1
|
Heaney CD, Hempel H, DeRosa KL, Pinto LA, Mantis NJ. Clinical Assessment of SARS-CoV-2 Antibodies in Oral Fluids Following Infection and Vaccination. Clin Chem 2024; 70:589-596. [PMID: 38039096 PMCID: PMC10987228 DOI: 10.1093/clinchem/hvad169] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/13/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND SARS-CoV-2 variants continue to circulate globally, even within highly vaccinated populations. The first-generation SARS-CoV-2 vaccines elicit neutralizing immunoglobin G (IgG) antibodies that prevent severe COVID-19 but induce only weak antibody responses in mucosal tissues. There is increasing recognition that secretory immunoglobin A (SIgA) antibodies in the upper respiratory tract and oral cavity are critical in interrupting virus shedding, transmission, and progression of disease. To fully understand the immune-related factors that influence SARS-CoV-2 dynamics at the population level, it will be necessary to monitor virus-specific IgG and SIgA in systemic and mucosal compartments. CONTENT Oral fluids and saliva, with appropriate standardized collection methods, constitute a readily accessible biospecimen type from which both systemic and mucosal antibodies can be measured. Serum-derived IgG and immunoglobin A (IgA) are found in gingival crevicular fluids and saliva as the result of transudation, while SIgA, which is produced in response to mucosal infection and vaccination, is actively transported across salivary gland epithelia and present in saliva and passive drool. In this mini-review, we summarize the need for the implementation of standards, highly qualified reagents, and best practices to ensure that clinical science is both rigorous and comparable across laboratories and institutions. We discuss the need for a better understanding of sample stability, collection methods, and other factors that affect measurement outcomes and interlaboratory variability. SUMMARY The establishment of best practices and clinical laboratory standards for the assessment of SARS-CoV-2 serum and mucosal antibodies in oral fluids is integral to understanding immune-related factors that influence COVID-19 transmission and persistence within populations.
Collapse
Affiliation(s)
- Christopher D Heaney
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Heidi Hempel
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Kate L DeRosa
- Division of Infectious Diseases, NewYork State Department of Health, Wadsworth Center, Albany, NY, United States
| | - Ligia A Pinto
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Nicholas J Mantis
- Division of Infectious Diseases, NewYork State Department of Health, Wadsworth Center, Albany, NY, United States
| |
Collapse
|
2
|
Sinha D, Yaugel-Novoa M, Waeckel L, Paul S, Longet S. Unmasking the potential of secretory IgA and its pivotal role in protection from respiratory viruses. Antiviral Res 2024; 223:105823. [PMID: 38331200 DOI: 10.1016/j.antiviral.2024.105823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Mucosal immunity has regained its spotlight amidst the ongoing Coronavirus disease 19 (COVID-19) pandemic, with numerous studies highlighting the crucial role of mucosal secretory IgA (SIgA) in protection against Severe acute respiratory syndrome coronavirus-2 or SARS-CoV-2 infections. The observed limitations in the efficacy of currently authorized COVID-19 vaccines in inducing effective mucosal immune responses remind us of the limitations of systemic vaccination in promoting protective mucosal immunity. This resurgence of interest has motivated the development of vaccine platforms capable of enhancing mucosal responses, specifically the SIgA response, and the development of IgA-based therapeutics. Recognizing viral respiratory infections as a global threat, we would like to comprehensively review the existing knowledge on mucosal immunity, with a particular emphasis on SIgA, in the context of SARS-CoV-2, influenza, and Respiratory Syncytial Virus (RSV) infections. This review aims to describe the structural and functional specificities of SIgA, along with its nuanced role in combating influenza, RSV, and SARS-CoV-2 infections. Subsequent sections further elaborate promising vaccine strategies, including mucosal vaccines against Influenza, RSV, and SARS-CoV-2 respiratory viruses, currently undergoing preclinical and clinical development. Additionally, we address the challenges associated with mucosal vaccine development, concluding with a discussion on IgA-based therapeutics as a promising platform for the treatment of viral respiratory infections. This comprehensive review not only synthesizes current insights into mucosal immunity but also identifies critical knowledge gaps, strengthening the way for further advancements in our current understanding and approaches to combat respiratory viral threats.
