1
|
Tang C, Shi G, Jia R, Pei X, Wang C, Du Z, Li S, Wan P, Sun S, Peng C, Li S, Sun P, Yu B, Dai J. Chronic Disturbed Flow Induces Superficial Erosion-Prone Lesion via Endothelial-to-Mesenchymal Transition in a DNA Methyltransferase-Dependent Manner. J Atheroscler Thromb 2025; 32:608-629. [PMID: 39551496 DOI: 10.5551/jat.64990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
AIM Superficial erosion accounts for approximately one-third of all cases of acute coronary syndrome (ACS). Previously, we found that a nearby bifurcation is independently associated with superficial erosion; however, the effect of long-term oscillatory flow on superficial erosion remains unexplored. Endothelial-to-mesenchymal transition (EndMT) is a dynamic process in which endothelial cells acquire mesenchymal properties and, in turn, give rise to smooth muscle cell (SMC)-like cells and extracellular matrix (ECM) accumulation, similar to the autopsy pathology of superficial erosion. This finding prompted us to suspect that EndMT plays a role in the effect of chronic oscillatory flow on superficial erosion. METHODS We established oscillatory flow in mouse carotid arteries and analyzed neointimal hyperplasia, endothelial continuity, ECM content, and EndMT markers 4 weeks later. Furthermore, bioinformatic data analyses and in vitro studies were performed to elucidate the underlying mechanisms. RESULTS Carotid arteries exposed to long-term oscillatory flow exhibited hyperplastic neointima, reduced endothelial continuity, and increased SMC-like cells and ECM, indicating superficial erosion-prone lesions. In addition, oscillatory flow significantly induced EndMT, whereas inhibition of EndMT ameliorated the formation of superficial erosion-prone lesions. Bioinformatic data analyses and in vitro studies showed a remarkable reduction in anti-EndMT KLF2 and KLF4 in a DNA methyltransferase (DNMT)-dependent manner, and the suppression of DNMTs attenuated oscillatory flow-induced EndMT and superficial erosion-prone lesions. CONCLUSIONS Chronic oscillatory flow causes superficial erosion-prone lesions by activating EndMT in a DNMT-dependent manner. Our findings highlight a promising therapeutic strategy for the prevention of superficial erosions.
Collapse
Affiliation(s)
- Caiying Tang
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education
| | - Guoxia Shi
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education
| | - Ruyi Jia
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education
| | - Xueying Pei
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education
| | - Chao Wang
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education
- Department of Ultrasound, the 2nd Affiliated Hospital of Harbin Medical University
| | - Zhuo Du
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education
| | - Song Li
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education
| | - Pingping Wan
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education
| | - Sibo Sun
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education
| | - Cong Peng
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education
| | - Shuang Li
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education
| | - Ping Sun
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education
- Department of Ultrasound, the 2nd Affiliated Hospital of Harbin Medical University
| | - Bo Yu
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University
- The State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education
| | - Jiannan Dai
- Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University
- The State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education
| |
Collapse
|
2
|
Kellum CE, Kelly GC, Pollock JS. Ripple Effects of Early Life Stress on Vascular Health. Hypertension 2025; 82:549-560. [PMID: 39882616 DOI: 10.1161/hypertensionaha.124.17804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The term early life stress encompasses traumatic events occurring before the age of 18 years, such as physical abuse, verbal abuse, household dysfunctions, sexual abuse, childhood neglect, child maltreatment, and adverse childhood experiences. Adverse psychological experiences in early life are linked to enduring effects on mental and physical health in adulthood. In this review, we first describe the effects and potential mechanisms of early life stress on the components of the vasculature. Next, we dive into the impact of early life stress on the vasculature across the lifespan through alterations of the epigenetic landscape. Finally, we consolidate the critical gaps in knowledge for focusing future research including the potential for resilience in combatting the impact of early life stress on vascular health.
Collapse
Affiliation(s)
- Cailin E Kellum
- Cardio-Renal Physiology and Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, AL (C.E.K., G.C.K., J.S.P.)
| | - Gillian C Kelly
- Cardio-Renal Physiology and Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, AL (C.E.K., G.C.K., J.S.P.)
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, AL (C.E.K., G.C.K., J.S.P.)
| |
Collapse
|
3
|
Chen LJ, Li JYS, Nguyen P, Norwich G, Wang Y, Teng D, Shiu YT, Shyy JYJ, Chien S. Pulsatile flow induces chromatin interaction with lamin-associated proteins to enrich H3K9 methylation in endothelial cells. Proc Natl Acad Sci U S A 2025; 122:e2424566122. [PMID: 40117319 PMCID: PMC11962468 DOI: 10.1073/pnas.2424566122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025] Open
Abstract
Endothelial cells (ECs) are constantly exposed to hemodynamic forces, which play a crucial role in regulating EC functions. Pulsatile laminar shear stress (PS), representing atheroprotective flow, maintains the anti-inflammation and homeostatic phenotype of ECs, but the comprehensive mechanism underlying the PS-repression of inflammatory genes remains to be determined. In this study, we investigated the role of chromatin organization in mediating the effects of PS on inflammatory gene expression in ECs. We demonstrated that PS induced the expression of histone methyltransferase SUV39H1 to promote heterochromatin formation via H3K9 trimethylation (H3K9me3) enrichment, a hallmark gene repression mechanism. SUV39H1 interacts with lamin-associated proteins and facilitates the perinuclear localization of the H3K9me3-enrichment. Silencing the lamin-associated protein emerin (EMD) not only led to the reductions of cytoskeletal F-actin formation and perinuclear H3K9me3 enrichment; but also the impairment of PS-induced SUV39H1 expression, H3K9me3 enrichment at E-selectin and vascular cell adhesion molecule 1 loci to revert their PS-repressed expression. Hence, EMD acts as a hub to transmit mechanical cues from the cytoskeleton to the nucleus and recruits SUV39H1, which regulate nuclear organization, chromatin state, and gene expression. These results accentuate the critical role of nuclear architecture in mechanotransduction and EC responses to mechanical stimuli.
Collapse
Affiliation(s)
- Li-Jing Chen
- Department of Bioengineering, University of California at San Diego, La Jolla, CA92093
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA92093
| | - Julie Yi-Shuan Li
- Department of Bioengineering, University of California at San Diego, La Jolla, CA92093
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA92093
| | - Phu Nguyen
- Department of Bioengineering, University of California at San Diego, La Jolla, CA92093
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA92093
| | - Gerard Norwich
- Department of Bioengineering, University of California at San Diego, La Jolla, CA92093
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA92093
| | - Yingxiao Wang
- Department of Bioengineering, University of California at San Diego, La Jolla, CA92093
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA90089
| | - Dayu Teng
- Department of Bioengineering, University of California at San Diego, La Jolla, CA92093
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA92093
| | - Yan-Ting Shiu
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT84112
- Veterans Affairs Medical Center, University of Utah, Salt Lake City, UT84112
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT84112
| | - John Y. J. Shyy
- Department of Medicine, University of California at San Diego, La Jolla, CA92093
| | - Shu Chien
- Department of Bioengineering, University of California at San Diego, La Jolla, CA92093
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA92093
- Department of Medicine, University of California at San Diego, La Jolla, CA92093
| |
Collapse
|
4
|
Karakasis P, Theofilis P, Patoulias D, Vlachakis PK, Antoniadis AP, Fragakis N. Diabetes-Driven Atherosclerosis: Updated Mechanistic Insights and Novel Therapeutic Strategies. Int J Mol Sci 2025; 26:2196. [PMID: 40076813 PMCID: PMC11900163 DOI: 10.3390/ijms26052196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The global rise in diabetes prevalence has significantly contributed to the increasing burden of atherosclerotic cardiovascular disease (ASCVD), a leading cause of morbidity and mortality in this population. Diabetes accelerates atherosclerosis through mechanisms such as hyperglycemia, oxidative stress, chronic inflammation, and epigenetic dysregulation, leading to unstable plaques and an elevated risk of cardiovascular events. Despite advancements in controlling traditional risk factors like dyslipidemia and hypertension, a considerable residual cardiovascular risk persists, highlighting the need for innovative therapeutic approaches. Emerging treatments, including sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, epigenetic modulators, and RNA-based therapies, are showing promise in addressing the unique challenges of diabetes-associated ASCVD. Precision medicine strategies, such as nanoparticle-based drug delivery and cell-specific therapies, offer further potential for mitigating cardiovascular complications. Advances in multiomics and systems biology continue to deepen our understanding of the molecular mechanisms driving diabetes-associated atherosclerosis. This review synthesizes recent advances in understanding the pathophysiology and treatment of diabetes-related atherosclerosis, offering a roadmap for future research and precision medicine approaches to mitigate cardiovascular risk in this growing population.
Collapse
Affiliation(s)
- Paschalis Karakasis
- Second Department of Cardiology, Medical School, Hippokration General Hospital, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54124 Thessaloniki, Greece; (A.P.A.); (N.F.)
| | - Panagiotis Theofilis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (P.T.); (P.K.V.)
| | - Dimitrios Patoulias
- Second Propedeutic Department of Internal Medicine, Faculty of Medicine, School of Health Sciences Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Panayotis K. Vlachakis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (P.T.); (P.K.V.)
| | - Antonios P. Antoniadis
- Second Department of Cardiology, Medical School, Hippokration General Hospital, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54124 Thessaloniki, Greece; (A.P.A.); (N.F.)
| | - Nikolaos Fragakis
- Second Department of Cardiology, Medical School, Hippokration General Hospital, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54124 Thessaloniki, Greece; (A.P.A.); (N.F.)
| |
Collapse
|
5
|
Khan AW, Jandeleit-Dahm KAM. Atherosclerosis in diabetes mellitus: novel mechanisms and mechanism-based therapeutic approaches. Nat Rev Cardiol 2025:10.1038/s41569-024-01115-w. [PMID: 39805949 DOI: 10.1038/s41569-024-01115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Atherosclerosis is a disease of large and medium arteries that can lead to life-threatening cardiovascular and cerebrovascular consequences, such as myocardial infarction and stroke. Moreover, atherosclerosis is a major contributor to cardiovascular-related mortality in individuals with diabetes mellitus. Diabetes aggravates the pathobiological mechanisms that underlie the development of atherosclerosis. Currently available anti-atherosclerotic drugs or strategies solely focus on optimal control of systemic risk factors, including hyperglycaemia and dyslipidaemia, but do not adequately target the diabetes-exacerbated mechanisms of atherosclerotic cardiovascular disease, highlighting the need for targeted, mechanism-based therapies. This Review focuses on emerging pathological mechanisms and related novel therapeutic targets in atherosclerotic cardiovascular disease in patients with diabetes.
