1
|
Qiu J, Qu Y, Li Y, Li C, Wang J, Meng L, Jing X, Fu J, Xu Y, Chai Y. Inhibition of RAC1 activator DOCK2 ameliorates cholestatic liver injury via regulating macrophage polarisation and hepatic stellate cell activation. Biol Direct 2025; 20:21. [PMID: 39923106 PMCID: PMC11807328 DOI: 10.1186/s13062-025-00612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/28/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND The Rho GTPase Rac family small GTPase 1 (RAC1) is considered a promising fibrotic therapeutic target, but the role of its activator, dedicator of cytokinesis 2 (DOCK2), in liver fibrosis is largely unknown. This study aimed to investigate the expression and role of DOCK2 in cholestasis-induced liver fibrosis and to further explore the potential mechanisms. RESULTS Cholestasis was induced in male C57BL/6 mice by bile duct ligation (BDL). DOCK2 knockdown was achieved by tail vein injection of adenovirus containing DOCK2-targeting shRNA. The effect of DOCK2 knockdown on cholestatic liver injury was evaluated at different time points after BDL. Hepatic DOCK2 expression gradually increased after BDL. Knockdown of DOCK2 reduced the necrotic area in BDL liver and downregulated serum levels of liver injury indicators. At 3d post-BDL (acute phase), DOCK2 knockdown alleviated M1 macrophage inflammation in the liver, as evidenced by reduced infiltrating iNOS + macrophages and inflammatory cytokines and mitigated NLRP3 inflammasome activation. At 14d post-BDL (chronic phase), DOCK2 knockdown suppressed hepatic stellate cell (HSC) activation and liver fibrosis as indicated by decreased α-SMA + HSCs and extracellular matrix deposition. In vitro experiments further demonstrated that DOCK2 knockdown suppressed M1 macrophage polarisation and HSC to myofibroblast transition, accompanied by inhibition of RAC1 activation. CONCLUSIONS In summary, this study demonstrates for the first time that the RAC1 activator DOCK2 regulates M1 macrophage polarisation and hepatic stellate cell activation to promote cholestasis-induced liver inflammation and fibrosis, suggesting that DOCK2 may be a potential therapeutic target in cholestatic liver injury.
Collapse
Affiliation(s)
- Jianli Qiu
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China.
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Yitong Qu
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yinli Li
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Cancan Li
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Junling Wang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Lu Meng
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaojin Jing
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jiangping Fu
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yan Xu
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China.
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Yuna Chai
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Xiao J, Hou Y, Luo X, Zhu Y, Li W, Li B, Zhou L, Chen X, Guo Y, Zhang X, He H, Liu X. Clostridium Scindens Protects Against Vancomycin-Induced Cholestasis and Liver Fibrosis by Activating Intestinal FXR-FGF15/19 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406445. [PMID: 39680750 PMCID: PMC11791999 DOI: 10.1002/advs.202406445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/11/2024] [Indexed: 12/18/2024]
Abstract
Primary sclerosing cholangitis (PSC) is characterized by abnormal bile acid metabolites and altered gut microbiota, with no effective treatments available. Vancomycin, a glycopeptide antibiotic, has emerged as a promising candidate. However, the mechanism by which vancomycin impacts the progression of PSC remains unknown. Mice treated with vancomycin exhibit increased hepatic collagen deposition and injury, due to the inhibition of intestinal FXR-FGF15/19 axis and the elevation of bile acid levels. These effects are associated with the reduction in Clostridia XIVa, especially Clostridium scindens (C. scindens). Gavage of C. scindens alleviates vancomycin-induced bile acid accumulation and liver fibrosis via activating intestinal FXR-FGF15/19 signaling. Similar effects are observed in mice treated with engineered Escherichia coli Nissle 1917 that are capable of expressing bile acid 7α-dehydratas (BaiE) from C. scindens (EcN-BaiE). Activating intestinal FXR-FGF15/19 signaling by fexaramine (Fex) or recombinant protein FGF19 reverse vancomycin-induced liver injury and fibrosis. These results demonstrate that long-term oral vancomycin exacerbates cholestatic liver injury, while C. scindens mitigates this effect by activating the intestinal FXR-FGF15/19 signaling pathway. This underscores the importance of monitoring bile acid levels in PSC patients receiving vancomycin treatment and suggests that C. scindens may serve as a potential therapeutic approach for PSC patients.
Collapse
Affiliation(s)
- Jintao Xiao
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yanliang Hou
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Xingyang Luo
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yuhao Zhu
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Wenhu Li
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Bingbing Li
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - LinXiang Zhou
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Xia Chen
- Department of Clinical LaboratoryXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Ying Guo
- Department of Clinical PharmacologyXiangya HospitalHunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaHunan410008China
| | - Xiaomei Zhang
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Haiyue He
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Xiaowei Liu
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| |
Collapse
|
3
|
Nierath WF, Leitner E, Reimann S, Schwarz R, Hinz B, Bleich A, Vollmar B, Zechner D. GSK805 inhibits alpha-smooth muscle expression and modulates liver inflammation without impairing the well-being of mice. FASEB J 2024; 38:e23889. [PMID: 39157975 DOI: 10.1096/fj.202400733r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/21/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Cholestatic liver diseases, such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), lead to inflammation and severe hepatic damage with limited therapeutic options. This study assessed the efficacy of the inverse RORγt agonist, GSK805, both in vitro using the hepatic stellate cell-line LX-2 and in vivo using male bile duct-ligated BALB/c mice. In vitro, 0.3 μM GSK805 reduced alpha-smooth muscle actin expression in LX-2 cells. In vivo, GSK805 significantly decreased IL-23R, TNF-α, and IFN-γ expression in cholestatic liver. Despite high concentrations of GSK805 in the liver, no significant reduction in fibrosis was noticed. GSK805 significantly increased aspartate aminotransferase and alanine aminotransferase activity in the blood, while levels of glutamate dehydrogenase, alkaline phosphatase, and bilirubin were not substantially increased. Importantly, GSK805 did neither increase an animal distress score nor substantially reduce body weight, burrowing activity, or nesting behavior. These results suggest that a high liver concentration of GSK805 is achieved by daily oral administration and that this drug modulates inflammation in cholestatic mice without impairing animal well-being.
Collapse
Affiliation(s)
- Wiebke-Felicitas Nierath
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Emily Leitner
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Sabrina Reimann
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Rico Schwarz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Dietmar Zechner
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
4
|
Tang G, Nierath WF, Leitner E, Xie W, Revskij D, Seume N, Zhang X, Ehlers L, Vollmar B, Zechner D. Comparing animal well-being between bile duct ligation models. PLoS One 2024; 19:e0303786. [PMID: 38950046 PMCID: PMC11216573 DOI: 10.1371/journal.pone.0303786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/01/2024] [Indexed: 07/03/2024] Open
Abstract
A prevailing animal model currently used to study severe human diseases like obstructive cholestasis, primary biliary or sclerosing cholangitis, biliary atresia, and acute liver injury is the common bile duct ligation (cBDL). Modifications of this model include ligation of the left hepatic bile duct (pBDL) or ligation of the left bile duct with the corresponding left hepatic artery (pBDL+pAL). Both modifications induce cholestasis only in the left liver lobe. After induction of total or partial cholestasis in mice, the well-being of these animals was evaluated by assessing burrowing behavior, body weight, and a distress score. To compare the pathological features of these animal models, plasma levels of liver enzymes, bile acids, bilirubin, and within the liver tissue, necrosis, fibrosis, inflammation, as well as expression of genes involved in the synthesis or transport of bile acids were assessed. The survival rate of the animals and their well-being was comparable between pBDL+pAL and pBDL. However, surgical intervention by pBDL+pAL caused confluent necrosis and collagen depositions at the edge of necrotic tissue, whereas pBDL caused focal necrosis and fibrosis in between portal areas. Interestingly, pBDL animals had a higher survival rate and their well-being was significantly improved compared to cBDL animals. On day 14 after cBDL liver aspartate, as well as alanine aminotransferase, alkaline phosphatase, glutamate dehydrogenase, bile acids, and bilirubin were significantly elevated, but only glutamate dehydrogenase activity was increased after pBDL. Thus, pBDL may be primarily used to evaluate local features such as inflammation and fibrosis or regulation of genes involved in bile acid synthesis or transport but does not allow to study all systemic features of cholestasis. The pBDL model also has the advantage that fewer mice are needed, because of its high survival rate, and that the well-being of the animals is improved compared to the cBDL animal model.
Collapse
Affiliation(s)
- Guanglin Tang
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
- Department of General Surgery, Fushun Central Hospital, Fushun, Liaoning, China
| | - Wiebke-Felicitas Nierath
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Emily Leitner
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Wentao Xie
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Denis Revskij
- Division of Gastroenterology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Nico Seume
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Xianbin Zhang
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Luise Ehlers
- Department of General Surgery, Fushun Central Hospital, Fushun, Liaoning, China
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Dietmar Zechner
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
5
|
De Muynck K, Heyerick L, De Ponti FF, Vanderborght B, Meese T, Van Campenhout S, Baudonck L, Gijbels E, Rodrigues PM, Banales JM, Vesterhuus M, Folseraas T, Scott CL, Vinken M, Van der Linden M, Hoorens A, Van Dorpe J, Lefere S, Geerts A, Van Nieuwerburgh F, Verhelst X, Van Vlierberghe H, Devisscher L. Osteopontin characterizes bile duct-associated macrophages and correlates with liver fibrosis severity in primary sclerosing cholangitis. Hepatology 2024; 79:269-288. [PMID: 37535809 PMCID: PMC10789378 DOI: 10.1097/hep.0000000000000557] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is an immune-mediated cholestatic liver disease for which pharmacological treatment options are currently unavailable. PSC is strongly associated with colitis and a disruption of the gut-liver axis, and macrophages are involved in the pathogenesis of PSC. However, how gut-liver interactions and specific macrophage populations contribute to PSC is incompletely understood. APPROACH AND RESULTS We investigated the impact of cholestasis and colitis on the hepatic and colonic microenvironment, and performed an in-depth characterization of hepatic macrophage dynamics and function in models of concomitant cholangitis and colitis. Cholestasis-induced fibrosis was characterized by depletion of resident KCs, and enrichment of monocytes and monocyte-derived macrophages (MoMFs) in the liver. These MoMFs highly express triggering-receptor-expressed-on-myeloid-cells-2 ( Trem2 ) and osteopontin ( Spp1 ), markers assigned to hepatic bile duct-associated macrophages, and were enriched around the portal triad, which was confirmed in human PSC. Colitis induced monocyte/macrophage infiltration in the gut and liver, and enhanced cholestasis-induced MoMF- Trem2 and Spp1 upregulation, yet did not exacerbate liver fibrosis. Bone marrow chimeras showed that knockout of Spp1 in infiltrated MoMFs exacerbates inflammation in vivo and in vitro , while monoclonal antibody-mediated neutralization of SPP1 conferred protection in experimental PSC. In human PSC patients, serum osteopontin levels are elevated compared to control, and significantly increased in advanced stage PSC and might serve as a prognostic biomarker for liver transplant-free survival. CONCLUSIONS Our data shed light on gut-liver axis perturbations and macrophage dynamics and function in PSC and highlight SPP1/OPN as a prognostic marker and future therapeutic target in PSC.
