1
|
Abul N, Demir Y, Öztekin A, Özdemir H. Determination of the Inhibitory Potential of Chalcones on Myeloperoxidase Enzyme Activity: In vitro and Molecular Docking Studies. Cell Biochem Biophys 2025:10.1007/s12013-025-01719-0. [PMID: 40080351 DOI: 10.1007/s12013-025-01719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Myeloperoxidase (MPO) is a highly abundant hemoprotein in neutrophils and monocytes. It has a crucial function in immunological surveillance and the body's defensive systems. Nevertheless, there is a strong correlation between elevated MPO activity and the development and advancement of inflammatory processes. Chalcone derivatives serve as fundamental components of pharmaceutical raw materials, which have been extensively utilized for the treatment of several ailments. In this study, it was studied the effect of some chalchones on MPO activity. Chalcones (1-6) strongly inhibited MPO with IC50s in the micromolar range of 0.05-0.828 µM. In particular, 4,4'-difluorochalcone (3) exhibited the best MPO inhibitory impact with IC50 of 0.05 µM. Additionally, molecular docking experiments were conducted to predict the binding affinities and interactions of the chalcone derivatives with the MPO active site. The docking results revealed that all tested compounds exhibited favorable binding energies, with ΔG Vina values ranging from -7.6 to -8.4 kcal/mol. Compound 3 demonstrated the strongest binding affinity (-8.4 kcal/mol), forming key hydrogen bonds with Gln91 and His95, and halogen interactions with the fluorine atoms, which may account for its enhanced inhibitory activity. These combined in vitro and in silico results suggest that chalcone derivatives hold significant potential as therapeutic candidates targeting MPO.
Collapse
Affiliation(s)
- Nurgül Abul
- Ataturk University, Faculty of Science, Department of Chemistry, Erzurum, Türkiye
| | - Yeliz Demir
- Ataturk University, Faculty of Science, Department of Chemistry, Erzurum, Türkiye.
- Ardahan University, Nihat Delibalta Göle Vocational High School, Department of Pharmacy Services, Ardahan, Türkiye.
| | - Aykut Öztekin
- Agri Ibrahim Cecen University, Health Services of Vocational School, Agri, Türkiye
| | - Hasan Özdemir
- Ataturk University, Faculty of Science, Department of Chemistry, Erzurum, Türkiye
| |
Collapse
|
2
|
Zhang Y, Tan J, Zhao Y, Guan L, Li S. By activating endothelium histone H4 mediates oleic acid-induced acute respiratory distress syndrome. BMC Pulm Med 2025; 25:3. [PMID: 39757148 DOI: 10.1186/s12890-024-03334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/08/2024] [Indexed: 01/07/2025] Open
Abstract
OBJECTIVE This study investigated pathogenic role and mechanism of extracellular histone H4 during oleic acid (OA)-induced acute respiratory distress syndrome (ARDS). METHODS ARDS was induced by intravenous injection of OA in mice, and evaluated by blood gas, pathological analysis, lung edema, and survival rate. Heparan sulfate (HS) degradation was evaluated using immunofluorescence and flow cytometry. The released von Willebrand factor (vWF) was measured using ELISA. P-selectin translocation and neutrophil infiltration were measured via immunohistochemical analysis. Changes in VE-cadherin were measured by western blot. Blocking antibodies against TLRs were used to investigate the signaling pathway. RESULTS Histone H4 in plasma and BALF increased significantly after OA injection. Histone H4 was closely correlated with the OA dose, which determined the ARDS severity. Pretreatment with histone H4 further aggravated pulmonary edema and death rate, while anti-H4 antibody exerted obvious protective effects. Histone H4 directly activated the endothelia. Endothelial activation was evidently manifested as HS degradation, release of vWF, P-selectin translocation, and VE-Cadherin reduction. The synergistic stimulus of activated endothelia was required for effective neutrophil activation by histone H4. Both TLRs and calcium mediated histone H4-induced endothelial activation. CONCLUSIONS Histone H4 is a pro-inflammatory and pro-thrombotic molecule in OA-induced ARDS in mice.
Collapse
Affiliation(s)
- Yanlin Zhang
- Research Center of Occupational Medicine, Peking University Third Hospital, Beijing, 100191, China.
| | - Jingjin Tan
- Research Center of Occupational Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Yiran Zhao
- Research Center of Occupational Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Li Guan
- Research Center of Occupational Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Shuqiang Li
- Research Center of Occupational Medicine, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
3
|
Wick KD, Ware LB, Matthay MA. Acute respiratory distress syndrome. BMJ 2024; 387:e076612. [PMID: 39467606 DOI: 10.1136/bmj-2023-076612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The understanding of acute respiratory distress syndrome (ARDS) has evolved greatly since it was first described in a 1967 case series, with several subsequent updates to the definition of the syndrome. Basic science advances and clinical trials have provided insight into the mechanisms of lung injury in ARDS and led to reduced mortality through comprehensive critical care interventions. This review summarizes the current understanding of the epidemiology, pathophysiology, and management of ARDS. Key highlights include a recommended new global definition of ARDS and updated guidelines for managing ARDS on a backbone of established interventions such as low tidal volume ventilation, prone positioning, and a conservative fluid strategy. Future priorities for investigation of ARDS are also highlighted.
Collapse
Affiliation(s)
- Katherine D Wick
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lorraine B Ware
- Departments of Medicine and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Qiao X, Yin J, Zheng Z, Li L, Feng X. Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: pathogenesis and therapeutic implications. Cell Commun Signal 2024; 22:241. [PMID: 38664775 PMCID: PMC11046830 DOI: 10.1186/s12964-024-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), and in severe cases, acute respiratory distress syndrome (ARDS). Nevertheless, the precise mechanisms associated with the onset of ALI/ARDS remain elusive. In recent years, there has been a growing emphasis on the role of endothelial cells (ECs), a cell type integral to lung barrier function, and their interactions with various stromal cells in sepsis-induced ALI/ARDS. In this comprehensive review, we summarize the involvement of endothelial cells and their intricate interplay with immune cells and stromal cells, including pulmonary epithelial cells and fibroblasts, in the pathogenesis of sepsis-induced ALI/ARDS, with particular emphasis placed on discussing the several pivotal pathways implicated in this process. Furthermore, we discuss the potential therapeutic interventions for modulating the functions of endothelial cells, their interactions with immune cells and stromal cells, and relevant pathways associated with ALI/ARDS to present a potential therapeutic strategy for managing sepsis and sepsis-induced ALI/ARDS.