Collapse
Affiliation(s)
- Divya Sinha
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Melyssa Yaugel-Novoa
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Louis Waeckel
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France; Immunology Department, University Hospital of Saint-Etienne, F42055, Saint-Etienne, France
| | - Stéphane Paul
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France; Immunology Department, University Hospital of Saint-Etienne, F42055, Saint-Etienne, France; CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, F42055, Saint-Etienne, France.
| | - Stéphanie Longet
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France.
| |
Collapse
|
3
|
Abela IA, Schwarzmüller M, Ulyte A, Radtke T, Haile SR, Ammann P, Raineri A, Rueegg S, Epp S, Berger C, Böni J, Manrique A, Audigé A, Huber M, Schreiber PW, Scheier T, Fehr J, Weber J, Rusert P, Günthard HF, Kouyos RD, Puhan MA, Kriemler S, Trkola A, Pasin C. Cross-protective HCoV immunity reduces symptom development during SARS-CoV-2 infection. mBio 2024; 15:e0272223. [PMID: 38270455 PMCID: PMC10865973 DOI: 10.1128/mbio.02722-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Numerous clinical parameters link to severe coronavirus disease 2019, but factors that prevent symptomatic disease remain unknown. We investigated the impact of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and endemic human coronavirus (HCoV) antibody responses on symptoms in a longitudinal children cohort (n = 2,917) and a cross-sectional cohort including children and adults (n = 882), all first exposed to SARS-CoV-2 (March 2020 to March 2021) in Switzerland. Saliva (n = 4,993) and plasma (n = 7,486) antibody reactivity to the four HCoVs (subunit S1 [S1]) and SARS-CoV-2 (S1, receptor binding domain, subunit S2 [S2], nucleocapsid protein) was determined along with neutralizing activity against SARS-CoV-2 Wuhan, Alpha, Delta, and Omicron (BA.2) in a subset of individuals. Inferred recent SARS-CoV-2 infection was associated with a strong correlation between mucosal and systemic SARS-CoV-2 anti-spike responses. Individuals with pre-existing HCoV-S1 reactivity exhibited significantly higher antibody responses to SARS-CoV-2 in both plasma (IgG regression coefficients = 0.20, 95% CI = [0.09, 0.32], P < 0.001) and saliva (IgG regression coefficient = 0.60, 95% CI = [0.088, 1.11], P = 0.025). Saliva neutralization activity was modest but surprisingly broad, retaining activity against Wuhan (median NT50 = 32.0, 1Q-3Q = [16.4, 50.2]), Alpha (median NT50 = 34.9, 1Q-3Q = [26.0, 46.6]), and Delta (median NT50 = 28.0, 1Q-3Q = [19.9, 41.7]). In line with a rapid mucosal defense triggered by cross-reactive HCoV immunity, asymptomatic individuals presented with higher pre-existing HCoV-S1 activity in plasma (IgG HKU1, odds ratio [OR] = 0.53, 95% CI = [0.29,0.97], P = 0.038) and saliva (total HCoV, OR = 0.55, 95% CI = [0.33, 0.91], P = 0.019) and higher SARS-CoV-2 reactivity in saliva (IgG S2 fold change = 1.26, 95% CI = [1.03, 1.54], P = 0.030). By investigating the systemic and mucosal immune responses to SARS-CoV-2 and HCoVs in a population without prior exposure to SARS-CoV-2 or vaccination, we identified specific antibody reactivities associated with lack of symptom development.IMPORTANCEKnowledge of the interplay between human coronavirus (HCoV) immunity and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is critical to understanding the coexistence of current endemic coronaviruses and to building knowledge potential future zoonotic coronavirus transmissions. This study, which retrospectively analyzed a large cohort of individuals first exposed to SARS-CoV-2 in Switzerland in 2020-2021, revealed several key findings. Pre-existing HCoV immunity, particularly mucosal antibody responses, played a significant role in improving SARS-CoV-2 immune response upon infection and reducing symptoms development. Mucosal neutralizing activity against SARS-CoV-2, although low in magnitude, retained activity against SARS-CoV-2 variants underlining the importance of maintaining local mucosal immunity to SARS-CoV-2. While the cross-protective effect of HCoV immunity was not sufficient to block infection by SARS-CoV-2, the present study revealed a remarkable impact on limiting symptomatic disease. These findings support the feasibility of generating pan-protective coronavirus vaccines by inducing potent mucosal immune responses.