Collapse
Affiliation(s)
- Kevin De Muynck
- Department of Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Lander Heyerick
- Department of Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Federico F. De Ponti
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Bart Vanderborght
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
| | - Tim Meese
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
- NXTGNT, Ghent University, Ghent, Belgium
| | - Sanne Van Campenhout
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
| | - Leen Baudonck
- Department of Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| | - Eva Gijbels
- Department of Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Pedro M. Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Mette Vesterhuus
- Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Norwegian PSC Research Center, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Trine Folseraas
- Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Norwegian PSC Research Center, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Charlotte L. Scott
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Anne Hoorens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Sander Lefere
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
| | - Anja Geerts
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
- NXTGNT, Ghent University, Ghent, Belgium
| | - Xavier Verhelst
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Hans Van Vlierberghe
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Lindsey Devisscher
- Department of Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
6
|
Barmoudeh Z, Fouani MH, Moslemi Z, Azizi M, Doustimotlagh AH, Bardania H. Melatonin and metformin co-loaded nanoliposomes efficiently attenuate liver damage induced by bile duct ligation in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:395-410. [PMID: 37452836 DOI: 10.1007/s00210-023-02613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
In the current study, the therapeutic effectiveness of the metformin (Met) and melatonin (Mel) co-loaded liposomes was investigated on cholestasis induced by bile duct ligation (BDL) in male rats. Histopathological analysis, biochemical analysis, and oxidative stress markers were assayed to determine the therapeutic effect of Met and Mel co-loaded liposomes on cholestasis. Histopathological analysis revealed that the simultaneous administration of Met and Mel, whether in the free (C-Mel-Met) or liposomal (C-Lipo-Mel-Met) forms, reduced inflammation as well as proliferation of bile ducts; however, results were more prominent in the liposomal form of Mel and Met. Additionaly, serum levels of aspartate aminotransferase (AST) were significantly (p < 0.001) higher in (C-Mel-Met) treated rats compared with (BDL) rats; however, (C-Lipo-Mel-Met) treated rats exhibited significant (p < 0.05) lower AST rates in comparison to (BDL) rats. Moreover, a significant (p < 0.0001) drop in bilirubin levels was detected in (C-Lipo-Mel-Met) treated rats in comparison to (BDL) rats; it is noteworthy mentioning that bilirubin levels in (C-Lipo-Mel-Met) treated rats were insignificant in comparison to sham-control (SC) rats. Furthermore, rats concomitantly administered Met and Mel, exhibited significant downregulation in the expression levels of inflammatory cytokine genes such as TNF-α and IL-1 gene expression, where the downregulation was more prominent in the liposomal from. Our findings demonestrate that the concomitant administration of metformin and melatonin in the liposomal form had more therapeutic effect on liver injury than their free forms through improving histological changes, reducing biochemical markers and favoring oxidant- antioxidant balance.
Collapse
Affiliation(s)
- Zahra Barmoudeh
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohamad Hassan Fouani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Moslemi
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahdokht Azizi
- Clinical Research Development Unit, Imamsajad Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Hossein Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
7
|
Semenovich DS, Andrianova NV, Zorova LD, Pevzner IB, Abramicheva PA, Elchaninov AV, Markova OV, Petrukhina AS, Zorov DB, Plotnikov EY. Fibrosis Development Linked to Alterations in Glucose and Energy Metabolism and Prooxidant-Antioxidant Balance in Experimental Models of Liver Injury. Antioxidants (Basel) 2023; 12:1604. [PMID: 37627599 PMCID: PMC10451385 DOI: 10.3390/antiox12081604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The development of liver fibrosis is one of the most severe and life-threatening outcomes of chronic liver disease (CLD). For targeted therapy of CLD, it is highly needed to reveal molecular targets for normalizing metabolic processes impaired in damaged liver and associated with fibrosis. In this study, we investigated the morphological and biochemical changes in rat liver models of fibrosis induced by chronic administration of thioacetamide, carbon tetrachloride, bile duct ligation (BDL), and ischemia/reperfusion (I/R), with a specific focus on carbohydrate and energy metabolism. Changes in the levels of substrates and products, as well as enzyme activities of the major glucose metabolic pathways (glycolysis, glucuronidation, and pentose phosphate pathway) were examined in rat liver tissue after injury. We examined key markers of oxidative energy metabolism, such as the activity of the Krebs cycle enzymes, and assessed mitochondrial respiratory activity. In addition, pro- and anti-oxidative status was assessed in fibrotic liver tissue. We found that 6 weeks of exposure to thioacetamide, carbon tetrachloride, BDL or I/R resulted in a decrease in the activity of glycolytic enzymes, retardation of mitochondrial respiration, elevation of glucuronidation, and activation of pentose phosphate pathways, accompanied by a decrease in antioxidant activity and the onset of oxidative stress in rat liver. Resemblance and differences in the changes in the fibrosis models used are described, including energy metabolism alterations and antioxidant status in the used fibrosis models. The least pronounced changes in glucose metabolism and mitochondrial functions in the I/R and thioacetamide models were associated with the least advanced fibrosis. Ultimately, liver fibrosis significantly altered the metabolic profile in liver tissue and the flux of glucose metabolic pathways, which could be the basis for targeted therapy of liver fibrosis in CLD caused by toxic, cholestatic, or I/R liver injury.
Collapse
Affiliation(s)
- Dmitry S. Semenovich
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Polina A. Abramicheva
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Andrey V. Elchaninov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Olga V. Markova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Aleksandra S. Petrukhina
- K.I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 109472 Moscow, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| |
Collapse
|
8
|
Le TV, Phan-Thi HT, Huynh-Thi MX, Dang TM, Holterman AXL, Grassi G, Nguyen-Luu TU, Truong NH. Autophagy Inhibitor Chloroquine Downmodulates Hepatic Stellate Cell Activation and Liver Damage in Bile-Duct-Ligated Mice. Cells 2023; 12:1025. [PMID: 37048098 PMCID: PMC10092998 DOI: 10.3390/cells12071025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Hepatic stellate cell (HSC) activation via the autophagy pathway is a critical factor in liver fibrogenesis. This study tests the hypothesis that chloroquine (CQ) treatment can prevent autophagy and HSC activation in vitro and in vivo in bile-duct-ligated (BDL) mice. Sham-operated and BDL mice were treated with either PBS or CQ in two 60 mg/kg doses the day (D) before and after surgery. On day 2 (2D), HSCs were isolated, and their biological activities were evaluated by measuring intracellular lipid content, α-sma/collagen, and expression of autophagy lc3, sqstm1/p62 markers. The treatment efficacy on liver function was evaluated with serum albumin, transaminases (AST/ALT), and hepatic histology. Primary HSCs were treated in vitro for 24 h with CQ at 0, 2.5, 5, 10, 30, and 50 µM. Autophagy and HSC activation were assessed after 2D of treatment. CQ treatment improved serum AST/ALT, albumin, and bile duct proliferation in 2D BDL mice. This is associated with a suppression of HSC activation, shown by higher HSC lipid content and collagen I staining, along with the blockage of HSC autophagy indicated by an increase in p62 level and reduction in lc3 staining. CQ 5 µM inhibited autophagy in primary HSCs in vitro by increasing p62 and lc3 accumulation, thereby suppressing their in vitro activation. The autophagy inhibitor CQ reduced HSC activation in vitro and in vivo. CQ improved liver function and reduced liver injury in BDL mice.
Collapse
Affiliation(s)
- Trinh Van Le
- Laboratory of Stem Cell Research and Application, University of Science, Ho Chi Minh City 700000, Vietnam; (T.V.L.)
- Viet Nam National University, Ho Chi Minh City 700000, Vietnam
| | - Hong-Thuy Phan-Thi
- Laboratory of Stem Cell Research and Application, University of Science, Ho Chi Minh City 700000, Vietnam; (T.V.L.)
- Viet Nam National University, Ho Chi Minh City 700000, Vietnam
| | - My-Xuan Huynh-Thi
- Laboratory of Stem Cell Research and Application, University of Science, Ho Chi Minh City 700000, Vietnam; (T.V.L.)
- Viet Nam National University, Ho Chi Minh City 700000, Vietnam
| | - Thanh Minh Dang
- Laboratory of Stem Cell Research and Application, University of Science, Ho Chi Minh City 700000, Vietnam; (T.V.L.)
- Viet Nam National University, Ho Chi Minh City 700000, Vietnam
| | - Ai Xuan Le Holterman
- Department of Pediatrics and Surgery, University of Illinois College of Medicine, Chicago, IL 60607, USA
| | - Gabriele Grassi
- Department of Life Sciences, University Hospital of Cattinara, University of Trieste, 34100 Trieste, Italy
| | - Thao-Uyen Nguyen-Luu
- Laboratory of Stem Cell Research and Application, University of Science, Ho Chi Minh City 700000, Vietnam; (T.V.L.)
- Viet Nam National University, Ho Chi Minh City 700000, Vietnam
| | - Nhung Hai Truong
- Viet Nam National University, Ho Chi Minh City 700000, Vietnam
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
9
|
Fibrosis-Related Gene Profiling in Liver Biopsies of PiZZ α1-Antitrypsin Children with Different Clinical Courses. Int J Mol Sci 2023; 24:ijms24032485. [PMID: 36768808 PMCID: PMC9916468 DOI: 10.3390/ijms24032485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
PiZZ (Glu342Lys) α1-antitrypsin deficiency (AATD) is characterized by intrahepatic AAT polymerization and is a risk factor for liver disease development in children. The majority of PiZZ children are disease free, hence this mutation alone is not sufficient to cause the disease. We investigated Z-AAT polymers and the expression of fibrosis-related genes in liver tissues of PiZZ children with different clinical courses. Liver biopsies obtained during 1979-2010 at the Department of Paediatrics, Karolinska University Hospital, Sweden, were subjected to histological re-evaluation, immunohistochemistry and NanoString-based transcriptome profiling using a panel of 760 fibrosis plus 8 bile acid-related genes. Subjects were divided into three groups based on clinical outcomes: NCH (neonatal cholestasis, favourable outcome, n = 5), NCC (neonatal cholestasis, early cirrhosis and liver transplantation, n = 4), and NNCH (no neonatal cholestasis, favourable outcome, n = 5, six biopsies). Hepatocytes containing Z-AAT polymers were abundant in all groups whereas NCC showed higher expression of genes related to liver fibrosis/cirrhosis and lower expression of genes related to lipid, aldehyde/ketone, and bile acid metabolism. Z-AAT accumulation per se cannot explain the clinical outcomes of PiZZ children; however, changes in the expression of specific genes and pathways involved in lipid, fatty acid, and steroid metabolism appear to reflect the degree of liver injury.