Collapse
Affiliation(s)
- Xinyu Qiao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Liangge Li
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
5
|
Li Q, Nie H. Advances in lung ischemia/reperfusion injury: unraveling the role of innate immunity. Inflamm Res 2024; 73:393-405. [PMID: 38265687 DOI: 10.1007/s00011-023-01844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Lung ischemia/reperfusion injury (LIRI) is a common occurrence in clinical practice and represents a significant complication following pulmonary transplantation and various diseases. At the core of pulmonary ischemia/reperfusion injury lies sterile inflammation, where the innate immune response plays a pivotal role. This review aims to investigate recent advancements in comprehending the role of innate immunity in LIRI. METHODS A computer-based online search was performed using the PubMed database and Web of Science database for published articles concerning lung ischemia/reperfusion injury, cell death, damage-associated molecular pattern molecules (DAMPs), innate immune cells, innate immunity, inflammation. RESULTS During the process of lung ischemia/reperfusion, cellular injury even death can occur. When cells are injured or undergo cell death, endogenous ligands known as DAMPs are released. These molecules can be recognized and bound by pattern recognition receptors (PRRs), leading to the recruitment and activation of innate immune cells. Subsequently, a cascade of inflammatory responses is triggered, ultimately exacerbating pulmonary injury. These steps are complex and interrelated rather than being in a linear relationship. In recent years, significant progress has been made in understanding the immunological mechanisms of LIRI, involving novel types of cell death, the ability of receptors other than PRRs to recognize DAMPs, and a more detailed mechanism of action of innate immune cells in ischemia/reperfusion injury (IRI), laying the groundwork for the development of novel diagnostic and therapeutic approaches. CONCLUSIONS Various immune components of the innate immune system play critical roles in lung injury after ischemia/reperfusion. Preventing cell death and the release of DAMPs, interrupting DAMPs receptor interactions, disrupting intracellular inflammatory signaling pathways, and minimizing immune cell recruitment are essential for lung protection in LIRI.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
6
|
Reutelingsperger CPM, Gijbels MJ, Spronk H, Van Oerle R, Schrijver R, Ekhart P, de Kimpe S, Nicolaes GAF. M6229 Protects against Extracellular-Histone-Induced Liver Injury, Kidney Dysfunction, and Mortality in a Rat Model of Acute Hyperinflammation. Int J Mol Sci 2024; 25:1376. [PMID: 38338654 PMCID: PMC10855969 DOI: 10.3390/ijms25031376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Extracellular histones have been shown to act as DAMPs in a variety of inflammatory diseases. Moreover, they have the ability to induce cell death. In this study, we show that M6229, a low-anticoagulant fraction of unfractionated heparin (UFH), rescues rats that were challenged by continuous infusion of calf thymus histones at a rate of 25 mg histones/kg/h. Histone infusion by itself induced hepatic and homeostatic dysfunction characterized by elevated activity of hepatic enzymes (ASAT and ALAT) and serum lactate levels as well as by a renal dysfunction, which contributed to the significantly increased mortality rate. M6229 was able to restore normal levels of both hepatic and renal parameters at 3 and 9 mg M6229/kg/h and prevented mortality of the animals. We conclude that M6229 is a promising therapeutic agent to treat histone-mediated disease.
Collapse
Affiliation(s)
- Chris P. M. Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (C.P.M.R.); (H.S.); (R.V.O.)
| | - Marion J. Gijbels
- Department of Pathology, Maastricht University Medical Center, MUMC+, 6202 AZ Maastricht, The Netherlands;
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences—Atherosclerosis & Ischemic Syndrome, Amsterdam Infection and Immunity—Inflammatory Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Henri Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (C.P.M.R.); (H.S.); (R.V.O.)
- Coagulation Profile B.V., 6229 EV Maastricht, The Netherlands
| | - Rene Van Oerle
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (C.P.M.R.); (H.S.); (R.V.O.)
| | - Roy Schrijver
- Matisse Pharmaceuticals B.V., 6163 JT Geleen, The Netherlands; (R.S.); (P.E.); (S.d.K.)
| | - Peter Ekhart
- Matisse Pharmaceuticals B.V., 6163 JT Geleen, The Netherlands; (R.S.); (P.E.); (S.d.K.)
| | - Sjef de Kimpe
- Matisse Pharmaceuticals B.V., 6163 JT Geleen, The Netherlands; (R.S.); (P.E.); (S.d.K.)
| | - Gerry A. F. Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (C.P.M.R.); (H.S.); (R.V.O.)
| |
Collapse
|
7
|
Mizuno T, Nagano F, Ito Y, Tatsukawa H, Shinoda Y, Takeuchi T, Takahashi K, Tsuboi N, Nagamatsu T, Yamada S, Maruyama S, Hitomi K. Novel function of transglutaminase 2 in extracellular histone-induced acute lung injury. Biochem Biophys Res Commun 2023; 678:179-185. [PMID: 37643535 DOI: 10.1016/j.bbrc.2023.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Extracellular histones induce endothelial damage, resulting in lung haemorrhage; however, the underlying mechanism remains unclear. Factor XIII, as a Ca2+-dependent cross-linking enzyme in blood, mediates fibrin deposition. As another isozyme, transglutaminase 2 (TG2) has a catalytic activity distributing in most tissues. Herein, we investigated whether TG2 promotes fibrin deposition and mediates the adhesion of platelets to ECs in histone-induced acute lung injury (ALI). We evaluated the lung histology and the adhesion of platelets to endothelial cells (ECs) after injecting histones to wild-type (WT) C57BL/6J and TG2 knockout (TG2-/-) mice, and administered a TG2 inhibitor (NC9) to WT mice. Pulmonary haemorrhage was more severe in TG2-/- mice than that in WT mice. The area of fibrin deposition and the proportion of CD41+CD31+ cells were lower in TG2-/- mice than in WT mice. Pre-treatment of NC9 decreased the area of fibrin deposition and the proportion of CD41+CD31+ cells in WT mice. These results suggest that TG2 prevents from pulmonary haemorrhage in ALI by promoting the adhesion of platelets to ECs and the fibrin deposition.
Collapse
Affiliation(s)
- Tomohiro Mizuno
- Department of Pharmacotherapeutics and Informatics, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Fumihiko Nagano
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshimasa Ito
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hideki Tatsukawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yoshiki Shinoda
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Taishu Takeuchi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Kazuo Takahashi
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, Toyoake, Japan
| | - Naotake Tsuboi
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tadashi Nagamatsu
- Department of Analytical Pharmacology, Meijo University Faculty of Pharmacy, Nagoya, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Meijo University Faculty of Pharmacy, Nagoya, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyotaka Hitomi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
González-Jiménez P, Méndez R, Latorre A, Piqueras M, Balaguer-Cartagena MN, Moscardó A, Alonso R, Hervás D, Reyes S, Menéndez R. Neutrophil Extracellular Traps and Platelet Activation for Identifying Severe Episodes and Clinical Trajectories in COVID-19. Int J Mol Sci 2023; 24:ijms24076690. [PMID: 37047662 PMCID: PMC10094814 DOI: 10.3390/ijms24076690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
The role of NETs and platelet activation in COVID-19 is scarcely known. We aimed to evaluate the role of NETs (citrullinated histone H3 [CitH3], cell-free DNA [cfDNA]) and platelet activation markers (soluble CD40 ligand [CD40L] and P-selectin) in estimating the hazard of different clinical trajectories in patients with COVID-19. We performed a prospective study of 204 patients, categorized as outpatient, hospitalized and ICU-admitted. A multistate model was designed to estimate probabilities of clinical transitions across varying states, such as emergency department (ED) visit, discharge (outpatient), ward admission, ICU admission and death. Levels of cfDNA, CitH3 and P-selectin were associated with the severity of presentation and analytical parameters. The model showed an increased risk of higher levels of CitH3 and P-selectin for ED-to-ICU transitions (Hazard Ratio [HR]: 1.35 and 1.31, respectively), as well as an elevated risk of higher levels of P-selectin for ward-to-death transitions (HR: 1.09). Elevated levels of CitH3 (HR: 0.90), cfDNA (HR: 0.84) and P-selectin (HR: 0.91) decreased the probability of ward-to-discharge transitions. A similar trend existed for elevated levels of P-selectin and ICU-to-ward transitions (HR 0.40); In conclusion, increased NET and P-selectin levels are associated with more severe episodes and can prove useful in estimating different clinical trajectories.
