1
|
Yu J, Luo SQ, Xiang WJ, Meng ZX, Wang Y, Ren JL, Zhao YJ, Fan RW, Niu S, Tian WX. Effect of Chicken AvBD11 on the Cytokines in the Erythrocytes of Chickens Infected with the Avian Influenza Virus of the Subtype H9N2. Animals (Basel) 2025; 15:1023. [PMID: 40218416 PMCID: PMC11987731 DOI: 10.3390/ani15071023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
(1) The aim of this study was to elucidate the role of the Gallus gallus avian β-defensin 11 (AvBD11) in the immune response induced by the avian influenza virus H9N2. (2) AvBD11 was expressed using E. coli, and the effects of different concentrations of AvBD11 on cytokine expression in the ex vivo and in vivo erythrocytes of chickens infected with the avian influenza subtype H9N2 were detected by using fluorescence quantification. (3) The results showed that cytokine expression varied among the test groups compared to the control group in the in vitro assay at 2, 6, and 10 h. Lipopolysaccharide induced TNF factor (LITAF) and Interferon-γ (IFN-γ) were significantly increased in the AvBD11 group with the addition of the final concentration of 15 μg/mL at 6 h. At 10 h, Interleukin-1β (IL-1β) and IFN-γ were both more significantly increased in the 15 and 10 μg/mL groups than in the H9N2 group alone. In the in vivo test, IFN-γ and Interleukin-10 (IL-10) were significantly increased in the high-dose group than in the H9N2 group at 3 d and 7 d. (4) In conclusion, the ability of AvBD11 to induce the expression of more cytokines by chicken erythrocytes in a short period of time suggests that it is not only an antimicrobial peptide but also a possible immunomodulator.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sheng Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (J.Y.); (S.-Q.L.); (Y.W.); (Y.-J.Z.); (R.-W.F.)
| | - Wen-Xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (J.Y.); (S.-Q.L.); (Y.W.); (Y.-J.Z.); (R.-W.F.)
| |
Collapse
|
2
|
Xu ZY, Yu Y, Fu SX, Ma JY, Li BB. Effects of high-level ghrelin on intestinal epithelial cell proliferation, nutrient transport and intestinal mucosal immune barrier in chickens. Br Poult Sci 2025:1-16. [PMID: 40116599 DOI: 10.1080/00071668.2025.2456582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/10/2025] [Indexed: 03/23/2025]
Abstract
1. Chicken ghrelin (GH) plays an important role in regulating growth hormone secretion, immunity and gastrointestinal motility. This study utilised haematoxylin-eosin staining, quantitative reverse transcription PCR and western blotting to examine the effects of high-level ghrelin on the proliferation of small intestinal epithelial cells, intestinal nutrient transport and the mucosal immune barrier in chicks.2. Eighty, 17-d-old layer type chicks were randomly divided into two groups: control (C treated with sterile phosphate buffer) and the ghrelin-treated group (GH; intraperitoneally injected with 0.5 nM GH per 100 g body weight). At 1, 3 and 5 d post-injection, six chicks from each group were randomly selected for sampling of the duodenum and ileum.3. Administering GH reduced the expression of proliferating cell nuclear antigen protein in the duodenum and leucine-rich repeat-containing G protein-coupled receptor 5 mRNA in both the duodenum and ileum. In addition, GH affected villus height and ratio of villus height to crypt (H/C) depth in these sections and fatty acid binding protein 6 expression in the ileum. The relative mRNA levels of oligopeptide transporter 1, solute carrier family 3 member 1, solute carrier family 1 member 1 and solute carrier family 5 member 1 were decreased by GH.4. Birds treated with GH had a decrease in duodenal intraepithelial lymphocytes, Paneth cells and ileal goblet cells. There was a reduction in mucin 2 mRNA in goblet cells and lysozyme C and phospholipaseA2 mRNA in Paneth cells. Additionally, the relative mRNA levels of avian β-defensin 1 (AvBD1), AvBD6 and AvBD7 in the duodenum and ileum decreased with GH administration.5. The GH inhibited proliferation of chicken duodenal epithelial cells and decreased surface area available for intestinal villus absorption. This affected the transport of intestinal amino acids, glucose and bile acids and impaired the function of the mucosal immune barrier in both the duodenum and ileum.