Collapse
|
10
|
A mouse model of hepatic encephalopathy: bile duct ligation induces brain ammonia overload, glial cell activation and neuroinflammation. Sci Rep 2022; 12:17558. [PMID: 36266427 PMCID: PMC9585018 DOI: 10.1038/s41598-022-22423-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/14/2022] [Indexed: 01/13/2023] Open
Abstract
Hepatic encephalopathy (HE) is a common complication of chronic liver disease, characterized by an altered mental state and hyperammonemia. Insight into the brain pathophysiology of HE is limited due to a paucity of well-characterized HE models beyond the rat bile duct ligation (BDL) model. Here, we assess the presence of HE characteristics in the mouse BDL model. We show that BDL in C57Bl/6j mice induces motor dysfunction, progressive liver fibrosis, liver function failure and hyperammonemia, all hallmarks of HE. Swiss mice however fail to replicate the same phenotype, underscoring the importance of careful strain selection. Next, in-depth characterisation of metabolic disturbances in the cerebrospinal fluid of BDL mice shows glutamine accumulation and transient decreases in taurine and choline, indicative of brain ammonia overload. Moreover, mouse BDL induces glial cell dysfunction, namely microglial morphological changes with neuroinflammation and astrocyte reactivity with blood-brain barrier (BBB) disruption. Finally, we identify putative novel mechanisms involved in central HE pathophysiology, like bile acid accumulation and tryptophan-kynurenine pathway alterations. Our study provides the first comprehensive evaluation of a mouse model of HE in chronic liver disease. Additionally, this study further underscores the importance of neuroinflammation in the central effects of chronic liver disease.
Collapse
|
11
|
Fagoonee S, Arigoni M, Manco M, Olivero M, Bizzaro F, Magagnotti C, Andolfo A, Miniscalco B, Forni M, Todeschi S, Tolosano E, Bocchietto E, Calogero R, Altruda F. Circulating Extracellular Vesicles Contain Liver-Derived RNA Species as Indicators of Severe Cholestasis-Induced Early Liver Fibrosis in Mice. Antioxid Redox Signal 2022; 36:480-504. [PMID: 34779230 PMCID: PMC8978575 DOI: 10.1089/ars.2021.0023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 01/27/2023]
Abstract
Aims: Biliary diseases represent around 10% of all chronic liver diseases and affect both adults and children. Currently available biochemical tests detect cholestasis but not early liver fibrosis. Circulating extracellular vesicles (EVs) provide a noninvasive, real-time molecular snapshot of the injured organ. We thus aimed at searching for a panel of EV-based biomarkers for cholestasis-induced early liver fibrosis using mouse models. Results: Progressive and detectable histological evidence of collagen deposition and liver fibrosis was observed from day 8 after bile duct ligation (BDL) in mice. Whole transcriptome and small RNA sequencing analyses of circulating EVs revealed differentially enriched RNA species after BDL versus sham controls. Unsupervised hierarchical clustering identified a signature that allowed for discrimination between BDL and controls. In particular, 151 microRNAs (miRNAs) enriched in BDL-derived EVs were identified, of which 66 were conserved in humans. The liver was an important source of circulating EVs in BDL animals as evidenced by the enrichment of several hepatic mRNAs, such as Albumin and Haptoglobin. Interestingly, among experimentally validated miRNAs, miR192-5p, miR194-5p, miR22-3p, and miR29a-3p showed similar enrichment patterns also in EVs derived from 3,5-diethoxycarboncyl-1,4-dihydrocollidine-treated (drug-induced severe cholestasis) but not in mice with mild phenotype or non-cholestatic liver fibrosis. Innovation: A panel of mRNAs and miRNAs contained in circulating EVs, when combined, indicates hepatic damage and fibrosis in mice and represents promising biomarkers for human severe cholestasis-induced liver fibrosis. Conclusion: Analysis of EV-based miRNAs, in combination with hepatic injury RNA markers, can detect early cholestatic liver injury and fibrosis in mice. Antioxid. Redox Signal. 36, 480-504.
Collapse
Affiliation(s)
- Sharmila Fagoonee
- Department of Biological Sciences, Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Turin, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Marta Manco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | | | | | - Cinzia Magagnotti
- ProMeFa, Proteomics and Metabolomics Facility, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Annapaola Andolfo
- ProMeFa, Proteomics and Metabolomics Facility, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | | | - Marco Forni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | | | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | | | - Raffaele Calogero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| |
Collapse
|
12
|
Fuentes-Vélez S, Fagoonee S, Sanginario A, Pizzi M, Altruda F, Demarchi D. Electrical Impedance-Based Characterization of Hepatic Tissue with Early-Stage Fibrosis. BIOSENSORS 2022; 12:116. [PMID: 35200376 PMCID: PMC8869865 DOI: 10.3390/bios12020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022]
Abstract
Liver fibrosis is a key pathological precondition for hepatocellular carcinoma in which the severity is confidently correlated with liver cancer. Liver fibrosis, characterized by gradual cell loss and excessive extracellular matrix deposition, can be reverted if detected at the early stage. The gold standard for staging and diagnosis of liver fibrosis is undoubtedly biopsy. However, this technique needs careful sample preparation and expert analysis. In the present work, an ex vivo, minimally destructive, label-free characterization of liver biopsies is presented. Through a custom-made experimental setup, liver biopsies of bile-duct-ligated and sham-operated mice were measured at 8, 15, and 21 days after the procedure. Changes in impedance were observed with the progression of fibrosis, and through data fitting, tissue biopsies were approximated to an equivalent RC circuit model. The model was validated by means of 3D hepatic cell culture measurement, in which the capacitive part of impedance was proportionally associated with cell number and the resistive one was proportionally associated with the extracellular matrix. While the sham-operated samples presented a decrease in resistance with time, the bile-duct-ligated ones exhibited an increase in this parameter with the evolution of fibrosis. Moreover, since the largest difference in resistance between healthy and fibrotic tissue, of around 2 kΩ, was found at 8 days, this method presents great potential for the study of fibrotic tissue at early stages. Our data point out the great potential of exploiting the proposed needle setup in clinical applications.
Collapse
Affiliation(s)
- Susana Fuentes-Vélez
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; (S.F.-V.); (D.D.)
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center (MBC), Via Nizza, 52, 10126 Turin, Italy;
| | - Alessandro Sanginario
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; (S.F.-V.); (D.D.)
| | - Marco Pizzi
- Eltek S.p.A, Strada Valenza 5/A, 15033 Casale Monferrato, Italy;
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC), University of Turin, Via Nizza, 52, 10126 Turin, Italy;
| | - Danilo Demarchi
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; (S.F.-V.); (D.D.)
| |
Collapse
|
13
|
Guedes PLR, Carvalho CPF, Carbonel AAF, Simões MJ, Icimoto MY, Aguiar JAK, Kouyoumdjian M, Gazarini ML, Nagaoka MR. Chondroitin Sulfate Protects the Liver in an Experimental Model of Extra-Hepatic Cholestasis Induced by Common Bile Duct Ligation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030654. [PMID: 35163920 PMCID: PMC8839946 DOI: 10.3390/molecules27030654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
During liver fibrogenesis, there is an imbalance between regeneration and wound healing. The current treatment is the withdrawal of the causing agent; thus, investigation of new and effective treatments is important. Studies have highlighted the action of chondroitin sulfate (CS) in different cells; thus, our aim was to analyze its effect on an experimental model of bile duct ligation (BDL). Adult Wistar rats were subjected to BDL and treated with CS for 7, 14, 21, or 28 days intraperitoneally. We performed histomorphometric analyses on Picrosirius-stained liver sections. Cell death was analyzed according to caspase-3 and cathepsin B activity and using a TUNEL assay. Regeneration was evaluated using PCNA immunohistochemistry. BDL led to increased collagen content with corresponding decreased liver parenchyma. CS treatment reduced total collagen and increased parenchyma content after 21 and 28 days. The treatment also promoted changes in the hepatic collagen type III/I ratio. Furthermore, it was observed that CS treatment reduced caspase-3 activity and the percentage of TUNEL-positive cells after 14 days and cathepsin B activity only after 28 days. The regeneration increased after 14, 21, and 28 days of CS treatment. In conclusion, our study showed a promising hepatoprotective action of CS in fibrogenesis induced by BDL.
Collapse
Affiliation(s)
- Pedro L. R. Guedes
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
| | - Carolina P. F. Carvalho
- Department of Biosciences, Instituto Saúde Sociedade, Universidade Federal de São Paulo, Santos 11015-020, Brazil; (C.P.F.C.); (M.L.G.)
| | - Adriana A. F. Carbonel
- Department of Gynecology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-001, Brazil;
| | - Manuel J. Simões
- Department of Morphology and Genetic, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil;
| | - Marcelo Y. Icimoto
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil;
| | - Jair A. K. Aguiar
- Department of Biochemistry, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Brazil;
| | - Maria Kouyoumdjian
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
| | - Marcos L. Gazarini
- Department of Biosciences, Instituto Saúde Sociedade, Universidade Federal de São Paulo, Santos 11015-020, Brazil; (C.P.F.C.); (M.L.G.)
| | - Marcia R. Nagaoka
- Department of Biosciences, Instituto Saúde Sociedade, Universidade Federal de São Paulo, Santos 11015-020, Brazil; (C.P.F.C.); (M.L.G.)
- Correspondence:
| |
Collapse
|
14
|
De Muynck K, Vanderborght B, Van Vlierberghe H, Devisscher L. The Gut-Liver Axis in Chronic Liver Disease: A Macrophage Perspective. Cells 2021; 10:2959. [PMID: 34831182 PMCID: PMC8616442 DOI: 10.3390/cells10112959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD) is a growing health concern which accounts for two million deaths per year. Obesity, alcohol overconsumption, and progressive cholestasis are commonly characterized by persistent low-grade inflammation and advancing fibrosis, which form the basis for development of end-stage liver disease complications, including hepatocellular carcinoma. CLD pathophysiology extends to the intestinal tract and is characterized by intestinal dysbiosis, bile acid dysregulation, and gut barrier disruption. In addition, macrophages are key players in CLD progression and intestinal barrier breakdown. Emerging studies are unveiling macrophage heterogeneity and driving factors of their plasticity in health and disease. To date, in-depth investigation of how gut-liver axis disruption impacts the hepatic and intestinal macrophage pool in CLD pathogenesis is scarce. In this review, we give an overview of the role of intestinal and hepatic macrophages in homeostasis and gut-liver axis disruption in progressive stages of CLD.