Collapse
Affiliation(s)
- Paula González-Jiménez
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Respiratory Infections, Health Research Institute La Fe, 46026 Valencia, Spain
- Medicine Department, University of Valencia, 46010 Valencia, Spain
| | - Raúl Méndez
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Respiratory Infections, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Ana Latorre
- Respiratory Infections, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Mónica Piqueras
- Medicine Department, University of Valencia, 46010 Valencia, Spain
- Laboratory Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
| | | | - Antonio Moscardó
- Platelet Function Unit, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Ricardo Alonso
- Laboratory Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
| | - David Hervás
- Data Science, Biostatistics & Bioinformatics, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Applied Statistics and Operational Research and Quality, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Soledad Reyes
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Respiratory Infections, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Rosario Menéndez
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Respiratory Infections, Health Research Institute La Fe, 46026 Valencia, Spain
- Medicine Department, University of Valencia, 46010 Valencia, Spain
- Center for Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
9
|
Lei B, Wang C, Snow K, Graton ME, Tighe RM, Fager AM, Hoffman MR, Giangrande PH, Miller FJ. Inhalation of an RNA aptamer that selectively binds extracellular histones protects from acute lung injury. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:662-673. [PMID: 36910716 PMCID: PMC9999168 DOI: 10.1016/j.omtn.2023.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
Acute lung injury (ALI) is a syndrome of acute inflammation, barrier disruption, and hypoxemic respiratory failure associated with high morbidity and mortality. Diverse conditions lead to ALI, including inhalation of toxic substances, aspiration of gastric contents, infection, and trauma. A shared mechanism of acute lung injury is cellular toxicity from damage-associated molecular patterns (DAMPs), including extracellular histones. We recently described the selection and efficacy of a histone-binding RNA aptamer (HBA7). The current study aimed to identify the effects of extracellular histones in the lung and determine if HBA7 protected mice from ALI. Histone proteins decreased metabolic activity, induced apoptosis, promoted proinflammatory cytokine production, and caused endothelial dysfunction and platelet activation in vitro. HBA7 prevented these effects. The oropharyngeal aspiration of histone proteins increased neutrophil and albumin levels in bronchoalveolar lavage fluid (BALF) and precipitated neutrophil infiltration, interstitial edema, and barrier disruption in alveoli in mice. Similarly, inhaling wood smoke particulate matter, as a clinically relevant model, increased lung inflammation and alveolar permeability. Treatment by HBA7 alleviated lung injury in both models of ALI. These findings demonstrate the pulmonary delivery of HBA7 as a nucleic acid-based therapeutic for ALI.
Collapse
Affiliation(s)
- Beilei Lei
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Chaojian Wang
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Kamie Snow
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Murilo E. Graton
- Department of Medicine, Duke University, Durham, NC 27710, USA
- São Paulo State University, School of Dentistry, Campus of Aracatuba, São Paulo 16015-050, Brazil
| | - Robert M. Tighe
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Ammon M. Fager
- Department of Medicine, Duke University, Durham, NC 27710, USA
- Veterans Affairs Medical Center, Durham, NC 27705, USA
| | - Maureane R. Hoffman
- Department of Pathology, Duke University, Durham, NC 27710, USA
- Veterans Affairs Medical Center, Durham, NC 27705, USA
| | | | - Francis J. Miller
- Department of Medicine, Duke University, Durham, NC 27710, USA
- Veterans Affairs Tennessee Valley Healthcare, Nashville, TN 37212, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| |
Collapse
|
10
|
Colicchia M, Perrella G, Gant P, Rayes J. Novel mechanisms of thrombo-inflammation during infection: spotlight on neutrophil extracellular trap-mediated platelet activation. Res Pract Thromb Haemost 2023; 7:100116. [PMID: 37063765 PMCID: PMC10099327 DOI: 10.1016/j.rpth.2023.100116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 03/13/2023] Open
Abstract
A state-of-the-art lecture titled "novel mechanisms of thrombo-inflammation during infection" was presented at the ISTH Congress in 2022. Platelet, neutrophil, and endothelial cell activation coordinate the development, progression, and resolution of thrombo-inflammatory events during infection. Activated platelets and neutrophil extracellular traps (NETs) are frequently observed in patients with sepsis and COVID-19, and high levels of NET-derived damage-associated molecular patterns (DAMPs) correlate with thrombotic complications. NET-associated DAMPs induce direct and indirect platelet activation, which in return potentiates neutrophil activation and NET formation. These coordinated interactions involve multiple receptors and signaling pathways contributing to vascular and organ damage exacerbating disease severity. This state-of-the-art review describes the main mechanisms by which platelets support NETosis and the key mechanisms by which NET-derived DAMPs trigger platelet activation and the formation of procoagulant platelets leading to thrombosis. We report how these DAMPs act through multiple receptors and signaling pathways differentially regulating cell activation and disease outcome, focusing on histones and S100A8/A9 and their contribution to the pathogenesis of sepsis and COVID-19. We further discuss the complexity of platelet activation during NETosis and the potential benefit of targeting selective or multiple NET-associated DAMPs to limit thrombo-inflammation during infection. Finally, we summarize relevant new data on this topic presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Martina Colicchia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Poppy Gant
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, U.K
| |
Collapse
|
11
|
Giachi A, Cugno M, Gualtierotti R. Disease-modifying anti-rheumatic drugs improve the cardiovascular profile in patients with rheumatoid arthritis. Front Cardiovasc Med 2022; 9:1012661. [PMID: 36352850 PMCID: PMC9637771 DOI: 10.3389/fcvm.2022.1012661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting about 0. 5–1% of the adult population and manifesting as persistent synovitis, systemic inflammation and production of autoantibodies. Patients affected by RA not only experience chronic disease progression, but are also burdened by a 1.5-fold increased cardiovascular (CV) risk, which is comparable to the risk experienced by patients with type 2 diabetes mellitus. RA patients also have a higher incidence and prevalence of coronary artery disease (CAD). Although RA patients frequently present traditional CV risk factors such as insulin resistance and active smoking, previous studies have clarified the pivotal role of chronic inflammation–driven by proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha)–in accelerating the process of atherosclerosis and impairing the coagulation system. Over the last years, a number of studies have shown that disease-modifying anti-rheumatic drugs (DMARDs) reducing the inflammatory state in general improve the CV risk, however some drugs may carry some apparent negative effects. Thus, RA is a model of disease in which targeting inflammation may counteract the progression of atherosclerosis and reduce CV risk. Clinical and experimental evidence indicates that the management of RA patients should be tailored based on the positive and negative effects of DMARDs on CV risk together with the individual traditional CV risk profile. The identification of genetic, biochemical and clinical biomarkers, predictive of evolution and response to treatment, will be the next challenge for a precision approach to reduce the burden of the disease.
Collapse
Affiliation(s)
- Andrea Giachi
- UOC Medicina Generale Emostasi e Trombosi, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Cugno
- UOC Medicina Generale Emostasi e Trombosi, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
- *Correspondence: Massimo Cugno
| | - Roberta Gualtierotti
- UOC Medicina Generale Emostasi e Trombosi, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
12
|
Krocker JD, Lee KH, Henriksen HH, Wang YWW, Schoof EM, Karvelsson ST, Rolfsson Ó, Johansson PI, Pedroza C, Wade CE. Exploratory Investigation of the Plasma Proteome Associated with the Endotheliopathy of Trauma. Int J Mol Sci 2022; 23:6213. [PMID: 35682894 PMCID: PMC9181752 DOI: 10.3390/ijms23116213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The endotheliopathy of trauma (EoT) is associated with increased mortality following injury. Herein, we describe the plasma proteome related to EoT in order to provide insight into the role of the endothelium within the systemic response to trauma. METHODS 99 subjects requiring the highest level of trauma activation were included in the study. Enzyme-linked immunosorbent assays of endothelial and catecholamine biomarkers were performed on admission plasma samples, as well as untargeted proteome quantification utilizing high-performance liquid chromatography and tandem mass spectrometry. RESULTS Plasma endothelial and catecholamine biomarker abundance was elevated in EoT. Patients with EoT (n = 62) had an increased incidence of death within 24 h at 21% compared to 3% for non-EoT (n = 37). Proteomic analysis revealed that 52 out of 290 proteins were differentially expressed between the EoT and non-EoT groups. These proteins are involved in endothelial activation, coagulation, inflammation, and oxidative stress, and include known damage-associated molecular patterns (DAMPs) and intracellular proteins specific to several organs. CONCLUSIONS We report a proteomic profile of EoT suggestive of a surge of DAMPs and inflammation driving nonspecific activation of the endothelial, coagulation, and complement systems with subsequent end-organ damage and poor clinical outcome. These findings support the utility of EoT as an index of cellular injury and delineate protein candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Joseph D. Krocker
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-W.W.W.); (C.E.W.)
| | - Kyung Hyun Lee
- Center for Clinical Research and Evidence-Based Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (K.H.L.); (C.P.)
| | - Hanne H. Henriksen
- Center for Endotheliomics CAG, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, 2200 Copenhagen, Denmark;
| | - Yao-Wei Willa Wang
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-W.W.W.); (C.E.W.)