Collapse
Affiliation(s)
- Z-Y Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Y Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - S-X Fu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - J-Y Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - B-B Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
3
|
Gopakumar G, Coppo MJC, Diaz-Méndez A, Hartley CA, Devlin JM. Clinical assessment and transcriptome analysis of host immune responses in a vaccination-challenge study using a glycoprotein G deletion mutant vaccine strain of infectious laryngotracheitis virus. Front Immunol 2025; 15:1458218. [PMID: 39926602 PMCID: PMC11802539 DOI: 10.3389/fimmu.2024.1458218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/17/2024] [Indexed: 02/11/2025] Open
Abstract
A glycoprotein-G-deleted live-attenuated vaccine strain of the infectious laryngotracheitis virus (ILTV), ΔgG-ILTV, is safe and efficacious against ILTV challenge. In the current study, the transcriptome of peripheral blood mononuclear cells (PBMCs) of the ΔgG-ILTV-vaccinated group of specific-pathogen-free chickens were compared to those of the nonvaccinated group at 7 days post-vaccination. Tracheal transcriptomes after challenge with virulent ILTV were compared between groups of the non-vaccinated-challenged and the vaccinated-challenged as well as the non-vaccinated-challenged and the uninfected chickens at 4 to 5 days post-challenge. The clinical outcomes after challenge between these groups were also evaluated. Significant differences were observed in the tracheal transcriptome of the non-vaccinated-challenged birds compared to the other two groups. Enriched gene ontologies and pathways that indicated heightened immune responses and impairments to ciliary and neuronal functions, cell junction components, and potential damages to cartilaginous and extracellular components in the trachea of the non-vaccinated-challenged birds were consistent with their severe tracheal pathology compared to the other two groups. On the contrary, the absence of any difference in the tracheal transcriptome between the vaccinated-challenged and the uninfected birds were reflected by the preservation of tracheal mucosal integrity in both groups and mild infiltration of leukocytes in the vaccinated-challenged birds. The results from this study demonstrated that vaccination with ΔgG-ILTV prevented the changes in tracheal transcriptome induced during ILTV challenge, resulting in clinical protection. Additionally, these results also provide insights into the molecular mechanisms underlying the tracheal pathology induced by ILTV infection.
Collapse
Affiliation(s)
- Gayathri Gopakumar
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Mauricio J. C. Coppo
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
- Escuela de Medicina Veterinaria, Universidad Andrés Bello, Concepción, Chile
| | - Andrés Diaz-Méndez
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Carol A. Hartley
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Joanne M. Devlin
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
4
|
Liu GL, Qiao ML, Zhang HC, Xie CH, Cao XY, Zhou J, Yu J, Nie RH, Meng ZX, Song RQ, Wang Y, Ren JL, Zhao YJ, Sun JQ, Fan RW, Shang GJ, Niu S, Tian WX. Avian pathogenic Escherichia coli alters complement gene expression in chicken erythrocytes. Br Poult Sci 2025:1-8. [PMID: 39757946 DOI: 10.1080/00071668.2024.2435618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/05/2024] [Indexed: 01/07/2025]
Abstract
1. Avian Escherichia coli (E. coli) causes significant losses in livestock by inducing morbidity and mortality. Erythrocytes, the most abundant in blood, possess dual functions of oxygen transportation and immune regulation. In recent years, the interaction between erythrocytes and the complement system has gradually become a focal point of study. However, the transcription dynamics of the complement system in chicken erythrocytes post-E. coli invasion remains unclear.2. In this study, chicken erythrocytes and E. coli were co-cultured for 0.25-2 h to assess adhesion, analysed by indirect immunofluorescence (IIF) and scanning electron microscopy (SEM). Quantitative real-time PCR (qRT-PCR) examined differential expression of complement genes (CD93, C1q, C1s, C2, C3, C3AR1, C4, C4A, C5, C5AR1, C6, C7, C8G, CFI, MBL) in vitro using erythrocytes at 0.25-2 h and in vivo using chicks at 1, 3 and 7 d post-E. coli infection.3. E. coli adheres to chicken erythrocytes, as observed using IF and SEM. Gene expression analysis revealed early downregulation of C4, C4A, MBL and late upregulation of CD93, C1q, C1s, C3, C3AR1, C5AR1, C6, with C5, C7, C8G downregulated at 7 dpi. C2 expression varied at each time point.4. This study first showed E. coli adhering to erythrocytes, which activated complement genes rapidly. In vivo recovery from chickens with colibacillosis favours classical pathway activation, while lectin pathway may be inhibited, suggesting early immune down-regulation.
