1
|
del Olmo V, Redondo-Río Á, García AB, Limtong S, Saus E, Gabaldón T. Insights into the origin, hybridisation and adaptation of Candida metapsilosis hybrid pathogens. PLoS Pathog 2025; 21:e1012864. [PMID: 39823524 PMCID: PMC11781744 DOI: 10.1371/journal.ppat.1012864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 01/30/2025] [Accepted: 12/29/2024] [Indexed: 01/19/2025] Open
Abstract
Hybridisation is a source of genetic diversity, can drive adaptation to new niches and has been found to be a frequent event in lineages harbouring pathogenic fungi. However, little is known about the genomic implications of hybridisation nor its impact on pathogenicity-related traits. A common limitation for addressing these questions is the narrow representativity of sequenced genomes, mostly corresponding to strains isolated from infected patients. The opportunistic human pathogen Candida metapsilosis is a hybrid that descends from the crossing between unknown parental lineages. Here, we sequenced the genomes of five new C. metapsilosis isolates, one representing the first African isolate for this species, and four environmental isolates from marine niches. Our comparative genomic analyses, including a total of 29 sequenced strains, shed light on the phylogenetic relationships between C. metapsilosis hybrid isolates and show that environmental strains are closely related to clinical ones and belong to different clades, suggesting multiple independent colonisations. Furthermore, we identify a new diverging clade likely emerging from the same hybridisation event that originated two other previously described hybrid clades. Lastly, we evaluate phenotypes relevant during infection such as drug susceptibility, thermotolerance or virulence. We identify low drug susceptibility phenotypes which we suggest might be driven by loss of heterozygosity events in key genes. We discover that thermotolerance is mainly clade-dependent and find a correlation with the faecal origin of some strains which highlights the adaptive potential of the fungus as commensal.
Collapse
Affiliation(s)
- Valentina del Olmo
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Álvaro Redondo-Río
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Alicia Benavente García
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Ester Saus
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain
| |
Collapse
|
2
|
Gabaldón T. Threats from the Candida parapsilosis complex: the surge of multidrug resistance and a hotbed for new emerging pathogens. Microbiol Mol Biol Rev 2024; 88:e0002923. [PMID: 39508581 DOI: 10.1128/mmbr.00029-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
SUMMARYCandida parapsilosis is a common agent of candidiasis that has gained increased attention in recent years, culminating with its recent consideration as a high-priority fungal pathogen by the World Health Organization. Reasons for this classification are the recent surge in incidence and the alarmingly growing rates of drug and multidrug resistance. In addition, several closely related species such as Candida metapsilosis and Candida orthopsilosis may represent recently emerged opportunistic pathogens originated from environmental niches through interspecies hybridization. Here, I review recent research focused on the potential origin and spread of drug resistance and of emerging species in this complex. I will also discuss open questions regarding the possible implications of human activities in these two epidemiological phenomena.
Collapse
Affiliation(s)
- Toni Gabaldón
- Barcelona Supercomputing Center (BSC-CNS). Plaça Eusebi Güell, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Visinoni F, Royle W, Scholey R, Hu Y, Timouma S, Zeef L, Louis EJ, Delneri D. Impact of inter-species hybridisation on antifungal drug response in the Saccharomyces genus. BMC Genomics 2024; 25:1165. [PMID: 39623390 PMCID: PMC11610120 DOI: 10.1186/s12864-024-11009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/07/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Antifungal drug resistance presents one of the major concerns for global public health, and hybridization allows the development of high fitness organisms that can better survive in restrictive conditions or in presence of antifungal agents. Hence, understanding how allelic variation can influence antifungal susceptibility in hybrid organisms is important for the development of targeted treatments. Here, we exploited recent advances in multigenerational breeding of hemiascomycete hybrids to study the impact of hybridisation on antifungal resistance and identify quantitative trait loci responsible for the phenotype. RESULTS The offspring of Saccharomyces cerevisiae x S. kudriavzevii hybrids were screened in the presence of six antifungal drugs and revealed a broad phenotypic diversity across the progeny. QTL analysis was carried out comparing alleles between pools of high and low fitness offspring, identifying hybrid-specific genetic regions involved in resistance to fluconazole, micafungin and flucytosine. We found both drug specific and pleiotropic regions, including 41 blocks containing genes not previously associated with resistance phenotypes. We identified linked genes that influence the same trait, namely a hybrid specific 'super' QTL, and validated, via reciprocal hemizygosity analysis, two causal genes, BCK2 and DNF1. The co-location of genes with similar phenotypic impact supports the notion of an adaption process that limits the segregation of advantageous alleles via recombination. CONCLUSIONS This study demonstrates the value of QTL studies to elucidate the hybrid-specific mechanisms of antifungal susceptibility. We also show that an inter-species hybrid model system in the Saccharomyces background, can help to decipher the trajectory of antifungal drug resistance in pathogenic hybrid lineages.
Collapse
Affiliation(s)
- Federico Visinoni
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - William Royle
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Rachel Scholey
- Bioinformatics Core Facility, University of Manchester, Manchester, M13 9PT, UK
| | - Yue Hu
- Phenotypeca Limited, BioCity Nottingham, Nottingham, NG1 1GF, UK
| | - Soukaina Timouma
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Leo Zeef
- Bioinformatics Core Facility, University of Manchester, Manchester, M13 9PT, UK
| | - Edward J Louis
- Phenotypeca Limited, BioCity Nottingham, Nottingham, NG1 1GF, UK
| | - Daniela Delneri
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK.
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
4
|
Bjornson S, Verbruggen H, Upham NS, Steenwyk JL. Reticulate evolution: Detection and utility in the phylogenomics era. Mol Phylogenet Evol 2024; 201:108197. [PMID: 39270765 DOI: 10.1016/j.ympev.2024.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Phylogenomics has enriched our understanding that the Tree of Life can have network-like or reticulate structures among some taxa and genes. Two non-vertical modes of evolution - hybridization/introgression and horizontal gene transfer - deviate from a strictly bifurcating tree model, causing non-treelike patterns. However, these reticulate processes can produce similar patterns to incomplete lineage sorting or recombination, potentially leading to ambiguity. Here, we present a brief overview of a phylogenomic workflow for inferring organismal histories and compare methods for distinguishing modes of reticulate evolution. We discuss how the timing of coalescent events can help disentangle introgression from incomplete lineage sorting and how horizontal gene transfer events can help determine the relative timing of speciation events. In doing so, we identify pitfalls of certain methods and discuss how to extend their utility across the Tree of Life. Workflows, methods, and future directions discussed herein underscore the need to embrace reticulate evolutionary patterns for understanding the timing and rates of evolutionary events, providing a clearer view of life's history.
Collapse
Affiliation(s)
- Saelin Bjornson
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Victoria, Australia; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
5
|
Bautista C, Gagnon-Arsenault I, Utrobina M, Fijarczyk A, Bendixsen DP, Stelkens R, Landry CR. Hybrid adaptation is hampered by Haldane's sieve. Nat Commun 2024; 15:10319. [PMID: 39609385 PMCID: PMC11604976 DOI: 10.1038/s41467-024-54105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Hybrids between species exhibit plastic genomic architectures that could foster or slow down their adaptation. When challenged to evolve in an environment containing a UV mimetic drug, yeast hybrids have reduced adaptation rates compared to parents. We find that hybrids and their parents converge onto similar molecular mechanisms of adaptation by mutations in pleiotropic transcription factors, but at a different pace. After 100 generations, mutations in these genes tend to be homozygous in the parents but heterozygous in the hybrids. We hypothesize that a lower rate of loss of heterozygosity (LOH) in hybrids could limit fitness gain. Using genome editing, we first demonstrate that mutations display incomplete dominance, requiring homozygosity to show full impact and to entirely circumvent Haldane's sieve, which favors the fixation of dominant mutations. Second, tracking mutations in earlier generations confirmed a different rate of LOH in hybrids. Together, these findings show that Haldane's sieve slows down adaptation in hybrids, revealing an intrinsic constraint of hybrid genomic architecture that can limit the role of hybridization in adaptive evolution.
Collapse
Affiliation(s)
- Carla Bautista
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada.
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada.
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada.
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.
| | - Isabelle Gagnon-Arsenault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | - Mariia Utrobina
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
- National University of Kyiv-Mohyla Academy, Kyiv, Ukraine
| | - Anna Fijarczyk
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
| | | | - Rike Stelkens
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada.
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada.
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada.