| | - Erwin M. Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Sigurdur T. Karvelsson
- Center for Systems Biology, University of Iceland, 101 Reykjavik, Iceland; (S.T.K.); (Ó.R.)
| | - Óttar Rolfsson
- Center for Systems Biology, University of Iceland, 101 Reykjavik, Iceland; (S.T.K.); (Ó.R.)
| | - Pär I. Johansson
- Center for Endotheliomics CAG, Department of Clinical Immunology, Rigshospitalet, & Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-Based Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (K.H.L.); (C.P.)
| | - Charles E. Wade
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-W.W.W.); (C.E.W.)
| |
Collapse
|
13
|
Arnaud M, Demonchy J, Arrii E, Luperto M, Lion J, Fodil S, Pons S, Mooney N, Zafrani L. Endothelial Cells Activated by Extracellular Histones Promote Foxp3 + Suppressive Treg Cells In Vitro. Int J Mol Sci 2022; 23:ijms23094527. [PMID: 35562918 PMCID: PMC9103825 DOI: 10.3390/ijms23094527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
Histones are widely recognized as pro-inflammatory mediators upon their release from the nucleus into the extracellular space. However, their impact on endothelial cell immunogenicity is unknown. Endothelial cells, Human Microvascular Endothelial cells 1 (HMEC1), have been exposed to recombinant histones in order to study their effect on the endothelial phenotype. We then studied the differentiation of CD4+-T lymphocytes subpopulations after three days of interaction with endothelial cells in vitro and observed that histone-treated endothelial cells differentiate a suppressive FoxP3+ T regulator subpopulation that expressed Human Leucocyte Antigen DR (HLA-DR) and Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA4). Toll-Like Receptor 4 (TLR4) inhibition significantly decreased the expansion of these Treg cells. Moreover, blockade of Interleukin (IL)-6 and Intercellular Adhesion Molecule (ICAM)-1 in cocultures significantly decreased the expansion of Tregs, suggesting an IL-6 and ICAM-1 dependent pathway. Thus, beyond their inflammatory effects, extracellular histones may induce an increase of immunosuppressive Treg population via their action on endothelial cells. Further studies are needed to evaluate the impact on immunosuppression of an increase of peripheral suppressive Treg via endothelial cell activation by histones in vivo.
Collapse
Affiliation(s)
- Marine Arnaud
- Human Immunology, Pathophysiology and Immunotherapy, INSERM U 976, University Paris Cite, 75010 Paris, France; (M.A.); (J.D.); (E.A.); (M.L.); (J.L.); (S.F.); (S.P.); (N.M.)
| | - Jordane Demonchy
- Human Immunology, Pathophysiology and Immunotherapy, INSERM U 976, University Paris Cite, 75010 Paris, France; (M.A.); (J.D.); (E.A.); (M.L.); (J.L.); (S.F.); (S.P.); (N.M.)
| | - Eden Arrii
- Human Immunology, Pathophysiology and Immunotherapy, INSERM U 976, University Paris Cite, 75010 Paris, France; (M.A.); (J.D.); (E.A.); (M.L.); (J.L.); (S.F.); (S.P.); (N.M.)
| | - Marta Luperto
- Human Immunology, Pathophysiology and Immunotherapy, INSERM U 976, University Paris Cite, 75010 Paris, France; (M.A.); (J.D.); (E.A.); (M.L.); (J.L.); (S.F.); (S.P.); (N.M.)
| | - Julien Lion
- Human Immunology, Pathophysiology and Immunotherapy, INSERM U 976, University Paris Cite, 75010 Paris, France; (M.A.); (J.D.); (E.A.); (M.L.); (J.L.); (S.F.); (S.P.); (N.M.)
| | - Sofiane Fodil
- Human Immunology, Pathophysiology and Immunotherapy, INSERM U 976, University Paris Cite, 75010 Paris, France; (M.A.); (J.D.); (E.A.); (M.L.); (J.L.); (S.F.); (S.P.); (N.M.)
| | - Stéphanie Pons
- Human Immunology, Pathophysiology and Immunotherapy, INSERM U 976, University Paris Cite, 75010 Paris, France; (M.A.); (J.D.); (E.A.); (M.L.); (J.L.); (S.F.); (S.P.); (N.M.)
| | - Nuala Mooney
- Human Immunology, Pathophysiology and Immunotherapy, INSERM U 976, University Paris Cite, 75010 Paris, France; (M.A.); (J.D.); (E.A.); (M.L.); (J.L.); (S.F.); (S.P.); (N.M.)
| | - Lara Zafrani
- Human Immunology, Pathophysiology and Immunotherapy, INSERM U 976, University Paris Cite, 75010 Paris, France; (M.A.); (J.D.); (E.A.); (M.L.); (J.L.); (S.F.); (S.P.); (N.M.)
- Medical Intensive Care Unit, Assistance Publique des Hôpitaux de Paris, Saint Louis Hospital, 75010 Paris, France
- Correspondence:
| |
Collapse
|
14
|
d’Alessandro M, Conticini E, Bergantini L, Cameli P, Cantarini L, Frediani B, Bargagli E. Neutrophil Extracellular Traps in ANCA-Associated Vasculitis and Interstitial Lung Disease: A Scoping Review. Life (Basel) 2022; 12:317. [PMID: 35207604 PMCID: PMC8877891 DOI: 10.3390/life12020317] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Deregulated neutrophil extracellular traps (NETs) formation is implicated in various diseases, including ANCA-associated vasculitis and pulmonary fibrosis (PF). Lung involvement is frequent in AAV, and interstitial lung diseases (ILDs) are strongly related to MPO-ANCA positivity and mainly reported in microscopic polyangiitis. The association between AAV and ILD is a strong indicator of poor prognosis and limited survival. Neutrophils, ANCA and NET interplay in PF development in AAV. This study aimed to review the literature concerning the implications of NET in lung fibrogenesis specifically focused on AAV associated with ILD, and the potential of NET as a theranostic marker. METHODS Through scoping review methodology, we used a descriptive thematic analysis to understand the pathogenic role of NETs in patients with AAV and pulmonary fibrosis and their further role as a theranostic marker of this disease. RESULTS The implications of NET in the pathogenesis of AAV and ILD, as well as an association between these two diseases, have been identified, but the underlying pathophysiological mechanisms are still unknown. The pharmacological or genetic inhibition of NET release reduces disease severity in multiple inflammatory disease models, indicating that NETs are potential therapeutic targets. In this regard, despite the lack of clinical data, we may hypothesise that an optimal management of AAV-ILD patients would require not only B-cells targeted therapy, but also NETs inhibition. CONCLUSION Preliminary findings seem to display a lack of efficacy of traditional immunosuppressants, such as Rituximab, in this subset of patients, while to date no patients suffering from a definite ILD have been enrolled in clinical trials. Further insights would be provided by their employment, as a combination treatment, in common clinical practice. Although we can imagine that the inhibition of NETs in patients with AAV-ILD could reduce severity and mortality, we still lack the scientific basis that could improve our understanding of the disease from a molecular point of view.
Collapse
Affiliation(s)
- Miriana d’Alessandro
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy; (M.d.); (L.B.); (P.C.); (E.B.)
| | - Edoardo Conticini
- Rheumatology Unit, Department of Medicine, Surgery & Neurosciences, University of Siena, 53100 Siena, Italy; (L.C.); (B.F.)
| | - Laura Bergantini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy; (M.d.); (L.B.); (P.C.); (E.B.)
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy; (M.d.); (L.B.); (P.C.); (E.B.)
| | - Luca Cantarini
- Rheumatology Unit, Department of Medicine, Surgery & Neurosciences, University of Siena, 53100 Siena, Italy; (L.C.); (B.F.)
| | - Bruno Frediani
- Rheumatology Unit, Department of Medicine, Surgery & Neurosciences, University of Siena, 53100 Siena, Italy; (L.C.); (B.F.)