Collapse
Affiliation(s)
- Irene A. Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Agne Ulyte
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Thomas Radtke
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Sarah R. Haile
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Priska Ammann
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Alessia Raineri
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Sonja Rueegg
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Amapola Manrique
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Annette Audigé
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter W. Schreiber
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jan Fehr
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roger D. Kouyos
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Milo A. Puhan
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Susi Kriemler
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Chloé Pasin
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Collegium Helveticum, Zurich, Switzerland
| |
Collapse
|
4
|
Bellocchio L, Dipalma G, Inchingolo AM, Inchingolo AD, Ferrante L, Del Vecchio G, Malcangi G, Palermo A, Qendro A, Inchingolo F. COVID-19 on Oral Health: A New Bilateral Connection for the Pandemic. Biomedicines 2023; 12:60. [PMID: 38255167 PMCID: PMC10813615 DOI: 10.3390/biomedicines12010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and transmission are generally known to be produced by respiratory droplets and aerosols from the oral cavity (O.C.) of infected subjects, as stated by the World Health Organization. Saliva also retains the viral particles and aids in the spread of COVID-19. Angiotensin-converting enzyme Type 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) are two of the numerous factors that promote SARS-CoV-2 infection, expressed by O.C. structures, various mucosa types, and the epithelia of salivary glands. A systemic SARS-CoV-2 infection might result from viral replication in O.C. cells. On the other hand, cellular damage of different subtypes in the O.C. might be associated with various clinical signs and symptoms. Factors interfering with SARS-CoV-2 infection potential might represent fertile ground for possible local pharmacotherapeutic interventions, which may confine SARS-CoV-2 virus entry and transmission in the O.C., finally representing a way to reduce COVID-19 incidence and severity.
Collapse
Affiliation(s)
- Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, University of Bordeaux, 33063 Bordeaux, France;
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (L.F.); (G.D.V.); (F.I.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (L.F.); (G.D.V.); (F.I.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (L.F.); (G.D.V.); (F.I.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (L.F.); (G.D.V.); (F.I.)
| | - Gaetano Del Vecchio
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (L.F.); (G.D.V.); (F.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (L.F.); (G.D.V.); (F.I.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Andis Qendro
- Faculty of Dental Medicine, University of Medicine, 1005 Tirana, Albania;
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (L.F.); (G.D.V.); (F.I.)
| |
Collapse
|
5
|
Sohaei D, Ulndreaj A, Mathew A, Campbell C, Stengelin M, Sigal G, Joe J, Romero D, Padmanabhan N, Ren A, Ghorbani A, Soosaipillai A, Kulasingam V, Prassas I, Diamandis EP. Sensitive Serology Measurements in the Saliva of Individuals with COVID-19 Symptoms Using a Multiplexed Immunoassay. J Appl Lab Med 2022; 7:1354-1365. [PMID: 36179121 PMCID: PMC9619505 DOI: 10.1093/jalm/jfac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND There are numerous benefits to performing salivary serology measurements for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen for coronavirus disease 2019 (COVID-19). Here, we used a sensitive multiplex serology assay to quantitate salivary IgG against 4 SARS-CoV-2 antigens: nucleocapsid, receptor-binding domain, spike, and N-terminal domain. METHODS We used single samples from 90 individuals with COVID-19 diagnosis collected at 0 to 42 days postsymptom onset (PSO) and from 15 uninfected control subjects. The infected individuals were segmented in 4 groups (0-7 days, 8-14 days, 15-21 days, and >21 days) based on days PSO, and values were compared to controls. RESULTS Compared to controls, infected individuals showed higher levels of antibodies against all antigens starting from 8 days PSO. When applying cut-offs with at least 93.3% specificity at every time interval segment, nucleocapsid protein serology had the best sensitivity at 0 to 7 days PSO (60% sensitivity [35.75% to 80.18%], ROC area under the curve [AUC] = 0.73, P = 0.034). Receptor-binding domain serology had the best sensitivity at 8 to 14 days PSO (83.33% sensitivity [66.44%-92.66%], ROC AUC = 0.90, P < 0.0001), and all assays except for N-terminal domain had 92% sensitivity (75.03%-98.58%) at >14 days PSO. CONCLUSIONS This study shows that our multiplexed immunoassay can distinguish infected from uninfected individuals and reliably (93.3% specificity) detect seroconversion (in 60% of infected individuals) as early as the first week PSO, using easy-to-collect saliva samples.