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Canada.
| |
Collapse
|
6
|
Anderson MZ, Dietz SM. Evolution and strain diversity advance exploration of Candida albicans biology. mSphere 2024; 9:e0064123. [PMID: 39012122 PMCID: PMC11351040 DOI: 10.1128/msphere.00641-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
Fungi were some of the earliest organismal systems used to explore mutational processes and its phenotypic consequences on members of a species. Yeasts that cause significant human disease were quickly incorporated into these investigations to define the genetic and phenotypic drivers of virulence. Among Candida species, Candida albicans has emerged as a model for studying genomic processes of evolution because of its clinical relevance, relatively small genome, and ability to tolerate complex chromosomal changes. Here, we describe major recent findings that used evolution of strains from defined genetic backgrounds to delineate mutational and adaptative processes and include how nascent exploration into naturally occurring variation is contributing to these conceptual frameworks. Ultimately, efforts to discern adaptive mechanisms used by C. albicans will continue to divulge new biology and can better inform treatment regimens for the increasing prevalence of fungal disease.
Collapse
Affiliation(s)
- Matthew Z. Anderson
- Department of Medical Genetics, Laboratory of Genetics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Siobhan M. Dietz
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Del Olmo V, Gabaldón T. Hybrids unleashed: exploring the emergence and genomic insights of pathogenic yeast hybrids. Curr Opin Microbiol 2024; 80:102491. [PMID: 38833792 PMCID: PMC11358589 DOI: 10.1016/j.mib.2024.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Hybridisation is the crossing of two divergent lineages that give rise to offspring carrying an admixture of both parental genomes. Genome sequencing has revealed that this process is common in the Saccharomycotina, where a growing number of hybrid strains or species, including many pathogenic ones, have been recently described. Hybrids can display unique traits that may drive adaptation to new niches, and some pathogenic hybrids have been shown to have higher prevalence over their parents in human and environmental niches, suggesting a higher fitness and potential to colonise humans. Here, we discuss how hybridisation and its genomic and phenotypic outcomes can shape the evolution of fungal species and may play a role in the emergence of new pathogens.
Collapse
Affiliation(s)
- Valentina Del Olmo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034 Barcelona, Spain; Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034 Barcelona, Spain; Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain; Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
8
|
Domán M, Kaszab E, Laczkó L, Bali K, Makrai L, Kovács R, Majoros L, Bányai K. Genomic epidemiology of antifungal resistance in human and avian isolates of Candida albicans: a pilot study from the One Health perspective. Front Vet Sci 2024; 11:1345877. [PMID: 38435368 PMCID: PMC10904516 DOI: 10.3389/fvets.2024.1345877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Stress-induced genomic changes in Candida albicans contribute to the adaptation of this species to various environmental conditions. Variations of the genome composition of animal-origin C. albicans strains are largely unexplored and drug resistance or other selective pressures driving the evolution of these yeasts remained an intriguing question. Comparative genome analysis was carried out to uncover chromosomal aneuploidies and regions with loss of heterozygosity (LOH), two mechanisms that manage genome plasticity. We detected aneuploidy only in human isolates. Bird-derived isolates showed LOH in genes commonly associated with antifungal drug resistance similar to human isolates. Our study suggests that environmental fungicide usage might exert selective pressure on C. albicans infecting animals, thus contributing to the spread of potentially resistant strains between different hosts.
Collapse
Affiliation(s)
- Marianna Domán
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Eszter Kaszab
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- One Health Institute, University of Debrecen, Debrecen, Hungary
| | - Levente Laczkó
- One Health Institute, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Conservation Biology Research Group, University of Debrecen, Debrecen, Hungary
| | - Krisztina Bali
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | | | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztián Bányai
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
9
|
Kozhar O, Burns KS, Schoettle AW, Stewart JE. Distribution of Cronartium x flexili, an interspecific hybrid of two fungal tree rust pathogens, in subalpine forest ecosystems of western USA. Fungal Biol 2024; 128:1578-1589. [PMID: 38341263 DOI: 10.1016/j.funbio.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 02/12/2024]
Abstract
Interspecific hybridization plays a key role in the evolution of novel fungal pathogens, and when it occurs between native and invasive species, can lead to potentially serious consequences. In this study, we examined the temporal and spatial distribution of a recently detected hybrid (Cronartium x flexili) of two tree pathogens, invasive to North America Cronartium ribicola and native Cronartium comandrae. In total, 726 and 1452 aecia from 178 Pinus contorta ssp. latifolia and 357 Pinus flexilis trees were collected from 26 sites in four national forests in 2019-2021. Using morphological and molecular analyses, 71 aecia collected from 25 P. flexilis trees had intermediate morphology and contained heterozygous SNPs in two genomic regions. Population analyses revealed the presence of multiple hybrid genotypes randomly distributed among sites and years. No aecia from P. contorta ssp. latifolia were identified as hybrids suggesting unidirectional gene flow from native C. comandrae to invasive C. ribicola. Aeciospores from 2 hybrid aecia produced urediniospores on Ribes nigrum. Overall, these results suggest that, even though low in frequency, C. x flexili is persistent in the region and has pathogenic potential. Hybrid expansion into the large range of susceptible pines could have cascading impacts on forest health.
Collapse
Affiliation(s)
- Olga Kozhar
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA.
| | - Kelly S Burns
- Forest Health Protection, Rocky Mountain Region, USDA Forest Service, Golden, CO, USA
| | - Anna W Schoettle
- Rocky Mountain Research Station, USDA Forest Service, Fort Collins, CO, USA
| | - Jane E Stewart
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
10
|
Schikora-Tamarit MÀ, Gabaldón T. Recent gene selection and drug resistance underscore clinical adaptation across Candida species. Nat Microbiol 2024; 9:284-307. [PMID: 38177305 PMCID: PMC10769879 DOI: 10.1038/s41564-023-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
Understanding how microbial pathogens adapt to treatments, humans and clinical environments is key to infer mechanisms of virulence, transmission and drug resistance. This may help improve therapies and diagnostics for infections with a poor prognosis, such as those caused by fungal pathogens, including Candida. Here we analysed genomic variants across approximately 2,000 isolates from six Candida species (C. glabrata, C. auris, C. albicans, C. tropicalis, C. parapsilosis and C. orthopsilosis) and identified genes under recent selection, suggesting a highly complex clinical adaptation. These involve species-specific and convergently affected adaptive mechanisms, such as adhesion. Using convergence-based genome-wide association studies we identified known drivers of drug resistance alongside potentially novel players. Finally, our analyses reveal an important role of structural variants and suggest an unexpected involvement of (para)sexual recombination in the spread of resistance. Our results provide insights on how opportunistic pathogens adapt to human-related environments and unearth candidate genes that deserve future attention.
Collapse
Affiliation(s)
- Miquel Àngel Schikora-Tamarit
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain.
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Centro Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
11
|
Del Olmo V, Mixão V, Fotedar R, Saus E, Al Malki A, Księżopolska E, Nunez-Rodriguez JC, Boekhout T, Gabaldón T. Origin of fungal hybrids with pathogenic potential from warm seawater environments. Nat Commun 2023; 14:6919. [PMID: 37903766 PMCID: PMC10616089 DOI: 10.1038/s41467-023-42679-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023] Open
Abstract
Hybridisation is a common event in yeasts often leading to genomic variability and adaptation. The yeast Candida orthopsilosis is a human-associated opportunistic pathogen belonging to the Candida parapsilosis species complex. Most C. orthopsilosis clinical isolates are hybrids resulting from at least four independent crosses between two parental lineages, of which only one has been identified. The rare presence or total absence of parentals amongst clinical isolates is hypothesised to be a consequence of a reduced pathogenicity with respect to their hybrids. Here, we sequence and analyse the genomes of environmental C. orthopsilosis strains isolated from warm marine ecosystems. We find that a majority of environmental isolates are hybrids, phylogenetically closely related to hybrid clinical isolates. Furthermore, we identify the missing parental lineage, thus providing a more complete overview of the genomic evolution of this species. Additionally, we discover phenotypic differences between the two parental lineages, as well as between parents and hybrids, under conditions relevant for pathogenesis. Our results suggest a marine origin of C. orthopsilosis hybrids, with intrinsic pathogenic potential, and pave the way to identify pre-existing environmental adaptations that rendered hybrids more prone than parental lineages to colonise and infect the mammalian host.
Collapse
Affiliation(s)
- Valentina Del Olmo
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Verónica Mixão
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Bioinformatics Unit, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Rashmi Fotedar
- Department of Genetic Engineering, Biotechnology Centre, Ministry of Municipality and Environment, P.O Box 20022, Doha, Qatar
| | - Ester Saus
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Amina Al Malki
- Department of Genetic Engineering, Biotechnology Centre, Ministry of Municipality and Environment, P.O Box 20022, Doha, Qatar
| | - Ewa Księżopolska
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Juan Carlos Nunez-Rodriguez
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Teun Boekhout
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Toni Gabaldón
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain.