Collapse
Affiliation(s)
- Abdul Waheed Khan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Karin A M Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- German Diabetes Centre, Leibniz Centre for Diabetes Research at the Heinrich Heine University, Dusseldorf, Germany
| |
Collapse
|
6
|
Chen L, Qu H, Liu B, Chen BC, Yang Z, Shi DZ, Zhang Y. Low or oscillatory shear stress and endothelial permeability in atherosclerosis. Front Physiol 2024; 15:1432719. [PMID: 39314624 PMCID: PMC11417040 DOI: 10.3389/fphys.2024.1432719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Endothelial shear stress is a tangential stress derived from the friction of the flowing blood on the endothelial surface of the arterial wall and is expressed in units of force/unit area (dyne/cm2). Branches and bends of arteries are exposed to complex blood flow patterns that generate low or oscillatory endothelial shear stress, which impairs glycocalyx integrity, cytoskeleton arrangement and endothelial junctions (adherens junctions, tight junctions, gap junctions), thus increasing endothelial permeability. The lipoproteins and inflammatory cells penetrating intima due to the increased endothelial permeability characterizes the pathological changes in early stage of atherosclerosis. Endothelial cells are critical sensors of shear stress, however, the mechanisms by which the complex shear stress regulate endothelial permeability in atherosclerosis remain unclear. In this review, we focus on the molecular mechanisms of the endothelial permeability induced by low or oscillatory shear stress, which will shed a novel sight in early stage of atherosclerosis.
Collapse
Affiliation(s)
- Li Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Bin Liu
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Bing-Chang Chen
- Graduate school, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Zhen Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Da-Zhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Ying Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
7
|
Młynarska E, Hajdys J, Czarnik W, Fularski P, Leszto K, Majchrowicz G, Lisińska W, Rysz J, Franczyk B. The Role of Antioxidants in the Therapy of Cardiovascular Diseases-A Literature Review. Nutrients 2024; 16:2587. [PMID: 39203723 PMCID: PMC11357572 DOI: 10.3390/nu16162587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Antioxidants are endogenous and exogenous substances with the ability to inhibit oxidation processes by interacting with reactive oxygen species (ROS). ROS, in turn, are small, highly reactive substances capable of oxidizing a wide range of molecules in the human body, including nucleic acids, proteins, lipids, carbohydrates, and even small inorganic compounds. The overproduction of ROS leads to oxidative stress, which constitutes a significant factor contributing to the development of disease, not only markedly diminishing the quality of life but also representing the most common cause of death in developed countries, namely, cardiovascular disease (CVD). The aim of this review is to demonstrate the effect of selected antioxidants, such as coenzyme Q10 (CoQ10), flavonoids, carotenoids, and resveratrol, as well as to introduce new antioxidant therapies utilizing miRNA and nanoparticles, in reducing the incidence and progression of CVD. In addition, new antioxidant therapies in the context of the aforementioned diseases will be considered. This review emphasizes the pleiotropic effects and benefits stemming from the presence of the mentioned substances in the organism, leading to an overall reduction in cardiovascular risk, including coronary heart disease, dyslipidaemia, hypertension, atherosclerosis, and myocardial hypertrophy.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Joanna Hajdys
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Klaudia Leszto
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Gabriela Majchrowicz
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Wiktoria Lisińska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland;
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| |
Collapse
|
8
|
Li W, Bai P, Li W. UHRF1 inhibition mitigates vascular endothelial cell injury and ameliorates atherosclerosis in mice via regulating the SMAD7/YAP1 axis. Mol Immunol 2024; 170:119-130. [PMID: 38657333 DOI: 10.1016/j.molimm.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/29/2024] [Accepted: 04/06/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Endothelial cell injury and dysfunction lead to cholesterol and lipid accumulation and atherosclerotic plaque formation in the arterial wall during atherosclerosis (AS) progression, Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), a DNA methylation regulator, was strongly upregulated in atherosclerotic plaque lesions in mice. This study aimed to investigate the precise biological functions and regulatory mechanisms of UHRF1 on endothelial dysfunction during AS development. METHODS UHRF1 levels in the atherosclerotic plaque tissues and normal arterial intima from AS patients were tested with Western blot analysis and immunohistochemistry assays. Human umbilical vein endothelial cells (HUVECs) were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce an injury model and then transfected with short hairpin RNA targeting UHRF1 (sh-UHRF1). Cell proliferation, migration, apoptosis, the levels of inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and the protein levels adhesion molecules including vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were measured. Moreover, co-immunoprecipitation assay was used to determine the interactions between UHRF1 and DNA methyltransferases 1 (DNMT1), As well as mothers against DPP homolog 7 (SMAD7) and yes-associated protein 1 (YAP1). SMAD7 promoter methylation was examined with methylation-specific PCR. In addition, we established an AS mouse model to determine the in vivo effects of UHRF1 on AS progression. RESULTS UHRF1 was upregulated in atherosclerotic plaque tissues and ox-LDL-treated HUVECs. UHRF1 knockdown mitigated ox-LDL-induced proliferation and migration inhibition, apoptosis and the production of TNF-α, IL-6, VCAM-1, and ICAM-1 in HUVECs. Mechanistically, UHRF1 promoted DNMT1-mediated SMAD7 promoter methylation and inhibited its expression. SMAD7 knockdown abolished the protective effects of UHRF1 knockdown on ox-LDL-induced HUVEC injury. Moreover, SMAD7 interacted with YAP1 and inhibited YAP1 expression by promoting YAP1 protein ubiquitination-independent degradation in HUVECs. YAP1 overexpression abrogated SMAD7 overexpression-mediated protective effects on ox-LDL-induced HUVEC injury. Finally, UHRF1 knockdown alleviated atherosclerotic plaque deposition and arterial lesions in AS mice. CONCLUSION UHRF1 inhibition mitigates vascular endothelial cell injury and ameliorates AS progression in mice by regulating the SMAD7/YAP1 axis.
Collapse
Affiliation(s)
- Wenbo Li
- The Third Departments of Cardiovascular, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Pengxing Bai
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Wei Li
- Department of Vascular Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China.
| |
Collapse
|
9
|
Huang J, Dong S, Wu Y, Yi H, Zhang W, Ai X. Sirtuin 6 Deacetylates Apoptosis-Associated Speck-Like Protein (ASC) to Inhibit Endothelial Cell Pyroptosis in Atherosclerosis. Int Heart J 2024; 65:466-474. [PMID: 38749754 DOI: 10.1536/ihj.23-334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Endothelial cell dysfunction is the main pathology of atherosclerosis (AS). Sirtuin 6 (SIRT6), a deacetylase, is involved in AS progression. This study aimed to investigate the impacts of SIRT6 on the pyroptosis of endothelial cells and its underlying mechanisms. ApoE-/- mice were fed a high-fat diet (HFD) to establish the AS mouse model, atherosclerotic lesions were evaluated using oil red O staining, and blood lipids and inflammatory factors were measured using corresponding kits. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to establish the cell model, and pyroptosis was evaluated by flow cytometry, ELISA, and western blot. Immunoprecipitation (IP), co-IP, western blot, and immunofluorescence were used to detect the molecular mechanisms. The results showed that SIRT6 expression was downregulated in the blood of HFD-induced mice and ox-LDL-induced HUVECs. Overexpression of SIRT6 reduced atherosclerotic lesions, blood lipids, and inflammation in vivo and suppressed pyroptosis of HUVECs in vitro. Moreover, SIRT6 interacted with ASC to inhibit the acetylation of ASC, thus, reducing the interaction between ASC and NLRP3. Moreover, SIRT6 inhibits endothelial cell pyroptosis in the aortic roots of mice by deacetylating ASC. In conclusion, SIRT6 deacetylated ASC to inhibit its interaction with NLRP3 and then suppressed pyroptosis of endothelial cells, thus, decelerating the progression of AS. The findings provide new insights into the function of SIRT6 in AS.
Collapse
Affiliation(s)
- Jian Huang
- Department of Vascular and Interventional Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University
| | - Shuilin Dong
- Hepatic Surgery Center, Vascular Surgery, Huazhong University of Science and Technology, Tongji Medical College, Tongji Hospital
| | - Yanhui Wu
- Hepatic Surgery Center, Vascular Surgery, Huazhong University of Science and Technology, Tongji Medical College, Tongji Hospital
| | - Huiming Yi
- Department of Medical Ultrasound, Huazhong University of Science and Technology, Tongji Medical College, Tongji Hospital
| | - Wei Zhang
- Department of Medical Ultrasound, Huazhong University of Science and Technology, Tongji Medical College, Tongji Hospital
| | - Xi Ai
- Department of General Surgery, Huazhong University of Science and Technology, Tongji Medical College, Tongji Hospital
| |
Collapse
|
10
|
Shi MQ, Xu Y, Fu X, Pan DS, Lu XP, Xiao Y, Jiang YZ. Advances in targeting histone deacetylase for treatment of solid tumors. J Hematol Oncol 2024; 17:37. [PMID: 38822399 PMCID: PMC11143662 DOI: 10.1186/s13045-024-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/27/2024] [Indexed: 06/03/2024] Open
Abstract
Histone deacetylase (HDAC) serves as a critical molecular regulator in the pathobiology of various malignancies and have garnered attention as a viable target for therapeutic intervention. A variety of HDAC inhibitors (HDACis) have been developed to target HDACs. Many preclinical studies have conclusively demonstrated the antitumor effects of HDACis, whether used as monotherapy or in combination treatments. On this basis, researchers have conducted various clinical studies to evaluate the potential of selective and pan-HDACis in clinical settings. In our work, we extensively summarized and organized current clinical trials, providing a comprehensive overview of the current clinical advancements in targeting HDAC therapy. Furthermore, we engaged in discussions about several clinical trials that did not yield positive outcomes, analyzing the factors that led to their lack of anticipated therapeutic effectiveness. Apart from the experimental design factors, issues such as toxicological side effects, tumor heterogeneity, and unexpected off-target effects also contributed to these less-than-expected results. These challenges have naturally become significant barriers to the application of HDACis. Despite these challenges, we believe that advancements in HDACi research and improvements in combination therapies will pave the way or lead to a broad and hopeful future in the treatment of solid tumors.