Collapse
Affiliation(s)
- G L Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - M L Qiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - H C Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - C H Xie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - X Y Cao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - J Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - J Yu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - R H Nie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Z X Meng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - R Q Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Y Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - J L Ren
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Y J Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - J Q Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - R W Fan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - G J Shang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - S Niu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - W X Tian
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| |
Collapse
|
5
|
van Dijk A, Guabiraba R, Bailleul G, Schouler C, Haagsman HP, Lalmanach AC. Evolutionary diversification of defensins and cathelicidins in birds and primates. Mol Immunol 2023; 157:53-69. [PMID: 36996595 DOI: 10.1016/j.molimm.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Divergent evolution for more than 310 million years has resulted in an avian immune system that is complex and more compact than that of primates, sharing much of its structure and functions. Not surprisingly, well conserved ancient host defense molecules, such as defensins and cathelicidins, have diversified over time. In this review, we describe how evolution influenced the host defense peptides repertoire, its distribution, and the relationship between structure and biological functions. Marked features of primate and avian HDPs are linked to species-specific characteristics, biological requirements, and environmental challenge.
Collapse
|
6
|
Zhou J, Qiao ML, Jahejo AR, Han XY, Wang P, Wang Y, Ren JL, Niu S, Zhao YJ, Zhang D, Bi YH, Wang QH, Si LL, Fan RW, Shang GJ, Tian WX. Effect of Avian Influenza Virus subtype H9N2 on the expression of complement-associated genes in chicken erythrocytes. Br Poult Sci 2023:1-9. [PMID: 36939295 DOI: 10.1080/00071668.2023.2191308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
The H9N2 subtype avian influenza virus can infect both chickens and humans. Previous studies have reported a role for erythrocytes in immunity. However, the role of H9N2 against chicken erythrocytes and the presence of complement-related genes in erythrocytes has not been studied. This research investigated the effect of H9N2 on complement-associated gene expression in chicken erythrocytes. The expression of complement-associated genes (C1s, C1q, C2, C3, C3ar1, C4, C4a, C5, C5ar1, C7, CD93 and CFD) was detected by reverse transcription-polymerase chain reaction (RT-PCR). Quantitative Real-Time PCR (qRT-PCR) was used to analyse the differential expression of complement-associated genes in chicken erythrocytes at 0 h, 2 h, 6 h and 10 h after the interaction between H9N2 virus and chicken erythrocytes in vitro and 3, 7 and 14 d after H9N2 virus nasal infection of chicks. Expression levels of C1q, C4, C1s, C2, C3, C5, C7 and CD93 were significantly up-regulated at 2 h and significantly down-regulated at 10 h. Gene expression levels of C1q, C3ar1, C4a, CFD and C5ar1 were seen to be different at each time point. The expression levels of C1q, C4, C1s, C2, C3, C5, C7, CFD, C3ar1, C4a and C5ar1 were significantly up-regulated at 7 d and the gene expression of levels of C3, CD93 and C5ar1 were seen to be different at each time point. The results confirmed that all the complement-associated genes were expressed in chicken erythrocytes and showed the H9N2 virus interaction with chicken erythrocytes and subsequent regulation of chicken erythrocyte complement-associated genes expression. This study reported, for the first time, the relationship between H9N2 and complement system of chicken erythrocytes, which will provide a foundation for further research into the prevention and control of H9N2 infection.