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Spain.
- , Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
12
|
Mixão V, Nunez-Rodriguez JC, Del Olmo V, Ksiezopolska E, Saus E, Boekhout T, Gacser A, Gabaldón T. Evolution of loss of heterozygosity patterns in hybrid genomes of Candida yeast pathogens. BMC Biol 2023; 21:105. [PMID: 37170256 PMCID: PMC10173528 DOI: 10.1186/s12915-023-01608-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Hybrids are chimeric organisms with highly plastic heterozygous genomes that may confer unique traits enabling the adaptation to new environments. However, most evolutionary theory frameworks predict that the high levels of genetic heterozygosity present in hybrids from divergent parents are likely to result in numerous deleterious epistatic interactions. Under this scenario, selection is expected to favor recombination events resulting in loss of heterozygosity (LOH) affecting genes involved in such negative interactions. Nevertheless, it is so far unknown whether this phenomenon actually drives genomic evolution in natural populations of hybrids. To determine the balance between selection and drift in the evolution of LOH patterns in natural yeast hybrids, we analyzed the genomic sequences from fifty-five hybrid strains of the pathogenic yeasts Candida orthopsilosis and Candida metapsilosis, which derived from at least six distinct natural hybridization events. RESULTS We found that, although LOH patterns in independent hybrid clades share some level of convergence that would not be expected from random occurrence, there is an apparent lack of strong functional selection. Moreover, while mitosis is associated with a limited number of inter-homeologous chromosome recombinations in these genomes, induced DNA breaks seem to increase the LOH rate. We also found that LOH does not accumulate linearly with time in these hybrids. Furthermore, some C. orthopsilosis hybrids present LOH patterns compatible with footprints of meiotic recombination. These meiotic-like patterns are at odds with a lack of evidence of sexual recombination and with our inability to experimentally induce sporulation in these hybrids. CONCLUSIONS Our results suggest that genetic drift is the prevailing force shaping LOH patterns in these hybrid genomes. Moreover, the observed LOH patterns suggest that these are likely not the result of continuous accumulation of sporadic events-as expected by mitotic repair of rare chromosomal breaks-but rather of acute episodes involving many LOH events in a short period of time.
Collapse
Affiliation(s)
- Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Present address: Genomics and Bioinformatics Unit, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Juan Carlos Nunez-Rodriguez
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Valentina Del Olmo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ewa Ksiezopolska
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Saus
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Attila Gacser
- Department of Microbiology, University of Szeged, Szeged, Hungary
- MTA-SZTE "Lendület" Mycobiome Research Group, University of Szeged, Szeged, Hungary
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain.
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain.
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
13
|
Anderson FM, Visser ND, Amses KR, Hodgins-Davis A, Weber AM, Metzner KM, McFadden MJ, Mills RE, O’Meara MJ, James TY, O’Meara TR. Candida albicans selection for human commensalism results in substantial within-host diversity without decreasing fitness for invasive disease. PLoS Biol 2023; 21:e3001822. [PMID: 37205709 PMCID: PMC10234564 DOI: 10.1371/journal.pbio.3001822] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/01/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Candida albicans is a frequent colonizer of human mucosal surfaces as well as an opportunistic pathogen. C. albicans is remarkably versatile in its ability to colonize diverse host sites with differences in oxygen and nutrient availability, pH, immune responses, and resident microbes, among other cues. It is unclear how the genetic background of a commensal colonizing population can influence the shift to pathogenicity. Therefore, we examined 910 commensal isolates from 35 healthy donors to identify host niche-specific adaptations. We demonstrate that healthy people are reservoirs for genotypically and phenotypically diverse C. albicans strains. Using limited diversity exploitation, we identified a single nucleotide change in the uncharacterized ZMS1 transcription factor that was sufficient to drive hyper invasion into agar. We found that SC5314 was significantly different from the majority of both commensal and bloodstream isolates in its ability to induce host cell death. However, our commensal strains retained the capacity to cause disease in the Galleria model of systemic infection, including outcompeting the SC5314 reference strain during systemic competition assays. This study provides a global view of commensal strain variation and within-host strain diversity of C. albicans and suggests that selection for commensalism in humans does not result in a fitness cost for invasive disease.
Collapse
Affiliation(s)
- Faith M. Anderson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Noelle D. Visser
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kevin R. Amses
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrea Hodgins-Davis
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Alexandra M. Weber
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Katura M. Metzner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Michael J. McFadden
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ryan E. Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Timothy Y. James
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
14
|
Hovhannisyan H, Rodríguez A, Saus E, Vaneechoutte M, Gabaldón T. Multiplexed target enrichment of coding and non-coding transcriptomes enables studying Candida spp. infections from human derived samples. Front Cell Infect Microbiol 2023; 13:1093178. [PMID: 36761895 PMCID: PMC9902369 DOI: 10.3389/fcimb.2023.1093178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
The study of transcriptomic interactions between host and pathogens in in vivo conditions is challenged by the low relative amounts of the pathogen RNA. Yeast opportunistic pathogens of the genus Candida can cause life-threatening systemic infections in immunocompromised patients, and are of growing medical concern. Four phylogenetically diverse species account for over 90% of Candida infections, and their specific interactions with various human tissues are still poorly understood. To enable in vivo transcriptomic analysis in these species, we designed and validated pan-Candida target capture probes to enrich protein-coding and non-coding transcriptomes. The probe-based enrichment approach outperformed enrichment based on differential lysis of host cells, and showed similar enrichment performance as an existing capture design, yet achieving better fidelity of expression levels, enabling species multiplexing and capturing of lncRNAs. In addition, we show that our probe-based enrichment strategy allows robust genotype-based identification of the infecting strain present in the sample.
Collapse
Affiliation(s)
- Hrant Hovhannisyan
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Antonio Rodríguez
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ester Saus
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain,Department of Biomedicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain,*Correspondence: Toni Gabaldón,
| |
Collapse
|
15
|
Du H, Zheng Q, Bennett RJ, Huang G. Ploidy changes in human fungal pathogens: Going beyond sexual reproduction. PLoS Pathog 2022; 18:e1010954. [PMID: 36480532 PMCID: PMC9731408 DOI: 10.1371/journal.ppat.1010954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Han Du
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Qiushi Zheng
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Guanghua Huang
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
- * E-mail:
| |
Collapse
|
16
|
Miguel GA, Carlsen S, Arneborg N, Saerens SM, Laulund S, Knudsen GM. Non-Saccharomyces yeasts for beer production: Insights into safety aspects and considerations. Int J Food Microbiol 2022; 383:109951. [DOI: 10.1016/j.ijfoodmicro.2022.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
|
17
|
Bilal H, Shafiq M, Hou B, Islam R, Khan MN, Khan RU, Zeng Y. Distribution and antifungal susceptibility pattern of Candida species from mainland China: A systematic analysis. Virulence 2022; 13:1573-1589. [PMID: 36120738 PMCID: PMC9487756 DOI: 10.1080/21505594.2022.2123325] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/07/2022] [Accepted: 09/07/2022] [Indexed: 02/05/2023] Open
Abstract
Antifungal resistance to Candida pathogens increases morbidity and mortality of immunosuppressive patients, an emerging crisis worldwide. Understanding the Candida prevalence and antifungal susceptibility pattern is necessary to control and treat candidiasis. We aimed to systematically analyse the susceptibility profiles of Candida species published in the last ten years (December 2011 to December 2021) from mainland China. The studies were collected from PubMed, Google Scholar, and Science Direct search engines. Out of 89 included studies, a total of 44,716 Candida isolates were collected, mainly comprising C. albicans (49.36%), C. tropicalis (21.89%), C. parapsilosis (13.92%), and C. glabrata (11.37%). The lowest susceptibility was detected for azole group; fluconazole susceptibilities against C. parapsilosis, C. albicans, C. glabrata, C. tropicalis, C. guilliermondii, C. pelliculosa, and C. auris were 93.25%, 91.6%, 79.4%, 77.95%, 76%, 50%, and 0% respectively. Amphotericin B and anidulafungin were the most susceptible drugs for all Candida species. Resistance to azole was mainly linked with mutations in ERG11, ERG3, ERG4, MRR1-2, MSH-2, and PDR-1 genes. Mutation in FKS-1 and FKS-2 in C. auris and C. glabrata causing resistance to echinocandins was stated in two studies. Gaps in the studies' characteristics were detected, such as 79.77%, 47.19 %, 26.97%, 7.86%, and 4.49% studies did not mention the mortality rates, age, gender, breakpoint reference guidelines, and fungal identification method, respectively. The current study demonstrates the overall antifungal susceptibility pattern of Candida species, gaps in surveillance studies and risk-reduction strategies that could be supportive in candidiasis therapy and for the researchers in their future studies.