Collapse
Affiliation(s)
- Kevin De Muynck
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
| |
Collapse
|
15
|
Su H, Wang Q, Li Y, Jin J, Tan B, Yan D, Zou B, Song G, Weng F, Qiu F. Effect of Different Ratios of Yinchen and Gancao Decoction on ANIT-Treated Cholestatic Liver Injury in Mice and Its Potential Underlying Mechanism. Front Pharmacol 2021; 12:611610. [PMID: 33935705 PMCID: PMC8082238 DOI: 10.3389/fphar.2021.611610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/04/2021] [Indexed: 11/28/2022] Open
Abstract
Cholestasis is a pathological state that leads to serious liver disease; however, therapeutic options remain limited. Yinchen and Gancao are often used in combination at different ratios in traditional Chinese formulae for the treatment of jaundice and cholestasis. In the present study, we investigated the effect of decoctions containing different ratios of Yinchen and Gancao (YGD) on alpha-naphthyl isothiocyanate (ANIT)-treated intrahepatic cholestasis (IC) in mice, and further explored the underlying mechanism. Treatment with 0:4 and 1:4 YGD significantly reduced plasma total bile acid (TBA), total bilirubin (TBIL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) activities; decreased unconjugated and conjugated bile acid levels; and improved hepatocyte necrosis and inflammatory cells recruitment to hepatic sinusoids. Moreover, the expression levels of Toll-like receptor 4 (TLR4), interleukin-1β (IL-1β), IL-6, tumor necrosis factor alpha (TNF-α), C-C ligand 2 (CCL2), and C-X-C ligand 2 (CXCL2) in the liver were significantly reduced. However, treatment with 4:1 and 4:0 YGD increased plasma TBA, TBIL, AST, ALT, and ALP activities and aggravated liver cell injury and inflammation. Moreover, the mRNA expression of the bile salt export pump (BSEP) in the liver was significantly increased in mice treated with 4:0 YGD. The present study demonstrates that YGD containing a high proportion of Gancao, which inhibits the TLR4/NF-κB pathway and reduces the inflammatory response, had protective effects against ANIT-treated IC in mice. However, YGD containing a high proportion of Yinchen aggravated the ANIT-treated IC in mice, which may be related to upregulation of BSEP and boosting bile acid regurgitation from damage cholangiocytes to liver in ANIT-treated IC mice.
Collapse
Affiliation(s)
- Huizong Su
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Wang
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingyi Jin
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Tan
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongming Yan
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Zou
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guochao Song
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengyi Weng
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Furong Qiu
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Abstract
BACKGROUND GATA6, a transcription factor expressed in cholangiocytes, has been implicated in the response to liver injury. In biliary atresia, a disease characterized by extrahepatic bile duct obstruction, liver expression of GATA6 increases with pathological bile duct expansion and decreases after successful Kasai portoenterostomy. The aim of this study was to garner genetic evidence that GATA6 is involved in ductular formation/expansion. METHODS The murine Gata6 gene was conditionally deleted using Alb-cre, a transgene expressed in hepatoblasts (the precursors of hepatocytes and cholangiocytes) and mature hepatocytes. Bile duct ligation (BDL) was used to model biliary obstruction. RESULTS Alb-Cre;Gata6flox/flox mice were viable and fertile. Cre-mediated recombination of Gata6 in hepatocytes had little impact on cellular structure or function. GATA6 immunoreactivity was retained in a majority of biliary epithelial cells in adult Alb-Cre;Gata6flox/flox mice, implying that surviving cholangiocytes were derived from hepatoblasts that had escaped biallelic Cre-mediated recombination. Although GATA6 immunoreactivity was preserved in cholangiocytes, Alb-cre;Gata6flox/flox mice had a demonstrable biliary phenotype. A neutrophil-rich infiltrate surrounded newly formed bile ducts in neonatal Alb-Cre;Gata6flox/flox mice. Foci of fibrosis/necrosis, presumed to reflect patchy defects in bile duct formation, were observed in the livers of 37% of adult Alb-cre;Gata6flox/flox mice and 0% of controls (p < 0.05). Most notably, Alb-cre;Gata6flox/flox mice had an altered response to BDL manifest as reduced survival, impaired bile ductule proliferation, increased parenchymal necrosis, reduced fibrosis, and enhanced macrophage accumulation in the portal space. CONCLUSIONS GATA6 orchestrates intrahepatic biliary remodeling and mitigates liver injury following extrahepatic bile duct obstruction.
Collapse
|
17
|
Tang G, Seume N, Häger C, Kumstel S, Abshagen K, Bleich A, Vollmar B, Talbot SR, Zhang X, Zechner D. Comparing distress of mouse models for liver damage. Sci Rep 2020; 10:19814. [PMID: 33188220 PMCID: PMC7666197 DOI: 10.1038/s41598-020-76391-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
In order to foster animal welfare as well as high quality of research, many countries regulate by law that the severity of animal experiments must be evaluated and considered when performing biomedical research. It is well accepted that multiple parameters rather than a single readout parameter should be applied to describe animal distress or suffering. However, since the performance of readout parameters for animal distress is rarely defined and methods for multivariate analysis have only in rare cases been used, it is not known which methodology is most appropriate to define animal distress. This study used receiver operating characteristic curve analysis to quantify the performance of burrowing activity, body weight change and a distress score of mice after induction of liver damage by bile duct ligation or carbon tetrachloride. In addition, Support Vector Machine classification was used to compare the distress of these mouse models. This approach demonstrated that bile duct ligation causes much more distress than carbon tetrachloride-induced liver damage. This study, therefore, provides a prototype how to compare two animal models by considering several readout parameters. In the future these or similar methods for multivariate analysis will be necessary, when assessing and comparing the severity of animal models.
Collapse
Affiliation(s)
- Guanglin Tang
- Rudolf-Zenker, Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Nico Seume
- Rudolf-Zenker, Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Simone Kumstel
- Rudolf-Zenker, Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Kerstin Abshagen
- Rudolf-Zenker, Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker, Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany.
| | - Xianbin Zhang
- Rudolf-Zenker, Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany.
| | - Dietmar Zechner
- Rudolf-Zenker, Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
18
|
Abshagen K, Hartmann A, Grüner L, Liebig M, Vollmar B. Limited potential of resolvin D1 in treatment of cholestatic liver fibrosis. Hepatobiliary Surg Nutr 2020; 9:587-596. [PMID: 33163509 DOI: 10.21037/hbsn.2019.08.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Several studies suggest a role for EPA- and DHA-derived pro-resolving mediators like resolvins in reversing metabolic and inflammatory disturbances seen in various chronic diseases. Here, we investigated the effects of resolvin D1 (RvD1) on bile duct ligation (BDL)-induced cholestatic liver injury. Methods Mice were treated daily with RvD1 or 0.1% ethanol (control) from the day of BDL until the final observation time points. Blood and liver tissue were collected 2, 5 and 14 days after BDL for different analyses. Results RvD1 treatment of mice had no impact on the extent of cholestatic liver injury upon BDL, neither in the acute phase nor in the progressive state of liver fibrosis. Although RvD1 treatment resulted in a significantly reduced activity of hepatic stellate cells as well as reduced deposition of extracellular matrix 2 days after BDL, mice were not protected from inflammation and further fibrosis progression. Conclusions These data indicate that RvD1 has a limited therapeutic potential to treat cholestatic liver diseases, as it has no significant impact on regression of hepatic necroinflammation and fibrotic changes in bile duct-ligated mice.
Collapse
Affiliation(s)
- Kerstin Abshagen
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Alexander Hartmann
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Laura Grüner
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Marie Liebig
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
19
|
Chilvery S, Bansod S, Saifi MA, Godugu C. Piperlongumine attenuates bile duct ligation-induced liver fibrosis in mice via inhibition of TGF-β1/Smad and EMT pathways. Int Immunopharmacol 2020; 88:106909. [PMID: 32882664 DOI: 10.1016/j.intimp.2020.106909] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/15/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023]
Abstract
Liver fibrosis (LF) is a progressive liver injury that may result in excessive accumulation of extracellular matrix (ECM). However, transforming growth factor-beta (TGF-β) and epithelial to mesenchymal transition (EMT) play a central role in the progression of LF through the activation of matrix producing hepatic stellate cells (HSCs). Piperlongumine (PL), an alkaloid extracted from Piper longum, has been reported to possess anti-inflammatory and antioxidant activities in various diseases but its hepatoprotective and antifibrotic effects have not been reported yet. Therefore, in the present study, we investigated the protective effect of PL in bile duct ligation (BDL)-induced LF model and explored the molecular mechanisms underlying its antifibrotic effect. BDL group displayed a significant degree of liver damage, oxidative-nitrosative stress, hepatic inflammation and collagen deposition in the liver while these pathological changes were effectively attenuated by treatment with PL. Furthermore, we found that PL treatment greatly inhibited HSCs activation and ECM deposition via downregulation of fibronectin, α-SMA, collagen1a, and collagen3a expression in the fibrotic livers. We further demonstrated that PL administration significantly inhibited TGF-β1/Smad and EMT signaling pathways. Our study demonstrated that PL exerted strong hepatoprotective and antifibrotic activities against BDL-induced LF and might be an effective therapeutic agent for the treatment of LF.
Collapse
Affiliation(s)
- Shrilekha Chilvery
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Sapana Bansod
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
20
|
Ryanto GRT, Yorifuji K, Ikeda K, Emoto N. Chondroitin sulfate mediates liver responses to injury induced by dual endothelin receptor inhibition. Can J Physiol Pharmacol 2020; 98:618-624. [PMID: 32315540 DOI: 10.1139/cjpp-2019-0649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although dual endothelin receptor antagonists (ERAs) show great promise for treating various conditions, their propensity to induce liver injury limits their clinical usage. Inflammation and fibrosis are important processes in liver responses to injury and it has been suggested that they and dual ERA-induced liver injury are mediated by the proteoglycan component chondroitin sulfate (CS), which is synthesized by CHST3 and CHST13. In this study, we investigated whether dual ER inhibition in the liver could alter CHST3 and CHST13 expression and thus CS production and whether liver CS content could prevent inflammatory and fibrosis responses after liver injury. We observed increased CHST3 and CHST13 expression after liver injury in bile duct ligated mice and histologically confirmed abundant CS deposition in the injured liver. Moreover, treating Hep3B cells with a dual ERA mimic significantly increased CHST3 and CHST13 expression, inflammatory cytokine levels, and glycosaminoglycan deposition. Furthermore, pro-inflammatory and pro-fibrotic markers were observed after dual ERA treatment, while treatment with CS-degrading chondroitinase ABC was able to successfully reverse these phenotypes. These observations suggest that CHST3- and CHST13-induced CS production can mediate liver injury responses caused by dual ER inhibition and thus could be an alternative pathway for treating ERA-induced liver injury.