Collapse
Affiliation(s)
- Mu-Qi Shi
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying Xu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin Fu
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, 518055, People's Republic of China
| | - De-Si Pan
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, 518055, People's Republic of China
| | - Xian-Ping Lu
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, 518055, People's Republic of China
| | - Yi Xiao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Wang L, He W, Wang X, Wang J, Wei X, Wu D, Wu Y. Potential diagnostic markers shared between non-alcoholic fatty liver disease and atherosclerosis determined by machine learning and bioinformatic analysis. Front Med (Lausanne) 2024; 11:1322102. [PMID: 38606153 PMCID: PMC11007109 DOI: 10.3389/fmed.2024.1322102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Background Evidence indicates that chronic non-alcoholic fatty liver disease (NAFLD) can increase the risk of atherosclerosis (AS), but the underlying mechanism remains unclear. Objective This study is intended for confirming key genes shared between NAFLD and AS, and their clinical diagnostic value to establish a foundation for searching novel therapeutic targets. Methods We downloaded the Gene Expression Omnibus (GEO) datasets, GSE48452 and GSE89632 for NAFLD and GSE100927, GSE40231 and GSE28829 for AS. The progression of NAFLD co-expression gene modules were recognized via weighted gene co-expression network analysis (WGCNA). We screened for differentially expressed genes (DEGs) associated with AS and identified common genes associated with NAFLD and AS using Venn diagrams. We investigated the most significant core genes between NAFLD and AS using machine learning algorithms. We then constructed a diagnostic model by creating a nomogram and evaluating its performance using ROC curves. Furthermore, the CIBERSORT algorithm was utilized to explore the immune cell infiltration between the two diseases, and evaluate the relationship between diagnostic genes and immune cells. Results The WGCNA findings associated 1,129 key genes with NAFLD, and the difference analysis results identified 625 DEGs in AS, and 47 genes that were common to both diseases. We screened the core RPS6KA1 and SERPINA3 genes associated with NAFLD and AS using three machine learning algorithms. A nomogram and ROC curves demonstrated that these genes had great clinical meaning. We found differential expression of RPS6KA1 in patients with steatosis and NASH, and of SERPINA3 only in those with NASH compared with normal individuals. Immune infiltration findings revealed that macrophage and mast cell infiltration play important roles in the development of NAFLD and AS. Notably, SERPINA3 correlated negatively, whereas RPS6KA1 correlated positively with macrophages and mast cells. Conclusion We identified RPS6KA1 and SERPINA3 as potential diagnostic markers for NAFLD and AS. The most promising marker for a diagnosis of NAFLD and AS might be RPS6KA1, whereas SERPINA3 is the most closely related gene for NASH and AS. We believe that further exploration of these core genes will reveal the etiology and a pathological relationship between NAFLD and AS.
Collapse
Affiliation(s)
- Lihong Wang
- Department of Pharmacy, Fuzhou Second General Hospital, Fuzhou, China
| | - Wenhui He
- Department of Orthopedic Research Institute, Fuzhou Second General Hospital, Fuzhou, China
| | - Xilin Wang
- Department of Pharmacy, Fuzhou Second General Hospital, Fuzhou, China
| | - Jianrong Wang
- Department of Pharmacy, Fuzhou Second General Hospital, Fuzhou, China
| | - Xiaojuan Wei
- Department of Pharmacy, Fuzhou Second General Hospital, Fuzhou, China
| | - Dongzhi Wu
- Department of Orthopedic Research Institute, Fuzhou Second General Hospital, Fuzhou, China
| | - Yundan Wu
- Department of Pharmacy, The Third Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
12
|
Long F, Zhou X, Zhang J, Di C, Li X, Ye H, Pan J, Si J. The role of lncRNA HCG18 in human diseases. Cell Biochem Funct 2024; 42:e3961. [PMID: 38425124 DOI: 10.1002/cbf.3961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
A substantial number of long noncoding RNAs (lncRNAs) have been identified as potent regulators of human disease. Human leukocyte antigen complex group 18 (HCG18) is a new type of lncRNA that has recently been proven to play an important role in the occurrence and development of various diseases. Studies have found that abnormal expression of HCG18 is closely related to the clinicopathological characteristics of many diseases. More importantly, HCG18 was also found to promote disease progression by affecting a series of cell biological processes. This article mainly discusses the expression characteristics, clinical characteristics, biological effects and related regulatory mechanisms of HCG18 in different human diseases, providing a scientific theoretical basis for its early clinical application.
Collapse
Affiliation(s)
- Feng Long
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Cuixia Di
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xue Li
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hailin Ye
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingyu Pan
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
13
|
Patil RS, Maloney ME, Lucas R, Fulton DJR, Patel V, Bagi Z, Kovacs-Kasa A, Kovacs L, Su Y, Verin AD. Zinc-Dependent Histone Deacetylases in Lung Endothelial Pathobiology. Biomolecules 2024; 14:140. [PMID: 38397377 PMCID: PMC10886568 DOI: 10.3390/biom14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and, as such, provides a semi-selective barrier between the blood and the interstitial space. Compromise of the lung EC barrier due to inflammatory or toxic events may result in pulmonary edema, which is a cardinal feature of acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). The EC functions are controlled, at least in part, via epigenetic mechanisms mediated by histone deacetylases (HDACs). Zinc-dependent HDACs represent the largest group of HDACs and are activated by Zn2+. Members of this HDAC group are involved in epigenetic regulation primarily by modifying the structure of chromatin upon removal of acetyl groups from histones. In addition, they can deacetylate many non-histone histone proteins, including those located in extranuclear compartments. Recently, the therapeutic potential of inhibiting zinc-dependent HDACs for EC barrier preservation has gained momentum. However, the role of specific HDAC subtypes in EC barrier regulation remains largely unknown. This review aims to provide an update on the role of zinc-dependent HDACs in endothelial dysfunction and its related diseases. We will broadly focus on biological contributions, signaling pathways and transcriptional roles of HDACs in endothelial pathobiology associated mainly with lung diseases, and we will discuss the potential of their inhibitors for lung injury prevention.
Collapse
Affiliation(s)
- Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - McKenzie E. Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Vijay Patel
- Department of Cardiothoracic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Laszlo Kovacs
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
14
|
Leng Y, Zhang Z, Yao N, Fu X, Xie H, Gao H, Xie C. Chinese herbal medicine Shenqi compound for early intervention in patients at high cardiovascular risk of type 2 diabetes mellitus: the protocol of a multicenter, randomized, double-blind, placebo-controlled trial. Front Cardiovasc Med 2024; 10:1290240. [PMID: 38259322 PMCID: PMC10800938 DOI: 10.3389/fcvm.2023.1290240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Reducing multiple cardiovascular risk factors is a key link and a challenging clinical problem to reduce the risk of cardiovascular complications and death in patients with diabetes. Currently, there is a lack of clinical studies on patients with diabetes combined with multiple risk factors. Traditional Chinese medicine is believed to have therapeutic effects that contribute to the comprehensive control of multiple cardiovascular factors. This study aims to provide evidence for the efficacy and safety of Shenqi compound (SQC) for early intervention in diabetic patients at high cardiovascular risk. Methods and analysis This study is a multicenter, randomized, double-blind, placebo-controlled trial. A total of 120 diabetic patients with high cardiovascular risk were enrolled in five research centers. After a 2-week run-in period, the intervention group received basic treatment and SQC granules, and the control group received basic treatment and placebo granules for a total of 24 weeks, with a 24-week follow-up. The endpoint outcomes are major adverse cardiovascular events and renal-related and peripheral vascular disease events. The primary efficacy outcome is carotid intima-media thickness, and the secondary efficacy outcomes are carotid shear stress, indicators of glucose and lipid metabolism, pancreatic islets function, hemorheology, traditional Chinese medicine syndrome score, and quality of life scale. Safety indicators and adverse events were used to assess the safety of SQC. Discussion This study comprehensively evaluated the efficacy and safety of SQC for early intervention in diabetic patients at high cardiovascular risk from the aspects of overall metabolic level, structure, and function of blood vessels, quality of life, and long-term follow-up of endpoint events, providing evidence-based evidence for the short-term efficacy and long-term benefits of early treatment to reduce the risk of diabetic cardiovascular complications.Trial Registration: This trial is registered in the Chinese Clinical Trial Registry on March 9, 2023, https://www.chictr.org.cn/showproj.html?proj=192803 (No. ChiCTR2300069219).
Collapse
Affiliation(s)
- Yulin Leng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zehua Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Nairong Yao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoxu Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
15
|
KolaszyŃSka O, Lorkowski J. Symmetry and asymmetry in atherosclerosis. Int J Occup Med Environ Health 2023; 36:693-703. [PMID: 37791506 PMCID: PMC10743353 DOI: 10.13075/ijomeh.1896.02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/11/2023] [Indexed: 10/05/2023] Open
Abstract
Atherosclerosis remains the main cause of death worldwide. Most important issues concerning atherosclerosis are hemodynamics and how it affects plaque prevalence and distribution, as well as the symmetry and asymmetry of vasculature and plaques. To present the symmetry in the vascular system an analysis of PubMed and MEDLINE databases was performed. As of February 21, 2023, the results were as follows: for "symmetry" AND "atherosclerosis" there were 47 results; for "symmetry" AND "atherosclerotic lesions" - 20 results; for "symmetry" AND "artery stenosis" - 82 results; for "asymmetry" AND "atherosclerosis" - 87 results. Not without meaning are preventive measures. In the light of the Fourth Industrial Revolution artificial intelligence (AI) solutions help to develop new tools outperforming already existing cardiovascular risk scales. The aim of this paper is to present a current view on symmetry within vasculature and atherosclerosis as well as present a new approach to assess individuals' cardiovascular risk in accordance with precision medicine assumptions. Symmetry and asymmetry within the human vascular system play a crucial role in understanding of arterial diseases, including atherosclerosis. Moreover, it is unavoidable to use AI in cardiovascular risk stratification. Int J Occup Med Environ Health. 2023;36(6):693-703.
Collapse
Affiliation(s)
- Oliwia KolaszyŃSka
- Asklepios Klinikum Uckermark, I Department of Internal Medicine, Schwedt, Germany
| | - Jacek Lorkowski
- Central Clinical Hospital of Interior and Administration, Department of Orthopedics, Traumatology and Sports Medicine, Warsaw, Poland
| |
Collapse
|
16
|
Zhang J, Cai YS, Ji HL, Ma M, Zhang JH, Cheng ZQ, Wang KM, Jiang CS, Zhuang C, Hu Y, Meng N. Discovery of marine phidianidine-based Nrf2 activators and their potential against oxLDL- and HG-induced injury in HUVECs. Bioorg Med Chem Lett 2023; 95:129468. [PMID: 37689216 DOI: 10.1016/j.bmcl.2023.129468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
One effective strategy for treating atherosclerosis is to inhibit the injury of vascular endothelial cells (VECs) induced by oxidized low-density lipoprotein (oxLDL) and high glucose (HG). This study synthesized and evaluated a series of novel Nrf2 activators derived from the marine natural product phidianidine for their ability to protect human umbilical VECs against oxLDL- and HG-induced injury. The results of in vitro bioassays demonstrated that compound D-36 was the most promising Nrf2 activator, effectively inhibiting the apoptosis of HUVECs induced by oxLDL and HG. Furthermore, Nrf2 knockdown experiments confirmed that compound D-36 protected against oxLDL- and HG-induced apoptosis in HUVECs by activating the Nrf2 pathway. These findings provide important insights into a new chemotype of marine-derived Nrf2 activators that could potentially be optimized to develop effective anti-atherosclerosis agents.