Collapse
Affiliation(s)
- Hazrat Bilal
- Department of Dermatology, The second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Bing Hou
- Department of laboratory, Shantou Municipal Skin Hospital, Shantou, China
| | - Rehmat Islam
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Muhammad Nadeem Khan
- Faculty of Biological Sciences, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rahat Ullah Khan
- Institute of Microbiology, Faculty of Veterinary and Animal Sciences Gomal University, Dera Ismail Khan, Pakistan
| | - Yuebin Zeng
- Department of Dermatology, The second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
18
|
Evolution of yeast hybrids by aborted meiosis. Curr Opin Genet Dev 2022; 77:101980. [PMID: 36084497 DOI: 10.1016/j.gde.2022.101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 01/27/2023]
Abstract
Sterile hybrids are broadly considered evolutionary dead-ends because of their faulty sexual reproduction. While sterility in obligate sexual organisms is a clear constraint in perpetuating the species, some facultative sexual microbes such as yeasts can propagate asexually and maintain genome plasticity. Moreover, incomplete meiotic pathways in yeasts represent alternative routes to the standard meiosis that generates genetic combinations in the population and fuel adaptation. Here, we review how aborting meiosis promotes genome-wide allele shuffling in sterile Saccharomyces hybrids and describe approaches to identify evolved clones in a cell population. We further discuss possible implications of this process in generating phenotypic novelty and report cases of abortive meiosis across yeast species.
Collapse
|
19
|
Anthonies S, Vargas-Muñiz JM. Hortaea werneckii isolates exhibit different pathogenic potential in the invertebrate infection model Galleria mellonella. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:941691. [PMID: 37746169 PMCID: PMC10512279 DOI: 10.3389/ffunb.2022.941691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/07/2022] [Indexed: 09/26/2023]
Abstract
Hortaea werneckii is a black yeast with a remarkable tolerance to salt. Most studies have been dedicated to understanding how H. werneckii adapts to hypersaline environments. H. werneckii has an unconventional cell cycle in which it alternates between fission and budding, which is modulated by cell density. Additionally, H. werneckii can cause superficial mycosis of the palm and sole of humans. Here, we determine the impact of salt concentration on the EXF-2000 strain's cell division pattern and morphology by performing timelapse microscopy at different salt concentrations. At low density and no salt, EXF-2000 primarily grows as pseudohyphae dividing mainly by septation. When grown in the presence of salt at a similar concentration to saltwater or hypersaline environments, we observe it grows first by undergoing fission followed by budding at the poles. Then, we examined a collection of 16 isolates in the presence of 0.6M NaCl, including isolates from marine and hypersaline environments and isolates from patients. These isolates exhibit a wide diversity in colony shape and cellular morphology. The isolates grew as yeast, pseudohyphae, and true hyphae, indicating that isolates can exhibit various cell morphologies under similar environmental conditions. We used the insect larvae Galleria mellonella to determine the pathogenic potential of our isolates. We observe that only a subset of isolates can cause death in our model, and there was no correlation between H. werneckii morphology and capacity to cause disease. Taken together, H. werneckii genomic and phenotypic diversity can serve as a model to better understand how phenotypes and pathogenic potential evolve in environmental fungi.
Collapse
Affiliation(s)
- Stephanie Anthonies
- Biological Sciences Program, School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
| | - José M. Vargas-Muñiz
- Microbiology Program, School of Biological Science, Southern Illinois University, Carbondale, IL, United States
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States
| |
Collapse
|
20
|
Bozdag GO, Ono J. Evolution and molecular bases of reproductive isolation. Curr Opin Genet Dev 2022; 76:101952. [PMID: 35849861 PMCID: PMC10210581 DOI: 10.1016/j.gde.2022.101952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
The most challenging problem in speciation research is disentangling the relative strength and order in which different reproductive barriers evolve. Here, we review recent developments in the study of reproductive isolation in yeasts. With over a thousand genome-sequenced isolates readily available for testing the viability, sterility, and fitness of both intraspecies and interspecies hybrid crosses, Saccharomyces yeasts are an ideal model to study such fundamental questions. Our survey demonstrates that, while chromosomal-level mutations are widespread at the intraspecific level, anti-recombination-driven chromosome missegregation is the primary reproductive barrier between species. Finally, despite their strength, all of these postzygotic barriers can be resolved through the asexual life history of hybrids.
Collapse
Affiliation(s)
- G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA. https://twitter.com/ozan_g_b
| | - Jasmine Ono
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| |
Collapse
|
21
|
Schikora-Tamarit MÀ, Gabaldón T. Using genomics to understand the mechanisms of virulence and drug resistance in fungal pathogens. Biochem Soc Trans 2022; 50:1259-1268. [PMID: 35713390 PMCID: PMC9246328 DOI: 10.1042/bst20211123] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023]
Abstract
Fungal pathogens pose an increasingly worrying threat to human health, food security and ecosystem diversity. To tackle fungal infections and improve current diagnostic and therapeutic tools it is necessary to understand virulence and antifungal drug resistance mechanisms in diverse species. Recent advances in genomics approaches have provided a suitable framework to understand these phenotypes, which ultimately depend on genetically encoded determinants. In this work, we review how the study of genome sequences has been key to ascertain the bases of virulence and drug resistance traits. We focus on the contribution of comparative genomics, population genomics and directed evolution studies. In addition, we discuss how different types of genomic mutations (small or structural variants) contribute to intraspecific differences in virulence or drug resistance. Finally, we review current challenges in the field and anticipate future directions to solve them. In summary, this work provides a short overview of how genomics can be used to understand virulence and drug resistance in fungal pathogens.
Collapse
Affiliation(s)
- Miquel Àngel Schikora-Tamarit
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain
| |
Collapse
|
22
|
The teenage years of yeast population genomics trace history, admixing and getting wilder. Curr Opin Genet Dev 2022; 75:101942. [PMID: 35753210 DOI: 10.1016/j.gde.2022.101942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
Abstract
Population genomics studies the evolutionary processes that shape intraspecies genetic variations. In this review, I explore the insights into yeast-population genomics that have emerged from recent advances in sequencing. Genomes of the model Saccharomyces cerevisiae and many new yeast species from around the world are being used to address various aspects of population biology, including geographical origin, the level of introgression, domestication signatures, and outcrossing frequency. New long-read sequencing has enabled a greater capacity to quantify these variations at a finer resolution from complete de novo genomes at the population scale to phasing subgenomes of different origins. These resources provide a platform to dissect the relationship between phenotypes across environmental niches.
Collapse
|
23
|
Mating-Type Switching in Budding Yeasts, from Flip/Flop Inversion to Cassette Mechanisms. Microbiol Mol Biol Rev 2022; 86:e0000721. [PMID: 35195440 PMCID: PMC8941940 DOI: 10.1128/mmbr.00007-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mating-type switching is a natural but unusual genetic control process that regulates cell identity in ascomycete yeasts. It involves physically replacing one small piece of genomic DNA by another, resulting in replacement of the master regulatory genes in the mating pathway and hence a switch of cell type and mating behavior. In this review, we concentrate on recent progress that has been made on understanding the origins and evolution of mating-type switching systems in budding yeasts (subphylum Saccharomycotina). Because of the unusual nature and the complexity of the mechanism in Saccharomyces cerevisiae, mating-type switching was assumed until recently to have originated only once or twice during yeast evolution. However, comparative genomics analysis now shows that switching mechanisms arose many times independently-at least 11 times in budding yeasts and once in fission yeasts-a dramatic example of convergent evolution. Most of these lineages switch mating types by a flip/flop mechanism that inverts a section of a chromosome and is simpler than the well-characterized 3-locus cassette mechanism (MAT/HML/HMR) used by S. cerevisiae. Mating-type switching (secondary homothallism) is one of the two possible mechanisms by which a yeast species can become self-fertile. The other mechanism (primary homothallism) has also emerged independently in multiple evolutionary lineages of budding yeasts, indicating that homothallism has been favored strongly by natural selection. Recent work shows that HO endonuclease, which makes the double-strand DNA break that initiates switching at the S. cerevisiae MAT locus, evolved from an unusual mobile genetic element that originally targeted a glycolytic gene, FBA1.