Collapse
Affiliation(s)
- Gusty Rizky Teguh Ryanto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe 650-0017, Japan
| | - Kennosuke Yorifuji
- The Shinko Institute for Medical Research, Shinko Hospital, 1-4-47, Wakinohama, Chuo, Kobe 651-0072, Japan
- Department of Pharmacy, Shinko Hospital, 1-4-47, Wakinohama, Chuo, Kobe 651-0072, Japan
| | - Koji Ikeda
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe 650-0017, Japan
| |
Collapse
|
21
|
Nevzorova YA, Boyer-Diaz Z, Cubero FJ, Gracia-Sancho J. Animal models for liver disease - A practical approach for translational research. J Hepatol 2020; 73:423-440. [PMID: 32330604 DOI: 10.1016/j.jhep.2020.04.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Animal models are crucial for improving our understanding of human pathogenesis, enabling researchers to identify therapeutic targets and test novel drugs. In the current review, we provide a comprehensive summary of the most widely used experimental models of chronic liver disease, starting from early stages of fatty liver disease (non-alcoholic and alcoholic) to steatohepatitis, advanced cirrhosis and end-stage primary liver cancer. We focus on aspects such as reproducibility and practicality, discussing the advantages and weaknesses of available models for researchers who are planning to perform animal studies in the near future. Additionally, we summarise current and prospective models based on human tissue bioengineering.
Collapse
Affiliation(s)
- Yulia A Nevzorova
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University, Madrid, Spain; 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Zoe Boyer-Diaz
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain
| | - Francisco Javier Cubero
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain.
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Hepatology, Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
22
|
Costas-Rodríguez M, Van Campenhout S, Hastuti AAMB, Devisscher L, Van Vlierberghe H, Vanhaecke F. Body distribution of stable copper isotopes during the progression of cholestatic liver disease induced by common bile duct ligation in mice. Metallomics 2020; 11:1093-1103. [PMID: 31021334 DOI: 10.1039/c8mt00362a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Patients with chronic liver disease from different aetiologies show a light serum Cu isotopic composition compared to the reference population, with the enrichment in the 63Cu isotope correlating with the severity of the disease. However, the mechanisms underlying Cu isotope fractionation at the onset and during progression of the disease are still unclear. In this work, a common bile duct ligation (CBDL) murine model was used to investigate the effect of cholestasis-induced liver disease on the Cu isotopic composition. Wild type male and female mice underwent surgical ligation of the common bile duct and were sacrificed 2, 4 and 6 weeks, and 4, 6 and 8 weeks after the surgical intervention, respectively. The age- and gender-matched control mice underwent sham surgery. Disease progression was evaluated using serum bilirubin levels, hepatic pro-inflammatory chemokine levels and Metavir fibrosis score. CBDL-operated mice show an overall body enrichment in the light isotope 63Cu. The Cu isotopic composition of organs, bone and serum becomes gradually lighter compared to the sham-operated mice with increasing severity of the disease. The light Cu isotopic composition of the CBDL-operated mice might result from an altered Cu intake and/or excretion. As the intestinal uptake of dietary Cu is largely mediated by transporters of Cu(i), mRNA and protein expression levels of two major metal transporters (CTR1 and DMT1) and Cu reductases (STEAP proteins and duodenal cytochrome B) were examined in the duodenal tissues as potential factors inducing Cu isotope fractionation. However, no significant differences in protein expression levels were observed between the CBDL- and sham-operated mice.
Collapse
Affiliation(s)
- Marta Costas-Rodríguez
- Department of Chemistry, Ghent University, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, BE-9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
23
|
Abdel-Rahman RF, Ezzat SM, Ogaly HA, Abd-Elsalam RM, Hessin AF, Fekry MI, Mansour DF, Mohamed SO. Ficus deltoidea extract down-regulates protein tyrosine phosphatase 1B expression in a rat model of type 2 diabetes mellitus: a new insight into its antidiabetic mechanism. J Nutr Sci 2020; 9:e2. [PMID: 32042410 PMCID: PMC6984126 DOI: 10.1017/jns.2019.40] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Ficus deltoidea var. deltoidea Jack (FD) is a well-known plant used in Malay folklore medicine to lower blood glucose in diabetic patients. For further research of the antihyperglycemic mechanisms, the protein tyrosine phosphatase 1B (PTP1B)-inhibitory effect of FD was analysed both in vitro and in vivo. To optimise a method for FD extraction, water, 50, 70, 80, 90 and 95 % ethanol extracts were prepared and determined for their total phenolic and triterpene contents, and PTP1B-inhibition capacity. Among the tested extracts, 70 % ethanol FD extract showed a significant PTP1B inhibition (92·0 % inhibition at 200 µg/ml) and high phenolic and triterpene contents. A bioassay-guided fractionation of the 70 % ethanol extract led to the isolation of a new triterpene (3β,11β-dihydroxyolean-12-en-23-oic acid; F3) along with six known compounds. In vivo, 4 weeks' administration of 70 % ethanol FD extract (125, 250 and 500 mg/kg/d) to streptozotocin-nicotinamide-induced type 2 diabetic rats reversed the abnormal changes of blood glucose, insulin, total Hb, GLUT2, lipid profile, and oxidative stress in liver and pancreas. Moreover, FD reduced the mRNA expression of the key gluconeogenic enzymes (phosphoenolpyruvate carboxykinase and glucose 6-phosphatase) and restored insulin receptor and GLUT2 encoding gene (Slc2a2) expression. In addition, FD significantly down-regulated the hepatic PTP1B gene expression. These results revealed that FD could potentially improve insulin sensitivity, suppress hepatic glucose output and enhance glucose uptake in type 2 diabetes mellitus through down-regulation of PTP1B. Together, our findings give scientific evidence for the traditional use of FD as an antidiabetic agent.
Collapse
Key Words
- CAT, catalase
- Dihydroxyolean-12-en-23-oic acid
- FBG, fasting blood glucose
- FD, Ficus deltoidea var. deltoidea Jack
- Ficus deltoidea
- G6Pase, glucose 6-phosphatase
- GPx, glutathione peroxidase
- GSH, reduced glutathione
- Glucose 6-phosphatase
- Glucose transporter-2
- MDA, malondialdehyde
- MET, metformin
- NA, nicotinamide
- PEPCK, phosphoenolpyruvate carboxykinase
- PTP, protein tyrosine phosphatase
- Phosphoenolpyruvate carboxykinase
- Protein tyrosine phosphatase 1B
- SOD, superoxide dismutase
- STZ, streptozotocin
- Slc2a2, GLUT2 gene
- T2DM, type 2 diabetes mellitus
Collapse
Affiliation(s)
| | - Shahira M. Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Einy Street, Cairo11562, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts, 6th October Campus, 12566, Egypt
| | - Hanan A. Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Reham M. Abd-Elsalam
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Alyaa F. Hessin
- Pharmacology Department, National Research Centre, Giza, Egypt
- Microbiology and Immunology Department, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Mostafa I. Fekry
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Einy Street, Cairo11562, Egypt
| | - Dina F. Mansour
- Pharmacology Department, National Research Centre, Giza, Egypt
| | - Shanaz O. Mohamed
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
24
|
Siemienowicz KJ, Filis P, Shaw S, Douglas A, Thomas J, Mulroy S, Howie F, Fowler PA, Duncan WC, Rae MT. Fetal androgen exposure is a determinant of adult male metabolic health. Sci Rep 2019; 9:20195. [PMID: 31882954 PMCID: PMC6934666 DOI: 10.1038/s41598-019-56790-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Androgen signalling is a critical driver of male development. Fetal steroid signalling can be dysregulated by a range of environmental insults and clinical conditions. We hypothesised that poor adult male health was partially attributable to aberrant androgen exposure during development. Testosterone was directly administered to developing male ovine fetuses to model excess prenatal androgenic overexposure associated with conditions such as polycystic ovary syndrome (PCOS). Such in utero androgen excess recreated the dyslipidaemia and hormonal profile observed in sons of PCOS patients. 1,084 of 15,134 and 408 of 2,766 quantifiable genes and proteins respectively, were altered in the liver during adolescence, attributable to fetal androgen excess. Furthermore, prenatal androgen excess predisposed to adolescent development of an intrahepatic cholestasis-like condition with attendant hypercholesterolaemia and an emergent pro-fibrotic, pro-oxidative stress gene and protein expression profile evident in both liver and circulation. We conclude that prenatal androgen excess is a previously unrecognised determinant of lifelong male metabolic health.
Collapse
Affiliation(s)
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Sophie Shaw
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Alex Douglas
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Jennifer Thomas
- School of Applied Science, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Sally Mulroy
- School of Applied Science, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Forbes Howie
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - W Colin Duncan
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Mick T Rae
- School of Applied Science, Edinburgh Napier University, Edinburgh, EH11 4BN, UK.