Collapse
Affiliation(s)
- J Zhou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - M L Qiao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - A R Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - X Y Han
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - P Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Y Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - J L Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - S Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Y J Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - D Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Y H Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Q H Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - L L Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - R W Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - G J Shang
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - W X Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| |
Collapse
|
7
|
Han L, Wu S, Zhang T, Peng W, Zhao M, Yue C, Wen W, Cai W, Li M, Wallny HJ, Avila DW, Mwangi W, Nair V, Ternette N, Guo Y, Zhao Y, Chai Y, Qi J, Liang H, Gao GF, Kaufman J, Liu WJ. A Wider and Deeper Peptide-Binding Groove for the Class I Molecules from B15 Compared with B19 Chickens Correlates with Relative Resistance to Marek's Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:668-680. [PMID: 36695776 PMCID: PMC7614295 DOI: 10.4049/jimmunol.2200211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023]
Abstract
The chicken MHC is known to confer decisive resistance or susceptibility to various economically important pathogens, including the iconic oncogenic herpesvirus that causes Marek's disease (MD). Only one classical class I gene, BF2, is expressed at a high level in chickens, so it was relatively easy to discern a hierarchy from well-expressed thermostable fastidious specialist alleles to promiscuous generalist alleles that are less stable and expressed less on the cell surface. The class I molecule BF2*1901 is better expressed and more thermostable than the closely related BF2*1501, but the peptide motif was not simpler as expected. In this study, we confirm for newly developed chicken lines that the chicken MHC haplotype B15 confers resistance to MD compared with B19. Using gas phase sequencing and immunopeptidomics, we find that BF2*1901 binds a greater variety of amino acids in some anchor positions than does BF2*1501. However, by x-ray crystallography, we find that the peptide-binding groove of BF2*1901 is narrower and shallower. Although the self-peptides that bound to BF2*1901 may appear more various than those of BF2*1501, the structures show that the wider and deeper peptide-binding groove of BF2*1501 allows stronger binding and thus more peptides overall, correlating with the expected hierarchies for expression level, thermostability, and MD resistance. Our study provides a reasonable explanation for greater promiscuity for BF2*1501 compared with BF2*1901, corresponding to the difference in resistance to MD.
Collapse
Affiliation(s)
- Lingxia Han
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- National Poultry Laboratory Animal Resource Center, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin 150069, China
| | - Shaolian Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Zhang
- Biosafety Level-3 Laboratory, Life Sciences Institute & Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi 530021, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Weiyu Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Min Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Can Yue
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanxin Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Wenbo Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Min Li
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | | | - David W. Avila
- The Basel Institute for Immunology, Basel CH4001, Switzerland
| | - William Mwangi
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Nicola Ternette
- Nuffield Department of Medicine, University of Oxford, Headington OX37BN, United Kingdom
| | - Yaxin Guo
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
| | - Yingze Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Liang
- Biosafety Level-3 Laboratory, Life Sciences Institute & Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
| | - Jim Kaufman
- The Basel Institute for Immunology, Basel CH4001, Switzerland
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
- Department of Veterinary Science, University of Cambridge, Cambridge CB3 0ES, United Kingdom
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - William J. Liu
- Biosafety Level-3 Laboratory, Life Sciences Institute & Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi 530021, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
| |
Collapse
|
8
|
Chicken LEAP2 Level Substantially Changes with Feed Intake and May Be Regulated by CDX4 in Small Intestine. Animals (Basel) 2022; 12:ani12243496. [PMID: 36552416 PMCID: PMC9774203 DOI: 10.3390/ani12243496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Ghrelin O-acyltransferase (GOAT), ghrelin, and GHSR have been reported to play important roles that influence feed intake in mammals. LEAP2, an endogenous antagonist of GHSR, plays an important role in the regulation of feed intake. However, chicken ghrelin has also been reported to have an inhibitory effect on feed intake. The role of the GOAT-Ghrelin-GHSR-LEAP2 axis in chicken-feed intake remains unclear. Therefore, it is necessary to systematically evaluate the changes in the tissue expression levels of these genes under different energy states. In this study, broiler chicks in different energy states were subjected to starvation and feeding, and relevant gene expression levels were measured using quantitative real-time PCR. Different energy states significantly modulated the expression levels of LEAP2 and GHSR but did not significantly affect the expression levels of GOAT and ghrelin. A high expression level of LEAP2 was detected in the liver and the whole small intestine. Compared to the fed group, the fasted chicks showed significantly reduced LEAP2 expression levels in the liver and the small intestine; 2 h after being refed, the LEAP2 expression of the fasted chicks returned to the level of the fed group. Transcription factor prediction and results of a dual luciferase assay indicated that the transcription factor CDX4 binds to the LEAP2 promoter region and positively regulates its expression. High expression levels of GHSR were detected in the hypothalamus and pituitary. Moreover, we detected GHSR highly expressed in the jejunum-this finding has not been previously reported. Thus, GHSR may regulate intestinal motility, and this aspect needs further investigation. In conclusion, this study revealed the function of chicken LEAP2 as a potential feed-intake regulator and identified the potential mechanism governing its intestine-specific expression. Our study lays the foundations for future studies on avian feed-intake regulation.