Collapse
Affiliation(s)
- Dorsa Sohaei
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada
| | - Antigona Ulndreaj
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Anu Mathew
- Meso Scale Diagnostics, LLC, Rockville, MD, USA
| | | | | | | | - Jessica Joe
- Meso Scale Diagnostics, LLC, Rockville, MD, USA
| | | | | | - Annie Ren
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Atefeh Ghorbani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Antoninus Soosaipillai
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada
| | - Ioannis Prassas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
6
|
Prados de la Torre E, Obando I, Vidal M, de Felipe B, Aguilar R, Izquierdo L, Carolis C, Olbrich P, Capilla-Miranda A, Serra P, Santamaria P, Blanco-Lobo P, Moncunill G, Rodríguez-Ortega MJ, Dobaño C. SARS-CoV-2 Seroprevalence Study in Pediatric Patients and Health Care Workers Using Multiplex Antibody Immunoassays. Viruses 2022; 14:v14092039. [PMID: 36146844 PMCID: PMC9502584 DOI: 10.3390/v14092039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
SARS-CoV-2 infection has become a global health problem specially exacerbated with the continuous appearance of new variants. Healthcare workers (HCW) have been one of the most affected sectors. Children have also been affected, and although infection generally presents as a mild disease, some have developed the Pediatric Inflammatory Multisystem Syndrome Temporally Associated with SARS-CoV-2 (PIMS-TS). We recruited 190 adults (HCW and cohabitants, April to June 2020) and 57 children (April 2020 to September 2021), of whom 12 developed PIMS-TS, in a hospital-based study in Spain. Using an in-house Luminex assay previously validated, antibody levels were measured against different spike and nucleocapsid SARS-CoV-2 proteins, including the receptor-binding domain (RBD) of the Alpha, Beta, Gamma, and Delta variants of concern (VoC). Seropositivity rates obtained from children and adults, respectively, were: 49.1% and 11% for IgG, 45.6% and 5.8% for IgA, and 35.1% and 7.3% for IgM. Higher antibody levels were detected in children who developed PIMS-TS compared to those who did not. Using the COVID-19 IgM/IgA ELISA (Vircell, S.L.) kit, widely implemented in Spanish hospitals, a high number of false positives and lower seroprevalences compared with the Luminex estimates were found, indicating a significantly lower specificity and sensitivity. Comparison of antibody levels against RBD-Wuhan versus RBD-VoCs indicated that the strongest positive correlations for all three isotypes were with RBD-Alpha, while the lowest correlations were with RBD-Delta for IgG, RBD-Gamma for IgM, and RBD-Beta for IgA. This study highlights the differences in antibody levels between groups with different demographic and clinical characteristics, as well as reporting the IgG, IgM, and IgA response to RBD VoC circulating at the study period.