Collapse
|
24
|
Steenwyk JL, Phillips MA, Yang F, Date SS, Graham TR, Berman J, Hittinger CT, Rokas A. An orthologous gene coevolution network provides insight into eukaryotic cellular and genomic structure and function. SCIENCE ADVANCES 2022; 8:eabn0105. [PMID: 35507651 PMCID: PMC9067921 DOI: 10.1126/sciadv.abn0105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The evolutionary rates of functionally related genes often covary. We present a gene coevolution network inferred from examining nearly 3 million orthologous gene pairs from 332 budding yeast species spanning ~400 million years of evolution. Network modules provide insight into cellular and genomic structure and function. Examination of the phenotypic impact of network perturbation using deletion mutant data from the baker's yeast Saccharomyces cerevisiae, which were obtained from previously published studies, suggests that fitness in diverse environments is affected by orthologous gene neighborhood and connectivity. Mapping the network onto the chromosomes of S. cerevisiae and Candida albicans revealed that coevolving orthologous genes are not physically clustered in either species; rather, they are often located on different chromosomes or far apart on the same chromosome. The coevolution network captures the hierarchy of cellular structure and function, provides a roadmap for genotype-to-phenotype discovery, and portrays the genome as a linked ensemble of genes.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Megan A. Phillips
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Feng Yang
- Shmunis School of Biomedical and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Swapneeta S. Date
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R. Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
25
|
Theelen B, Mixão V, Ianiri G, Goh JPZ, Dijksterhuis J, Heitman J, Dawson TL, Gabaldón T, Boekhout T. Multiple Hybridization Events Punctuate the Evolutionary Trajectory of Malassezia furfur. mBio 2022; 13:e0385321. [PMID: 35404119 PMCID: PMC9040865 DOI: 10.1128/mbio.03853-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
Malassezia species are important fungal skin commensals and are part of the normal microbiota of humans and other animals. However, under certain circumstances these fungi can also display a pathogenic behavior. For example, Malassezia furfur is a common commensal of human skin and yet is often responsible for skin disorders but also systemic infections. Comparative genomics analysis of M. furfur revealed that some isolates have a hybrid origin, similar to several other recently described hybrid fungal pathogens. Because hybrid species exhibit genomic plasticity that can impact phenotypes, we sought to elucidate the genomic evolution and phenotypic characteristics of M. furfur hybrids in comparison to their parental lineages. To this end, we performed a comparative genomics analysis between hybrid strains and their presumptive parental lineages and assessed phenotypic characteristics. Our results provide evidence that at least two distinct hybridization events occurred between the same parental lineages and that the parental strains may have originally been hybrids themselves. Analysis of the mating-type locus reveals that M. furfur has a pseudobipolar mating system and provides evidence that after sexual liaisons of mating compatible cells, hybridization involved cell-cell fusion leading to a diploid/aneuploid state. This study provides new insights into the evolutionary trajectory of M. furfur and contributes with valuable genomic resources for future pathogenicity studies. IMPORTANCEMalassezia furfur is a common commensal member of human/animal microbiota that is also associated with several pathogenic states. Recent studies report involvement of Malassezia species in Crohn's disease, a type of inflammatory bowel disease, pancreatic cancer progression, and exacerbation of cystic fibrosis. A recent genomics analysis of M. furfur revealed the existence of hybrid isolates and identified their putative parental lineages. In this study, we explored the genomic and phenotypic features of these hybrids in comparison to their putative parental lineages. Our results revealed the existence of a pseudobipolar mating system in this species and showed evidence for the occurrence of multiple hybridization events in the evolutionary trajectory of M. furfur. These findings significantly advance our understanding of the evolution of this commensal microbe and are relevant for future studies exploring the role of hybridization in the adaptation to new niches or environments, including the emergence of pathogenicity.
Collapse
Affiliation(s)
- Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine, Barcelona, Spain
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Joleen Pei Zhen Goh
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research, Singapore
| | - Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Thomas L. Dawson
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research, Singapore
- Center for Cell Death, Injury and Regeneration, Departments of Drug Discovery and Biomedical Sciences and Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Mba IE, Nweze EI, Eze EA, Anyaegbunam ZKG. Genome plasticity in Candida albicans: A cutting-edge strategy for evolution, adaptation, and survival. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105256. [PMID: 35231665 DOI: 10.1016/j.meegid.2022.105256] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/12/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Candida albicans is the most implicated fungal species that grows as a commensal or opportunistic pathogen in the human host. It is associated with many life-threatening infections, especially in immunocompromised persons. The genome of Candida albicans is very flexible and can withstand a wide assortment of variations in a continuously changing environment. Thus, genome plasticity is central to its adaptation and has long been of considerable interest. C. albicans has a diploid heterozygous genome that is highly dynamic and can display variation from small to large scale chromosomal rearrangement and aneuploidy, which have implications in drug resistance, virulence, and pathogenicity. This review presents an up-to-date overview of recent genomic studies involving C. albicans. It discusses the accumulating evidence that shows how mitotic recombination events, ploidy dynamics, aneuploidy, and loss of heterozygosity (LOH) influence evolution, adaptation, and survival in C. albicans. Understanding the factors that affect the genome is crucial for a proper understanding of species and rapid development and adjustment of therapeutic strategies to mitigate their spread.
Collapse
Affiliation(s)
| | | | | | - Zikora Kizito Glory Anyaegbunam
- Institution for Drug-Herbal Medicine-Excipient-Research and Development, Faculty of Pharmaceutical Sciences, Nsukka, Nigeria
| |
Collapse
|
27
|
Mixão V, del Olmo V, Hegedűsová E, Saus E, Pryszcz L, Cillingová A, Nosek J, Gabaldón T. Genome analysis of five recently described species of the CUG-Ser clade uncovers Candida theae as a new hybrid lineage with pathogenic potential in the Candida parapsilosis species complex. DNA Res 2022; 29:6570588. [PMID: 35438177 PMCID: PMC9046093 DOI: 10.1093/dnares/dsac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
Candida parapsilosis species complex comprises three important pathogenic species: Candida parapsilosis sensu stricto, Candida orthopsilosis and Candida metapsilosis. The majority of C. orthopsilosis and all C. metapsilosis isolates sequenced thus far are hybrids, and most of the parental lineages remain unidentified. This led to the hypothesis that hybrids with pathogenic potential were formed by the hybridization of non-pathogenic lineages that thrive in the environment. In a search for the missing hybrid parentals, and aiming to get a better understanding of the evolution of the species complex, we sequenced, assembled and analysed the genome of five close relatives isolated from the environment: Candida jiufengensis, Candida pseudojiufengensis, Candida oxycetoniae, Candida margitis and Candida theae. We found that the linear conformation of mitochondrial genomes in Candida species emerged multiple times independently. Furthermore, our analyses discarded the possible involvement of these species in the mentioned hybridizations, but identified C. theae as an additional hybrid in the species complex. Importantly, C. theae was recently associated with a case of infection, and we also uncovered the hybrid nature of this clinical isolate. Altogether, our results reinforce the hypothesis that hybridization is widespread among Candida species, and potentially contributes to the emergence of lineages with opportunistic pathogenic behaviour.
Collapse
Affiliation(s)
- Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Valentina del Olmo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Eva Hegedűsová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Ester Saus
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Leszek Pryszcz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Andrea Cillingová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Barcelona 08010, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain
| |
Collapse
|
28
|
O’Brien CE, Zhai B, Ola M, Bergin SA, Ó Cinnéide E, O’Connor Í, Rolling T, Miranda E, Babady NE, Hohl TM, Butler G. Identification of a novel Candida metapsilosis isolate reveals multiple hybridization events. G3 (BETHESDA, MD.) 2022; 12:jkab367. [PMID: 34791169 PMCID: PMC8727981 DOI: 10.1093/g3journal/jkab367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/27/2023]
Abstract
Candida metapsilosis is a member of the Candida parapsilosis species complex, a group of opportunistic human pathogens. Of all the members of this complex, C. metapsilosis is the least virulent, and accounts for a small proportion of invasive Candida infections. Previous studies established that all C. metapsilosis isolates are hybrids, originating from a single hybridization event between two lineages, parent A and parent B. Here, we use MinION and Illumina sequencing to characterize a C. metapsilosis isolate that originated from a separate hybridization. One of the parents of the new isolate is very closely related to parent A. However, the other parent (parent C) is not the same as parent B. Unlike C. metapsilosis AB isolates, the C. metapsilosis AC isolate has not undergone introgression at the mating type-like locus. In addition, the A and C haplotypes are not fully collinear. The C. metapsilosis AC isolate has undergone loss of heterozygosity with a preference for haplotype A, indicating that this isolate is in the early stages of genome stabilization.