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy; (M.d.); (L.B.); (P.C.); (E.B.)
| |
Collapse
|
15
|
Du J, Zhang J, Chen X, Zhang S, Zhang C, Liu H, Li Y, Li M, Wu X, Xiang M, Wang C, Liu L, Wang C, Fang S, Shi J. Neutrophil extracellular traps induced by pro-inflammatory cytokines enhance procoagulant activity in NASH patients. Clin Res Hepatol Gastroenterol 2022; 46:101697. [PMID: 33848669 DOI: 10.1016/j.clinre.2021.101697] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) patients are at a high risk of developing venous thromboembolism, with a high rate of morbidity and mortality. The role of neutrophil extracellular traps (NETs) in procoagulant activity (PCA) in patients with NASH remains unclear. Our study aimed to investigate the formation of NETs in NASH patients stimulated by specific pro-inflammatory factors. Moreover, we evaluated the pivotal role of NETs in the induction of hypercoagulability in NASH and the interaction between NETs and endothelial injury. METHOD The levels of the NETs biomarkers were evaluated in the plasma samples of 27 NASH patients and 18 healthy subjects. The formation of NETs was visualized using immunofluorescence microscopy. The PCA of the NETs was assessed using coagulation time, purified coagulation complex, and fibrin formation assays. Confocal microscopy was further used to evaluate the interactions between the NETs and HUVECs. RESULTS The levels of NETs markers in the plasma of NASH patients were significantly higher than healthy controls. NETs derived from NASH enhanced thrombin and fibrin formation and significantly reduced CT (p<0.05). The mixture of IL-6 and TNF-α triggered the NETs release in the plasma rather than them alone. Additionally, the NETs exerted cytotoxic effects on the endothelial cells, converting them to a procoagulant and pro-inflammatory phenotype, and DNase I could reverse these effects. CONCLUSION Our results revealed the primary role of NETs in promoting the hypercoagulable state in NASH patients. Methods that prevent the formation of NETs may be a novel approach for the prevention and treatment of NASH.
Collapse
Affiliation(s)
- Jingwen Du
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, China
| | - Jinming Zhang
- Department of Hematology and Rheumatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaojing Chen
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, China
| | - Shuoqi Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Cong Zhang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, China
| | - Huan Liu
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, China
| | - Yueyue Li
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, China
| | - Mengdi Li
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, China
| | - Xiaoming Wu
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, China
| | - Mengqi Xiang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, China
| | - Chengyue Wang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, China
| | - Langjiao Liu
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, China
| | - Chunli Wang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, China
| | - Shaohong Fang
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang, China.
| | - Jialan Shi
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, China; Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 1400 VFW Parkway, West Roxbury, Boston, MA 02132, USA.
| |
Collapse
|
16
|
Nagano F, Mizuno T, Imai M, Takahashi K, Tsuboi N, Maruyama S, Mizuno M. Expression of a Crry/p65 is reduced in acute lung injury induced by extracellular histones. FEBS Open Bio 2021; 12:192-202. [PMID: 34709768 PMCID: PMC8727949 DOI: 10.1002/2211-5463.13322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
Acute lung injury (ALI) occurs in patients with severe sepsis and has a mortality rate of 40%–60%. Severe sepsis promotes the release of histones from dying cells, which can induce platelet aggregation, activate coagulation and cause endothelial cell (EC) death. We previously reported that the expression of membrane complement receptor type 1‐related gene Y (Crry)/p65, which plays a principal role in defence against abnormal activation of complement in the blood, is reduced in response to peritoneal mesothelial cell injury, and we hence hypothesized that a similar mechanism occurs in pulmonary ECs. In this study, we examined the role of Crry/p65 in histone‐mediated ALI using an experimental animal model. In ALI model mice, exposure to extracellular histones induces lung injury and results in a decrease in Crry/p65 expression. The levels of lactic acid dehydrogenase (LDH), a marker of cell damage, were significantly increased in the serum of ALI model compared with vehicle mice. The significant inverse correlation between the expression of Crry/p65 and LDH levels in plasma revealed an association between Crry/p65 expression and cell damage. The levels of complement component 3a (C3a) were also significantly increased in the serum of the ALI model compared with vehicle mice. Notably, a C3a receptor antagonist ameliorated lung injury induced by histones. We hypothesize that extracellular histones induce complement activation via down‐regulation of Crry/p65 and that C3a might serve as a therapeutic target for the treatment of ALI.
Collapse
Affiliation(s)
- Fumihiko Nagano
- Department of Nephrology, Nagoya University, Nagoya, Japan.,Department of Analytical Pharmacology, Meijo University, Nagoya, Japan
| | - Tomohiro Mizuno
- Department of Clinical Pharmacy, Fujita Health University, Toyoake, Japan
| | - Masaki Imai
- Department of Immunology, Nagoya City University, Nagoya, Japan
| | - Kazuo Takahashi
- Department of Cell Biology and Anatomy, Fujita Health University, Toyoake, Japan
| | - Naotake Tsuboi
- Department of Nephrology, Fujita Health University, Toyoake, Japan
| | | | - Masashi Mizuno
- Department of Renal Replacement Therapy, Nagoya University, Nagoya, Japan
| |
Collapse
|
17
|
Huckriede J, Anderberg SB, Morales A, de Vries F, Hultström M, Bergqvist A, Ortiz-Pérez JT, Sels JW, Wichapong K, Lipcsey M, van de Poll M, Larsson A, Luther T, Reutelingsperger C, de Frutos PG, Frithiof R, Nicolaes GAF. Evolution of NETosis markers and DAMPs have prognostic value in critically ill COVID-19 patients. Sci Rep 2021; 11:15701. [PMID: 34344929 PMCID: PMC8333321 DOI: 10.1038/s41598-021-95209-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease 19 (COVID-19) presents with disease severities of varying degree. In its most severe form, infection may lead to respiratory failure and multi-organ dysfunction. Here we study the levels and evolution of the damage associated molecular patterns (DAMPS) cell free DNA (cfDNA), extracellular histone H3 (H3) and neutrophil elastase (NE), and the immune modulators GAS6 and AXL in relation to clinical parameters, ICU scoring systems and mortality in patients (n = 100) with severe COVID-19. cfDNA, H3, NE, GAS6 and AXL were increased in COVID-19 patients compared to controls. These measures associated with occurrence of clinical events and intensive care unit acquired weakness (ICUAW). cfDNA and GAS6 decreased in time in patients surviving to 30 days post ICU admission. A decrease of 27.2 ng/mL cfDNA during ICU stay associated with patient survival, whereas levels of GAS6 decreasing more than 4.0 ng/mL associated with survival. The presence of H3 in plasma was a common feature of COVID-19 patients, detected in 38% of the patients at ICU admission. NETosis markers cfDNA, H3 and NE correlated well with parameters of tissue damage and neutrophil counts. Furthermore, cfDNA correlated with lowest p/f ratio and a lowering in cfDNA was observed in patients with ventilator-free days.
Collapse
Affiliation(s)
- Joram Huckriede
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Sara Bülow Anderberg
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, and BCLC, CIBEREHD, Barcelona, Spain
| | - Femke de Vries
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Michael Hultström
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Anders Bergqvist
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - José T Ortiz-Pérez
- Cardiology Department, Hospital Clinic Barcelona and CIBERCV, Barcelona, Spain
| | - Jan Willem Sels
- Department of Intensive Care Medicine, Maastricht University Medical Centre MUMC+), Maastricht, the Netherlands
- Department of Cardiology, Maastricht University Medical Centre, MUMC+), Maastricht, the Netherlands
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Miklos Lipcsey
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
- Hedenstierna Laboratory, Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Marcel van de Poll
- Department of Intensive Care Medicine, Maastricht University Medical Centre MUMC+), Maastricht, the Netherlands
- Department of Surgery, Maastricht University Medical Centre (MUMC+), School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Tomas Luther
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Pablo Garcia de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS and CIBERCV, Barcelona, Spain
| | - Robert Frithiof
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| |
Collapse
|
18
|
Ruemmler R, Ziebart A, Britten E, Gosling M, Rissel R, Hartmann EK. Intrabronchial application of extracellular histones shows no proinflammatory effects in swine in a translational pilot study. BMC Res Notes 2021; 14:285. [PMID: 34301315 PMCID: PMC8306385 DOI: 10.1186/s13104-021-05704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/19/2021] [Indexed: 12/02/2022] Open
Abstract
Objective Extracellular histones have been identified as one molecular factor that can cause and sustain alveolar damage and were linked to high mortality rates in critically ill patients. In this pilot study, we wanted to validate the proinflammatory in vivo effects of local histone application in a prospective translational porcine model. This was combined with the evaluation of an experimental acute lung injury model using intrabronchial lipopolysaccharides, which has been published previously. Results The targeted application of histones was successful in all animals. Animals showed decreased oxygenation after instillation, but no differences could be detected between the sham and histone treatments. The histologic analyses and inflammatory responses indicated that there were no differences in tissue damage between the groups. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05704-7.