Collapse
Affiliation(s)
- Esther Prados de la Torre
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional CeiA3, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Ignacio Obando
- Unidad de Pediatría, Sección de Infectología, Reumatología e Inmunología Pediátrica, Hospital Infantil Virgen del Rocío, Instituto de Biomedicina de Sevilla, RITIP, 41012 Sevilla, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain
| | - Beatriz de Felipe
- Unidad de Pediatría, Sección de Infectología, Reumatología e Inmunología Pediátrica, Hospital Infantil Virgen del Rocío, Instituto de Biomedicina de Sevilla, RITIP, 41012 Sevilla, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain
| | - Luis Izquierdo
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 08036 Barcelona, Spain
| | - Carlo Carolis
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Peter Olbrich
- Unidad de Pediatría, Sección de Infectología, Reumatología e Inmunología Pediátrica, Hospital Infantil Virgen del Rocío, Instituto de Biomedicina de Sevilla, RITIP, 41012 Sevilla, Spain
| | - Ana Capilla-Miranda
- Unidad de Pediatría, Sección de Infectología, Reumatología e Inmunología Pediátrica, Hospital Infantil Virgen del Rocío, Instituto de Biomedicina de Sevilla, RITIP, 41012 Sevilla, Spain
| | - Pau Serra
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Pere Santamaria
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Pilar Blanco-Lobo
- Unidad de Pediatría, Sección de Infectología, Reumatología e Inmunología Pediátrica, Hospital Infantil Virgen del Rocío, Instituto de Biomedicina de Sevilla, RITIP, 41012 Sevilla, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 08036 Barcelona, Spain
- Correspondence: (G.M.); (M.J.R.-O.); (C.D.)
| | - Manuel J. Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional CeiA3, Universidad de Córdoba, 14071 Córdoba, Spain
- Correspondence: (G.M.); (M.J.R.-O.); (C.D.)
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 08036 Barcelona, Spain
- Correspondence: (G.M.); (M.J.R.-O.); (C.D.)
| |
Collapse
|
7
|
Sheikh‐Mohamed S, Sanders EC, Gommerman JL, Tal MC. Guardians of the oral and nasopharyngeal galaxy: IgA and protection against SARS-CoV-2 infection. Immunol Rev 2022; 309:75-85. [PMID: 35815463 PMCID: PMC9349649 DOI: 10.1111/imr.13118] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In early 2020, a global emergency was upon us in the form of the coronavirus disease 2019 (COVID-19) pandemic. While horrific in its health, social and economic devastation, one silver lining to this crisis has been a rapid mobilization of cross-institute, and even cross-country teams that shared common goals of learning as much as we could as quickly as possible about the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and how the immune system would respond to both the virus and COVID-19 vaccines. Many of these teams were formed by women who quickly realized that the classical model of "publish first at all costs" was maladaptive for the circumstances and needed to be supplanted by a more collaborative solution-focused approach. This review is an example of a collaboration that unfolded in separate countries, first Canada and the United States, and then also Israel. Not only did the collaboration allow us to cross-validate our results using different hands/techniques/samples, but it also took advantage of different vaccine types and schedules that were rolled out in our respective home countries. The result of this collaboration was a new understanding of how mucosal immunity to SARS-CoV-2 infection vs COVID-19 vaccination can be measured using saliva as a biofluid, what types of vaccines are best able to induce (limited) mucosal immunity, and what are potential correlates of protection against breakthrough infection. In this review, we will share what we have learned about the mucosal immune response to SARS-CoV-2 and to COVID-19 vaccines and provide a perspective on what may be required for next-generation pan-sarbecoronavirus vaccine approaches.
Collapse
Affiliation(s)
| | - Erin C. Sanders
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | - Michal Caspi Tal
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer CenterStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
8
|
Hachim A, Gu H, Kavian O, Mori M, Kwan MYW, Chan WH, Yau YS, Chiu SS, Tsang OTY, Hui DSC, Mok CKP, Ma FNL, Lau EHY, Amarasinghe GK, Qavi AJ, Cheng SMS, Poon LLM, Peiris JSM, Valkenburg SA, Kavian N. SARS-CoV-2 accessory proteins reveal distinct serological signatures in children. Nat Commun 2022; 13:2951. [PMID: 35618731 PMCID: PMC9135746 DOI: 10.1038/s41467-022-30699-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/13/2022] [Indexed: 12/14/2022] Open
Abstract
The antibody response magnitude and kinetics may impact clinical severity, serological diagnosis and long-term protection of COVID-19, which may play a role in why children experience lower morbidity. We therefore tested samples from 122 children in Hong Kong with symptomatic (n = 78) and asymptomatic (n = 44) SARS-CoV-2 infections up to 200 days post infection, relative to 71 infected adults (symptomatic n = 61, and asymptomatic n = 10), and negative controls (n = 48). We assessed serum IgG antibodies to a 14-wide antigen panel of structural and accessory proteins by Luciferase Immuno-Precipitation System (LIPS) assay and circulating cytokines. Infected children have lower levels of Spike, Membrane, ORF3a, ORF7a, ORF7b antibodies, comparable ORF8 and elevated E-specific antibodies than adults. Combination of two unique antibody targets, ORF3d and ORF8, can accurately discriminate SARS-CoV-2 infection in children. Principal component analysis reveals distinct pediatric serological signatures, and the highest contribution to variance from adults are antibody responses to non-structural proteins ORF3d, NSP1, ORF3a and ORF8. From a diverse panel of cytokines that can modulate immune priming and relative inflammation, IL-8, MCP-1 and IL-6 correlate with the magnitude of pediatric antibody specificity and severity. Antibodies to SARS-CoV-2 internal proteins may become an important sero surveillance tool of infection with the roll-out of vaccines in the pediatric population.
