1
|
Zhang J, Huang X, Li M, Zhang W, Yang H. CSF1R inhibition agents protect against cisplatin ototoxicity and synergize with immunotherapy for Head and Neck Squamous Cell Carcinoma. Int Immunopharmacol 2025; 152:114428. [PMID: 40073814 DOI: 10.1016/j.intimp.2025.114428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/25/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Immunotherapy has emerged as a promising therapeutic approach. However, limited research exists on combining cisplatin with CSF1/CSF1R immunotherapy in Head and Neck Squamous Cell Carcinoma. Furthermore, few studies have investigated concurrent immunotherapeutic strategies to mitigate cisplatin-induced ototoxicity.Developing otoprotective agents that simultaneously reduce cisplatin resistance and enhance therapeutic efficacy holds significant implications for future treatment modalities. In this investigation, we evaluated the safety and efficacy profile of CSF1R inhibitor (PLX3397). Our findings demonstrate that PLX3397 confers otoprotection in cisplatin-induced ototoxicity through cochlear macrophage depletion, synergizes with cisplatin inhibited tumor cell survival, migration, and invasion in vitro. Additionally, it significantly suppressed xenograft tumor lesion growth and angiogenesis in zebrafish models while modulating the polarization state of tumor-associated macrophages in vitro and inducing tumor immune activation. Our findings suggest that PLX3397 represents a promising immunotherapeutic agent, and its combination with cisplatin may constitute a novel therapeutic strategy for attenuating cisplatin-induced ototoxicity while synergistically enhancing immunotherapy for Head and Neck Squamous Cell Carcinoma.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaotong Huang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Moyang Li
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Weijian Zhang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
2
|
Zeng L, Cai Z, Liu J, Zhao K, Liang F, Sun T, Li Z, Liu R. miR-32533 Reduces Cognitive Impairment and Amyloid-β Overload by Targeting CREB5-Mediated Signaling Pathways in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409986. [PMID: 39840513 PMCID: PMC11905094 DOI: 10.1002/advs.202409986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/20/2024] [Indexed: 01/23/2025]
Abstract
MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored. Bioinformatics and confirmatory experiments revealed that miR-32533 had a novel 23-base sequence with minimal coding potential, functioning within the Drosha ribonuclease III (Drosha)/Dicer 1, ribonuclease III (Dicer)-dependent canonical pathway and identifiable via northern blot. miR-32533 was abundantly brain-distributed and downregulated in diverse AD-related models, including APP/PS1 and five familial AD (5×FAD) mouse brains and AD patient plasma. Overexpression or inhibition of miR-32533 led to improvements or exacerbations in cognitive dysfunction, respectively, by modulating Aβ production, apoptosis, oxidation, and neuroinflammation through targeting cAMP-responsive element binding protein 5 (CREB5), which interacted with α disintegrin and metalloproteinase 10 (ADAM10), beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), and presenilin 1 (PS1) promoters, thereby enhancing Aβ production through BACE1 and PS1 upregulation while suppressing non-amyloidogenic amyloid precursor protein (APP) processing via ADAM10 downregulation. Furthermore, modulation of the miR-32533/CREB5 axis ameliorated or worsened cognitive impairment by inhibiting or amplifying Aβ overproduction through the BACE1-involved amyloidogenic and ADAM10-involved non-amyloidogenic pathways. Overall, the findings suggest miR-32533 as a regulator of Aβ metabolism, oxidative stress, and neuroinflammation, establishing the miR-32533/CREB5 signaling pathways as potential therapeutic targets for combating Aβ accumulation and cognitive deficits in AD.