Collapse
Affiliation(s)
- Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yong-Si Cai
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hua-Long Ji
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Mengqi Ma
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jin-He Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Zhi-Qiang Cheng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yang Hu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
17
|
He Z, Luo J, Lv M, Li Q, Ke W, Niu X, Zhang Z. Characteristics and evaluation of atherosclerotic plaques: an overview of state-of-the-art techniques. Front Neurol 2023; 14:1159288. [PMID: 37900593 PMCID: PMC10603250 DOI: 10.3389/fneur.2023.1159288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Atherosclerosis is an important cause of cerebrovascular and cardiovascular disease (CVD). Lipid infiltration, inflammation, and altered vascular stress are the critical mechanisms that cause atherosclerotic plaque formation. The hallmarks of the progression of atherosclerosis include plaque ulceration, rupture, neovascularization, and intraplaque hemorrhage, all of which are closely associated with the occurrence of CVD. Assessing the severity of atherosclerosis and plaque vulnerability is crucial for the prevention and treatment of CVD. Integrating imaging techniques for evaluating the characteristics of atherosclerotic plaques with computer simulations yields insights into plaque inflammation levels, spatial morphology, and intravascular stress distribution, resulting in a more realistic and accurate estimation of plaque state. Here, we review the characteristics and advancing techniques used to analyze intracranial and extracranial atherosclerotic plaques to provide a comprehensive understanding of atheroma.
Collapse
Affiliation(s)
- Zhiwei He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengna Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Heart failure is a serious global health problem, and coronary artery disease is one of the main causes. At present, the treatment options for ischemic heart failure (IHF) are limited. This article mainly aims to explore the evidence of enhanced external counterpulsation (EECP) as a non-invasive cardiac rehabilitation method in patients with IHF and to make a preliminary exploration of its mechanisms. RECENT FINDINGS According to the existing evidence, the standard course of EECP is safe in patients with IHF and can significantly improve the quality of life of these patients. The effect of EECP on systolic function is still unclear, while EECP has a significant improvement effect on cardiac diastolic function. At the same time, this treatment can reduce the re-hospitalization rate and emergency visit rate of patients within 6 months. In terms of mechanisms, in addition to the immediate hemodynamic effect, existing evidence mostly suggests that its improvement of cardiac function may come from its upregulation of shear stress to improve myocardial perfusion. EECP is safe to use in patients with stable ischemic heart failure, and it can improve the performance status of patients and may be beneficial to cardiac function and reduce the short-term re-hospitalization rate.
Collapse
Affiliation(s)
- Ling Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Ming Cui
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Wei Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
19
|
Hussain MS, Afzal O, Gupta G, Altamimi ASA, Almalki WH, Alzarea SI, Kazmi I, Kukreti N, Gupta S, Sulakhiya K, Singh SK, Dua K. Probing the links: Long non-coding RNAs and NF-κB signalling in atherosclerosis. Pathol Res Pract 2023; 249:154773. [PMID: 37647827 DOI: 10.1016/j.prp.2023.154773] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that involves the accumulation of lipids and immune cells in the arterial wall. NF-kB signaling is a key regulator of inflammation and is known to play a critical role in atherosclerosis. Recent studies have shown that lncRNAs can regulate NF-kB and contribute to the development and progression of atherosclerosis. Preliminary findings reveal significant alterations in the expression of specific lncRNAs in atherosclerotic lesions compared to healthy arterial tissue. Experimental evidence suggests that these dysregulated lncRNAs can influence the NF-kB pathway. By unravelling the crosstalk between lncRNAs and NF-kB signaling, this review aims to enhance our understanding of the molecular mechanisms underlying atherosclerosis. Identifying novel therapeutic targets and diagnostic markers may lead to developing interventions and management strategies for this prevalent cardiovascular disease. This review summarizes the current knowledge on the role of lncRNAs in NF-kB signaling in atherosclerosis and highlights their potential as therapeutic targets for this disease.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Kunjbihari Sulakhiya
- Neuro Pharmacology Research Laboratory (NPRL), Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
20
|
Wang X, Shen Y, Shang M, Liu X, Munn LL. Endothelial mechanobiology in atherosclerosis. Cardiovasc Res 2023; 119:1656-1675. [PMID: 37163659 PMCID: PMC10325702 DOI: 10.1093/cvr/cvad076] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 05/12/2023] Open
Abstract
Cardiovascular disease (CVD) is a serious health challenge, causing more deaths worldwide than cancer. The vascular endothelium, which forms the inner lining of blood vessels, plays a central role in maintaining vascular integrity and homeostasis and is in direct contact with the blood flow. Research over the past century has shown that mechanical perturbations of the vascular wall contribute to the formation and progression of atherosclerosis. While the straight part of the artery is exposed to sustained laminar flow and physiological high shear stress, flow near branch points or in curved vessels can exhibit 'disturbed' flow. Clinical studies as well as carefully controlled in vitro analyses have confirmed that these regions of disturbed flow, which can include low shear stress, recirculation, oscillation, or lateral flow, are preferential sites of atherosclerotic lesion formation. Because of their critical role in blood flow homeostasis, vascular endothelial cells (ECs) have mechanosensory mechanisms that allow them to react rapidly to changes in mechanical forces, and to execute context-specific adaptive responses to modulate EC functions. This review summarizes the current understanding of endothelial mechanobiology, which can guide the identification of new therapeutic targets to slow or reverse the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min Shang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lance L Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
21
|
Maris L, Ghitea TC. Can Cardiometabolic Risk Be Reduced in the Elderly? Comprehensive Epidemiological Study. Geriatrics (Basel) 2023; 8:73. [PMID: 37489321 PMCID: PMC10366737 DOI: 10.3390/geriatrics8040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/26/2023] Open
Abstract
Through these epidemiological studies, which are based on statistical and observational calculations, without visual appeal, we tracked the incidence of public health problems. In this study, our research objective was to determine and evaluate the health patterns present in a population, along with identifying the factors that contribute to the risks or provide protection against specific diseases or conditions. The progression of cardiometabolic diseases is closely linked to various chronic conditions, such as diabetes, hypertension, dyslipidemia, and chronic kidney disease. This research study involved 578 patients, who were divided into six-year cohorts ranging from 2017 to 2022. The study examined parameters related to cardiometabolic diseases, including alcoholic hepatopathies, non-alcoholic hepatopathy, chronic kidney disease, hypertension, myocardial infarction, other forms of chronic coronary syndrome, peripheral vascular disease, microvascular diseases, macrovascular diseases, and hypercholesterolemia, while considering age and physical activity levels. The study concluded that individuals in the age group of 41-50 years exhibited the highest propensity for cardiometabolic damage. Additionally, the promotion of a healthy and active lifestyle is increasingly gaining traction among elderly patients.
Collapse
Affiliation(s)
- Lavinia Maris
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Timea Claudia Ghitea
- Faculty of Medicine and Pharmacy, Medicine Department, University of Oradea, 410068 Oradea, Romania
| |
Collapse
|
22
|
Zhang L, Li J, Chen J, Lei J, Yuan Z, Zhang J, Liu Z, Yu C, Ma L. Oscillatory shear stress-mediated aberrant O-GlcNAc SIRT3 accelerates glycocalyx inflammatory injury via LKB1/p47 phox/Hyal2 signaling. Cell Signal 2023:110790. [PMID: 37392860 DOI: 10.1016/j.cellsig.2023.110790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Glycocalyx coating on endothelial surface layer helps to sense shear forces and maintain endothelial function. However, the underlying mechanism of endothelial glycocalyx degradation upon disordered shear stress stimulation is not fully understood. SIRT3, a major NAD+-dependent protein deacetylases, is required for protein stability during vascular homeostasis and partly involved in atherosclerotic process. While few studies showed that SIRT3 is responsible for endothelial glycocalyx homeostasis under shear stress, the underlying mechanisms remain largely unknown. Here, we demonstrated that oscillatory shear stress (OSS) induces glycocalyx injury by activating LKB1/p47phox/Hyal2 axis both in vivo and in vitro. And O-GlcNAc modification served to prolong SIRT3 deacetylase activity and stabilized p47/Hyal2 complex. OSS could decrease SIRT3 O-GlcNAcylation to activate LKB1, further accelerated endothelial glycocalyx injury in inflammatory microenvironment. SIRT3Ser329 mutation or inhibition of SIRT3 O-GlcNAcylation strongly promoted glycocalyx degradation. On the contrary, overexpression of SIRT3 reverse glycocalyx damage upon OSS treatment. Together, our findings indicated that targeting O-GlcNAcylation of SIRT3 could prevent and/or treat diseases whereby glycocalyx injured.
Collapse
Affiliation(s)
- Lei Zhang
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jiajia Li
- Hechuan District People's Hospital, Chongqing, China
| | - Jun Chen
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jin Lei
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zhiyi Yuan
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zhaohong Liu
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Chao Yu
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China.
| | - Limei Ma
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
23
|
Zhao Q, Liu R, Chen H, Yang X, Dong J, Bai M, Lu Y, Leng Y. Transcriptome-wide association study reveals novel susceptibility genes for coronary atherosclerosis. Front Cardiovasc Med 2023; 10:1149113. [PMID: 37351287 PMCID: PMC10282549 DOI: 10.3389/fcvm.2023.1149113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
Background Genetic risk factors substantially contributed to the development of coronary atherosclerosis. Genome-wide association study (GWAS) has identified many risk loci for coronary atherosclerosis, but the translation of these loci into therapeutic targets is limited for their location in non-coding regions. Here, we aimed to screen the potential coronary atherosclerosis pathogenic genes expressed though TWAS (transcriptome wide association study) and explore the underlying mechanism association. Methods Four TWAS approaches (PrediXcan, JTI, UTMOST, and FUSION) were used to screen genes associated with coronary atherosclerosis. Enrichment analysis of TWAS-identified genes was applied through the Metascape website. The summary-data-based Mendelian randomization (SMR) analysis was conducted to provide the evidence of causal relationship between the candidate genes and coronary atherosclerosis. At last, the cell type-specific expression of the intersection genes was examined by using human coronary artery single-cell RNA-seq, interrogating the immune microenvironment of human coronary atherosclerotic plaque at different stages of maturity. Results We identified 19 genes by at least three approaches and 1 gene (NBEAL1) by four approaches. Enrichment analysis enriching the genes identified at least by two TWAS approaches, suggesting that these genes were markedly enriched in asthma and leukocyte mediated immunity reaction. Further, the summary-data-based Mendelian randomization (SMR) analysis provided the evidence of causal relationship between NBEAL1 gene and coronary atherosclerosis, confirming the protecting effects of NBEAL1 gene and coronary atherosclerosis. At last, the single cell cluster analysis demonstrated that NBEAL1 gene has differential expressions in macrophages, plasma cells and endothelial cells. Conclusion Our study identified the novel genes associated with coronary atherosclerosis and suggested the potential biological function for these genes, providing insightful guidance for further biological investigation and therapeutic approaches development in atherosclerosis-related diseases.