| |
Collapse
|
25
|
Jalan-Sakrikar N, De Assuncao TM, Shi G, Aseem S, Chi C, Shah VH, Huebert RC. Proteasomal Degradation of Enhancer of Zeste Homologue 2 in Cholangiocytes Promotes Biliary Fibrosis. Hepatology 2019; 70:1674-1689. [PMID: 31070797 PMCID: PMC6819212 DOI: 10.1002/hep.30706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
During biliary disease, cholangiocytes become activated by various pathological stimuli, including transforming growth factor β (TGF-β). The result is an epigenetically regulated transcriptional program leading to a pro-fibrogenic microenvironment, activation of hepatic stellate cells (HSCs), and progression of biliary fibrosis. This study evaluated how TGF-β signaling intersects with epigenetic machinery in cholangiocytes to support fibrogenic gene transcription. We performed RNA sequencing in cholangiocytes with or without TGF-β. Ingenuity pathway analysis identified "HSC Activation" as the highly up-regulated pathway, including overexpression of fibronectin 1 (FN), connective tissue growth factor, and other genes. Bioinformatics identified enhancer of zeste homologue 2 (EZH2) as an epigenetic regulator of the cholangiocyte TGF-β response. EZH2 overexpression suppressed TGF-β-induced FN protein in vitro, suggesting FN as a direct target of EZH2-based repression. Chromatin immunoprecipitation assays identified an FN promoter element in which EZH2-mediated tri-methylation of lysine 27 on histone 3 is diminished by TGF-β. TGF-β also caused a 50% reduction in EZH2 protein levels. Proteasome inhibition rescued EZH2 protein and led to reduced FN production. Immunoprecipitation followed by mass spectrometry identified ubiquitin protein ligase E3 component N-recognin 4 in complex with EZH2, which was validated by western blotting in vitro. Ubiquitin mutation studies suggested K63-based ubiquitin linkage and chain elongation on EZH2 in response to TGF-β. A deletion mutant of EZH2, lacking its N-terminal domain, abrogates both TGF-β-stimulated EZH2 degradation and FN release. In vivo, cholangiocyte-selective knockout of EZH2 exacerbates bile duct ligation-induced fibrosis whereas MDR2-/- mice are protected from fibrosis by the proteasome inhibitor bortezomib. Conclusion: TGF-β regulates proteasomal degradation of EZH2 through N-terminal, K63-linked ubiquitination in cholangiocytes and activates transcription of a fibrogenic gene program that supports biliary fibrosis.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Thiago M. De Assuncao
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Guang Shi
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - SayedObaidullah Aseem
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Cheng Chi
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN.,Center for Cell Signaling in Gastroenterology; Mayo Clinic and Foundation, Rochester, MN
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN.,Center for Cell Signaling in Gastroenterology; Mayo Clinic and Foundation, Rochester, MN
| |
Collapse
|
26
|
Kumar V, Dong Y, Kumar V, Almawash S, Mahato RI. The use of micelles to deliver potential hedgehog pathway inhibitor for the treatment of liver fibrosis. Am J Cancer Res 2019; 9:7537-7555. [PMID: 31695785 PMCID: PMC6831471 DOI: 10.7150/thno.38913] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022] Open
Abstract
Rationale: Hedgehog (Hh) pathway plays an essential role in liver fibrosis by promoting the proliferation of hepatic stellate cells (HSCs) by enhancing their metabolism via yes-associated protein 1 (YAP1). Despite the presence of several inhibitors, Hh signaling cannot be controlled exclusively due to their poor efficacy and the lack of a suitable delivery system to the injury site. Therefore, it is rationale to develop new potent Hh inhibitors and suitable delivery carriers. Methods: Based on the structure and activity of Hh inhibitor GDC-0449, we replaced its sulfonamide group with two methylpyridine-2yl at amide nitrogen to synthesize MDB5. We compared the Hh pathway inhibition and anti-fibrotic effect of MDB5 with GDC-0449 in vitro. Next, we developed MDB5 loaded micelles using our methoxy poly(ethylene glycol)-blockpoly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol (PEG-PCC-g-DC) copolymer and characterized for physicochemical properties. We evaluated the therapeutic efficacy of MDB5 loaded micelles in common bile duct ligation (CBDL) induced liver fibrosis, mouse model. We also determined the intrahepatic distribution of fluorescently labeled micelles after MDB5 treatment. Results: Our results show that MDB5 was more potent in inhibiting Hh pathway components and HSC proliferation in vitro. We successfully developed MDB5 loaded micelles with particle size of 40 ± 10 nm and drug loading up to 10% w/w. MDB5 loaded micelles at the dose of 10 mg/kg were well tolerated by mice, without visible sign of toxicity. The serum enzyme activities elevated by CBDL was significantly decreased by MDB5 loaded micelles compared to GDC-0449 loaded micelles. MDB5 loaded micelles further decreased collagen deposition, HSC activation, and Hh activity and its target genes in the liver. MDB5 loaded micelles also prevented liver sinusoidal endothelial capillarization (LSEC) and therefore restored perfusion between blood and liver cells. Conclusions: Our study provides evidence that MDB5 was more potent in inhibiting Hh pathway in HSC-T6 cells and showed better hepatoprotection in CBDL mice compared to GDC-0449.
Collapse
|
27
|
Hartwig V, Dewidar B, Lin T, Dropmann A, Ganss C, Kluth MA, Tappenbeck N, Tietze L, Christ B, Frank M, Vogelmann R, Ebert MPA, Dooley S. Human skin-derived ABCB5 + stem cell injection improves liver disease parameters in Mdr2KO mice. Arch Toxicol 2019; 93:2645-2660. [PMID: 31435712 DOI: 10.1007/s00204-019-02533-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Although liver transplantation is a potential effective cure for patients with end-stage liver diseases, this strategy has several drawbacks including high cost, long waiting list, and limited availability of liver organs. Therefore, stem cell-based therapy is presented as an alternative option, which showed promising results in animal models of acute and chronic liver injuries. ABCB5+ cells isolated from skin dermis represent an easy accessible and expandable source of homogenous stem cell populations. In addition, ABCB5+ cells showed already promising results in the treatment of corneal and skin injury. To date, the effect of these cells on liver injury is still unknown. In the current study, sixteen weeks old Mdr2KO mice were i.v. injected with 500,000 ABCB5+ cells using different experimental setups. The effects of cellular therapy on inflammation, fibrosis, apoptosis, and proliferation were analyzed in the collected liver tissues. Toxicity of ABCB5+ cells was additionally investigated in mice with partial liver resection. In vitro, the fibrosis- and inflammatory-modulating effects of supernatant from ABCB5+ cells were examined in the human hepatic stellate cell line (LX-2). Cell injections into fibrotic Mdr2KO mice as well as into mice upon partial liver resection have no signs of toxicity with regard to cell transformation, cellular damage, fibrosis or inflammation as compared to controls. We next investigated the effects of ABCB5+ cells on established biliary liver fibrosis in the Mdr2KO mice. ABCB5+ cells to some extent influenced the shape of the liver inflammatory response and significantly reduced the amount of collagen deposition, as estimated from quantification of sirius red staining. Furthermore, reduced apoptosis and enhanced death compensatory proliferation resulted from ABCB5+ cell transformation. The stem cells secreted several trophic factors that activated TGF-β family signaling in cultured LX-2 hepatic stellate cells (HSCs), therewith shaping cell fate to an αSMAhigh, Vimentinlow phenotype. Taken together, ABCB5+ cells can represent a safe and feasible strategy to support liver regeneration and to reduce liver fibrosis in chronic liver diseases.
Collapse
Affiliation(s)
- Vanessa Hartwig
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Bedair Dewidar
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Tao Lin
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Anne Dropmann
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christoph Ganss
- RHEACELL GmbH and Co. KG, 69120, Heidelberg, Germany
- TICEBA GmbH, 69120, Heidelberg, Germany
| | - Mark Andreas Kluth
- RHEACELL GmbH and Co. KG, 69120, Heidelberg, Germany
- TICEBA GmbH, 69120, Heidelberg, Germany
| | | | - Lysann Tietze
- Applied Molecular Hepatology, Department of Visceral Transplantation, Thoracic und Vascular Surgery, Leipzig University, 04103, Leipzig, Germany
| | - Bruno Christ
- Applied Molecular Hepatology, Department of Visceral Transplantation, Thoracic und Vascular Surgery, Leipzig University, 04103, Leipzig, Germany
| | - Markus Frank
- Department of Pediatrics and Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Roger Vogelmann
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Matthias Philip Alexander Ebert
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Steven Dooley
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
28
|
Sun J, Wang J, Zhang N, Yang R, Chen K, Kong D. Identification of global mRNA expression profiles and comprehensive bioinformatic analyses of abnormally expressed genes in cholestatic liver disease. Gene 2019; 707:9-21. [PMID: 31048068 DOI: 10.1016/j.gene.2019.04.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/28/2019] [Accepted: 04/27/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cholestatic liver disease (CLD) is a highly heterogeneous hepatobiliary disease with various causes. The purpose of this research was to explore the gene expression changes throughout the course of CLD revealing potential causative molecular mechanisms and therapeutic targets. METHODS We established two animal models of cholestasis: 3,5-diethoxycarbonyl-1,4-dihydrocollidine feeding for 2, 4 and 6 weeks and bile duct ligation for 14 days. Using these two models, we identified differentially expressed genes (DEGs) by RNA-Seq analysis and used the newly-found knowledge of DEGs in comprehensive bioinformatic analyses to investigate key molecular events. Sequencing results were confirmed by experimental verification. RESULTS Our study detected overlapping DEGs in the two models, of these 568 genes were upregulated and 117 genes were downregulated. Gene Ontology analysis demonstrated that the upregulated genes were associated with the biological processes of cell adhesion, cell migration and cell motility, while the metabolic processes of various substances were enriched for the downregulated genes. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the upregulated pathways were mainly distributed in focal adhesion, ECM-receptor interaction and amoebiasis, while downregulated pathways focused on peroxisome proliferator-activated receptor signaling pathway, metabolic pathways and primary bile acid biosynthesis. These findings were further confirmed by protein-protein interaction network modeling. Hub genes Src, Pdgfb, Col15a1, Mmp9, Egfr were selected using centralities analyses and verified by qRT-PCR. CONCLUSION We profiled a global mRNA landscape in CLD to promote a complete understanding of transcriptomic events of this disease, offering candidate biomarkers and therapeutic targets for the clinic.
Collapse
Affiliation(s)
- Jie Sun
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, Anhui Province, China
| | - Jing Wang
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, Anhui Province, China
| | - Na Zhang
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, Anhui Province, China
| | - Renjun Yang
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, Anhui Province, China
| | - Keyang Chen
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Meishan Road 81, Hefei 230022, Anhui Province, China
| | - Derun Kong
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, Anhui Province, China.
| |
Collapse
|
29
|
Sánchez-Salgado JC, Estrada-Soto S, García-Jiménez S, Montes S, Gómez-Zamudio J, Villalobos-Molina R. Analysis of Flavonoids Bioactivity for Cholestatic Liver Disease: Systematic Literature Search and Experimental Approaches. Biomolecules 2019; 9:biom9030102. [PMID: 30875780 PMCID: PMC6468533 DOI: 10.3390/biom9030102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Flavonoids are naturally occurring compounds that show health benefits on the liver. However, there is little investigation about identification and evaluation of new flavonoid-containing drugs for cholestatic liver disease, one of the most common liver illnesses. We aimed to a systematic search regarding efficacy of flavonoids for treatment of cholestatic liver disease, and then evaluate naringenin (NG) as representative flavonoid in an obstructive cholestasis model. We searched for information of experimental and clinical studies in four major databases without time and language limits. Intervention was defined as any flavonoid derivate compared with other flavonoid, placebo, or without comparator. In addition, we evaluated NG on a bile duct-ligated model in order to contribute evidence of its actions. Eleven experimental reports that support the efficacy of flavonoids in cholestatic liver disease were identified. However, there was no homogeneity in efficacy endpoints evaluated and methodology. On the other hand, NG showed beneficial effects by improving specific metabolic (cholesterol and lipoproteins) and liver damage (bilirubin and alkaline phosphatase) biomarkers. The review lacks homogeneous evidence about efficacy of flavonoids in experimental settings, and is susceptible to risk for bias. NG only showed improvements in specific disease biomarkers. More investigation is still needed to determine its potential for drug development.
Collapse
Affiliation(s)
- Juan Carlos Sánchez-Salgado
- Instituto de Medicina Molecular y Ciencias Avanzadas, Mexico City 01900, Mexico.
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, MOR 62209, Mexico.
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, MOR 62209, Mexico.
| | - Sara García-Jiménez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, MOR 62209, Mexico.
| | - Sergio Montes
- Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico.
| | - Jaime Gómez-Zamudio
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, México City 06720, Mexico.
| | - Rafael Villalobos-Molina
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico.