Collapse
Affiliation(s)
- Li Zeng
- Institute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| | - Zhongdi Cai
- Institute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| | - Jianghong Liu
- Department of NeurologyXuan Wu HospitalCapital Medical UniversityBeijing100053P.R. China
| | - Kaiyue Zhao
- Institute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| | - Furu Liang
- Department of NeurologyBaotou Central HospitalInner Mongolia014040P. R. China
| | - Ting Sun
- Institute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| | - Zhuorong Li
- Institute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| | - Rui Liu
- Institute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| |
Collapse
|
3
|
Wang A, Yan S, Liu J, Chen X, Hu M, Du X, Jiang W, Pan Z, Fan L, Sun G. Endoplasmic reticulum stress-related super enhancer promotes epithelial-mesenchymal transformation in hepatocellular carcinoma through CREB5 mediated activation of TNC. Cell Death Dis 2025; 16:73. [PMID: 39915455 PMCID: PMC11802765 DOI: 10.1038/s41419-025-07356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025]
Abstract
Super-enhancers (SEs) are associated with key genes that control cellular state and cell identity. Endoplasmic reticulum stress (ERS) regulates epithelial-mesenchymal transformation (EMT). However, whether SEs are involved in ERS-related activation of EMT in hepatocellular carcinoma (HCC) is unknown. In this study, we identified 17 ERS-related SEs by comparing ERS-HCC cells with untreated control cells using ChIP-seq and RNA-seq. CRISPR-Cas9 and RT-qPCR identified CAMP responsive element binding protein 5 (CREB5) as a key target of ERS-related SE. Analyses of TCGA datasets and tissue arrays showed that CREB5 mRNA and protein expression levels were higher in liver cancer tissues than in paired normal tissues. In addition, overexpression of CREB5 was associated with poor prognosis and an aggressive phenotype in patients with HCC. We also found that activation of ERS enhanced the expression of CREB5, and upregulation of CREB5 significantly increased cell proliferation, migration, and invasion, and promoted EMT, but inhibited apoptosis. More importantly, ERS activation increased the expression of several EMT markers by modulating the expression of CREB5. Mechanistically, CREB5 upregulates the transcription of tenascin-C (TNC) by directly binding to its promoter region, thereby promoting EMT in liver cancer cells. In summary, our findings suggest that ERS activation promotes EMT in liver cancer cells via SE-mediated upregulation of the CREB5/TNC pathway. This result provides a new direction for uncovering how ERS regulates EMT and a foundation for preventing the progression of EMT in HCC.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Sitong Yan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiatao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiang Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengyao Hu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Weijia Jiang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhipeng Pan
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lulu Fan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
4
|
Yang B, Jue XY, Luo SF, Tan ZB, Yang LN, Feng YT, Tan YZ, Liu B, Zhang JZ, Deng B, Wu WW, Zhang SW. Ilexgenin A Alleviates Myocardial Ferroptosis in Response to Ischemia Reperfusion Injury via the SIRT1 Pathway. Phytother Res 2025; 39:938-956. [PMID: 39698933 DOI: 10.1002/ptr.8414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Myocardial ischemia-reperfusion (I/R) injury has emerged as an increasingly serious cardiovascular health concern worldwide, with ferroptosis playing a pivotal role as the underlying pathogenic process. This study aimed to investigate the pharmacological effect and mechanism of Ilexgenin A on cardiomyocyte ferroptosis induced by myocardial I/R injury. In vivo, we established a murine anterior descending artery ligation/recanalization model to evaluate the cardioprotective effect of Ilexgenin A. Bioinformatics analysis, molecular docking, and Surface Plasmon Resonance imaging were conducted to predict the pharmacological targets of Ilexgenin A. In vitro experiments, the neonatal rat cardiomyocytes (NRCMs) were utilized to further explore the mechanism of Ilexgenin A in inhibiting ferroptosis using chemiluminescence and immunofluorescence staining, electron microscopy, biochemical assay, RT-qPCR, western blotting, and so on. The results showed that Ilexgenin A protected against cardiac dysfunction, ameliorated myocardial ferroptosis and mitochondrial damage induced by murine myocardial I/R injury via the silence information regulator 1 (SIRT1) pathway, the trend was consistently observed in NRCMs. Additionally, the SIRT1 knockdown by siRNA delivery partially abrogated the beneficial effects of Ilexgenin A on ameliorating mitochondrial damage, and then aggravated erastin-induced ferroptosis in NRCMs. Overall, Our research demonstrated that the inhibition of ferroptosis via the SIRT1 pathway was one of the mechanisms by which Ilexgenin A exerted cardioprotective effect.
Collapse
Affiliation(s)
- Bo Yang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Yu Jue
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shang-Fei Luo
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhang-Bin Tan
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li-Ning Yang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yun-Ting Feng
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yong-Zhen Tan
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Liu
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing-Zhi Zhang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bo Deng
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei-Wei Wu
- Department of Rehabilitation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuang-Wei Zhang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Yang D, Chen H, Zhou Z, Guo J. ANXA5 predicts prognosis and immune response and mediates proliferation and migration in head and neck squamous cell carcinoma. Gene 2024; 931:148867. [PMID: 39168258 DOI: 10.1016/j.gene.2024.148867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a common malignancy that often develops unnoticed. Typically, these tumors are identified at advanced stages, resulting in a relatively low chance of successful treatment. Anoikis serves as a natural defense against the spread of tumor cells, meaning circumventing anoikis can effectively inhibit tumor metastasis. Nonetheless, studies focusing on anoikis in the context of HNSCC remain scarce. METHODS Anoikis-related genes (ARGs) were identified by using the GeneCards and Harmonizome databases. Expression data of these genes and relevant clinical features were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A LASSO regression and a prognostic risk score model were developed to determine their prognostic significance. The analysis included the use of the CIBERSORT algorithm to quantify immune and stromal cell presence. Furthermore, in vitro and in vivo, we confirmed the expression and functional roles of proteins and mRNA of genes independently predictive of prognosis. RESULTS The study identified eight genes linked to prognosis (ANXA5, BAK1, CDKN2A, PPARG, CCR7, MAPK11, CRYAB, CRYBA1) and developed a prognostic model that effectively forecasts the survival outcomes for patients with HNSCC. A higher survival likelihood is associated with lower risk scores. In addition, a significant relationship was found between immune and risk score, and ANXA5 deletion promoted the killing of HNSCC cells by activated CD8+ T cells. During the screening process, 65 different chemotherapeutic drugs were found to have significant differences in IC50 values when comparing high- and low-risk categories. ANXA5 emerged as a gene with independent prognostic significance, exhibiting notably elevated protein and mRNA levels in HNSCC tissue compared to non-tumorous tissue. The suppression of ANXA5 gene activity resulted in a substantial decrease in both the growth and mobility of HNSCC cells. Animal model experiments demonstrated that inhibiting ANXA5 suppressed HNSCC growth and migration in vivo. CONCLUSION Through bioinformatics, a prognostic risk model of high precision was developed, offering valuable insights into the survival rates and immune responses in patients with HNSCC. ANXA5 is highlighted as a significant prognostic factor among the identified genes, indicating its promise as a potential therapeutic target for those with HNSCC.