Collapse
Affiliation(s)
- Caoimhe E O’Brien
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Bing Zhai
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mihaela Ola
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Sean A Bergin
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Eoin Ó Cinnéide
- School of Medicine, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Ísla O’Connor
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Thierry Rolling
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edwin Miranda
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - N Esther Babady
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10007, USA
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
29
|
Michelotti LA, Sun S, Heitman J, James TY. Clonal evolution in serially passaged Cryptococcus neoformans × deneoformans hybrids reveals a heterogenous landscape of genomic change. Genetics 2022; 220:iyab142. [PMID: 34849836 PMCID: PMC8733418 DOI: 10.1093/genetics/iyab142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Cryptococcus neoformans × deneoformans hybrids (also known as serotype AD hybrids) are basidiomycete yeasts that are common in a clinical setting. Like many hybrids, the AD hybrids are largely locked at the F1 stage and are mostly unable to undergo normal meiotic reproduction. However, these F1 hybrids, which display a high (∼10%) sequence divergence are known to genetically diversify through mitotic recombination and aneuploidy, and this diversification may be adaptive. In this study, we evolved a single AD hybrid genotype in six diverse environments by serial passaging and then used genome resequencing of evolved clones to determine evolutionary mechanisms of adaptation. The evolved clones generally increased fitness after passaging, accompanied by an average of 3.3 point mutations, 2.9 loss of heterozygosity (LOH) events, and 0.7 trisomic chromosomes per clone. LOH occurred through nondisjunction of chromosomes, crossing over consistent with break-induced replication, and gene conversion, in that order of prevalence. The breakpoints of these recombination events were significantly associated with regions of the genome with lower sequence divergence between the parents and clustered in sub-telomeric regions, notably in regions that had undergone introgression between the two parental species. Parallel evolution was observed, particularly through repeated homozygosity via nondisjunction, yet there was little evidence of environment-specific parallel change for either LOH, aneuploidy, or mutations. These data show that AD hybrids have both a remarkable genomic plasticity and yet are challenged in the ability to recombine through sequence divergence and chromosomal rearrangements, a scenario likely limiting the precision of adaptive evolution to novel environments.
Collapse
Affiliation(s)
- Lucas A Michelotti
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Mishra A, Forche A, Anderson MZ. Parasexuality of Candida Species. Front Cell Infect Microbiol 2021; 11:796929. [PMID: 34966696 PMCID: PMC8711763 DOI: 10.3389/fcimb.2021.796929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/19/2021] [Indexed: 12/03/2022] Open
Abstract
While most fungi have the ability to reproduce sexually, multiple independent lineages have lost meiosis and developed parasexual cycles in its place. Emergence of parasexual cycles is particularly prominent in medically relevant fungi from the CUG paraphyletic group of Candida species. Since the discovery of parasex in C. albicans roughly two decades ago, it has served as the model for Candida species. Importantly, parasex in C. albicans retains hallmarks of meiosis including genetic recombination and chromosome segregation, making it a potential driver of genetic diversity. Furthermore, key meiotic genes play similar roles in C. albicans parasex and highlights parallels between these processes. Yet, the evolutionary role of parasex in Candida adaptation and the extent of resulting genotypic and phenotypic diversity remain as key knowledge gaps in this facultative reproductive program. Here, we present our current understanding of parasex, the mechanisms governing its regulation, and its relevance to Candida biology.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, ME, United States
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
31
|
Abstract
AbstractYeasts, usually defined as unicellular fungi, occur in various fungal lineages. Hence, they are not a taxonomic unit, but rather represent a fungal lifestyle shared by several unrelated lineages. Although the discovery of new yeast species occurs at an increasing speed, at the current rate it will likely take hundreds of years, if ever, before they will all be documented. Many parts of the earth, including many threatened habitats, remain unsampled for yeasts and many others are only superficially studied. Cold habitats, such as glaciers, are home to a specific community of cold-adapted yeasts, and, hence, there is some urgency to study such environments at locations where they might disappear soon due to anthropogenic climate change. The same is true for yeast communities in various natural forests that are impacted by deforestation and forest conversion. Many countries of the so-called Global South have not been sampled for yeasts, despite their economic promise. However, extensive research activity in Asia, especially China, has yielded many taxonomic novelties. Comparative genomics studies have demonstrated the presence of yeast species with a hybrid origin, many of them isolated from clinical or industrial environments. DNA-metabarcoding studies have demonstrated the prevalence, and in some cases dominance, of yeast species in soils and marine waters worldwide, including some surprising distributions, such as the unexpected and likely common presence of Malassezia yeasts in marine habitats.
Collapse
|
32
|
Xu J. Is Natural Population of Candida tropicalis Sexual, Parasexual, and/or Asexual? Front Cell Infect Microbiol 2021; 11:751676. [PMID: 34760719 PMCID: PMC8573272 DOI: 10.3389/fcimb.2021.751676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
Candida tropicalis is one of the most common opportunistic yeast pathogens of humans, especially prevalent in tropical and subtropical regions. This yeast has broad ecological distributions, can be found in both terrestrial and aquatic ecosystems, including being associated with a diversity of trees, animals, and humans. Evolutionary theory predicts that organisms thriving in diverse ecological niches likely have efficient mechanisms to generate genetic diversity in nature. Indeed, abundant genetic variations have been reported in natural populations (both environmental and clinical) of C. tropicalis. However, at present, our understanding on how genetic diversity is generated in natural C. tropicalis population remains controversial. In this paper, I review the current understanding on the potential modes of reproduction in C. tropicalis. I describe expectations of the three modes of reproduction (sexual, parasexual, and asexual) and compare them with the observed genotypic variations in natural populations. Though sexual and parasexual reproduction cannot be excluded, the analyses suggest asexual reproduction alone could explain all the observations reported so far. The results here have implications for understanding the evolution and epidemiology of C. tropicalis and other related human fungal pathogens.
Collapse
Affiliation(s)
- Jianping Xu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
33
|
Mixão V, Saus E, Boekhout T, Gabaldón T. Extreme diversification driven by parallel events of massive loss of heterozygosity in the hybrid lineage of Candida albicans. Genetics 2021; 217:5995314. [PMID: 33724404 PMCID: PMC8045679 DOI: 10.1093/genetics/iyaa004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/03/2020] [Indexed: 01/23/2023] Open
Abstract
Candida albicans is the most commonly reported species causing candidiasis. The taxonomic classification of C. albicans and related lineages is controversial, with Candida africana (syn. C. albicans var. africana) and Candida stellatoidea (syn. C. albicans var. stellatoidea) being considered different species or C. albicans varieties depending on the authors. Moreover, recent genomic analyses have suggested a shared hybrid origin of C. albicans and C. africana, but the potential parental lineages remain unidentified. Although the genomes of C. albicans and C. africana have been extensively studied, the genome of C. stellatoidea has not been sequenced so far. In order to get a better understanding of the evolution of the C. albicans clade, and to assess whether C. stellatoidea could represent one of the unknown C. albicans parental lineages, we sequenced C. stellatoidea type strain (CBS 1905). This genome was compared to that of C. albicans and of the closely related lineage C. africana. Our results show that, similarly to C. africana, C. stellatoidea descends from the same hybrid ancestor as other C. albicans strains and that it has undergone a parallel massive loss of heterozygosity.
Collapse
Affiliation(s)
- Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain.,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Ester Saus
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain.,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain.,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
34
|
Pirovich DB, Da’dara AA, Skelly PJ. Multifunctional Fructose 1,6-Bisphosphate Aldolase as a Therapeutic Target. Front Mol Biosci 2021; 8:719678. [PMID: 34458323 PMCID: PMC8385298 DOI: 10.3389/fmolb.2021.719678] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/31/2021] [Indexed: 01/01/2023] Open
Abstract
Fructose 1,6-bisphosphate aldolase is a ubiquitous cytosolic enzyme that catalyzes the fourth step of glycolysis. Aldolases are classified into three groups: Class-I, Class-IA, and Class-II; all classes share similar structural features but low amino acid identity. Apart from their conserved role in carbohydrate metabolism, aldolases have been reported to perform numerous non-enzymatic functions. Here we review the myriad "moonlighting" functions of this classical enzyme, many of which are centered on its ability to bind to an array of partner proteins that impact cellular scaffolding, signaling, transcription, and motility. In addition to the cytosolic location, aldolase has been found the extracellular surface of several pathogenic bacteria, fungi, protozoans, and metazoans. In the extracellular space, the enzyme has been reported to perform virulence-enhancing moonlighting functions e.g., plasminogen binding, host cell adhesion, and immunomodulation. Aldolase's importance has made it both a drug target and vaccine candidate. In this review, we note the several inhibitors that have been synthesized with high specificity for the aldolases of pathogens and cancer cells and have been shown to inhibit classical enzyme activity and moonlighting functions. We also review the many trials in which recombinant aldolases have been used as vaccine targets against a wide variety of pathogenic organisms including bacteria, fungi, and metazoan parasites. Most of such trials generated significant protection from challenge infection, correlated with antigen-specific cellular and humoral immune responses. We argue that refinement of aldolase antigen preparations and expansion of immunization trials should be encouraged to promote the advancement of promising, protective aldolase vaccines.