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México.
| |
Collapse
|
30
|
Damle-Vartak A, Begher-Tibbe B, Gunther G, Geisler F, Vartak N, Hengstler JG. Pipe-3D: A Pipeline Based on Immunofluorescence, 3D Confocal Imaging, Reconstructions, and Morphometry for Biliary Network Analysis in Cholestasis. Methods Mol Biol 2019; 1981:25-53. [PMID: 31016646 DOI: 10.1007/978-1-4939-9420-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cholestasis, the impairment of bile flux out of the liver, is a common complication of many pathological liver disorders, such as cholangiopathies, primary biliary sclerosis, and primary biliary cirrhosis. Besides accumulation of bile acids in the liver and blood, it leads to a proliferative response of the biliary tree termed as a ductular reaction. The ductular reaction is characterized by enhanced proliferation of cholangiocytes, which form the epithelial lining of bile ducts. This strong reaction of the biliary tree has been reported to generate a source of progenitor cells that can differentiate to hepatocytes or cholangiocytes during regeneration. On the other hand, it can cause periportal fibrosis eventually progressing to cirrhosis and death. In 2D histology, this leads to the appearance of an increased number of duct lumina per area of tissue. Yet, the biliary tree is a 3D vstructure and the appearance of lumina in thin slices may be explained by the appearance of novel ducts or by ramification or convolution of existing ducts in 3D. In many such aspects, traditional 2D histology on thin slices limits our understanding of the response of the biliary tree. A comprehensive understanding of architecture remodeling of the biliary network in cholestasis depends on robust 3D sample preparation and analysis methods. To that end, we describe pipe-3D, a processing and analysis pipeline visualization based on immunofluorescence, confocal imaging, surface reconstructions, and automated morphometry of the biliary network in 3D at subcellular resolution. This pipeline has been used to discover extensive remodeling of interlobular bile ducts in cholestasis, wherein elongation, branching, and looping create a dense ductular mesh around the portal vein branch. Surface reconstructions generated by Pipe-3D from confocal data also show an approximately fivefold enhancement of the luminal duct surface through corrugation of the epithelial lamina, which may increase bile reabsorption and alleviate cholestasis. The response of interlobular ducts in cholestasis was shown to be in sharp contrast to that of large bile ducts, de novo duct formation during embryogenesis. It is also distinct from ductular response in other models of hepatic injury such as choline-deficient, ethionine-supplemented diet, where parenchymal tissue invasion by ducts and their branches is observed. Pipe-3D is applicable to any model of liver injury, and optionally integrates tissue clearing techniques for 3D analysis of thick (>500 μm) tissue sections.
Collapse
Affiliation(s)
- Amruta Damle-Vartak
- Department of Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Brigitte Begher-Tibbe
- Department of Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Georgia Gunther
- Department of Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Fabian Geisler
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar der Technische Universitaet Muenchen, Munich, Germany
| | - Nachiket Vartak
- Department of Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Jan G Hengstler
- Department of Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany.
| |
Collapse
|
31
|
Maimouni S, Issa N, Cheng S, Ouaari C, Cheema A, Kumar D, Byers S. Tumor suppressor RARRES1- A novel regulator of fatty acid metabolism in epithelial cells. PLoS One 2018; 13:e0208756. [PMID: 30557378 PMCID: PMC6296515 DOI: 10.1371/journal.pone.0208756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
Retinoic acid receptor responder 1 (RARRES1) is silenced in many cancers and is differentially expressed in metabolism associated diseases, such as hepatic steatosis, hyperinsulinemia and obesity. Here we report a novel function of RARRES1 in metabolic reprogramming of epithelial cells. Using non-targeted LC-MS, we discovered that RARRES1 depletion in epithelial cells caused a global increase in lipid synthesis. RARRES1-depleted cells rewire glucose metabolism by switching from aerobic glycolysis to glucose-dependent de novo lipogenesis (DNL). Treatment with fatty acid synthase (FASN) inhibitor, C75, reversed the effects of RARRES1 depletion. The increased DNL in RARRES1-depleted normal breast and prostate epithelial cells proved advantageous to the cells during starvation, as the increase in fatty acid availability lead to more oxidized fatty acids (FAO), which were used for mitochondrial respiration. Expression of RARRES1 in several common solid tumors is also contextually correlated with expression of fatty acid metabolism genes and fatty acid-regulated transcription factors. Pathway enrichment analysis led us to determine that RARRES1 is regulated by peroxisome proliferating activated receptor (PPAR) signaling. These findings open up a new avenue for metabolic reprogramming and identify RARRES1 as a potential target for cancers and other diseases with impaired fatty acid metabolism.
Collapse
Affiliation(s)
- Sara Maimouni
- Department of Biochemical, Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States of America
| | - Naiem Issa
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| | - Selina Cheng
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| | - Chokri Ouaari
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
- University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Amrita Cheema
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, United States of America
| | - Stephen Byers
- Department of Biochemical, Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States of America
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| |
Collapse
|
32
|
Mladenović B, Mladenović N, Brzački V, Petrović N, Kamenov A, Golubović M, Ničković V, Stojanović NM, Sokolović DT. Exogenous putrescine affects polyamine and arginine metabolism in rat liver following bile ductus ligation. Can J Physiol Pharmacol 2018; 96:1232-1237. [DOI: 10.1139/cjpp-2018-0332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Rat bile duct ligation (BDL) represents a useful method that mimics obstructive extrahepatic cholestasis, which is known to be a frequent disorder in humans. Polyamines (putrescine, spermidine, and spermine) are one of the key molecules regulating cell proliferation and differentiation. This work aimed to evaluate the potential beneficial properties of putrescine in rat BDL model by studying several biochemical parameters reflecting liver function and polyamine metabolism. Rats that were subjected to BDL were injected with putrescine (150 mg/kg) for 9 days, while in parallel another group with BDL remained untreated. Two control groups were included as well, sham-opened and putrescine-treated group. The following plasma parameters: ALT, AST, γ-GT, ALP, bilirubin, bile acids, as well as liver malondialdehyde and polyamine concentration and the activity of enzymes involved in polyamine metabolism were studied. After BDL, significant alterations in plasma biochemical parameters occurred, where a 9-day putrescine treatment significantly alleviated liver function deterioration. Putrescine also increased liver polyamines’ concentrations and polyamine and diamine oxidase activities in rats submitted to BDL. Our results demonstrated, for the first time, that putrescine plays an important role in preserving liver tissue function in rats with experimentally induced cholestasis.
Collapse
Affiliation(s)
- Bojan Mladenović
- Clinic for Gastroenterology, Clinical Center Niš, 18000 Niš, Serbia
- Department of Internal Medicine, Faculty of Medicine, University of Niš, Zorana Ðinđića 81, 18000 Niš, Serbia
| | - Nikola Mladenović
- Institute for Cardiovascular Diseases Sremska Kamenica, Put doktora Goldmana 4, 21208 Sremska Kamenica, Serbia
| | - Vesna Brzački
- Clinic for Gastroenterology, Clinical Center Niš, 18000 Niš, Serbia
- Department of Internal Medicine, Faculty of Medicine, University of Niš, Zorana Ðinđića 81, 18000 Niš, Serbia
| | - Nemanja Petrović
- Institute for Cardiovascular Diseases Sremska Kamenica, Put doktora Goldmana 4, 21208 Sremska Kamenica, Serbia
| | - Aleksandar Kamenov
- Clinic for Cardiovascular and Transplantation Surgery, Clinical Center Niš, 18000 Niš, Serbia
| | - Mladjan Golubović
- Clinic for Anesthesiology and Intensive Therapy, Department for Cardiosurgery, Clinical Center Nis, 18000 Niš, Serbia
| | | | | | - Dušan T. Sokolović
- Department of Biochemistry, Faculty of Medicine, University of Niš, Zorana Ðinđića 81, 18000 Niš, Serbia
| |
Collapse
|
33
|
Targeting HMGB1/TLR4 axis and miR-21 by rosuvastatin: role in alleviating cholestatic liver injury in a rat model of bile duct ligation. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:37-43. [DOI: 10.1007/s00210-018-1560-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
|
34
|
Serum and Hepatic Autofluorescence as a Real-Time Diagnostic Tool for Early Cholestasis Assessment. Int J Mol Sci 2018; 19:ijms19092634. [PMID: 30189659 PMCID: PMC6165295 DOI: 10.3390/ijms19092634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/17/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
While it is well established that various factors can impair the production and flow of bile and lead to cholestatic disease in hepatic and extrahepatic sites, an enhanced assessment of the biomarkers of the underlying pathophysiological mechanisms is still needed to improve early diagnosis and therapeutic strategies. Hence, we investigated fluorescing endogenous biomolecules as possible intrinsic biomarkers of molecular and cellular changes in cholestasis. Spectroscopic autofluorescence (AF) analysis was performed using a fiber optic probe (366 nm excitation), under living conditions and in serum, on the livers of male Wistar rats submitted to bile duct ligation (BDL, 24, 48, and 72 h). Biomarkers of liver injury were assayed biochemically. In the serum, AF analysis distinctly detected increased bilirubin at 24 h BDL. A continuous, significant increase in red-fluorescing porphyrin derivatives indicated the subversion of heme metabolism, consistent with an almost twofold increase in the serum iron at 72 h BDL. In the liver, changes in the AF of NAD(P)H and flavins, as well as lipopigments, indicated the impairment of mitochondrial functionality, oxidative stress, and the accumulation of oxidative products. A serum/hepatic AF profile can be thus proposed as a supportive diagnostic tool for the in situ, real-time study of bio-metabolic alterations in bile duct ligation (BDL) in experimental hepatology, with the potential to eventually translate to clinical diagnosis.
Collapse
|
35
|
Peroxisomes and cancer: The role of a metabolic specialist in a disease of aberrant metabolism. Biochim Biophys Acta Rev Cancer 2018; 1870:103-121. [PMID: 30012421 DOI: 10.1016/j.bbcan.2018.07.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/30/2018] [Accepted: 07/10/2018] [Indexed: 01/02/2023]
Abstract
Cancer is irrevocably linked to aberrant metabolic processes. While once considered a vestigial organelle, we now know that peroxisomes play a central role in the metabolism of reactive oxygen species, bile acids, ether phospholipids (e.g. plasmalogens), very-long chain, and branched-chain fatty acids. Immune system evasion is a hallmark of cancer, and peroxisomes have an emerging role in the regulation of cellular immune responses. Investigations of individual peroxisome proteins and metabolites support their pro-tumorigenic functions. However, a significant knowledge gap remains regarding how individual functions of proteins and metabolites of the peroxisome orchestrate its potential role as a pro-tumorigenic organelle. This review highlights new advances in our understanding of biogenesis, enzymatic functions, and autophagic degradation of peroxisomes (pexophagy), and provides evidence linking these activities to tumorigenesis. Finally, we propose avenues that may be exploited to target peroxisome-related processes as a mode of combatting cancer.