Collapse
Affiliation(s)
- Donghui Yang
- Department of Otorhinolaryngology, Gaozhou People's Hospital, Gaozhou, China.
| | - Huikuan Chen
- Department of Otorhinolaryngology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zheng Zhou
- Department of Otolaryngology Head and Neck Surgery, Hunan Children's Hospital, Changsha, China
| | - Jinfei Guo
- Department of Otorhinolaryngology, Gaozhou People's Hospital, Gaozhou, China
| |
Collapse
|
6
|
de Bakker T, Maes A, Dragan T, Martinive P, Penninckx S, Van Gestel D. Strategies to Overcome Intrinsic and Acquired Resistance to Chemoradiotherapy in Head and Neck Cancer. Cells 2024; 14:18. [PMID: 39791719 PMCID: PMC11719474 DOI: 10.3390/cells14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Definitive chemoradiotherapy (CRT) is a cornerstone of treatment for locoregionally advanced head and neck cancer (HNC). Research is ongoing on how to improve the tumor response to treatment and limit normal tissue toxicity. A major limitation in that regard is the growing occurrence of intrinsic or acquired treatment resistance in advanced cases. In this review, we will discuss how overexpression of efflux pumps, perturbation of apoptosis-related factors, increased expression of antioxidants, glucose metabolism, metallotheionein expression, increased DNA repair, cancer stem cells, epithelial-mesenchymal transition, non-coding RNA and the tumour microenvironment contribute towards resistance of HNC to chemotherapy and/or radiotherapy. These mechanisms have been investigated for years and been exploited for therapeutic gain in resistant patients, paving the way to the development of new promising drugs. Since in vitro studies on resistance requires a suitable model, we will also summarize published techniques and treatment schedules that have been shown to generate acquired resistance to chemo- and/or radiotherapy that most closely mimics the clinical scenario.
Collapse
Affiliation(s)
- Tycho de Bakker
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Anouk Maes
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Tatiana Dragan
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Philippe Martinive
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Sébastien Penninckx
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| |
Collapse
|
7
|
Liu L, Zou C, Shen J, Huang R, Zhang F, Du Y, Luo X, Yang A, Zhang J, Guan Y, Yan X. MUL1 identified as mitochondria-linked biomarker promoting cisplatin resistance in OC cells. Gene 2024; 930:148841. [PMID: 39134101 DOI: 10.1016/j.gene.2024.148841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Ovarian cancer (OC) ranks among the prevalent tumors affecting the female reproductive system. The aim of this study was to evaluate mitochondria-associated platinum resistance genes using organoid models. Univariate Cox regression, LASSO and multivariate Cox regression analyses were performed on The Cancer Genome Atlas (TCGA) database to construct 2-gene prognostic signature (MUL1 and SSBP1), and GSE26712 dataset was used for external validation. In addition, the relationship between MUL1 and platinum resistance was examined by organoid culture, lentiviral transduction, CCK8 assay, and Western blot. The results showed that patients in the high-risk group exhibited significantly worse OS (P = 0.002, P = 0.017). Drug sensitivity analysis revealed that platinum resistance increased with the upregulation of MUL1 expression (Cor = 0.5154, P = 0.02). Our experimental findings demonstrated that knockout of the MUL1 gene significantly increased apoptosis and enhanced the sensitivity of the OC cell line A2780 to cisplatin. Through this study, we have provided strong evidence for further research on prognostic risk factors and individualized treatment in OC patients, and provided new insights into addressing platinum resistance in OC.