Collapse
Affiliation(s)
- Qiuping Zhao
- Heart Center of Henan Provincial People’s Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Rongmei Liu
- Heart Center of Henan Provincial People’s Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Hui Chen
- Heart Center of Henan Provincial People’s Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Xiaomo Yang
- Heart Center of Henan Provincial People’s Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Jiajia Dong
- Heart Center of Henan Provincial People’s Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Minfu Bai
- Heart Center of Henan Provincial People’s Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Yao Lu
- School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Yiming Leng
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Sum H, Brewer AC. Epigenetic modifications as therapeutic targets in atherosclerosis: a focus on DNA methylation and non-coding RNAs. Front Cardiovasc Med 2023; 10:1183181. [PMID: 37304954 PMCID: PMC10248074 DOI: 10.3389/fcvm.2023.1183181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Significant progress in the diagnosis and treatment of cardiovascular disease (CVD) has been made in the past decade, yet it remains a leading cause of morbidity and mortality globally, claiming an estimated 17.9 million deaths per year. Although encompassing any condition that affects the circulatory system, including thrombotic blockage, stenosis, aneurysms, blood clots and arteriosclerosis (general hardening of the arteries), the most prevalent underlying hallmark of CVD is atherosclerosis; the plaque-associated arterial thickening. Further, distinct CVD conditions have overlapping dysregulated molecular and cellular characteristics which underlie their development and progression, suggesting some common aetiology. The identification of heritable genetic mutations associated with the development of atherosclerotic vascular disease (AVD), in particular resulting from Genome Wide Association Studies (GWAS) studies has significantly improved the ability to identify individuals at risk. However, it is increasingly recognised that environmentally-acquired, epigenetic changes are key factors associated with atherosclerosis development. Increasing evidence suggests that these epigenetic changes, most notably DNA methylation and the misexpression of non-coding, microRNAs (miRNAs) are potentially both predictive and causal in AVD development. This, together with their reversible nature, makes them both useful biomarkers for disease and attractive therapeutic targets potentially to reverse AVD progression. We consider here the association of aberrant DNA methylation and dysregulated miRNA expression with the aetiology and progression of atherosclerosis, and the potential development of novel cell-based strategies to target these epigenetic changes therapeutically.
Collapse
|
25
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
26
|
Isorhynchophylline inhibits inflammatory responses in endothelial cells and macrophages through the NF-κB/NLRP3 signaling pathway. BMC Complement Med Ther 2023; 23:80. [PMID: 36906555 PMCID: PMC10007741 DOI: 10.1186/s12906-023-03902-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease of arterial wall, which is closely related to inflammatory reaction. In this study, the anti-inflammatory effect of isorhynchophylline was studied by NF- κB / NLRP3 pathway. METHODS (1) ApoE-/- mice were fed with high-fat diet to establish atherosclerotic model, while C57 with the same genetic background was fed with common diet as control group. Body weight was recorded and blood lipids were detected. The expression of NLRP3, NF-κB, IL-18 and Caspase-1 in aorta was detected by Western-Blot and PCR, and plaque formation was detected by HE and oil red O staining. (2) Lipopolysaccharide interfered with Human Umbilical Vein Endothelial Cells (HUVECs) and RAW264.7 to form inflammatory model, and was treated with isorhynchophylline. The expression of NLRP3, NF-κB, IL-18 and Caspase-1 in aorta was detected by Western-Blot and PCR, and the ability of cell migration was detected by Transwell and scratch test. RESULTS (1) the expression of NLRP3, NF- κB, IL-18 and Caspase-1 in aorta of model group was higher than that of control group, and plaque formation was obvious. (2) the expressions of NLRP3, NF- κB, IL-18 and Caspase-1 in HUVECs and RAW264.7 model groups were higher than those in control group, while isorhynchophylline decreased their expression and enhanced cell migration ability. CONCLUSION Isorhynchophylline can reduce the inflammatory reaction induced by lipopolysaccharide and promote the ability of cell migration.
Collapse
|
27
|
Chen X, Deng Q, Li X, Xian L, Xian D, Zhong J. Natural Plant Extract - Loganin: A Hypothesis for Psoriasis Treatment Through Inhibiting Oxidative Stress and Equilibrating Immunity via Regulation of Macrophage Polarization. Clin Cosmet Investig Dermatol 2023; 16:407-417. [PMID: 36817639 PMCID: PMC9936880 DOI: 10.2147/ccid.s396173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023]
Abstract
Psoriasis, a chronic immune-mediated inflammatory skin disease, influences approximately 2-3% of the world's population. At present, the etiology of psoriasis remains unclear and there is still no causal treatment available. Recent studies indicate that oxidative stress (OS) and T cells dysregulation may participate in the pathogenesis of psoriasis, among which M1-dominant macrophage polarization is a crucial contributor. Macrophages mainly polarize into two different subsets, ie, classically activated macrophage (M1) and alternatively activated macrophage (M2). M1 polarization tends to exacerbate psoriasis via producing substantial reactive oxygen species (ROS) and inflammatory mediators, to encourage OS invasion and T cells dysregulation. Thus, targeting M1 polarization can be a possible therapeutic alternative for psoriasis. Loganin, belonging to iridoid glycosides, is a pharmaceutically active ingredient originated from Cornus officinalis, exerting multiple biological activities, eg, immunomodulation, antioxidation, anti-inflammation, etc. More importantly, it could effectively suppress M1 polarization, thereby arresting OS aggression and T cells' dysregulation. Numerous studies have confirmed that loganin is quite reliable for diseases treatment via suppressing M1 polarization. Nevertheless, reports about loganin treating psoriasis have seldom appeared so far. Accordingly, we hold a hypothesis that loganin would availably manage psoriasis through preventing M1 polarization. Data from previous studies guarantee the potential of loganin in control of psoriasis.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Qiyan Deng
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xiaolong Li
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Li Xian
- Department of Emergency, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Dehai Xian
- Department of Anatomy, Southwest Medical University, Luzhou, 646000, People’s Republic of China,Correspondence: Jianqiao Zhong, Email ; Dehai Xian, Email
| | - Jianqiao Zhong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China,Correspondence: Jianqiao Zhong, Email ; Dehai Xian, Email
| |
Collapse
|
28
|
Xiao S, Kuang C. Identification of crucial genes that induce coronary atherosclerosis through endothelial cell dysfunction in AMI-identifying hub genes by WGCNA. Am J Transl Res 2022; 14:8166-8174. [PMID: 36505315 PMCID: PMC9730117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/30/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To identify the most relevant genes of cardiovascular disease in acute myocardial infarction patients using weighted gene co-expression network analysis (WGCNA). METHODS The microarray dataset of GSE66360 was downloaded from the Gene Expression Omnibus (GEO) website. The differential genes with adjusted P < 0.05 and |log2 fold change (FC)| > 0.5 were included in the analysis. The weighed gene co-expression network analysis (WGCNA) was used to build a gene co-expression network and identify the most significant module. Cytoscape was used to filter the hub genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for the hub genes. The key genes were defined as having high statistical and biological significance. RESULTS A total of 4751 differentially expressed genes (DEGs) were screened from the dataset. The purple module had the highest significance in AMI. There were 47 hub genes identified from the module. The GO terms "amyloid beta protein metabolism" and "carbohydrate metabolism" and the KEGG terms "phagosome-related pathways" and "Staphylococcus aureus-associated pathways" were the pathways strongly enriched in AMI. Fatty acid translocase cluster of differentiation (CD36), formyl peptide receptor type 2 (FPR2), integrin subunit alpha M (ITGAM), and oxidized low density lipoprotein receptor 1 (OLR1) were considered key genes in AMI. CONCLUSION Our research suggested that the underlying mechanism was related to inflammation and lipid formation. The hub genes identified were CD36, FPR2, ITGAM, and OLR1.
Collapse
|
29
|
Chang SF, Tsai HE, Kuo JT, Ruan YR, Chen CY, Wang SY, Liu PY, Lee DY. Blood Reflux-Induced Epigenetic Factors HDACs and DNMTs Are Associated with the Development of Human Chronic Venous Disease. Int J Mol Sci 2022; 23:12536. [PMID: 36293392 PMCID: PMC9603923 DOI: 10.3390/ijms232012536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/04/2023] Open
Abstract
Blood reflux and metabolic regulation play important roles in chronic venous disease (CVD) development. Histone deacetylases (HDACs) and DNA methyltransferases (DNMTs) serve as repressors that inhibit metabolic signaling, which is induced by proatherogenic flow to promote aortic endothelial cell (EC) dysfunction and atherosclerosis. The aim of this study was to elucidate the relationship between blood reflux and epigenetic factors HDACs and DNMTs in CVD. Human varicose veins with different levels of blood reflux versus normal veins with normal venous flow were examined. The results show that HDAC-1, -2, -3, -5, and -7 are overexpressed in the endothelium of varicose veins with blood reflux. Blood reflux-induced HDACs are enhanced in the varicose veins with a longer duration time of blood reflux. In contrast, these HDACs are rarely expressed in the endothelium of the normal vein with normal venous flow. Similar results are obtained for DNMT1 and DNMT3a. Our findings suggest that the epigenetic factors, HDACs and DNMTs, are induced in venous ECs in response to blood reflux but are inhibited in response to normal venous flow. Blood reflux-induced HDACs and DNMTs could inhibit metabolic regulation and promote venous EC dysfunction, which is highly correlated with CVD pathogenesis.
Collapse
Affiliation(s)
- Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Center for General Education, Chiayi Chang Gung University of Science and Technology, Chiayi 613, Taiwan
| | - Hsiao-En Tsai
- Division of Cardiovascular Surgery, Department of Surgery, National Taiwan University Hsin-Chu Hospital, Hsinchu 300, Taiwan
| | - Jong-Tar Kuo
- Department of Biological Science and Technology, China University of Science and Technology, Taipei 115, Taiwan
| | - Yu-Rong Ruan
- Department of Biological Science and Technology, China University of Science and Technology, Taipei 115, Taiwan
| | - Chiu-Yen Chen
- Department of Biological Science and Technology, China University of Science and Technology, Taipei 115, Taiwan
| | - Shin-Yi Wang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Po-Yu Liu
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Ding-Yu Lee
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| |
Collapse
|
30
|
Jiang M, Ding H, Huang Y, Wang L. Shear Stress and Metabolic Disorders-Two Sides of the Same Plaque. Antioxid Redox Signal 2022; 37:820-841. [PMID: 34148374 DOI: 10.1089/ars.2021.0126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Shear stress and metabolic disorder are the two sides of the same atherosclerotic coin. Atherosclerotic lesions are prone to develop at branches and curvatures of arteries, which are exposed to oscillatory and low shear stress exerted by blood flow. Meanwhile, metabolic disorders are pivotal contributors to the formation and advancement of atherosclerotic plaques. Recent Advances: Accumulated evidence has provided insight into the impact and mechanisms of biomechanical forces and metabolic disorder on atherogenesis, in association with mechanotransduction, epigenetic regulation, and so on. Moreover, recent studies have shed light on the cross talk between the two drivers of atherosclerosis. Critical Issues: There are extensive cross talk and interactions between shear stress and metabolic disorder during the pathogenesis of atherosclerosis. The communications may amplify the proatherogenic effects through increasing oxidative stress and inflammation. Nonetheless, the precise mechanisms underlying such interactions remain to be fully elucidated as the cross talk network is considerably complex. Future Directions: A better understanding of the cross talk network may confer benefits for a more comprehensive clinical management of atherosclerosis. Critical mediators of the cross talk may serve as promising therapeutic targets for atherosclerotic vascular diseases, as they can inhibit effects from both sides of the plaque. Hence, further in-depth investigations with advanced omics approaches are required to develop novel and effective therapeutic strategies against atherosclerosis. Antioxid. Redox Signal. 37, 820-841.