Collapse
|
9
|
Khan A, Jahejo AR, Qiao ML, Han XY, Cheng QQ, Mangi RA, Qadir MF, Zhang D, Bi YH, Wang Y, Gao GF, Tian WX. NF-кB pathway genes expression in chicken erythrocytes infected with avian influenza virus subtype H9N2. Br Poult Sci 2021; 62:666-671. [PMID: 33843365 DOI: 10.1080/00071668.2021.1902478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. Chicken erythrocytes in blood vessels are the most abundant circulating cells, which participate in the host's immune responses. The transcription factor nuclear factor-kappa B (NF-κB) plays a vital role in the inflammatory response following viral infections. However, the expression of the NF-κB pathway, and other immune-related genes in chicken erythrocytes infected with low pathogenic avian influenza virus (LPAIV H9N2), has not been extensively studied.2. The following study determined the interaction of LPAIV H9N2 with chicken erythrocytes using indirect immunofluorescence microscopy. This was followed by investigating myeloid differentiation primary response 88 (MyD88), C-C motif chemokine ligand 5 (CCL5), melanoma differentiation-associated protein 5 (MDA5), the inhibitor of nuclear factor-kappa B kinase subunit epsilon (IKBKE), NF-κB inhibitor alpha (NFKBIA), NF-κB inhibitor epsilon (NFKBIE), interferon-alpha (IFN-α), colony-stimulating factor 3 (CSF3) and tumour necrosis factor receptor-associated factor 6 (TRAF6) by mRNA expression using quantitative real-time PCR (qRT-PCR) at four different time intervals (0, 2, 6 and 10 h).3. There was a significant interaction between erythrocytes and LPAIV H9N2 virus. Furthermore, the mRNA expression of the NF-κB pathway and other immune-related genes were significantly up-regulated at 2 h post-infection in infected chicken erythrocytes, except for TRAF6, which were significantly downregulated. While at 0 h post-infection, IFN-α and CSF3 were significantly upregulated, whereas NFKBIA was significantly downregulated. Further expression of MDA5, CCL5 and NFKBIA was upregulated, while TRAF6 was downregulated at 6 h post-infection. In infected erythrocytes, expression of MyD88, CCL5 and IKBKE was upregulated. However, IFN-α and TRAF6 were downregulated at 10 h post-infection.4. These results give initial evidence that the NF-κB pathway, and other genes related to immunity, in chicken erythrocytes may contribute to LPAIV subtype H9N2 and induce host immune responses.
Collapse
Affiliation(s)
- A Khan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - A R Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - M L Qiao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - X Y Han
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Q Q Cheng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - R A Mangi
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - M F Qadir
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - D Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Y H Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center of Infectious Diseases, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Science, Beijing, China
| | - Y Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - G F Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - W X Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
10
|
Huang J, Li J, Li Q, Li L, Zhu N, Xiong X, Li G. Peptidoglycan derived from Lactobacillus rhamnosus MLGA up-regulates the expression of chicken β-defensin 9 without triggering an inflammatory response. Innate Immun 2020; 26:733-745. [PMID: 32847443 PMCID: PMC7787553 DOI: 10.1177/1753425920949917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Defensins are critical components of the innate immune system and play an important role in the integration of innate and adaptive immune responses. Although information on the immunomodulatory properties of peptidoglycan from bacteria is abundant, little is known about the β-defensin induction effect of peptidoglycan from the probiotic Lactobacillus. This study investigated the effect of intact peptidoglycan from L. rhamnosus MLGA on the induction of avian β-defensin 9 in chicken immune cells and intestinal explants. Peptidoglycan from Lactobacillus rhamnosus MLGA dose dependently promoted avian β-defensin 9 mRNA expression in chicken PBMCs, splenocytes, thymocytes, hepatocytes, and chicken embryo jejunum, ileum, and cecum explants and increased the capacity of PBMC or splenocyte lysates to inhibit the growth of Salmonella Enteritidis. In contrast to the effect of L. rhamnosus MLGA-derived peptidoglycan, peptidoglycan derived from pathogenic Staphylococcus aureus reduced avian β-defensin 9 mRNA expression in chicken PBMCs and splenocytes. The inducible effect of peptidoglycan from L. rhamnosus MLGA on avian β-defensin 9 expression in PBMCs and splenocytes was observed without activation of the expression of associated pro-inflammatory cytokines IL-1β, IL-8, and IL-12p40, whereas these cytokine expressions were suppressed by peptidoglycan hydrolysate obtained by lysozyme digestion. The results of the present study show the capability of peptidoglycan derived from L. rhamnosus MLGA to induce the antimicrobial peptide defensin while simultaneously avoiding the deleterious risks of an inflammatory response.