Collapse
Affiliation(s)
- Lixiao Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Chengyang Zou
- The Affiliated Central Hospital of Lishui, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui 323000, China.
| | - Jingtian Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Rong Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Fubin Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Yongming Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Xishao Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Aiwu Yang
- Department of Obstetrics and Gynecology, The Wenzhou People's Hospital, Wenzhou, Zhejiang, China.
| | - Jinsan Zhang
- Department of Medical Research Center and the Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yutao Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Xiaojian Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
8
|
Tong T, Zhai PS, Qin X, Zhang Z, Li CW, Guo HY, Ma HL. Nuclear TOP1MT Confers Cisplatin Resistance via Pseudogene in HNSCC. J Dent Res 2024; 103:1238-1248. [PMID: 39382100 DOI: 10.1177/00220345241272017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Cisplatin resistance is one of the major causes of treatment failure in head and neck squamous cell carcinoma (HNSCC). There is an urgent need to uncover the underlying mechanism for developing effective treatment strategies. A quantitative proteomics assay was used to identify differential proteins in cisplatin-resistant cells. Mitochondrial topoisomerase I (TOP1MT) localization was determined using laser confocal microscopy and nucleocytoplasmic separation assay. Chromatin immunoprecipitation sequencing, dual-luciferase reporter assay, and RNA immunoprecipitation were used to identify the interaction between pseudogenes, miRNAs, and real genes. In vivo experiments verified the interaction between TOP1MT and pseudogenes on cisplatin resistance. TOP1MT was identified as a driving factor of cisplatin resistance in vitro, in vivo, and in HNSCC patients. Moreover, TOP1MT exceptionally translocated to the nucleus in cisplatin-resistant HNSCC cells in a signal peptide-dependent manner. Nuclear TOP1MT (nTOP1MT) transcriptionally regulated the mitochondrial functional pseudogene MTATP6P1, which bound to miR-137 and miR-491-5p as a competing endogenous RNA (ceRNA) and promoted the expression of MTATP6. An increase in MTATP6 enhanced mitochondrial oxidative phosphorylation (OXPHOS), which conferred cisplatin resistance in HNSCC. Our findings revealed that nTOP1MT transcriptionally activated MTAPT6P1 and increased MTATP6 expression via ceRNA, which facilitated OXPHOS and cisplatin resistance. These results provide novel insight for overcoming cisplatin resistance in HNSCC.
Collapse
Affiliation(s)
- T Tong
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine, PR China
- College of Stomatology, Shanghai Jiao Tong University, PR China
- National Center for Stomatology, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai, PR China
- Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital, Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, PR China
| | - P S Zhai
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine, PR China
- College of Stomatology, Shanghai Jiao Tong University, PR China
- National Center for Stomatology, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai, PR China
| | - X Qin
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine, PR China
- College of Stomatology, Shanghai Jiao Tong University, PR China
- National Center for Stomatology, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai, PR China
| | - Z Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine, PR China
- College of Stomatology, Shanghai Jiao Tong University, PR China
- National Center for Stomatology, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai, PR China
| | - C W Li
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine, PR China
- College of Stomatology, Shanghai Jiao Tong University, PR China
- National Center for Stomatology, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai, PR China
| | - H Y Guo
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - H L Ma
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine, PR China
- College of Stomatology, Shanghai Jiao Tong University, PR China
- National Center for Stomatology, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai, PR China
| |
Collapse
|
9
|
Alehashem M, Alcaraz AJ, Hogan N, Weber L, Siciliano SD, Hecker M. Linking pesticide exposure to neurodegenerative diseases: An in vitro investigation with human neuroblastoma cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173041. [PMID: 38723972 DOI: 10.1016/j.scitotenv.2024.173041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Although many organochlorine pesticides (OCPs) have been banned or restricted because of their persistence and linkage to neurodegenerative diseases, there is evidence of continued human exposure. In contrast, registered herbicides are reported to have a moderate to low level of toxicity; however, there is little information regarding their toxicity to humans or their combined effects with OCPs. This study aimed to characterize the mechanism of toxicity of banned OCP insecticides (aldrin, dieldrin, heptachlor, and lindane) and registered herbicides (trifluralin, triallate, and clopyralid) detected at a legacy contaminated pesticide manufacturing and packing site using SH-SY5Y cells. Cell viability, LDH release, production of reactive oxygen species (ROS), and caspase 3/7 activity were evaluated following 24 h of exposure to the biocides. In addition, RNASeq was conducted at sublethal concentrations to investigate potential mechanisms involved in cellular toxicity. Our findings suggested that aldrin and heptachlor were the most toxic, while dieldrin, lindane, trifluralin, and triallate exhibited moderate toxicity, and clopyralid was not toxic to SH-SY5Y cells. While aldrin and heptachlor induced their toxicity through damage to the cell membrane, the toxicity of dieldrin was partially attributed to necrosis and apoptosis. Moreover, toxic effects of lindane, trifluralin, and triallate, at least partially, were associated with ROS generation. Gene expression profiles suggested that decreased cell viability induced by most of the tested biocides was related to inhibited cell proliferation. The dysregulation of genes encoding for proteins with anti-apoptotic properties also supported the absence of caspase activation. Identified enriched terms showed that OCP toxicity in SH-SY5Y cells was mediated through pathways associated with the pathogenesis of neurodegenerative diseases. In conclusion, this study provides a basis for elucidating the molecular mechanisms of pesticide-induced neurotoxicity. Moreover, it introduced SH-SY5Y cells as a relevant in vitro model for investigating the neurotoxicity of pesticides in humans.