Collapse
Affiliation(s)
- Robert Ruemmler
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Alexander Ziebart
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Elisabeth Britten
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Moritz Gosling
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Rene Rissel
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Erik K Hartmann
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| |
Collapse
|
19
|
Chirivi RGS, van Rosmalen JWG, van der Linden M, Euler M, Schmets G, Bogatkevich G, Kambas K, Hahn J, Braster Q, Soehnlein O, Hoffmann MH, Es HHGV, Raats JMH. Therapeutic ACPA inhibits NET formation: a potential therapy for neutrophil-mediated inflammatory diseases. Cell Mol Immunol 2021; 18:1528-1544. [PMID: 32203195 PMCID: PMC8166830 DOI: 10.1038/s41423-020-0381-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Excessive release of neutrophil extracellular traps (NETs) is associated with disease severity and contributes to tissue injury, followed by severe organ damage. Pharmacological or genetic inhibition of NET release reduces pathology in multiple inflammatory disease models, indicating that NETs are potential therapeutic targets. Here, we demonstrate using a preclinical basket approach that our therapeutic anti-citrullinated protein antibody (tACPA) has broad therapeutic potential. Treatment with tACPA prevents disease symptoms in various mouse models with plausible NET-mediated pathology, including inflammatory arthritis (IA), pulmonary fibrosis, inflammatory bowel disease and sepsis. We show that citrulline residues in the N-termini of histones 2A and 4 are specific targets for therapeutic intervention, whereas antibodies against other N-terminal post-translational histone modifications have no therapeutic effects. Because citrullinated histones are generated during NET release, we investigated the ability of tACPA to inhibit NET formation. tACPA suppressed NET release from human neutrophils triggered with physiologically relevant human disease-related stimuli. Moreover, tACPA diminished NET release and potentially initiated NET uptake by macrophages in vivo, which was associated with reduced tissue damage in the joints of a chronic arthritis mouse model of IA. To our knowledge, we are the first to describe an antibody with NET-inhibiting properties and thereby propose tACPA as a drug candidate for NET-mediated inflammatory diseases, as it eliminates the noxious triggers that lead to continued inflammation and tissue damage in a multidimensional manner.
Collapse
Affiliation(s)
- Renato G S Chirivi
- ModiQuest B.V., Oss, The Netherlands.
- Citryll B.V., Oss, The Netherlands.
| | | | | | - Maximilien Euler
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | | | - Galina Bogatkevich
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Konstantinos Kambas
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupoli, Greece
| | - Jonas Hahn
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Quinte Braster
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Markus H Hoffmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
20
|
Karki P, Birukov KG, Birukova AA. Extracellular histones in lung dysfunction: a new biomarker and therapeutic target? Pulm Circ 2020; 10:2045894020965357. [PMID: 33240489 PMCID: PMC7675882 DOI: 10.1177/2045894020965357] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular histones released from injured or dying cells following trauma and other
severe insults can act as potent damage-associated molecular patterns. In fact, elevated
levels of histones are present in human circulation in hyperinflammatory states such as
acute respiratory distress syndrome and sepsis. The molecular mechanisms owing to
histone-induced pathologies are at the very beginning of elucidating. However,
neutralization of histones with antibodies, histone-binding or histone-degrading proteins,
and heparan sulfates have shown promising therapeutic effects in pre-clinical acute
respiratory distress syndrome and sepsis models. Various cell types undergoing necrosis
and apoptosis or activated neutrophils forming neutrophil extracellular traps have been
implicated in excessive release of histones which further augments tissue injury and may
culminate in multiple organ failure. At the molecular level, an uncontrolled inflammatory
cascade has been considered as the major event; however, histone-activated coagulation and
thrombosis represent additional pathologic events reflecting coagulopathy. Furthermore,
epigenetic regulation and chemical modifications of circulating histones appear to be
critically important in their biological functions as evidenced by increased cytotoxicity
associated with citrullinated histone. Herein, we will briefly review the current
knowledge on the role of histones in acute respiratory distress syndrome and sepsis, and
discuss the future potential of anti-histone therapy for treatment of these
life-threatening disorders.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anna A Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Abstract
Sterile inflammation within primary tumor tissues can spread to distant organs that are devoid of tumor cells. This happens in a manner dependent on tumor-led secretome, before the actual metastasis occurs. The premetastatic microenvironment is established in this way and is at least partly regulated by hijacking the host innate immune system. The biological manifestation of premetastasis include increased vascular permeability, cell mobilization via the blood stream, degradation of the extracellular matrix, immunosuppression, and host antineoplastic activities.
Collapse
Affiliation(s)
- Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
22
|
Geng P, Yu F, Tan D, Xu J, Yang Y, Xu M, Wang H, Ling B. Involvement of claudin-5 in H 2S-induced acute lung injury. J Toxicol Sci 2020; 45:293-304. [PMID: 32404561 DOI: 10.2131/jts.45.293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Acute exposure to hydrogen sulfide (H2S) can cause fatal acute lung injury (ALI). However, the mechanisms of H2S-induced ALI are still not fully understood. This study aims to investigate the role of the tight junction protein claudin-5 in H2S-induced ALI. In our study, Sprague-Dawley (SD) rats were exposed to H2S to establish the ALI model, and in parallel, human pulmonary microvascular endothelial cells (HPMECs) were incubated with NaHS (a H2S donor) to establish a cell model. Lung immunohistochemistry and electron microscopy assays were used to identify H2S-induced ALI, and the expression of claudin-5, p-AKT/t-AKT and p-FoxO1/t-FoxO1 was detected. Our results show that H2S promoted the formation of ALI by morphological investigation and decreased claudin-5 expression. Dexamethasone (Dex) could partly attenuate NaHS-mediated claudin-5 downregulation, and the protective effects of Dex could be partially blocked by LY294002, a PI3K/AKT/FoxO1 pathway antagonist. Moreover, as a consequence of the altered phosphorylation of AKT and FoxO1, a change in claudin-5 with the same trend was observed. Therefore, the tight junction protein claudin-5 might be considered a therapeutic target for the treatment of ALI induced by H2S and other hazardous gases.