Collapse
Affiliation(s)
- Minchun Jiang
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huanyu Ding
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Wang
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
31
|
Berlanga-Acosta J, Fernandez-Mayola M, Mendoza-Mari Y, Garcia-Ojalvo A, Martinez-Jimenez I, Rodriguez-Rodriguez N, Garcia del Barco Herrera D, Guillén-Nieto G. Cell-Free Filtrates (CFF) as Vectors of a Transmissible Pathologic Tissue Memory Code: A Hypothetical and Narrative Review. Int J Mol Sci 2022; 23:11575. [PMID: 36232877 PMCID: PMC9570059 DOI: 10.3390/ijms231911575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Cellular memory is a controversial concept representing the ability of cells to "write and memorize" stressful experiences via epigenetic operators. The progressive course of chronic, non-communicable diseases such as type 2 diabetes mellitus, cancer, and arteriosclerosis, is likely driven through an abnormal epigenetic reprogramming, fostering the hypothesis of a cellular pathologic memory. Accordingly, cultured diabetic and cancer patient-derived cells recall behavioral traits as when in the donor's organism irrespective to culture time and conditions. Here, we analyze the data of studies conducted by our group and led by a cascade of hypothesis, in which we aimed to validate the hypothetical existence and transmissibility of a cellular pathologic memory in diabetes, arteriosclerotic peripheral arterial disease, and cancer. These experiments were based on the administration to otherwise healthy animals of cell-free filtrates prepared from human pathologic tissue samples representative of each disease condition. The administration of each pathologic tissue homogenate consistently induced the faithful recapitulation of: (1) Diabetic archetypical changes in cutaneous arterioles and nerves. (2) Non-thrombotic arteriosclerotic thickening, collagenous arterial encroachment, aberrant angiogenesis, and vascular remodeling. (3) Pre-malignant and malignant epithelial and mesenchymal tumors in different organs; all evocative of the donor's tissue histopathology and with no barriers for interspecies transmission. We hypothesize that homogenates contain pathologic tissue memory codes represented in soluble drivers that "infiltrate" host's animal cells, and ultimately impose their phenotypic signatures. The identification and validation of the actors in behind may pave the way for future therapies.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/ 158 and 190, Cubanacán, Playa, Havana 10600, Cuba
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Danielsson BE, Tieu KV, Spagnol ST, Vu KK, Cabe JI, Raisch TB, Dahl KN, Conway DE. Chromatin condensation regulates endothelial cell adaptation to shear stress. Mol Biol Cell 2022; 33:ar101. [PMID: 35895088 DOI: 10.1091/mbc.e22-02-0064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vascular endothelial cells (ECs) have been shown to be mechanoresponsive to the forces of blood flow, including fluid shear stress (FSS), the frictional force of blood on the vessel wall. Recent reports have shown that FSS induces epigenetic changes in chromatin. Epigenetic changes, such as methylation and acetylation of histones, not only affect gene expression but also affect chromatin condensation, which can alter nuclear stiffness. Thus, we hypothesized that changes in chromatin condensation may be an important component for how ECs adapt to FSS. Using both in vitro and in vivo models of EC adaptation to FSS, we observed an increase in histone acetylation and a decrease in histone methylation in ECs adapted to flow as compared with static. Using small molecule drugs, as well as vascular endothelial growth factor, to change chromatin condensation, we show that decreasing chromatin condensation enables cells to more quickly align to FSS, whereas increasing chromatin condensation inhibited alignment. Additionally, we show data that changes in chromatin condensation can also prevent or increase DNA damage, as measured by phosphorylation of γH2AX. Taken together, these results indicate that chromatin condensation, and potentially by extension nuclear stiffness, is an important aspect of EC adaptation to FSS.
Collapse
Affiliation(s)
- Brooke E Danielsson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Katie V Tieu
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Stephen T Spagnol
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Kira K Vu
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Jolene I Cabe
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Tristan B Raisch
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.,Forensics Department, Thornton Tomasetti, New York City, NY 10271
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210.,Center for Cancer Engineering, and Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
33
|
The Genetic Architecture of the Etiology of Lower Extremity Peripheral Artery Disease: Current Knowledge and Future Challenges in the Era of Genomic Medicine. Int J Mol Sci 2022; 23:ijms231810481. [PMID: 36142394 PMCID: PMC9499674 DOI: 10.3390/ijms231810481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Lower extremity artery disease (LEAD), caused by atherosclerotic obstruction of the arteries of the lower limb extremities, has exhibited an increase in mortality and morbidity worldwide. The phenotypic variability of LEAD is correlated with its complex, multifactorial etiology. In addition to traditional risk factors, it has been shown that the interaction between genetic factors (epistasis) or between genes and the environment potentially have an independent role in the development and progression of LEAD. In recent years, progress has been made in identifying genetic variants associated with LEAD, by Genome-Wide Association Studies (GWAS), Whole Exome Sequencing (WES) studies, and epigenetic profiling. The aim of this review is to present the current knowledge about the genetic factors involved in the etiopathogenic mechanisms of LEAD, as well as possible directions for future research. We analyzed data from the literature, starting with candidate gene-based association studies, and then continuing with extensive association studies, such as GWAS and WES. The results of these studies showed that the genetic architecture of LEAD is extremely heterogeneous. In the future, the identification of new genetic factors will allow for the development of targeted molecular therapies, and the use of polygenic risk scores (PRS) to identify individuals at an increased risk of LEAD will allow for early prophylactic measures and personalized therapy to improve their prognosis.
Collapse
|
34
|
Decreased Epicardial CTRP3 mRNA Levels in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease Undergoing Elective Cardiac Surgery: A Possible Association with Coronary Atherosclerosis. Int J Mol Sci 2022; 23:ijms23179988. [PMID: 36077376 PMCID: PMC9456433 DOI: 10.3390/ijms23179988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: C1q TNF-related protein 3 (CTRP3) is an adipokine with anti-inflammatory and cardioprotective properties. In our study, we explored changes in serum CTRP3 and its gene expression in epicardial (EAT) and subcutaneous (SAT) adipose tissue in patients with and without coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM) undergoing elective cardiac surgery. (2) Methods: SAT, EAT, and blood samples were collected at the start and end of surgery from 34 patients: (i) 11 without CAD or T2DM, (ii) 14 with CAD and without T2DM, and (iii) 9 with both CAD and T2DM. mRNA levels of CTRP3 were assessed by quantitative reverse transcription PCR. Circulating levels of CTRP3 and other factors were measured using ELISA and Luminex Multiplex commercial kits. (3) Results: Baseline plasma levels of TNF-α and IL6 did not differ among the groups and increased at the end of surgery. Baseline circulating levels of CTRP3 did not differ among the groups and decreased after surgery. In contrast, baseline CTRP3 mRNA levels in EAT were significantly decreased in CAD/T2DM group, while no differences were found for TNF-α and IL6 gene expression. (4) Conclusions: Our data suggest that decreased EAT mRNA levels of CTRP3 could contribute to higher risk of atherosclerosis in patients with CAD and T2DM.
Collapse
|
35
|
Liu W, Song H, Xu J, Guo Y, Zhang C, Yao Y, Zhang H, Liu Z, Li YC. Low shear stress inhibits endothelial mitophagy via caveolin-1/miR-7-5p/SQSTM1 signaling pathway. Atherosclerosis 2022; 356:9-17. [PMID: 35952464 DOI: 10.1016/j.atherosclerosis.2022.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Mitophagy plays a crucial role in mitochondrial homeostasis and is closely associated with endothelial function. However, the mechanism underlying low blood flow shear stress (SS), detrimental cellular stress, regulating endothelial mitophagy is unclear. This study aimed to investigate whether low SS inhibits endothelial mitophagy via caveolin-1 (Cav-1)/miR-7-5p/Sequestosome 1 (SQSTM1) signaling pathway. METHODS Low SS in vivo modeling was induced using a perivascular SS modifier implanted in the carotid artery of mice. In vitro modeling, low and physiological SS (4 and 15 dyn/cm2, respectively) were exerted on human aortic endothelial cells using a parallel plate chamber system. RESULTS Compared with physiological SS, low SS significantly inhibited endothelial mitophagy shown by down-regulation of SQSTM1, PINK1, Parkin, and LC 3II expressions. Deficient mitophagy deteriorated mitochondrial dynamics shown by up-regulation of Mfn1 and Fis1 expression and led to decreases in mitochondrial membrane potential. Cav-1 plays a bridging role in the process of low SS inhibiting mitophagy. The up-regulated miR-7-5p expression induced by low SS was suppressed after Cav-1 was silenced. The results of dual-luciferase reporter assays showed that miR-7-5p targeted inhibiting the SQSTM1 gene. Oxidative stress reaction shown by the elevation of reactive oxygen species and O2●- and endothelial dysfunction by the decrease in nitric oxide and the increase in macrophage chemoattractant protein-1 were associated with the low SS inhibiting endothelial mitophagy process. CONCLUSIONS Cav-1/miR-7-5p/SQSTM1 signaling pathway was the mechanism underlying low SS inhibiting endothelial mitophagy that involves mitochondrial homeostasis impairment and endothelial dysfunction.
Collapse
Affiliation(s)
- Weike Liu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Huajing Song
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Jing Xu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuqi Guo
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Chunju Zhang
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yanli Yao
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hua Zhang
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zhendong Liu
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yue-Chun Li
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
36
|
Jain N, Lord JM, Vogel V. Mechanoimmunology: Are inflammatory epigenetic states of macrophages tuned by biophysical factors? APL Bioeng 2022; 6:031502. [PMID: 36051106 PMCID: PMC9427154 DOI: 10.1063/5.0087699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Many inflammatory diseases that are responsible for a majority of deaths are still uncurable, in part as the underpinning pathomechanisms and how to combat them is still poorly understood. Tissue-resident macrophages play pivotal roles in the maintenance of tissue homeostasis, but if they gradually convert to proinflammatory phenotypes, or if blood-born proinflammatory macrophages persist long-term after activation, they contribute to chronic inflammation and fibrosis. While biochemical factors and how they regulate the inflammatory transcriptional response of macrophages have been at the forefront of research to identify targets for therapeutic interventions, evidence is increasing that physical factors also tune the macrophage phenotype. Recently, several mechanisms have emerged as to how physical factors impact the mechanobiology of macrophages, from the nuclear translocation of transcription factors to epigenetic modifications, perhaps even DNA methylation. Insight into the mechanobiology of macrophages and associated epigenetic modifications will deliver novel therapeutic options going forward, particularly in the context of increased inflammation with advancing age and age-related diseases. We review here how biophysical factors can co-regulate pro-inflammatory gene expression and epigenetic modifications and identify knowledge gaps that require urgent attention if this therapeutic potential is to be realized.