Collapse
Affiliation(s)
- M Alehashem
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - A J Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - N Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Animal Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - L Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - S D Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - M Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada.
| |
Collapse
|
10
|
Wu Z, Wang X, Wu H, Du S, Wang Z, Xie S, Zhang R, Chen G, Chen H. Identification of CREB5 as a prognostic and immunotherapeutic biomarker in glioma through multi-omics pan-cancer analysis. Comput Biol Med 2024; 173:108307. [PMID: 38547657 DOI: 10.1016/j.compbiomed.2024.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND The functional relevance of cyclic adenosine monophosphate (cAMP)-response element-binding protein 5 (CREB5) in cancers remains elusive, despite its significance as a member of the CREB family. The current research aims to explore the role of CREB5 in multiple cancers. METHODS Pan-cancer analysis was performed to explore the expression patterns, prognostic value, mutational landscape as well as single-cell omic, immunologic, and drug sensitivity profiles of CREB5. Furthermore, we incorporated five distinct machine learning algorithms and determined that the least absolute shrinkage and selection operator-COX (LASSO-COX) algorithm, which exhibited the highest C index, was the optimal selection. Subsequently, we constructed a prognostic model centered around CREB5-associated genes. To elucidate the biological function of CREB5 in glioma cells, several assays including cell counting kit-8 (CCK-8), wound healing, transwell, flow cytometric were performed. RESULTS CREB5 was overexpressed in pan-cancer and was linked to unfavorable prognosis, particularly in glioma. Furthermore, genetic alterations were determined in various types of cancer, and modifications in the CREB5 gene were linked to the prognosis. The single-cell omics and enrichment analyses showed that CREB5 was predominantly expressed in malignant glioma cells and was critically involved in the regulation of various oncogenic processes. Elevated levels of CREB5 were strongly linked with the infiltration of cancer-associated fibroblasts and the Th1 subset of CD4+ T cells. The validated CREB5-associated prognostic model reliably predicted the prognosis and drug response of glioma patients. The in vitro experiments showed that CREB5 promoted glioma cell proliferation, invasion, migration, and gap phase 2/mitotic (G2/M) phase arrest and recruited M2 macrophages into glioma cells. CONCLUSION CREB5 has the potential to act as an oncogene and a biological marker in multiple cancers, particularly glioma.
Collapse
Affiliation(s)
- Zhixuan Wu
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Department of Burns and Skin Repair Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, 325200, Zhejiang, China; The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Xiaowu Wang
- Department of Burns and Skin Repair Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, 325200, Zhejiang, China
| | - Haodong Wu
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shengwei Du
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ziqiong Wang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shicheng Xie
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Rongrong Zhang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Guorong Chen
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China.
| | - Hanbin Chen
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
11
|
Li J, Ma R, Lv JL, Ren YS, Tan YJ, Wang HM, Wang ZE, Wang BS, Yu JN, Wang YL, Tian J, Zheng QS. Telocinobufagin, a PLK1 suppressor that inhibits tumor growth and metastasis by modulating CDC25c and CTCF in HNSCC cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155440. [PMID: 38452691 DOI: 10.1016/j.phymed.2024.155440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND The high metastasis and mortality rates of head and neck squamous cell carcinoma (HNSCC) urgently require new treatment targets and drugs. A steroidal component of ChanSu, telocinobufagin (TBG), was verified to have anti-cancer effects in various tumors, but its activity and mechanism in anti-HNSCC were still unknown. PURPOSE This study tried to demonstrate the anti-tumor effect of TBG on HNSCC and verify its potential mechanism. METHODS The effect of TBG on cell proliferation and metastasis were performed and the TBG changed genes were detected by RNA-seq analysis in HNSCC cells. The GSEA and PPI analysis were used to identify the pathways targeted for TBG-regulated genes. Meanwhile, the mechanism of TBG on anti-proliferative and anti-metastasis were investigated in vitro and in vivo. RESULTS The in vitro and in vivo experiments confirmed that TBG has favorable anti-tumor effects by induced G2/M phase arrest and suppressed metastasis in HNSCC cells. Further RNA-seq analysis demonstrated the genes regulated by TBG were enriched at the G2/M checkpoint and PLK1 signaling pathway. Then, the bioinformatic analysis of clinical data found that high expressed PLK1 were closely associated with poor overall survival in HNSCC patients. Furthermore, PLK1 directly and indirectly modulated G2/M phase and metastasis (by regulated CTCF) in HNSCC cells, simultaneously. TBG significantly inhibited the protein levels of PLK1 in both phosphorylated and non-phosphorylated forms and then, in one way, inactivated PLK1 failed to activate G2/M phase-related proteins (including CDK1, CDC25c, and cyclin B1). In another way, be inhibited PLK1 unable promote the nuclear translocation of CTCF and thus suppressed HNSC cell metastasis. In contrast, the anti-proliferative and anti-metastasis effects of TBG on HNSCC cell were vanished when cells high-expressed PLK1. CONCLUSION The present study verified that PLK1 mediated TBG induced anti-tumor effect by modulated G2/M phase and metastasis in HNSCC cells.