Collapse
Affiliation(s)
- Ping Geng
- Department of Emergency Medicine, Northern Jiangsu People's Hospital, Yangzhou University College of Clinical Medicine, China
| | - Fen Yu
- Department of Emergency Medicine, Northern Jiangsu People's Hospital, Yangzhou University College of Clinical Medicine, China
| | - Dingyu Tan
- Department of Emergency Medicine, Northern Jiangsu People's Hospital, Yangzhou University College of Clinical Medicine, China
| | - Jiyang Xu
- Department of Emergency Medicine, Northern Jiangsu People's Hospital, Yangzhou University College of Clinical Medicine, China
| | - Yan Yang
- Department of Emergency Medicine, Northern Jiangsu People's Hospital, Yangzhou University College of Clinical Medicine, China
| | - Min Xu
- Department of Emergency Medicine, Northern Jiangsu People's Hospital, Yangzhou University College of Clinical Medicine, China
| | - Huihui Wang
- Department of Emergency Medicine, Northern Jiangsu People's Hospital, Yangzhou University College of Clinical Medicine, China
| | - Bingyu Ling
- Department of Emergency Medicine, Northern Jiangsu People's Hospital, Yangzhou University College of Clinical Medicine, China
| |
Collapse
|
23
|
Chen Y, Huang B, Zhao Y, Qi D, Wang D. Increased p300/CBP expression in acute respiratory distress syndrome is associated with interleukin-17 and prognosis. CLINICAL RESPIRATORY JOURNAL 2020; 14:791-799. [PMID: 32298537 DOI: 10.1111/crj.13197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/11/2023]
Abstract
PURPOSE Transcription co-activator p300/CBP, a histone acetyltransferase, has a central role in tumours, inflammation and neurodegenerative diseases. We investigated the effect of p300/CBP and its association with various IL-17-related indicators and prognosis in patients with acute respiratory distress syndrome (ARDS). MATERIALS AND METHODS We enrolled 45 adult ARDS patients who were followed for 28 days and 22 healthy controls. The mRNA expression of p300, CBP, RORγt and Foxp3 and the plasma levels of several cytokines were measured. RESULT The mRNA levels of p300, CBP and RORγt, and plasma concentration of IL-17, IL-6, were higher in acute ARDS patients (P < 0.05) compared with controls, and the mean levels of p300, CBP and IL-6 in non-survivors were higher than in survivors (P < 0.05). The expression of p300 was associated with the level of RORγt, IL-17 and disease prognosis. CONCLUSION The levels of p300, RORγt mRNA and plasma concentration of IL-6 and IL-17 in acute ARDS patients were increased compared with controls. Increased p300/CBP expression may be an independent risk factor for 28-day mortality in ARDS.
Collapse
Affiliation(s)
- Yan Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Respiratory and Critical Care Medicine, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Bin Huang
- Department of General Surgery, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Yan Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Qi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Yan Z, Spaulding HR. Extracellular superoxide dismutase, a molecular transducer of health benefits of exercise. Redox Biol 2020; 32:101508. [PMID: 32220789 PMCID: PMC7109453 DOI: 10.1016/j.redox.2020.101508] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular superoxide dismutase (EcSOD) is the only extracellular scavenger of superoxide anion (O2.-) with unique binding capacity to cell surface and extracellular matrix through its heparin-binding domain. Enhanced EcSOD activity prevents oxidative stress and damage, which are fundamental in a variety of disease pathologies. In this review we will discuss the findings in humans and animal studies supporting the benefits of EcSOD induced by exercise training in reducing oxidative stress in various tissues. In particularly, we will highlight the importance of skeletal muscle EcSOD, which is induced by endurance exercise and redistributed through the circulation to the peripheral tissues, as a molecular transducer of exercise training to confer protection against oxidative stress and damage in various disease conditions.
Collapse
Affiliation(s)
- Zhen Yan
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| | - Hannah R Spaulding
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
25
|
Méndez R, Aldás I, Menéndez R. Biomarkers in Community-Acquired Pneumonia (Cardiac and Non-Cardiac). J Clin Med 2020; 9:E549. [PMID: 32085380 PMCID: PMC7073979 DOI: 10.3390/jcm9020549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
Community-acquired pneumonia (CAP) remains the first cause of morbidity and mortality worldwide due to infection. Several aspects such as severity and host response are related to its clinical course and outcome. Beyond the acute implications that the infection provokes in the host, pneumonia also has long-term negative consequences. Among them, cardiovascular complications and mortality are the most outstanding. Therefore, an adequate recognition and stratification of the risk of complications and mortality is crucial. Many biomarkers have been studied for these reasons, considering that each biomarker mirrors a different aspect. Moreover, the clinical application of many of them is still being deliberated because of their limitations and the heterogeneity of the disease. In this review, we examine some of the most relevant biomarkers that we have classified as cardiac and non-cardiac. We discuss some classic biomarkers and others that are considered novel biomarkers, which are mainly involved in cardiovascular risk.
Collapse
Affiliation(s)
- Raúl Méndez
- Pneumology Department, Hospital Universitario y Politécnico La Fe/Instituto de Investigación Sanitaria (IIS) La Fe, 46026 Valencia, Spain; Pneumology Department, Hospital Universitario y Politécnico La Fe, Avda, Fernando Abril Martorell 106, 46026 Valencia, Spain;
| | - Irene Aldás
- University of Valencia, Medicine Faculty, 46026 Valencia, Spain;
- Pneumology Department, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Rosario Menéndez
- Pneumology Department, Hospital Universitario y Politécnico La Fe/Instituto de Investigación Sanitaria (IIS) La Fe, 46026 Valencia, Spain; Pneumology Department, Hospital Universitario y Politécnico La Fe, Avda, Fernando Abril Martorell 106, 46026 Valencia, Spain;
- University of Valencia, Medicine Faculty, 46026 Valencia, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
26
|
Carbone F, Bonaventura A, Liberale L, Paolino S, Torre F, Dallegri F, Montecucco F, Cutolo M. Atherosclerosis in Rheumatoid Arthritis: Promoters and Opponents. Clin Rev Allergy Immunol 2020; 58:1-14. [PMID: 30259381 DOI: 10.1007/s12016-018-8714-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Substantial epidemiological data identified cardiovascular (CV) diseases as a main cause of mortality in patients with rheumatoid arthritis (RA). In light of this, RA patients may benefit from additional CV risk screening and more intensive prevention strategies. Nevertheless, current algorithms for CV risk stratification still remain tailored on general population and are burdened by a significant underestimation of CV risk in RA patients. Acute CV events in patients with RA are largely related to an accelerated atherosclerosis. As pathophysiological features of atherosclerosis overlap those occurring in the inflamed RA synovium, the understanding of those common pathways represents an urgent need and a leading challenge for CV prevention in patients with RA. Genetic background, metabolic status, gut microbiome, and systemic inflammation have been also suggested as additional key pro-atherosclerotic factors. The aim of this narrative review is to update the current knowledge about pathophysiology of atherogenesis in RA patients and potential anti-atherosclerotic effects of disease-modifying anti-rheumatic drugs.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- Center for Molecular Cardiology, University of Zürich, 12 Wagistrasse, 8952, Schlieren, Switzerland
| | - Sabrina Paolino
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, San Martino Polyclinic Hospital, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, 10 Largo Benzi, 16132, Genoa, Italy
| | - Francesco Torre
- IRCCS Ospedale Policlinico San Martino Genoa, 10 Largo Benzi, 16132, Genoa, Italy
- Clinic of Emergency Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132, Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Maurizio Cutolo
- IRCCS Ospedale Policlinico San Martino Genoa, 10 Largo Benzi, 16132, Genoa, Italy.
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, San Martino Polyclinic Hospital, Genoa, Italy.
| |
Collapse
|
27
|
Jiang J, Jian Q, Jing M, Zhang Z, Zhang G, Shan L, Yu P, Wang Y, Xu L. The novel N-methyl-d-aspartate receptor antagonist MN-08 ameliorates lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 2018; 66:109-118. [PMID: 30447529 DOI: 10.1016/j.intimp.2018.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 02/02/2023]
Abstract
Acute lung injury (ALI) is a clinically severe respiratory disorder, and effective therapy is urgently needed. MN-08, a novel synthetic N-methyl-d-aspartate receptor (NMDAR) antagonist, was investigated for its effect on lipopolysaccharide (LPS)-induced ALI. In vitro, the protective effect of MN-08 on inflammatory response, oxidative stress, and tight junctions (TJs) structure was explored in LPS-induced RAW 264.7 cells and A549 cells. MN-08 markedly decreased (p < 0.001) the levels of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and reactive oxygen species (ROS), whereas it moderately upregulated (p < 0.05) heme oxygenase (HO)-1 protein expression in LPS-induced RAW 264.7 cells. Moreover, MN-08 significantly inhibited (p < 0.001) cell apoptosis and improved (p < 0.001) protein expression of TJs in LPS-induced A549 cells. In vivo, the therapeutic effect of MN-08 was evaluated in the LPS-induced ALI model through intratracheal instillation in BALB/c mice. MN-08 administration dramatically attenuated (p < 0.001) pulmonary pathological changes and reduced (p < 0.001) the levels of glutamate, myeloperoxidase (MPO), malondialdehyde (MDA), and number of cells in BALF, whereas it increased (p < 0.05) superoxide dismutase (SOD) and glutathione (GSH) activities in ALI mice. Furthermore, MN-08 markedly blocked the mitogen-activated protein kinases (MAPKs)/nuclear translocation of nuclear factor-κB (NF-κB) signaling pathways in RAW 264.7 cells and lung tissues. These results indicate that MN-08 exhibits lung protection in an LPS-induced ALI model via anti-inflammatory and anti-oxidative activities.
