectively, YFE-BE4max system provide promising tools to perform efficient base editing with high precision in rabbits and enhances its capacity to precisely model human diseases.
Collapse
Affiliation(s)
- Zhiquan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Siyu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Huanhuan Shan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Yingqi Jia
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Mao Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Yuning Song
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Liangxue Lai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China. .,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Guangzhou Regenerative Medicine and Health Guang Dong Laboratory (GRMH-GDL), Guangzhou, 510005, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
39
|
Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing. Nat Commun 2019; 10:5353. [PMID: 31767844 PMCID: PMC6877639 DOI: 10.1038/s41467-019-13342-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022] Open
Abstract
DNA base editors have enabled genome editing without generating DNA double strand breaks. The applications of this technology have been reported in a variety of animal and plant systems, however, their editing specificity in human stem cells has not been studied by unbiased genome-wide analysis. Here we investigate the fidelity of cytidine deaminase-mediated base editing in human induced pluripotent stem cells (iPSCs) by whole genome sequencing after sustained or transient base editor expression. While base-edited iPSC clones without significant off-target modifications are identified, this study also reveals the potential of APOBEC-based base editors in inducing unintended point mutations outside of likely in silico-predicted CRISPR-Cas9 off-targets. The majority of the off-target mutations are C:G->T:A transitions or C:G->G:C transversions enriched for the APOBEC mutagenesis signature. These results demonstrate that cytosine base editor-mediated editing may result in unintended genetic modifications with distinct patterns from that of the conventional CRISPR-Cas nucleases.
Collapse
|
40
|
Standage-Beier K, Tekel SJ, Brookhouser N, Schwarz G, Nguyen T, Wang X, Brafman DA. A transient reporter for editing enrichment (TREE) in human cells. Nucleic Acids Res 2019; 47:e120. [PMID: 31428784 PMCID: PMC6821290 DOI: 10.1093/nar/gkz713] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Current approaches to identify cell populations that have been modified with deaminase base editing technologies are inefficient and rely on downstream sequencing techniques. In this study, we utilized a blue fluorescent protein (BFP) that converts to green fluorescent protein (GFP) upon a C-to-T substitution as an assay to report directly on base editing activity within a cell. Using this assay, we optimize various base editing transfection parameters and delivery strategies. Moreover, we utilize this assay in conjunction with flow cytometry to develop a transient reporter for editing enrichment (TREE) to efficiently purify base-edited cell populations. Compared to conventional cell enrichment strategies that employ reporters of transfection (RoT), TREE significantly improved the editing efficiency at multiple independent loci, with efficiencies approaching 80%. We also employed the BFP-to-GFP conversion assay to optimize base editor vector design in human pluripotent stem cells (hPSCs), a cell type that is resistant to genome editing and in which modification via base editors has not been previously reported. At last, using these optimized vectors in the context of TREE allowed for the highly efficient editing of hPSCs. We envision TREE as a readily adoptable method to facilitate base editing applications in synthetic biology, disease modeling, and regenerative medicine.
Collapse
Affiliation(s)
- Kylie Standage-Beier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
- Molecular and Cellular Biology graduate program, Arizona State University, Tempe, AZ 85287, USA
| | - Stefan J Tekel
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
- Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Grace Schwarz
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Toan Nguyen
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
41
|
Evanoff M, Komor AC. Base Editors: Modular Tools for the Introduction of Point Mutations in Living Cells. Emerg Top Life Sci 2019; 3:483-491. [PMID: 32270050 PMCID: PMC7141416 DOI: 10.1042/etls20190088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Base editors are a new family of programmable genome editing tools that fuse ssDNA (single stranded DNA) modifying enzymes to catalytically inactive CRISPR-associated (Cas) endonucleases to induce highly efficient single base changes. With dozens of base editors now reported, it is apparent that these tools are highly modular; many combinations of ssDNA modifying enzymes and Cas proteins have resulted in a variety of base editors, each with its own unique properties and potential uses. In this perspective, we describe currently available base editors, highlighting their modular nature and describing the various options available for each component. Furthermore, we briefly discuss applications in synthetic biology and genome engineering where base editors have presented unique advantages over alternative techniques.
Collapse
Affiliation(s)
- Mallory Evanoff
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093
| | - Alexis C. Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
42
|
Wang R, Zhang JY, Lu KH, Lu SS, Zhu XX. Efficient generation of GHR knockout Bama minipig fibroblast cells using CRISPR/Cas9-mediated gene editing. In Vitro Cell Dev Biol Anim 2019; 55:784-792. [PMID: 31456163 DOI: 10.1007/s11626-019-00397-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022]
Abstract
Dwarfism, also known as growth hormone deficiency (GHD), is a disease caused by genetic mutations that result in either a lack of growth hormone or insufficient secretion of growth hormone, resulting in a person's inability to grow normally. In the past, many studies focusing on GHD have made use of models of other diseases such as metabolic or infectious diseases. A viable GHD specific model system has not been used previously, thus limiting the interpretation of GHD results. The Bama minipig is unique to Guangxi province and has strong adaptability and disease resistance, and an incredibly short stature, which is especially important for the study of GHD. In addition, studies of GHR knockout Bama minipigs and GHR knockout Bama minipig fibroblast cells generated using CRISPR/Cas9 have not been previously reported. Therefore, the Bama minipig was selected as an animal model and as a tool for the study of GHD in this work. In this study, a Cas9 plasmid with sgRNA targeting the first exon of the GHR gene was transfected into Bama minipig kidney fibroblast cells to generate 22 GHR knockout Bama minipig kidney fibroblast cell lines (12 male monoclonal cells and 10 female monoclonal cells). After culture and identification, 11 of the 12 male clone cell lines showed double allele mutations, and the rate of positive alteration of GHR was 91.67%. Diallelic mutation of the target sequence occurred in 10 female clonal cell lines, with an effective positive mutation rate of 100%. Our experimental results not only showed that CRISPR/Cas9 could efficiently be used for gene editing in Bama minipig cells but also identified a highly efficient target site for the generation of a GHR knockout in other porcine models. Thus, the generation of GHR knockout male and female Bama fibroblast cells could lay a foundation for the birth of a future dwarfism model pig. We anticipate that the "mini" Bama minipig will be of improved use for biomedical and agricultural scientific research and for furthering our understanding of the genetic underpinnings of GHD.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology; Faculty of Animal Science & Technology, Guangxi University, Nanning, 530004, China
| | - Jian-Ying Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology; Faculty of Animal Science & Technology, Guangxi University, Nanning, 530004, China
| | - Ke-Huan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology; Faculty of Animal Science & Technology, Guangxi University, Nanning, 530004, China
| | - Sheng-Sheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology; Faculty of Animal Science & Technology, Guangxi University, Nanning, 530004, China.
| | - Xiang-Xing Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology; Faculty of Animal Science & Technology, Guangxi University, Nanning, 530004, China. .,Guangdong Center of Gene Editing Engineering, Foshan University, Foshan, 528000, China.
| |
Collapse
|