Collapse
Affiliation(s)
- David B. Pirovich
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | | | | |
Collapse
|
35
|
Interspecific hybridization as a driver of fungal evolution and adaptation. Nat Rev Microbiol 2021; 19:485-500. [PMID: 33767366 DOI: 10.1038/s41579-021-00537-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 02/01/2023]
Abstract
Cross-species gene transfer is often associated with bacteria, which have evolved several mechanisms that facilitate horizontal DNA exchange. However, the increased availability of whole-genome sequences has revealed that fungal species also exchange DNA, leading to intertwined lineages, blurred species boundaries or even novel species. In contrast to prokaryotes, fungal DNA exchange originates from interspecific hybridization, where two genomes are merged into a single, often highly unstable, polyploid genome that evolves rapidly into stabler derivatives. The resulting hybrids can display novel combinations of genetic and phenotypic variation that enhance fitness and allow colonization of new niches. Interspecific hybridization led to the emergence of important pathogens of humans and plants (for example, various Candida and 'powdery mildew' species, respectively) and industrially important yeasts, such as Saccharomyces hybrids that are important in the production of cold-fermented lagers or cold-cellared Belgian ales. In this Review, we discuss the genetic processes and evolutionary implications of fungal interspecific hybridization and highlight some of the best-studied examples. In addition, we explain how hybrids can be used to study molecular mechanisms underlying evolution, adaptation and speciation, and serve as a route towards development of new variants for industrial applications.
Collapse
|
36
|
Abstract
Hybridization is an important evolutionary mechanism that can enable organisms to adapt to environmental challenges. It has previously been shown that the fungal allodiploid species Verticillium longisporum, the causal agent of verticillium stem striping in rapeseed, originated from at least three independent hybridization events between two haploid Verticillium species. To reveal the impact of genome duplication as a consequence of hybridization, we studied the genome and transcriptome dynamics upon two independent V. longisporum hybridization events, represented by the hybrid lineages “A1/D1” and “A1/D3.” We show that V. longisporum genomes are characterized by extensive chromosomal rearrangements, including between parental chromosomal sets. V. longisporum hybrids display signs of evolutionary dynamics that are typically associated with the aftermath of allodiploidization, such as haploidization and more relaxed gene evolution. The expression patterns of the two subgenomes within the two hybrid lineages are more similar than those of the shared A1 parent between the two lineages, showing that the expression patterns of the parental genomes homogenized within a lineage. However, as genes that display differential parental expression in planta do not typically display the same pattern in vitro, we conclude that subgenome-specific responses occur in both lineages. Overall, our study uncovers genomic and transcriptomic plasticity during the evolution of the filamentous fungal hybrid V. longisporum and illustrates its adaptive potential.
Collapse
|
37
|
Boekhout T, Aime MC, Begerow D, Gabaldón T, Heitman J, Kemler M, Khayhan K, Lachance MA, Louis EJ, Sun S, Vu D, Yurkov A. The evolving species concepts used for yeasts: from phenotypes and genomes to speciation networks. FUNGAL DIVERS 2021; 109:27-55. [PMID: 34720775 PMCID: PMC8550739 DOI: 10.1007/s13225-021-00475-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Here we review how evolving species concepts have been applied to understand yeast diversity. Initially, a phenotypic species concept was utilized taking into consideration morphological aspects of colonies and cells, and growth profiles. Later the biological species concept was added, which applied data from mating experiments. Biophysical measurements of DNA similarity between isolates were an early measure that became more broadly applied with the advent of sequencing technology, leading to a sequence-based species concept using comparisons of parts of the ribosomal DNA. At present phylogenetic species concepts that employ sequence data of rDNA and other genes are universally applied in fungal taxonomy, including yeasts, because various studies revealed a relatively good correlation between the biological species concept and sequence divergence. The application of genome information is becoming increasingly common, and we strongly recommend the use of complete, rather than draft genomes to improve our understanding of species and their genome and genetic dynamics. Complete genomes allow in-depth comparisons on the evolvability of genomes and, consequently, of the species to which they belong. Hybridization seems a relatively common phenomenon and has been observed in all major fungal lineages that contain yeasts. Note that hybrids may greatly differ in their post-hybridization development. Future in-depth studies, initially using some model species or complexes may shift the traditional species concept as isolated clusters of genetically compatible isolates to a cohesive speciation network in which such clusters are interconnected by genetic processes, such as hybridization.
Collapse
Affiliation(s)
- Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - M. Catherine Aime
- Dept Botany and Plant Pathology, College of Agriculture, Purdue University, West Lafayette, IN 47907 USA
| | - Dominik Begerow
- Evolution of Plants and Fungi, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC–CNS), Jordi Girona, 29, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| | - Martin Kemler
- Evolution of Plants and Fungi, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Kantarawee Khayhan
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, University of Phayao, Phayao, 56000 Thailand
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, ON N6A 5B7 Canada
| | - Edward J. Louis
- Department of Genetics and Genome Biology, Genetic Architecture of Complex Traits, University of Leicester, Leicester, LE1 7RH UK
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Andrey Yurkov
- German Collection of Microorganisms and Cell Cultures, Leibniz Institute DSMZ, Brunswick, Germany
| |
Collapse
|
38
|
Mixão V, Hegedűsová E, Saus E, Pryszcz LP, Cillingová A, Nosek J, Gabaldón T. Genome analysis of Candida subhashii reveals its hybrid nature and dual mitochondrial genome conformations. DNA Res 2021; 28:6299387. [PMID: 34129020 PMCID: PMC8311171 DOI: 10.1093/dnares/dsab006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/14/2021] [Indexed: 01/14/2023] Open
Abstract
Candida subhashii belongs to the CUG-Ser clade, a group of phylogenetically closely related yeast species that includes some human opportunistic pathogens, such as Candida albicans. Despite being present in the environment, C. subhashii was initially described as the causative agent of a case of peritonitis. Considering the relevance of whole-genome sequencing and analysis for our understanding of genome evolution and pathogenicity, we sequenced, assembled and annotated the genome of C. subhashii type strain. Our results show that C. subhashii presents a highly heterozygous genome and other signatures that point to a hybrid ancestry. The presence of functional pathways for assimilation of hydroxyaromatic compounds goes in line with the affiliation of this yeast with soil microbial communities involved in lignin decomposition. Furthermore, we observed that different clones of this strain may present circular or linear mitochondrial DNA. Re-sequencing and comparison of strains with differential mitochondrial genome topology revealed five candidate genes potentially associated with this conformational change: MSK1, SSZ1, ALG5, MRPL9 and OYE32.
Collapse
Affiliation(s)
- Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034 Barcelona, Spain.,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Eva Hegedűsová
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Ester Saus
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034 Barcelona, Spain.,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Leszek P Pryszcz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Andrea Cillingová
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Jozef Nosek
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034 Barcelona, Spain.,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
39
|
Brice C, Zhang Z, Bendixsen D, Stelkens R. Hybridization Outcomes Have Strong Genomic and Environmental Contingencies. Am Nat 2021; 198:E53-E67. [PMID: 34403309 DOI: 10.1086/715356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractExtreme F2 phenotypes known as transgressive segregants can cause increased or decreased fitness in hybrids beyond the ranges seen in parental populations. Despite the usefulness of transgression for plant and animal breeding and its potential role in hybrid speciation, the genetic mechanisms and predictors of transgressive segregation remain largely untested. We generated seven hybrid crosses between five widely divergent Saccharomyces yeast species and measured the fitness of the parents and their viable F1 and F2 hybrids in seven stressful environments. We found that on average 16.6% of all replicate F2 hybrids had higher fitness than both parents. Against our predictions, transgression frequency was not a function of parental genetic and phenotypic distances across test environments. Within environments, some relationships were significant, but not in the predicted direction; for example, genetic distance was negatively related to transgression in ethanol and hydrogen peroxide. Significant effects of hybrid cross, test environment, and cross × environment interactions suggest that the amount of transgression produced in a hybrid cross is highly context specific and that outcomes of hybridization differ even among crosses made from the same two parents. If the goal is to reliably predict hybrid fitness and forecast the evolutionary potential of admixed populations, we need more efforts to identify patterns beyond the idiosyncrasies caused by specific genomic or environmental contexts.