Collapse
Affiliation(s)
- Jie Li
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, China
| | - Ru Ma
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, China; Department of Oral and Maxillofacial Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264003, China
| | - Jun-Lin Lv
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, China
| | - Yu-Shan Ren
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, China; Department of Immunology, Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Yu-Jun Tan
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, China
| | - Hao-Mai Wang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, China
| | - Zhui-En Wang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, China
| | - Bin-Sheng Wang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, China
| | - Jia-Ning Yu
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, China; Department of Thyroid & Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264003, China
| | - Yu-Liang Wang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, China; Department of Oral and Maxillofacial Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264003, China.
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Qiu-Sheng Zheng
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
12
|
Chen J, Zhang M, Aniagu S, Jiang Y, Chen T. PM 2.5 induces cardiac defects via AHR-SIRT1-PGC-1α mediated mitochondrial damage. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104393. [PMID: 38367920 DOI: 10.1016/j.etap.2024.104393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Recent evidence indicates that PM2.5 poses a risk for congenital heart diseases, but the mechanisms remain unclear. We hypothesized that AHR activated by PM2.5 might cause mitochondrial damage via PGC-1α dysregulation, leading to heart defects. We initially discovered that the PGC-1α activator ZLN005 counteracted cardiac defects in zebrafish larvae exposed to EOM (extractable organic matter) from PM2.5. Moreover, ZLN005 attenuated EOM-induced PGC-1α downregulation, mitochondrial dysfunction/biogenesis, and apoptosis. EOM exposure not only decreased PGC-1α expression levels, but suppressed its activity via deacetylation, and SIRT1 activity is required during both processes. We then found that SIRT1 expression levels and NAD+/NADH ratio were reduced in an AHR-dependent way. We also demonstrated that AHR directly suppressed the transcription of SIRT1 while promoted the transcription of TiPARP which consumed NAD+. In conclusion, our study suggests that PM2.5 induces mitochondrial damage and heart defects via AHR/SIRT1/PGC-1α signal pathway.
Collapse
Affiliation(s)
- Jin Chen
- Suzhou medical college, Soochow University, Suzhou, China; MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Mingxuan Zhang
- Suzhou medical college, Soochow University, Suzhou, China; MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin TX, USA
| | - Yan Jiang
- Suzhou medical college, Soochow University, Suzhou, China.
| | - Tao Chen
- Suzhou medical college, Soochow University, Suzhou, China; MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China.
| |
Collapse
|
13
|
Zou J. Site-specific delivery of cisplatin and paclitaxel mediated by liposomes: A promising approach in cancer chemotherapy. ENVIRONMENTAL RESEARCH 2023; 238:117111. [PMID: 37734579 DOI: 10.1016/j.envres.2023.117111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
The site-specific delivery of drugs, especially anti-cancer drugs has been an interesting field for researchers and the reason is low accumulation of cytotoxic drugs in cancer cells. Although combination cancer therapy has been beneficial in providing cancer drug sensitivity, targeted delivery of drugs appears to be more efficient. One of the safe, biocompatible and efficient nano-scale delivery systems in anti-cancer drug delivery is liposomes. Their particle size is small and they have other properties such as adjustable physico-chemical properties, ease of functionalization and high entrapment efficiency. Cisplatin is a chemotherapy drug with clinical approval in patients, but its accumulation in cancer cells is low due to lack of targeted delivery and repeated administration results in resistance development. Gene and drug co-administration along with cisplatin/paclitaxel have resulted in increased sensitivity in tumor cells, but there is still space for more progress in cancer therapy. The delivery of cisplatin/paclitaxel by liposomes increases accumulation of drug in tumor cells and impairs activity of efflux pumps in promoting cytotoxicity. Moreover, phototherapy along with cisplatin/paclitaxel delivery can increase potential in tumor suppression. Smart nanoparticles including pH-sensitive nanoparticles provide site-specific delivery of cisplatin/paclitaxel. The functionalization of liposomes can be performed by ligands to increase targetability towards tumor cells in mediating site-specific delivery of cisplatin/paclitaxel. Finally, liposomes can mediate co-delivery of cisplatin/paclitaxel with drugs or genes in potentiating tumor suppression. Since drug resistance has caused therapy failure in cancer patients, and cisplatin/paclitaxel are among popular chemotherapy drugs, delivery of these drugs mediates targeted suppression of cancers and prevents development of drug resistance. Because of biocompatibility and safety of liposomes, they are currently used in clinical trials for treatment of cancer patients. In future, the optimal dose of using liposomes and optimal concentration of loading cisplatin/paclitaxel on liposomal nanocarriers in clinical trials should be determined.