Collapse
Affiliation(s)
- Asmaa Hachim
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haogao Gu
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Otared Kavian
- Department of Mathematics, Université de Versailles Saint-Quentin, Versailles, France
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Mike Y W Kwan
- Department of Pediatric and Adolescent Medicine, Princess Margaret Hospital, Hospital Authority of Hong Kong, Hong Kong SAR, China
| | - Wai Hung Chan
- Department of Pediatrics, Queen Elizabeth Hospital, Hospital Authority of Hong Kong, Hong Kong SAR, China
| | - Yat Sun Yau
- Department of Pediatrics, Queen Elizabeth Hospital, Hospital Authority of Hong Kong, Hong Kong SAR, China
| | - Susan S Chiu
- Department of Pediatric and Adolescent Medicine, The University of Hong Kong and Queen Mary Hospital, Hospital Authority of Hong Kong, Hong Kong SAR, China
| | - Owen T Y Tsang
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong, Hong Kong SAR, China
| | - David S C Hui
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chris K P Mok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fionn N L Ma
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Eric H Y Lau
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Abraham J Qavi
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Samuel M S Cheng
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo L M Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - J S Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sophie A Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Doherty Institute of Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia.
| | - Niloufar Kavian
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Faculté de Médecine Université Paris Descartes, Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire Cochin, Service d'Immunologie Biologique, Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
9
|
Dobaño C, Alonso S, Vidal M, Jiménez A, Rubio R, Santano R, Barrios D, Pons Tomas G, Melé Casas M, Hernández García M, Girona-Alarcón M, Puyol L, Baro B, Millat-Martínez P, Ajanovic S, Balanza N, Arias S, Rodrigo Melero N, Carolis C, García-Miquel A, Bonet-Carné E, Claverol J, Cubells M, Fortuny C, Fumadó V, Codina A, Bassat Q, Muñoz-Almagro C, Fernández de Sevilla M, Gratacós E, Izquierdo L, García-García JJ, Aguilar R, Jordan I, Moncunill G. Multiplex Antibody Analysis of IgM, IgA and IgG to SARS-CoV-2 in Saliva and Serum From Infected Children and Their Close Contacts. Front Immunol 2022; 13:751705. [PMID: 35154094 PMCID: PMC8828491 DOI: 10.3389/fimmu.2022.751705] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
COVID-19 affects children to a lesser extent than adults but they can still get infected and transmit SARS-CoV-2 to their contacts. Field deployable non-invasive sensitive diagnostic techniques are needed to evaluate the infectivity dynamics of SARS-CoV-2 in pediatric populations and guide public health interventions, particularly if this population is not fully vaccinated. We evaluated the utility of high-throughput Luminex assays to quantify saliva IgM, IgA and IgG antibodies against five SARS-CoV-2 spike (S) and nucleocapsid (N) antigens in a contacts and infectivity longitudinal study in 122 individuals (52 children and 70 adults). We compared saliva versus serum/plasma samples in infected children and adults diagnosed by weekly RT-PCR over 35 days (n=62), and those who consistently tested negative over the same follow up period (n=60), in the Summer of 2020 in Barcelona, Spain. Saliva antibody levels in SARS-CoV-2 RT-PCR positive individuals were significantly higher than in negative individuals and correlated with those measured in sera/plasmas. Asymptomatic infected individuals had higher levels of anti-S IgG than symptomatic individuals, suggesting a protective anti-disease role for antibodies. Higher anti-S IgG and IgM levels in serum/plasma and saliva, respectively, in infected children compared to infected adults could also be related to stronger clinical immunity in them. Among infected children, males had higher levels of saliva IgG to N and RBD than females. Despite overall correlation, individual clustering analysis suggested that responses that may not be detected in blood could be patent in saliva, and vice versa. In conclusion, measurement of SARS-CoV-2-specific saliva antibodies should be considered as a complementary non-invasive assay to serum/plasma to determine COVID-19 prevalence and transmission in pediatric populations before and after vaccination campaigns.