Collapse
Affiliation(s)
- Juan Huang
- Jiangxi Province Key Laboratory of Animal Nutrition, 91595Jiangxi Agricultural University, China
| | - Junhui Li
- Jiangxi Province Key Laboratory of Animal Nutrition, 91595Jiangxi Agricultural University, China
| | - Qiufen Li
- Jiangxi Province Key Laboratory of Animal Nutrition, 91595Jiangxi Agricultural University, China
| | - Lin Li
- Jiangxi Province Key Laboratory of Animal Nutrition, 91595Jiangxi Agricultural University, China
| | - Nianhua Zhu
- Jiangxi Province Key Laboratory of Animal Nutrition, 91595Jiangxi Agricultural University, China
| | - Xiaowen Xiong
- Jiangxi Province Key Laboratory of Animal Nutrition, 91595Jiangxi Agricultural University, China
| | - Guanhong Li
- Jiangxi Province Key Laboratory of Animal Nutrition, 91595Jiangxi Agricultural University, China
| |
Collapse
|
11
|
Integration of gene expression profile data to screen and verify immune-related genes of chicken erythrocytes involved in Marek's disease virus. Microb Pathog 2020; 148:104454. [PMID: 32818575 DOI: 10.1016/j.micpath.2020.104454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/04/2023]
Abstract
Chicken erythrocytes participated in immunity, but the role of erythrocytes in the immunity of Marek's disease virus (MDV) has not been reported related to the immunity genes. The purpose of this study was to screen and verify the immune-related genes of chicken erythrocytes which could be proven as a biomarker in MDV. The datasets (GPL8764-Chicken Gene Expression Microarray) were downloaded from the GEO profile database for control and MDV infected chickens to obtain differentially expressed genes (DEGs) through bioinformatics methods. Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed to find enriched pathways, including Gene Ontology (GO). Based on enriched pathways, the top 19 immune-related genes were screened-out and process further to construct the protein-protein interaction (PPI) networks. The screened genes were validated on RT-PCR and qPCR. Results suggested that the mRNA transcription of Toll-like receptors 2, 3, 4, 6 (TLR2, TLR3, TLR4, TLR6), major histocompatibility complex-II (MHCII), interleukin-7 (IL-7), interferon-βeta (IFN-β), chicken myelomonocytic growth factor (cMGF) and myeloid differentiation primary response 88 (MyD88) were significantly up-regulated. The expression of toll-like receptor 5, 7 (TLR5, TLR7) interleukin-12 (IL-12 p40), interleukin-13 (IL-13), and interferon-αlpha (IFN-α) were significantly down-regulated in the erythrocytes of the infected group (P < 0.05). In contrast, the expression of toll-like receptor-1, 15, 21 (TLR1, TLR15, TLR21), major histocompatibility complex I (MHCI) and Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) were not significant. In conclusion, it has been verified on qRT-PCR results that 19 immune-related genes, which included TLRs, cytokines and MHC have immune functions in MDV infected chickens.
Collapse
|
12
|
Zhang L, Zhu C, Heidari M, Dong K, Chang S, Xie Q, Zhang H. Marek's disease vaccines-induced differential expression of known and novel microRNAs in primary lymphoid organ bursae of White Leghorn. Vet Res 2020; 51:19. [PMID: 32093775 PMCID: PMC7038564 DOI: 10.1186/s13567-020-00746-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Marek’s disease (MD) is a contagious disease of domestic chickens caused by MD viruses. MD has been controlled primarily by vaccinations, yet sporadic outbreaks of MD take place worldwide. Commonly used MD vaccines include HVT, SB-1 and CVI988/Rispens and their efficacies are reportedly dependent of multiple factors including host genetics. Our previous studies showed protective efficacy of a MD vaccine can differ drastically from one chicken line to the next. Advanced understanding on the underlying genetic and epigenetic factors that modulate vaccine efficacy would greatly improve the strategy in design and development of more potent vaccines. Two highly inbred lines of White Leghorn were inoculated with HVT and CVI988/Rispens. Bursa samples were taken 26 days post-vaccination and subjected to small RNA sequencing analysis to profile microRNAs (miRNA). A total of 589 and 519 miRNAs was identified in one line, known as line 63, 490 and 630 miRNAs were identified in the other, known as line 72, in response to HVT or CVI988/Rispens inoculation, respectively. HVT and CVI988/Rispens induced mutually exclusive 4 and 13 differentially expressed (DE) miRNAs in line 63 birds in contrast to a non-vaccinated group of the same line. HVT failed to induce any DE miRNA and CVI988/Rispens induced a single DE miRNA in line 72 birds. Thousands of target genes for the DE miRNAs were predicted, which were enriched in a variety of gene ontology terms and pathways. This finding suggests the epigenetic factor, microRNA, is highly likely involved in modulating vaccine protective efficacy in chicken.