Collapse
Affiliation(s)
- Nikhil Jain
- Authors to whom correspondence should be addressed: and
| | | | - Viola Vogel
- Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Liu H, Zhu L, Chen L, Li L. Therapeutic potential of traditional Chinese medicine in atherosclerosis: A review. Phytother Res 2022; 36:4080-4100. [PMID: 36029188 DOI: 10.1002/ptr.7590] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022]
Abstract
Atherosclerosis is the onset of endothelial cell damage and is characterized by abnormal accumulation of fibrinogen and lipid in large and middle arteries. Recent researches indicate that traditional Chinese medicine including Notoginseng Radix et Rhizoma, Astragali Radix, Salviae Miltiorrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, Fructus Crataegi, Glycyrrhizae Radix et Rhizoma, Polygoni Multiflori Radix, Fructus Lycii, and Coptidis Rhizoma have therapeutic effects on atherosclerosis. Furthermore, the pharmacological roles of these kinds of traditional Chinese medicine in atherosclerosis refer to endothelial function influences, cell proliferation and migration, platelet aggregation, thrombus formation, oxidative stress, inflammation, angiogenesis, apoptosis, autophagy, lipid metabolism, and the gut microbiome. Traditional Chinese medicine may serve as potential and effective anti-atherosclerosis drugs. However, a critical study has shown that Notoginseng Radix et Rhizoma may also have toxic effects including pustules, fever, and elevate circulating neutrophil count. Further high-quality studies are still required to determine the clinical safety and efficacy of traditional Chinese medicine and its active ingredients.
Collapse
Affiliation(s)
- Huimei Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Zhu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
38
|
Ghamar Talepoor A, Doroudchi M. Immunosenescence in atherosclerosis: A role for chronic viral infections. Front Immunol 2022; 13:945016. [PMID: 36059478 PMCID: PMC9428721 DOI: 10.3389/fimmu.2022.945016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Immune system is a versatile and dynamic body organ which offers survival and endurance of human beings in their hostile living environment. However, similar to other cells, immune cells are hijacked by senescence. The ageing immune cells lose their beneficial functions but continue to produce inflammatory mediators which draw other immune and non-immune cells to the senescence loop. Immunosenescence has been shown to be associated with different pathological conditions and diseases, among which atherosclerosis has recently come to light. There are common drivers of both immunosenescence and atherosclerosis; e.g. inflammation, reactive oxygen species (ROS), chronic viral infections, genomic damage, oxidized-LDL, hypertension, cigarette smoke, hyperglycaemia, and mitochondrial failure. Chronic viral infections induce inflammaging, sustained cytokine signaling, ROS generation and DNA damage which are associated with atherogenesis. Accumulating evidence shows that several DNA and RNA viruses are stimulators of immunosenescence and atherosclerosis in an interrelated network. DNA viruses such as CMV, EBV and HBV upregulate p16, p21 and p53 senescence-associated molecules; induce inflammaging, metabolic reprogramming of infected cells, replicative senescence and telomere shortening. RNA viruses such as HCV and HIV induce ROS generation, DNA damage, induction of senescence-associated secretory phenotype (SASP), metabolic reprogramming of infected cells, G1 cell cycle arrest, telomere shortening, as well as epigenetic modifications of DNA and histones. The newly emerged SARS-CoV-2 virus is also a potent inducer of cytokine storm and SASP. The spike protein of SARS-CoV-2 promotes senescence phenotype in endothelial cells by augmenting p16, p21, senescence-associated β-galactosidase (SA-β-Gal) and adhesion molecules expression. The impact of SARS-CoV-2 mega-inflammation on atherogenesis, however, remains to be investigated. In this review we focus on the common processes in immunosenescence and atherogenesis caused by chronic viral infections and discuss the current knowledge on this topic.
Collapse
|
39
|
Rotariu D, Babes EE, Tit DM, Moisi M, Bustea C, Stoicescu M, Radu AF, Vesa CM, Behl T, Bungau AF, Bungau SG. Oxidative stress - Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed Pharmacother 2022; 152:113238. [PMID: 35687909 DOI: 10.1016/j.biopha.2022.113238] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/07/2022] Open
Abstract
Oxidative stress is a complex biological process characterized by the excessive production of reactive oxygen species (ROS) that act as destroyers of the REDOX balance in the body and, implicitly, inducing oxidative damage. All the metabolisms are impaired in oxidative stress and even nucleic acid balance is influenced. ROS will promote structural changes of the tissues and organs due to interaction with proteins and phospholipids. The constellation of the cardiovascular risk factors (CVRFs) will usually develop in subjects with predisposition to cardiac disorders. Oxidative stress is usually related with hypertension (HTN), diabetes mellitus (DM), obesity and cardiovascular diseases (CVDs) like coronary artery disease (CAD), cardiomyopathy or heart failure (HF), that can develop in subjects with the above-mentioned diseases. Elements describing the complex relationship between CVD and oxidative stress should be properly explored and described because prevention may be the optimal approach. Our paper aims to expose in detail the complex physiopathology of oxidative stress in CVD occurrence and novelties regarding the phenomenon. Biomarkers assessing oxidative stress or therapy targeting specific pathways represent a major progress that actually change the outcome of subjects with CVD. New antioxidants therapy specific for each CVD represents a captivating and interesting future perspective with tremendous benefits on subject's outcome.
Collapse
Affiliation(s)
- Dragos Rotariu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Emilia Elena Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Madalina Moisi
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | | | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| |
Collapse
|
40
|
Cao X, Zhang M, Li H, Chen K, Wang Y, Yang J. Histone Deacetylase9 Represents the Epigenetic Promotion of M1 Macrophage Polarization and Inflammatory Response via TLR4 Regulation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7408136. [PMID: 35941971 PMCID: PMC9356872 DOI: 10.1155/2022/7408136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/05/2022]
Abstract
Atherosclerosis is a chronic inflammatory response mediated by various factors, where epigenetic regulation involving histone deacetylation is envisaged to modulate the expression of related proteins by regulating the binding of transcription factors to DNA, thereby influencing the development of atherosclerosis. The mechanism of atherosclerosis by histone deacetylation is partly known; hence, this project aimed at investigating the role of histone deacetylase 9 (HDAC9) in atherosclerosis. For this purpose, serum was separated from blood samples following clotting and centrifugation from atherosclerotic and healthy patients (n = 40 each), and then, various tests were performed. The results indicated that toll-like receptor 4 (TLR4) was not only positively correlated to the HDAC9 gene, but was also upregulated in atherosclerosis, where it was also significantly upregulated in the atherosclerosis cell model of oxidized low-density lipoprotein-induced macrophages. Conversely, the TLR4 was significantly downregulated in instances of loss of HDAC9 function, cementing the bridging relationship between HDAC9 and macrophage polarization, where the HDAC9 was found to upregulate M1 macrophage polarization which translated into the release of higher content of proinflammatory cytokines such as interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α), which tend to significantly decrease following the deletion of TLR4. Hence, this study reports novel relation between epigenetic control and atherosclerosis, which could partly be explained by histone deacetylation.
Collapse
Affiliation(s)
- Xi Cao
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Man Zhang
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Hui Li
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Kaiming Chen
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Yong Wang
- Central Laboratory of Affiliated Hospital of Shenyang Medical College, Shenyang, Liaoning, China
| | - Jia Yang
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
41
|
He L, Zhang CL, Chen Q, Wang L, Huang Y. Endothelial shear stress signal transduction and atherogenesis: From mechanisms to therapeutics. Pharmacol Ther 2022; 235:108152. [PMID: 35122834 DOI: 10.1016/j.pharmthera.2022.108152] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Atherosclerotic vascular disease and its complications are among the top causes of mortality worldwide. In the vascular lumen, atherosclerotic plaques are not randomly distributed. Instead, they are preferentially localized at the curvature and bifurcations along the arterial tree, where shear stress is low or disturbed. Numerous studies demonstrate that endothelial cell phenotypic change (e.g., inflammation, oxidative stress, endoplasmic reticulum stress, apoptosis, autophagy, endothelial-mesenchymal transition, endothelial permeability, epigenetic regulation, and endothelial metabolic adaptation) induced by oscillatory shear force play a fundamental role in the initiation and progression of atherosclerosis. Mechano-sensors, adaptor proteins, kinases, and transcriptional factors work closely at different layers to transduce the shear stress force from the plasma membrane to the nucleus in endothelial cells, thereby controlling the expression of genes that determine cell fate and phenotype. An in-depth understanding of these mechano-sensitive signaling cascades shall provide new translational strategies for therapeutic intervention of atherosclerotic vascular disease. This review updates the recent advances in endothelial mechano-transduction and its role in the pathogenesis of atherosclerosis, and highlights the perspective of new anti-atherosclerosis therapies through targeting these mechano-regulated signaling molecules.
Collapse
Affiliation(s)
- Lei He
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Qinghua Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
42
|
Sinitsky MY, Sinitskaya AV, Shishkova DK, Kutikhin AG, Minina VI, Ponasenko AV. Transcription of DNA-Methyltransferases in Endothelial Cells Exposed to Mitomycin C. Mol Biol 2022. [DOI: 10.1134/s0026893322030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Luan Y, Liu H, Luan Y, Yang Y, Yang J, Ren KD. New Insight in HDACs: Potential Therapeutic Targets for the Treatment of Atherosclerosis. Front Pharmacol 2022; 13:863677. [PMID: 35529430 PMCID: PMC9068932 DOI: 10.3389/fphar.2022.863677] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis (AS) features include progressive hardening and reduced elasticity of arteries. AS is the leading cause of morbidity and mortality. An increasing amount of evidence showed that epigenetic modifications on genes serve are a main cause of several diseases, including AS. Histone deacetylases (HDACs) promote the deacetylation at lysine residues, thereby condensing the chromatin structures and further inhibiting the transcription of downstream genes. HDACs widely affect various physiological and pathological processes through transcriptional regulation or deacetylation of other non-histone proteins. In recent years, the role of HDACs in vascular systems has been revealed, and their effects on atherosclerosis have been widely reported. In this review, we discuss the members of HDACs in vascular systems, determine the diverse roles of HDACs in AS, and reveal the effects of HDAC inhibitors on AS progression. We provide new insights into the potential of HDAC inhibitors as drugs for AS treatment.