Collapse
Affiliation(s)
- Jianyong Zou
- Department of Thoracic Surgery, The first Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, PR China.
| |
Collapse
|
14
|
Lou F, Zhang M. RFC2 promotes aerobic glycolysis and progression of colorectal cancer. BMC Gastroenterol 2023; 23:353. [PMID: 37821801 PMCID: PMC10566032 DOI: 10.1186/s12876-023-02984-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Replication factor C subunit 2 (RFC2) participates in the growth and metastasis of various malignancies. Our study investigated the roles of RFC2 in colorectal cancer (CRC). RESULTS RFC2 expression was upregulated in CRC tissues and cells. High RFC2 expression was associated with poor prognosis. Knockdown RFC2 inhibited proliferation, induced apoptosis, and suppressed migration and invasion of CRC cells. CREB5 was a transcription factor of RFC2, and CREB5 knockdown suppressed RFC2 expression. Furthermore, RFC2 promoted aerobic glycolysis and MET/PI3K/AKT/mTOR pathway. CONCLUSION RFC2 promoted the progression of CRC cells via activating aerobic glycolysis and the MET/PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Fuchen Lou
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, Shandong, 250033, P.R. China
| | - Mingbao Zhang
- Department of Gastroenterology, The Second Hospital of Shandong University, Beiyuan Street 247,Tianqiao District, Jinan, Shandong, 250033, P.R. China.
| |
Collapse
|
15
|
Tang H, Guo X, Yu W, Gao J, Zhu X, Huang Z, Ou W, Zhang H, Chen L, Chen J. Ruthenium(II) complexes as mitochondrial inhibitors of topoisomerase induced A549 cell apoptosis. J Inorg Biochem 2023; 246:112295. [PMID: 37348172 DOI: 10.1016/j.jinorgbio.2023.112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/27/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Two new ruthenium(II) complexes [Ru(dip)2(PPβC)]PF6 (Ru1, dip = 4,7-diphenyl-1,10-phenanthroline, PPβC = N-(1,10-phenanthrolin-5-yl)-1-phenyl-9H-pyrido[3,4-b]indole-3-carboxamide) and [Ru(phen)2(PPβC)]PF6 (Ru2, phen = 1, 10-phenanthroline) with β-carboline derivative PPβC as the primary ligand, were designed and synthesized. Ru1 and Ru2 displayed higher antiproliferative activity than cisplatin against the test cancer cells, with IC50 values ranging from 0.5 to 3.6 μM. Moreover, Ru1 and Ru2 preferentially accumulated in mitochondria and caused a series of changes in mitochondrial events, including the depolarization of mitochondrial membrane potential, the damage of mitochondrial DNA, the depletion of cellular ATP, and the elevation of intracellular reactive oxygen species levels. Then, it induced caspase-3/7-mediated A549 cell apoptosis. More importantly, both complexes could act as topoisomerase I catalytic inhibitors to inhibit mitochondrial DNA synthesis. Accordingly, the developed Ru(II) complexes hold great potential to be developed as novel therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Hong Tang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China
| | - Xinhua Guo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China
| | - Wenzhu Yu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China
| | - Jie Gao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China
| | - Xufeng Zhu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China
| | - Zunnan Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China
| | - Wenhui Ou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China
| | - Hanfu Zhang
- School of Molecular Science, The University of Western Australia, Perth 6009, WA, Australia
| | - Lanmei Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China.
| | - Jincan Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China; Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China.
| |
Collapse
|
16
|
Hou Z, Lin J, Ma Y, Fang H, Wu Y, Chen Z, Lin X, Lu F, Wen S, Yu X, Huang H, Pan Y. Single-cell RNA sequencing revealed subclonal heterogeneity and gene signatures of gemcitabine sensitivity in pancreatic cancer. Front Pharmacol 2023; 14:1193791. [PMID: 37324492 PMCID: PMC10267405 DOI: 10.3389/fphar.2023.1193791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Resistance to gemcitabine is common and critically limits its therapeutic efficacy in pancreatic ductal adenocarcinoma (PDAC). Methods: We constructed 17 patient-derived xenograft (PDX) models from PDAC patient samples and identified the most notable responder to gemcitabine by screening the PDX sets in vivo. To analyze tumor evolution and microenvironmental changes pre- and post-chemotherapy, single-cell RNA sequencing (scRNA-seq) was performed. Results: ScRNA-seq revealed that gemcitabine promoted the expansion of subclones associated with drug resistance and recruited macrophages related to tumor progression and metastasis. We further investigated the particular drug-resistant subclone and established a gemcitabine sensitivity gene panel (GSGP) (SLC46A1, PCSK1N, KRT7, CAV2, and LDHA), dividing PDAC patients into two groups to predict the overall survival (OS) in The Cancer Genome Atlas (TCGA) training dataset. The signature was successfully validated in three independent datasets. We also found that 5-GSGP predicted the sensitivity to gemcitabine in PDAC patients in the TCGA training dataset who were treated with gemcitabine. Discussion and conclusion: Our study provides new insight into the natural selection of tumor cell subclones and remodeling of tumor microenvironment (TME) cells induced by gemcitabine. We revealed a specific drug resistance subclone, and based on the characteristics of this subclone, we constructed a GSGP that can robustly predict gemcitabine sensitivity and prognosis in pancreatic cancer, which provides a theoretical basis for individualized clinical treatment.