Collapse
|
36
|
Klag T, Thomas M, Ehmann D, Courth L, Mailänder-Sanchez D, Weiss TS, Dayoub R, Abshagen K, Vollmar B, Thasler WE, Stange EF, Berg CP, Malek NP, Zanger UM, Wehkamp J. β-Defensin 1 Is Prominent in the Liver and Induced During Cholestasis by Bilirubin and Bile Acids via Farnesoid X Receptor and Constitutive Androstane Receptor. Front Immunol 2018; 9:1735. [PMID: 30100908 PMCID: PMC6072844 DOI: 10.3389/fimmu.2018.01735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022] Open
Abstract
Background & aims Knowledge about innate antimicrobial defense of the liver is limited. We investigated hepatic expression and regulation of antimicrobial peptides with focus on the human beta defensin-1 (hBD-1). Methods Radial diffusion assay was used to analyze antimicrobial activity of liver tissue. Different defensins including hBD-1 and its activator thioredoxin-1 (TXN) were analyzed in healthy and cholestatic liver samples by qPCR and immunostaining. Regulation of hBD-1 expression was studied in vitro and in vivo using bile duct-ligated mice. Regulation of hBD-1 via bilirubin and bile acids (BAs) was studied using siRNA. Results We found strong antimicrobial activity of liver tissue against Escherichia coli. As a potential mediator of this antimicrobial activity we detected high expression of hBD-1 and TXN in hepatocytes, whereas other defensins were minimally expressed. Using a specific antibody for the reduced, antimicrobially active form of hBD-1 we found hBD-1 in co-localization with TXN within hepatocytes. hBD-1 was upregulated in cholestasis in a graded fashion. In cholestatic mice hepatic AMP expression (Defb-1 and Hamp) was enhanced. Bilirubin and BAs were able to induce hBD-1 in hepatic cell cultures in vitro. Treatment with siRNA and/or agonists demonstrated that the farnesoid X receptor (FXR) mediates basal expression of hBD-1, whereas both constitutive androstane receptor (CAR) and FXR seem to be responsible for the induction of hBD-1 by bilirubin. Conclusion hBD-1 is prominently expressed in hepatocytes. It is induced during cholestasis through bilirubin and BAs, mediated by CAR and especially FXR. Reduction by TXN activates hBD-1 to a potential key player in innate antimicrobial defense of the liver.
Collapse
Affiliation(s)
- Thomas Klag
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany
| | - Dirk Ehmann
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Lioba Courth
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | | | - Thomas S Weiss
- University Children Hospital (KUNO), Regensburg University Hospital, Regensburg, Germany
| | - Rania Dayoub
- University Children Hospital (KUNO), Regensburg University Hospital, Regensburg, Germany
| | - Kerstin Abshagen
- Rudolf-Zenker-Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Wolfgang E Thasler
- Department of Surgery, Grosshadern Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Eduard F Stange
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Christoph P Berg
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Nisar P Malek
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany
| | - Jan Wehkamp
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| |
Collapse
|
37
|
Christ B, Dahmen U, Herrmann KH, König M, Reichenbach JR, Ricken T, Schleicher J, Ole Schwen L, Vlaic S, Waschinsky N. Computational Modeling in Liver Surgery. Front Physiol 2017; 8:906. [PMID: 29249974 PMCID: PMC5715340 DOI: 10.3389/fphys.2017.00906] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
The need for extended liver resection is increasing due to the growing incidence of liver tumors in aging societies. Individualized surgical planning is the key for identifying the optimal resection strategy and to minimize the risk of postoperative liver failure and tumor recurrence. Current computational tools provide virtual planning of liver resection by taking into account the spatial relationship between the tumor and the hepatic vascular trees, as well as the size of the future liver remnant. However, size and function of the liver are not necessarily equivalent. Hence, determining the future liver volume might misestimate the future liver function, especially in cases of hepatic comorbidities such as hepatic steatosis. A systems medicine approach could be applied, including biological, medical, and surgical aspects, by integrating all available anatomical and functional information of the individual patient. Such an approach holds promise for better prediction of postoperative liver function and hence improved risk assessment. This review provides an overview of mathematical models related to the liver and its function and explores their potential relevance for computational liver surgery. We first summarize key facts of hepatic anatomy, physiology, and pathology relevant for hepatic surgery, followed by a description of the computational tools currently used in liver surgical planning. Then we present selected state-of-the-art computational liver models potentially useful to support liver surgery. Finally, we discuss the main challenges that will need to be addressed when developing advanced computational planning tools in the context of liver surgery.
Collapse
Affiliation(s)
- Bruno Christ
- Molecular Hepatology Lab, Clinics of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Matthias König
- Department of Biology, Institute for Theoretical Biology, Humboldt University of Berlin, Berlin, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Tim Ricken
- Mechanics, Structural Analysis, and Dynamics, TU Dortmund University, Dortmund, Germany
| | - Jana Schleicher
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany.,Department of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany
| | | | - Sebastian Vlaic
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Navina Waschinsky
- Mechanics, Structural Analysis, and Dynamics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
38
|
Abshagen K, Rotberg T, Genz B, Vollmar B. No significant impact of Foxf1 siRNA treatment in acute and chronic CCl 4 liver injury. Exp Biol Med (Maywood) 2017. [PMID: 28629226 DOI: 10.1177/1535370217716425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic liver injury of any etiology is the main trigger of fibrogenic responses and thought to be mediated by hepatic stellate cells. Herein, activating transcription factors like forkhead box f1 are described to stimulate pro-fibrogenic genes in hepatic stellate cells. By using a liver-specific siRNA delivery system (DBTC), we evaluated whether forkhead box f1 siRNA treatment exhibit beneficial effects in murine models of acute and chronic CCl4-induced liver injury. Systemic administration of DBTC-forkhead box f1 siRNA in mice was only sufficient to silence forkhead box f1 in acute CCl4 model, but was not able to attenuate liver injury as measured by liver enzymes and necrotic liver cell area. Therapeutic treatment of mice with DBTC-forkhead box f1 siRNA upon chronic CCl4 exposition failed to inhibit forkhead box f1 expression and hence lacked to diminish hepatic stellate cells activation or fibrosis development. As a conclusion, DBTC-forkhead box f1 siRNA reduced forkhead box f1 expression in a model of acute but not chronic toxic liver injury and showed no positive effects in either of these mice models. Impact statement As liver fibrosis is a worldwide health problem, antifibrotic therapeutic strategies are urgently needed. Therefore, further developments of new technologies including validation in different experimental models of liver disease are essential. Since activation of hepatic stellate cells is a key event upon liver injury, the activating transcription factor forkhead box f1 (Foxf1) represents a potential target gene. Previously, we evaluated Foxf1 silencing by a liver-specific siRNA delivery system (DBTC), exerting beneficial effects in cholestasis. The present study was designed to confirm the therapeutic potential of Foxf1 siRNA in models of acute and chronic CCl4-induced liver injury. DBTC-Foxf1 siRNA was only sufficient to silence Foxf1 in acute CCl4 model and did not ameliorate liver injury or fibrogenesis. This underlines the significance of the experimental model used. Each model displays specific characteristics in the pathogenic nature, time course and severity of fibrosis and the optimal time point for starting a therapy.
Collapse
Affiliation(s)
- Kerstin Abshagen
- 1 Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Tobias Rotberg
- 1 Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Berit Genz
- 1 Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany.,2 QIMR Berghofer Medical Research Institute, Brisbane QLD 4006, Australia
| | - Brigitte Vollmar
- 1 Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
39
|
Zhou HQ, Liu W, Wang J, Huang YQ, Li PY, Zhu Y, Wang JB, Ma X, Li RS, Wei SZ, Li K, Li HT, Li JY, Xiao XH, Zhao YL. Paeoniflorin attenuates ANIT-induced cholestasis by inhibiting apoptosis in vivo via mitochondria-dependent pathway. Biomed Pharmacother 2017; 89:696-704. [DOI: 10.1016/j.biopha.2017.02.084] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/02/2017] [Accepted: 02/22/2017] [Indexed: 12/29/2022] Open
|
40
|
Lim SW, Lee DR, Choi BK, Kim HS, Yang SH, Suh JW, Kim KS. Protective effects of a polymethoxy flavonoids-rich Citrus aurantium peel extract on liver fibrosis induced by bile duct ligation in mice. ASIAN PAC J TROP MED 2016; 9:1158-1164. [DOI: 10.1016/j.apjtm.2016.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022] Open
|
41
|
Yao X, Li Y, Cheng X, Li H. ER stress contributes to alpha-naphthyl isothiocyanate-induced liver injury with cholestasis in mice. Pathol Res Pract 2016; 212:560-7. [PMID: 27173049 DOI: 10.1016/j.prp.2016.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 01/15/2023]
Abstract
Endoplasmic reticulum (ER) stress is involved in the development of several liver diseases and tumors. This study investigated the underlying mechanisms of α-naphthyl isothiocyanate (ANIT)-induced liver injury with cholestasis in mice and found ER stress contributes to the injury. All animals were randomly divided into three groups. In the ANIT-intoxicated group, mice were intragastrically given 100mg/kg ANIT (dissolved in corn oil), while the other groups received an equal volume of vehicle as control. After 24 and 48h of ANIT administration, blood samples and liver tissues of all animals were collected for serum biochemistry and hepatic histopathological examinations to evaluate liver injuries with cholestasis. Hepatocellular apoptosis was assessed by the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. The expression of hepatic ER stress-related markers was determined by real-time PCR, immunohistochemical assay and Western blot. ANIT was found to significantly induce liver injury with cholestasis compared with control mice as evidenced by the increase of serum transaminases and total bilirubin (TBil), and histopathological changes in mice. ANIT remarkably induced hepatocellular apoptosis, upregulated the expression of caspase-9 and cytochrome c, and inhibited the gene and protein expression of proliferating cell nuclear antigen (PCNA). The gene expression of ER stress-related markers, including glucose-regulated protein 78 (GRP78), protein kinase R-like ER kinase (PERK), eukaryotic initiation factor 2α (eIF2α), inositol requiring enzyme-1α (IRE-1α) and activating transcription factor 6 (ATF6) was upregulated by ANIT in mice. ANIT also upregulated the protein expression of GRP78 and activated the phosphorylation of IRE1. These results suggested that ANIT induced liver injury with cholestasis partly due to its ability to activate the ER stress pathway.
Collapse
Affiliation(s)
- Xiaomin Yao
- Faculty of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315100, China.
| | - Yue Li
- Beijing Centre For Physical & Chemical Analysis, Beijing, 100050, China
| | - Xiaoyan Cheng
- Beijing Centre For Physical & Chemical Analysis, Beijing, 100050, China
| | - Hongwei Li
- Faculty of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315100, China
| |
Collapse
|