Collapse
Affiliation(s)
- Yi Luan
- Research Center for Clinical System Biology, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Ying Luan
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Research Center for Clinical System Biology, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai-Di Ren
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Wen D, Gao Y, Ho C, Yu L, Zhang Y, Lyu G, Hu D, Li Q, Zhang Y. Focusing on Mechanoregulation Axis in Fibrosis: Sensing, Transduction and Effecting. Front Mol Biosci 2022; 9:804680. [PMID: 35359592 PMCID: PMC8963247 DOI: 10.3389/fmolb.2022.804680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022] Open
Abstract
Fibrosis, a pathologic process featured by the excessive deposition of connective tissue components, can affect virtually every organ and has no satisfactory therapy yet. Fibrotic diseases are often associated with organ dysfunction which leads to high morbidity and mortality. Biomechanical stmuli and the corresponding cellular response havebeen identified in fibrogenesis, as the fibrotic remodeling could be seen as the incapacity to reestablish mechanical homeostasis: along with extracellular matrix accumulating, the physical property became more “stiff” and could in turn induce fibrosis. In this review, we provide a comprehensive overview of mechanoregulation in fibrosis, from initialing cellular mechanosensing to intracellular mechanotransduction and processing, and ends up in mechanoeffecting. Our contents are not limited to the cellular mechanism, but further expand to the disorders involved and current clinical trials, providing an insight into the disease and hopefully inspiring new approaches for the treatment of tissue fibrosis.
Collapse
Affiliation(s)
- Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chiakang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guozhong Lyu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dahai Hu
- Burns Centre of PLA, Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qingfeng Li, ; Yifan Zhang,
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qingfeng Li, ; Yifan Zhang,
| |
Collapse
|
45
|
Lee-Rueckert M, Lappalainen J, Kovanen PT, Escola-Gil JC. Lipid-Laden Macrophages and Inflammation in Atherosclerosis and Cancer: An Integrative View. Front Cardiovasc Med 2022; 9:777822. [PMID: 35237673 PMCID: PMC8882850 DOI: 10.3389/fcvm.2022.777822] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Atherosclerotic arterial plaques and malignant solid tumors contain macrophages, which participate in anaerobic metabolism, acidosis, and inflammatory processes inherent in the development of either disease. The tissue-resident macrophage populations originate from precursor cells derived from the yolk sac and from circulating bone marrow-derived monocytes. In the tissues, they differentiate into varying functional phenotypes in response to local microenvironmental stimulation. Broadly categorized, the macrophages are activated to polarize into proinflammatory M1 and anti-inflammatory M2 phenotypes; yet, noticeable plasticity allows them to dynamically shift between several distinct functional subtypes. In atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates within macrophages as cytoplasmic lipid droplets thereby generating macrophage foam cells, which are involved in all steps of atherosclerosis. The conversion of macrophages into foam cells may suppress the expression of given proinflammatory genes and thereby initiate their transcriptional reprogramming toward an anti-inflammatory phenotype. In this particular sense, foam cell formation can be considered anti-atherogenic. The tumor-associated macrophages (TAMs) may become polarized into anti-tumoral M1 and pro-tumoral M2 phenotypes. Mechanistically, the TAMs can regulate the survival and proliferation of the surrounding cancer cells and participate in various aspects of tumor formation, progression, and metastasis. The TAMs may accumulate lipids, but their type and their specific roles in tumorigenesis are still poorly understood. Here, we discuss how the phenotypic and functional plasticity of macrophages allows their multifunctional response to the distinct microenvironments in developing atherosclerotic lesions and in developing malignant tumors. We also discuss how the inflammatory reactions of the macrophages may influence the development of atherosclerotic plaques and malignant tumors, and highlight the potential therapeutic effects of targeting lipid-laden macrophages in either disease.
Collapse
Affiliation(s)
| | | | - Petri T. Kovanen
- Wihuri Research Institute, Helsinki, Finland
- *Correspondence: Petri T. Kovanen
| | - Joan Carles Escola-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau and CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- Joan Carles Escola-Gil
| |
Collapse
|
46
|
Zhu C, Liu Q, Li X, Wei R, Ge T, Zheng X, Li B, Liu K, Cui R. Hydrogen sulfide: A new therapeutic target in vascular diseases. Front Endocrinol (Lausanne) 2022; 13:934231. [PMID: 36034427 PMCID: PMC9399516 DOI: 10.3389/fendo.2022.934231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Hydrogen sulfide (H2S) is one of most important gas transmitters. H2S modulates many physiological and pathological processes such as inflammation, oxidative stress and cell apoptosis that play a critical role in vascular function. Recently, solid evidence show that H2S is closely associated to various vascular diseases. However, specific function of H2S remains unclear. Therefore, in this review we systemically summarized the role of H2S in vascular diseases, including hypertension, atherosclerosis, inflammation and angiogenesis. In addition, this review also outlined a novel therapeutic perspective comprising crosstalk between H2S and smooth muscle cell function. Therefore, this review may provide new insight inH2S application clinically.
Collapse
Affiliation(s)
- Cuilin Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Qing Liu
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Xin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ran Wei
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xiufen Zheng
- Department of Surgery, Western University, London, ON, Canada
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Ranji Cui, ; Kexiang Liu,
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Ranji Cui, ; Kexiang Liu,
| |
Collapse
|
47
|
Zhang J, Xu Y, Ding W, Zhao M, Liu J, Ye J, Wang Z, Ye D, Wang M, Wan J. Increased expression of IL-20 is associated with ischemic cardiomyopathy and acute myocardial infarction. Biomark Med 2021; 15:1641-1650. [PMID: 34704818 DOI: 10.2217/bmm-2020-0529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
Background: The expression and clinical significance of IL-20 in coronary artery diseases needs to be analyzed. Methods: IL-20 and its receptors were analyzed in coronary artery tissues. In a separate study, plasma IL-20 was also evaluated. Results: IL-20 and its receptors were significantly higher in coronary artery stenosis tissues from ischemic cardiomyopathy patients than that from controls. T lymphocytes and macrophages were the main source of IL-20 and expressed its receptors abundantly. Plasma IL-20 was significantly higher in acute myocardial infarction patients than that in controls. Conclusion: IL-20 was closely associated with the presence of acute myocardial infarction. IL-20 may participate in the progression of coronary artery stenosis and plaque vulnerability via regulating T lymphocytes and macrophages.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| |
Collapse
|
48
|
Singh M, Thakur M, Mishra M, Yadav M, Vibhuti R, Menon AM, Nagda G, Dwivedi VP, Dakal TC, Yadav V. Gene regulation of intracellular adhesion molecule-1 (ICAM-1): A molecule with multiple functions. Immunol Lett 2021; 240:123-136. [PMID: 34715236 DOI: 10.1016/j.imlet.2021.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023]
Abstract
Intracellular adhesion molecule 1 (ICAM-1) is one of the most extensively studied inducible cell adhesion molecules which is responsible for several immune functions like T cell activation, extravasation, inflammation, etc. The molecule is constitutively expressed over the cell surface and is regulated up / down in response to inflammatory mediators like cellular stress, proinflammatory cytokines, viral infection. These stimuli modulate the expression of ICAM-1 primarily through regulating the ICAM-1 gene transcription. On account of the presence of various binding sites for NF-κB, AP-1, SP-1, and many other transcription factors, the architecture of the ICAM-1 promoter become complex. Transcription factors in union with other transcription factors, coactivators, and suppressors promote their assembly in a stereospecific manner on ICAM-1 promoter which mediates ICAM-1 regulation in response to different stimuli. Along with transcriptional regulation, epigenetic modifications also play a pivotal role in controlling ICAM-1 expression on different cell types. In this review, we summarize the regulation of ICAM-1 expression both at the transcriptional as well as post-transcriptional level with an emphasis on transcription factors and signaling pathways involved.
Collapse
Affiliation(s)
- Mona Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067 India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Manish Mishra
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Manisha Yadav
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Rajkamal Vibhuti
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Athira M Menon
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Girima Nagda
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, Rajasthan-313001 India
| | - Ved Prakash Dwivedi
- International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi-110067 India
| | - Tikam Chand Dakal
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| |
Collapse
|
49
|
Yang B, Wang JQ, Tan Y, Yuan R, Chen ZS, Zou C. RNA methylation and cancer treatment. Pharmacol Res 2021; 174:105937. [PMID: 34648969 DOI: 10.1016/j.phrs.2021.105937] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 12/28/2022]
Abstract
To this date, over 100 different types of RNA modification have been identified. Methylation of different RNA species has emerged as a critical regulator of transcript expression. RNA methylation and its related downstream signaling pathways are involved in plethora biological processes, including cell differentiation, sex determination and stress response, and others. It is catalyzed by the RNA methyltransferases, is demethylated by the demethylases (FTO and ALKBH5) and read by methylation binding protein (YTHDF1 and IGF2BP1). Increasing evidence indicates that this process closely connected to cancer cell proliferation, cellular stress, metastasis, immune response. And RNA methylation related protein has been becoming a promising targets of cancer therapy. This review outlines the relationship between different types of RNA methylation and cancer, and some FTO inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Baochen Yang
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China; University of Science and Technology, Shenzhen, Guangdong, PR China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, PR China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Yao Tan
- Shenzhen Aier Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, PR China
| | - Runzhu Yuan
- Department of Biology, School of Medicine, Southern University of Science and Technology, Shenzhen, PR China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA.
| | - Chang Zou
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, PR China; School of Life and Health Sciences, The Chinese University of Kong Hong, Shenzhen, PR China.
| |
Collapse
|
50
|
Herault S, Naser J, Carassiti D, Chooi KY, Nikolopoulou R, Font ML, Patel M, Pedrigi R, Krams R. Mechanosensitive pathways are regulated by mechanosensitive miRNA clusters in endothelial cells. Biophys Rev 2021; 13:787-796. [PMID: 34777618 PMCID: PMC8555030 DOI: 10.1007/s12551-021-00839-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Shear stress is known to affect many processes in (patho-) physiology through a complex, multi-molecular mechanism, termed mechanotransduction. The sheer complexity of the process has raised questions how mechanotransduction is regulated. Here, we comprehensively evaluate the literature about the role of small non-coding miRNA in the regulation of mechanotransduction. Regulation of mRNA by miRNA is rather complex, depending not only on the concentration of mRNA to miRNA, but also on the amount of mRNA competing for a single mRNA. The only mechanism to counteract the latter factor is through overarching structures of miRNA. Indeed, two overarching structures are present miRNA families and miRNA clusters, and both will be discussed in details, regarding the latest literature and a previous conducted study focussed on mechanotransduction. Both the literature and our own data support a new hypothesis that miRNA-clusters predominantly regulate mechanotransduction, affecting 65% of signalling pathways. In conclusion, a new and important mode of regulation of mechanotransduction is proposed, based on miRNA clusters. This finding implicates new avenues for treatment of mechanotransduction and atherosclerosis.
Collapse
Affiliation(s)
- Sean Herault
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| | | | - Daniele Carassiti
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| | - K. Yean Chooi
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| | | | - Marti Llopart Font
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| | | | - Ryan Pedrigi
- College of Engineering, Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Rob Krams
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| |
Collapse
|