Collapse
|
40
|
Shokoohi G, Javidnia J, Mirhendi H, Rasekh-Jahromi A, Rezaei-Matehkolaei A, Ansari S, Maryami F, Goodarzi S, Romeo O. Molecular identification and antifungal susceptibility profiles of Candida dubliniensis and Candida africana isolated from vulvovaginal candidiasis: A single-centre experience in Iran. Mycoses 2021; 64:771-779. [PMID: 33811780 PMCID: PMC8251901 DOI: 10.1111/myc.13280] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
Background Vulvovaginal candidiasis (VVC) is a common and debilitating long‐term illness affecting million women worldwide. This disease is caused mainly by Candida albicans and a lesser extent by other species, including the two phylogenetically closely related pathogens Candida africana and Candida dubliniensis. Objectives In this study, we report detailed molecular epidemiological data about the occurrence of these two pathogenic yeasts in Iranian patients affected by VVC, or its chronic recurrent form (RVVC), and provide, for the first time, data on the antifungal activity of two new drugs, efinaconazole (EFN) and luliconazole (LUL). Methods A total of 133 vaginal yeast isolates, presumptively identified as Calbicans by phenotypic and restriction analysis of rDNA, were further analysed by using a specific molecular method targeting the HWP1 gene. All Cafricana and Cdubliniensis isolates were also tested for their in vitro susceptibility to a panel of modern and classical antifungal drugs. Results and Conclusions Based on the molecular results, among 133 germ‐tube positive isolates, we identify 119 Calbicans (89.47%), 11 Cafricana (8.27%) and 3 Cdubliniensis (2.26%) isolates. Cafricana and Cdubliniensis showed low MIC values for most of the antifungal drugs tested, especially for EFN and LUL, which exhibited a remarkable antifungal activity. High MIC values were observed only for nystatin and terbinafine. Although Calbicans remains the most common Candida species recovered from Iranian VVC/RVVC patients, our data show that its prevalence may be slightly overestimated due to the presence of difficult‐to‐identify closely related yeast, especially Cafricana.
Collapse
Affiliation(s)
- Gholamreza Shokoohi
- Department of Medical Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.,Zoonosis Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Javad Javidnia
- Student Research Committee Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Athar Rasekh-Jahromi
- Department of Obstetrician and Gynecology, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Ali Rezaei-Matehkolaei
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saham Ansari
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faeze Maryami
- Department of Medical Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.,Zoonosis Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Sahand Goodarzi
- Department of Medical Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.,Zoonosis Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
41
|
Abstract
Of the many microbial species on earth, only a small number are able to thrive in humans and cause disease. Comparison of closely related pathogenic and nonpathogenic species can therefore be useful in identifying key features that contribute to virulence. We created interspecies hybrids between Candida albicans, a prevalent fungal pathogen of humans, and Candida dubliniensis, a close, but much less pathogenic, relative. By comparing genome-wide expression differences between the two genomes in the same cell, we surmised that since the two species diverged from a common ancestor, natural selection has acted upon the expression level of an ancient metabolic pathway, illustrating that pathogenicity traits can arise over evolutionary timescales through small expression changes in deeply conserved proteins. Candida albicans is the most common cause of systemic fungal infections in humans and is considerably more virulent than its closest known relative, Candida dubliniensis. To investigate this difference, we constructed interspecies hybrids and quantified mRNA levels produced from each genome in the hybrid. This approach systematically identified expression differences in orthologous genes arising from cis-regulatory sequence changes that accumulated since the two species last shared a common ancestor, some 10 million y ago. We documented many orthologous gene-expression differences between the two species, and we pursued one striking observation: All 15 genes coding for the enzymes of glycolysis showed higher expression from the C. albicans genome than the C. dubliniensis genome in the interspecies hybrid. This pattern requires evolutionary changes to have occurred at each gene; the fact that they all act in the same direction strongly indicates lineage-specific natural selection as the underlying cause. To test whether these expression differences contribute to virulence, we created a C. dubliniensis strain in which all 15 glycolysis genes were produced at modestly elevated levels and found that this strain had significantly increased virulence in the standard mouse model of systemic infection. These results indicate that small expression differences across a deeply conserved set of metabolism enzymes can play a significant role in the evolution of virulence in fungal pathogens.
Collapse
|
42
|
O’Brien CE, Oliveira-Pacheco J, Ó Cinnéide E, Haase MAB, Hittinger CT, Rogers TR, Zaragoza O, Bond U, Butler G. Population genomics of the pathogenic yeast Candida tropicalis identifies hybrid isolates in environmental samples. PLoS Pathog 2021; 17:e1009138. [PMID: 33788904 PMCID: PMC8041210 DOI: 10.1371/journal.ppat.1009138] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/12/2021] [Accepted: 03/15/2021] [Indexed: 01/02/2023] Open
Abstract
Candida tropicalis is a human pathogen that primarily infects the immunocompromised. Whereas the genome of one isolate, C. tropicalis MYA-3404, was originally sequenced in 2009, there have been no large-scale, multi-isolate studies of the genetic and phenotypic diversity of this species. Here, we used whole genome sequencing and phenotyping to characterize 77 isolates of C. tropicalis from clinical and environmental sources from a variety of locations. We show that most C. tropicalis isolates are diploids with approximately 2-6 heterozygous variants per kilobase. The genomes are relatively stable, with few aneuploidies. However, we identified one highly homozygous isolate and six isolates of C. tropicalis with much higher heterozygosity levels ranging from 36-49 heterozygous variants per kilobase. Our analyses show that the heterozygous isolates represent two different hybrid lineages, where the hybrids share one parent (A) with most other C. tropicalis isolates, but the second parent (B or C) differs by at least 4% at the genome level. Four of the sequenced isolates descend from an AB hybridization, and two from an AC hybridization. The hybrids are MTLa/α heterozygotes. Hybridization, or mating, between different parents is therefore common in the evolutionary history of C. tropicalis. The new hybrids were predominantly found in environmental niches, including from soil. Hybridization is therefore unlikely to be associated with virulence. In addition, we used genotype-phenotype correlation and CRISPR-Cas9 editing to identify a genome variant that results in the inability of one isolate to utilize certain branched-chain amino acids as a sole nitrogen source.
Collapse
Affiliation(s)
- Caoimhe E. O’Brien
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - João Oliveira-Pacheco
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Eoin Ó Cinnéide
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Max A. B. Haase
- Laboratory of Genetics, Center for Genomic Science Innovation, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chris Todd Hittinger
- Laboratory of Genetics, Center for Genomic Science Innovation, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thomas R. Rogers
- Department of Clinical Microbiology, Trinity College Dublin, Dublin, Ireland; Department of Microbiology, St James’s Hospital, Dublin, Ireland
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km2, Majadahonda, Madrid, Spain
| | - Ursula Bond
- Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
43
|
Gabaldón T. Hybridization and the origin of new yeast lineages. FEMS Yeast Res 2020; 20:5870662. [PMID: 32658267 PMCID: PMC7394516 DOI: 10.1093/femsyr/foaa040] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022] Open
Abstract
Hybrids originate from the mating of two diverged organisms, resulting in novel lineages that have chimeric genomes. Hybrids may exhibit unique phenotypic traits that are not necessarily intermediate between those present in the progenitors. These unique traits may enable them to thrive in new environments. Many hybrid lineages have been discovered among yeasts in the Saccharomycotina, of which many have industrial or clinical relevance, but this might reflect a bias toward investigating species with relevance to humans. Hybridization has also been proposed to be at the root of the whole-genome duplication in the lineage leading to Saccharomyces cerevisiae. Thus, hybridization seems to have played a prominent role in the evolution of Saccharomycotina yeasts, although it is still unclear how common this evolutionary process has been during the evolution of this and other fungal clades. Similarly, the evolutionary aftermath of hybridization, including implications at the genomic, transcriptional, physiological or ecological levels, remains poorly understood. In this review, I survey recent findings from genomic analysis of yeast hybrids of industrial or clinical relevance, and discuss the evolutionary implications of genomic hybridization for the origin of new lineages, including when such hybridization results in a whole-genome duplication.
Collapse
Affiliation(s)
- Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|