Collapse
Affiliation(s)
- Zelin Hou
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiajing Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuan Ma
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Haizhong Fang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuwei Wu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhijiang Chen
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xianchao Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fengchun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shi Wen
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | | | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yu Pan
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
17
|
Lin CL, Yu CI, Lee TH, Chuang JMJ, Han KF, Lin CS, Huang WP, Chen JYF, Chen CY, Lin MY, Lee CH. Plumbagin induces the apoptosis of drug-resistant oral cancer in vitro and in vivo through ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154655. [PMID: 36689858 DOI: 10.1016/j.phymed.2023.154655] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Oral cancer is one of the leading causes of cancer-related deaths worldwide. Chemotherapy is widely used in the treatment of oral cancer, but its clinical efficacy is limited by drug resistance. Hence, novel compounds capable of overcoming drug-resistance are urgently needed. PURPOSE Plumbagin (PG), a natural compound isolated from Plumbago zeylanica L, has been used to treat various cancers. In this study, we investigated the anticancer effects of PG on drug-resistant oral cancer (CR-SAS) cells, as well as the underlying mechanism. METHODS MTT assays were used to evaluate the effect of PG on the viability of CR-SAS cells. Apoptosis and reactive oxygen species (ROS) production by the cells were determined using flow cytometry. Protein expression levels were detected by western blotting. RESULTS The results show that PG reduces the viability and causes the apoptosis of CR-SAS cells. PG is able to induce intracellular and mitochondrial ROS generation that leads to mitochondrial dysfunction. Furthermore, endoplasmic reticulum (ER) stress was triggered in PG-treated CR-SAS cells. The inhibition of ROS using N-acetylcysteine (NAC) abrogated the PG-induced ER stress and apoptosis, as well as the reduction in cell viability. Meanwhile, similar results were observed both in zebrafish and in murine models of drug-resistant oral cancer. CONCLUSION Our results indicate that PG induces the apoptosis of CR-SAS cells via the ROS-mediated ER stress pathway and mitochondrial dysfunction. It will be interesting to develop the natural compound PG for the treatment of drug-resistant oral cancer.
Collapse
Affiliation(s)
- Chien-Liang Lin
- Department of Nursing, School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan; Department of Radiation Oncology, Yuan's General Hospital, Kaohsiung 802635, Taiwan
| | - Chung-I Yu
- Department of Orthopedics, Department of Surgery, Chi Mei Medical Center, Liouying, Tainan 736402, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 106319, Taiwan
| | - Jimmy Ming-Jung Chuang
- Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| | - Kuang-Fen Han
- Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan 736302, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Wan-Ping Huang
- Department of Medical Research, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Jeff Yi-Fu Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Chung-Yi Chen
- Department of Nutrition and Health Science, School of Medical and Health Sciences, Fooyin University, Kaohsiung 831301, Taiwan
| | - Mei-Ying Lin
- Community Health Promotion Center, Kaohsiung Municipal Ci-Jin Hospital, Kaohsiung 805004, Taiwan
| | - Chien-Hsing Lee
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University; Department of Medical Research, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 807378, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan.
| |
Collapse
|
18
|
Xue Y, Jiang X, Wang J, Zong Y, Yuan Z, Miao S, Mao X. Effect of regulatory cell death on the occurrence and development of head and neck squamous cell carcinoma. Biomark Res 2023; 11:2. [PMID: 36600313 PMCID: PMC9814270 DOI: 10.1186/s40364-022-00433-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2023] Open
Abstract
Head and neck cancer is a malignant tumour with a high mortality rate characterized by late diagnosis, high recurrence and metastasis rates, and poor prognosis. Head and neck squamous cell carcinoma (HNSCC) is the most common type of head and neck cancer. Various factors are involved in the occurrence and development of HNSCC, including external inflammatory stimuli and oncogenic viral infections. In recent years, studies on the regulation of cell death have provided new insights into the biology and therapeutic response of HNSCC, such as apoptosis, necroptosis, pyroptosis, autophagy, ferroptosis, and recently the newly discovered cuproptosis. We explored how various cell deaths act as a unique defence mechanism against cancer emergence and how they can be exploited to inhibit tumorigenesis and progression, thus introducing regulatory cell death (RCD) as a novel strategy for tumour therapy. In contrast to accidental cell death, RCD is controlled by specific signal transduction pathways, including TP53 signalling, KRAS signalling, NOTCH signalling, hypoxia signalling, and metabolic reprogramming. In this review, we describe the molecular mechanisms of nonapoptotic RCD and its relationship to HNSCC and discuss the crosstalk between relevant signalling pathways in HNSCC cells. We also highlight novel approaches to tumour elimination through RCD.
Collapse
Affiliation(s)
- Yuting Xue
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xuejiao Jiang
- grid.24696.3f0000 0004 0369 153XBeijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Junrong Wang
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuxuan Zong
- Department of Breast Surgery, The First of hospital of Qiqihar, Qiqihar, China
| | - Zhennan Yuan
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Susheng Miao
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xionghui Mao
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|