Collapse
Affiliation(s)
- Lei Zhang
- Avian Disease and Oncology Laboratory, USDA-ARS, East Lansing, MI, 48823, USA.,Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China
| | - Chen Zhu
- Avian Disease and Oncology Laboratory, USDA-ARS, East Lansing, MI, 48823, USA.,Michigan State University, East Lansing, MI, 48824, USA
| | - Mohammad Heidari
- Avian Disease and Oncology Laboratory, USDA-ARS, East Lansing, MI, 48823, USA
| | - Kunzhe Dong
- Avian Disease and Oncology Laboratory, USDA-ARS, East Lansing, MI, 48823, USA.,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, 30912, USA
| | - Shuang Chang
- Avian Disease and Oncology Laboratory, USDA-ARS, East Lansing, MI, 48823, USA.,College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qingmei Xie
- Avian Disease and Oncology Laboratory, USDA-ARS, East Lansing, MI, 48823, USA.,College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Huanmin Zhang
- Avian Disease and Oncology Laboratory, USDA-ARS, East Lansing, MI, 48823, USA.
| |
Collapse
|
13
|
Jahejo AR, Zhang D, Niu S, Mangi RA, Khan A, Qadir MF, Khan A, Chen HC, Tian WX. Transcriptome-based screening of intracellular pathways and angiogenesis related genes at different stages of thiram induced tibial lesions in broiler chickens. BMC Genomics 2020; 21:50. [PMID: 31941444 PMCID: PMC6964038 DOI: 10.1186/s12864-020-6456-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 01/07/2020] [Indexed: 01/21/2023] Open
Abstract
Background The Tibial dyschondroplasia (TD) in fast-growing chickens is mainly caused by improper blood circulation. The exact mechanism underlying angiogenesis and vascularization in tibial growth plate of broiler chickens remains unclear. Therefore, this research attempts to study genes involved in the regulation of angiogenesis in chicken red blood cells. Twenty-four broiler chickens were allotted into a control and thiram (Tetramethyl thiuram disulfide) group. Blood samples were collected on day 2, 6 (8- and 14-days old chickens) and 15 (23 days old chickens). Results Histopathology and hematoxylin and eosin (H&E) results showed that angiogenesis decreased on the 6th day of the experiment but started to recover on the 15th day of the experiment. Immunohistochemistry (IHC) results confirmed the expressions of integrin alpha-v precursor (ITGAV) and clusterin precursor (CLU). Transcriptome sequencing analysis evaluated 293 differentially expressed genes (DEGs), of which 103 up-regulated genes and 190 down-regulated genes were enriched in the pathways of neuroactive ligand receptor interaction, mitogen-activated protein kinase (MAPK), ribosome, regulation of actin cytoskeleton, focal adhesion, natural killer cell mediated cytotoxicity and the notch signalling pathways. DEGs (n = 20) related to angiogenesis of chicken erythrocytes in the enriched pathways were thromboxane A2 receptor (TBXA2R), interleukin-1 receptor type 1 precursor (IL1R1), ribosomal protein L17 (RPL17), integrin beta-3 precursor (ITGB3), ITGAV, integrin beta-2 precursor (ITGB2), ras-related C3 botulinum toxin substrate 2 (RAC2), integrin alpha-2 (ITGA2), IQ motif containing GTPase activating protein 2 (IQGAP2), ARF GTPase-activating protein (GIT1), proto-oncogene vav (VAV1), integrin alpha-IIb-like (ITGA5), ras-related protein Rap-1b precursor (RAP1B), tyrosine protein kinase Fyn-like (FYN), tyrosine-protein phosphatase non-receptor type 11 (PTPN11), protein patched homolog 1 (PTCH1), nuclear receptor corepressor 2 (NCOR2) and mastermind like protein 3 (MAML3) selected for further confirmation with qPCR. However, commonly DEGs were sarcoplasmic/endoplasmic reticulum calcium ATPase 3 (ATP2A3), ubiquitin-conjugating enzyme E2 R2 (UBE2R2), centriole cilia and spindle-associated protein (CCSAP), coagulation factor XIII A chain protein (F13A1), shroom 2 isoform X6 (SHROOM2), ras GTPase-activating protein 3 (RASA3) and CLU. Conclusion We have found potential therapeutic genes concerned to erythrocytes and blood regulation, which regulated the angiogenesis in thiram induced TD chickens. This study also revealed the potential functions of erythrocytes. Graphical abstract 1. Tibial dyschondroplasia (TD) in chickens were more on day 6, which started recovering on day 15. 