Collapse
Affiliation(s)
- Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Madrid, Spain
| | - Selena Alonso
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rocío Rubio
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Rebeca Santano
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Diana Barrios
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Gemma Pons Tomas
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
| | - María Melé Casas
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
| | - María Hernández García
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
| | - Mònica Girona-Alarcón
- Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Paediatric Intensive Care Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Laura Puyol
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Barbara Baro
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Sara Ajanovic
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Núria Balanza
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Sara Arias
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Natalia Rodrigo Melero
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carlo Carolis
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Aleix García-Miquel
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Elisenda Bonet-Carné
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Universitat Politècnica de Catalunya, BarcelonaTech, Barcelona, Spain
| | - Joana Claverol
- Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Fundació Sant Joan de Déu, Barcelona, Spain
| | - Marta Cubells
- Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Fundació Sant Joan de Déu, Barcelona, Spain
| | - Claudia Fortuny
- Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Infectious Diseases Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Victoria Fumadó
- Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Infectious Diseases Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Anna Codina
- Biobank Hospital Sant Joan de Déu, Barcelona, Spain
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Carmen Muñoz-Almagro
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain.,Molecular Microbiology Department, Hospital Sant Joan de Déu, Esplugues, Spain
| | - Mariona Fernández de Sevilla
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues, Spain
| | - Eduard Gratacós
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Luis Izquierdo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Madrid, Spain
| | - Juan José García-García
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Iolanda Jordan
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Paediatric Intensive Care Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Madrid, Spain
| |
Collapse
|
10
|
Drozdzik A, Drozdzik M. Oral Pathology in COVID-19 and SARS-CoV-2 Infection-Molecular Aspects. Int J Mol Sci 2022; 23:1431. [PMID: 35163355 PMCID: PMC8836070 DOI: 10.3390/ijms23031431] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
This review article was designed to evaluate the existing evidence related to the molecular processes of SARS-CoV-2 infection in the oral cavity. The World Health Organization stated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and transmission is produced by respiratory droplets and aerosols from the oral cavity of infected patients. The oral cavity structures, keratinized and non-keratinized mucosa, and salivary glands' epithelia express SARS-CoV-2 entry and transmission factors, especially angiotensin converting enzyme Type 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). Replication of the virus in cells leads to local and systemic infection spread, and cellular damage is associated with clinical signs and symptoms of the disease in the oral cavity. Saliva, both the cellular and acellular fractions, holds the virus particles and contributes to COVID-19 transmission. The review also presents information about the factors modifying SARS-CoV-2 infection potential and possible local pharmacotherapeutic interventions, which may confine SARS-CoV-2 virus entry and transmission in the oral cavity. The PubMed and Scopus databases were used to search for suitable keywords such as: SARS-CoV-2, COVID-19, oral virus infection, saliva, crevicular fluid, salivary gland, tongue, oral mucosa, periodontium, gingiva, dental pulp, ACE2, TMPRSS2, Furin, diagnosis, topical treatment, vaccine and related words in relevant publications up to 28 December 2021. Data extraction and quality evaluation of the articles were performed by two reviewers, and 63 articles were included in the final review.
Collapse
Affiliation(s)
- Agnieszka Drozdzik
- Department of Integrated Dentistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp 72, 70-111 Szczecin, Poland;
| | - Marek Drozdzik
- Department of Pharmacology, Pomeranian Medical University in Szczecin, Powstancow Wlkp 72, 70-111 Szczecin, Poland
| |
Collapse
|