2. The enriched pathway observed in TD chickens on day 6 was ribosome pathway, on day 15 were regulation of actin cytoskeleton and focal adhesion pathway. 3. The genes involved in the ribosome pathways was ribosomal protein L17 (RPL17). regulation of actin cytoskeleton pathway were Ras-related C3 botulinum toxin substrate 2 (RAC2), Ras-related protein Rap-1b precursor (RAP1B), ARF GTPase-activating protein (GIT1), IQ motif containing GTPase activating protein 2 (IQGAP2), Integrin alpha-v precursor (ITGAV), Integrin alpha-2 (ITGA2), Integrin beta-2 precursor (ITGB2), Integrin beta-3 precursor (ITGB3), Integrin alpha-IIb-like (ITGA5). Focal adhesion Proto-oncogene vav (Vav-like), Tyrosine-protein kinase Fyn-like (FYN).
![]()
Collapse
Affiliation(s)
- Ali Raza Jahejo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Ding Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Sheng Niu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Raza Ali Mangi
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Afrasyab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Muhammad Farhan Qadir
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Ajab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Huan-Chun Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Xia Tian
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
14
|
Jahejo AR, Niu S, Zhang D, Ning GB, Khan A, Mangi RA, Qadir MF, Khan A, Li JH, Tian WX. Transcriptome analysis of MAPK signaling pathway and associated genes to angiogenesis in chicken erythrocytes on response to thiram-induced tibial lesions. Res Vet Sci 2019; 127:65-75. [PMID: 31678455 DOI: 10.1016/j.rvsc.2019.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/28/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
This study was planned to investigate TD (Tibial dyschondroplasia) on the potential MAPK signaling pathway and angiogenesis related genes. Forty-eight broilers were allotted into control (C) and treatment (T) groups of 2, 6 and 15 days as C1, C2, C3, T1, T2 and T3. The histopathology results revealed that tibiotarsus bone of chickens had more lesions on day 6 (T2 group). The chondrocytes were disordered, and the size, shape and proliferation were affected. Transcriptome results revealed that differentially expressed genes (DEGs) identified were 63, 1026, 623, 130, 141 and 146 in C1 (2 days control vs 6 days control); C2 (2 days control vs 15 days control); C3 (6 days control vs 15 days control); T1 (2 days treatment vs 6 days treatment); T2 (2 days treatment vs 15 days treatment) and T3 (6 days treatment vs 15 days treatment) groups respectively. Whereas, 10 angiogenesis related-genes RHOC, MEIS2, BAIAP2, TGFBI, KLF2, CYR61, PTPN11, PLXNC1, HSPH1 and NRP2 were downregulated on day 6 in the treatment group. The pathway which was found enriched in the control and treatment groups was MAPK signaling pathway. Therefore selected 10 MAPK signaling pathway-related genes RAC2, MAP3K1, PRKCB, FLNB, IL1R1, PTPN7, RPS6KA, MAP3K6, GNA12 and HSPA8 which were found significantly downregulated in the treatment group on day 6. It is concluded that angiogenesis and MAPK signaling pathway related genes has an essential role in TD, as those top screened genes found downregulated in the thiram fed chickens when TD observed severed on day 6.
Collapse
Affiliation(s)
- Ali Raza Jahejo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Sheng Niu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Ding Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Guan-Bao Ning
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Afrasyab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Raza Ali Mangi
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Muhammad Farhan Qadir
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Ajab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Jian-Hui Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Wen-Xia Tian
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|