Collapse
Affiliation(s)
- Jinxin Jiang
- Jinan University, College of Pharmacy, Guangzhou 510632, China
| | - Qianqian Jian
- Jinan University, College of Pharmacy, Guangzhou 510632, China
| | - Mei Jing
- Jinan University, College of Pharmacy, Guangzhou 510632, China
| | - Zaijun Zhang
- Jinan University, College of Pharmacy, Guangzhou 510632, China
| | - Gaoxiao Zhang
- Jinan University, College of Pharmacy, Guangzhou 510632, China
| | - Luchen Shan
- Jinan University, College of Pharmacy, Guangzhou 510632, China
| | - Pei Yu
- Jinan University, College of Pharmacy, Guangzhou 510632, China
| | - Yuqiang Wang
- Jinan University, College of Pharmacy, Guangzhou 510632, China
| | - Lipeng Xu
- Jinan University, College of Pharmacy, Guangzhou 510632, China.
| |
Collapse
|
28
|
Szatmary P, Huang W, Criddle D, Tepikin A, Sutton R. Biology, role and therapeutic potential of circulating histones in acute inflammatory disorders. J Cell Mol Med 2018; 22:4617-4629. [PMID: 30085397 PMCID: PMC6156248 DOI: 10.1111/jcmm.13797] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/08/2018] [Accepted: 04/05/2018] [Indexed: 02/05/2023] Open
Abstract
Histones are positively charged nuclear proteins that facilitate packaging of DNA into nucleosomes common to all eukaryotic cells. Upon cell injury or cell signalling processes, histones are released passively through cell necrosis or actively from immune cells as part of extracellular traps. Extracellular histones function as microbicidal proteins and are pro‐thrombotic, limiting spread of infection or isolating areas of injury to allow for immune cell infiltration, clearance of infection and initiation of tissue regeneration and repair. Histone toxicity, however, is not specific to microbes and contributes to tissue and end‐organ injury, which in cases of systemic inflammation may lead to organ failure and death. This review details the processes of histones release in acute inflammation, the mechanisms of histone‐related tissue toxicity and current and future strategies for therapy targeting histones in acute inflammatory diseases.
Collapse
Affiliation(s)
- Peter Szatmary
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Wei Huang
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center, West China Hospital of Sichuan University, Chengdu, China
| | - David Criddle
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Alexei Tepikin
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
29
|
Biron BM, Chung CS, Chen Y, Wilson Z, Fallon EA, Reichner JS, Ayala A. PAD4 Deficiency Leads to Decreased Organ Dysfunction and Improved Survival in a Dual Insult Model of Hemorrhagic Shock and Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:1817-1828. [PMID: 29374076 PMCID: PMC5821587 DOI: 10.4049/jimmunol.1700639] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/22/2017] [Indexed: 12/28/2022]
Abstract
Indirect acute respiratory distress syndrome (iARDS) is caused by a nonpulmonary inflammatory process resulting from insults such as nonpulmonary sepsis. Neutrophils are thought to play a significant role in mediating ARDS, with the development of iARDS being characterized by dysregulation and recruitment of activated neutrophils into the lung. Recently, a novel mechanism of microbial killing by neutrophils was identified through the formation of neutrophil extracellular traps (NETs). NETs are composed of large webs of decondensed chromatin released from activated neutrophils into the extracellular space; they are regulated by the enzyme peptidylarginine deiminase 4 (PAD4) through mediation of chromatin decondensation via citrullination of target histones. Components of NETs have been implicated in ARDS. However, it is unknown whether there is any pathological significance of NET formation in ARDS caused indirectly by nonpulmonary insult. We subjected PAD4-/- mice and wild-type mice to a "two-hit" model of hypovolemic shock (fixed-pressure hemorrhage [Hem]) followed by septic cecal ligation and puncture (CLP) insult (Hem/CLP). Mice were hemorrhaged and resuscitated; 24 h after Hem, mice were then subjected to CLP. Overall, PAD4 deletion led to an improved survival as compared with wild-type mice. PAD4-/- mice displayed a marked decrease in neutrophil influx into the lung, as well decreased presence of proinflammatory mediators. PAD4-/- mice were also able to maintain baseline kidney function after Hem/CLP. These data taken together suggest PAD4-mediated NET formation contributes to the mortality associated with shock/sepsis and may play a role in the pathobiology of end organ injury in response to combined hemorrhage plus sepsis.
Collapse
Affiliation(s)
- Bethany M Biron
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI 02903
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI 02903
| | - Yaping Chen
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI 02903
| | - Zachary Wilson
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI 02903
| | - Eleanor A Fallon
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI 02903
| | - Jonathan S Reichner
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI 02903
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI 02903
| |
Collapse
|
30
|
Morrison MI, Pither TL, Fisher AJ. Pathophysiology and classification of primary graft dysfunction after lung transplantation. J Thorac Dis 2017; 9:4084-4097. [PMID: 29268419 DOI: 10.21037/jtd.2017.09.09] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The term primary graft dysfunction (PGD) incorporates a continuum of disease severity from moderate to severe acute lung injury (ALI) within 72 h of lung transplantation. It represents the most significant obstacle to achieving good early post-transplant outcomes, but is also associated with increased incidence of bronchiolitis obliterans syndrome (BOS) subsequently. PGD is characterised histologically by diffuse alveolar damage, but is graded on clinical grounds with a combination of PaO2/FiO2 (P/F) and the presence of radiographic infiltrates, with 0 being absence of disease and 3 being severe PGD. The aetiology is multifactorial but commonly results from severe ischaemia-reperfusion injury (IRI), with tissue-resident macrophages largely responsible for stimulating a secondary 'wave' of neutrophils and lymphocytes that produce severe and widespread tissue damage. Donor history, recipient health and operative factors may all potentially contribute to the likelihood of PGD development. Work that aims to minimise the incidence of PGD in ongoing, with techniques such as ex vivo perfusion of donor lungs showing promise both in research and in clinical studies. This review will summarise the current clinical status of PGD before going on to discuss its pathophysiology, current therapies available and future directions for clinical management of PGD.
Collapse
Affiliation(s)
- Morvern Isabel Morrison
- Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, UK.,Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Thomas Leonard Pither
- Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, UK.,Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Andrew John Fisher
- Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, UK.,Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
31
|
Wu G, Wang J, Luo P, Li A, Tian S, Jiang H, Zheng Y, Zhu F, Lu Y, Xia Z. Hydrostatin-SN1, a Sea Snake-Derived Bioactive Peptide, Reduces Inflammation in a Mouse Model of Acute Lung Injury. Front Pharmacol 2017; 8:246. [PMID: 28529485 PMCID: PMC5418923 DOI: 10.3389/fphar.2017.00246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
Snake venom has been used for centuries as a traditional Chinese medicine. Hydrostatin-SN1 (H-SN1), a bioactive peptide extracted from the Hydrophis cyanocinctus venom gland T7 phage display library, was reported to have the ability to reduce inflammation in a dextran sulfate sodium-induced murine colitis model. In this study, we sought to investigate the inhibitory potential of H-SN1 on inflammation in a murine model of lipopolysaccharide (LPS)-induced acute lung injury (ALI), and elucidate the anti-inflammatory mechanism in LPS-stimulated RAW 264.7 cells. In vivo, C57BL/6 male mice were intratracheally instilled with LPS or physiological saline with concurrent intraperitoneal injection of H-SN1 or saline alone. Lung histopathologic changes, lung wet-to-dry weight ratio, and myeloperoxidase activity in lung tissues were assessed. Total cell number, the protein concentration, and cytokine levels were determined in the bronchial alveolar lavage fluid. In vitro, RAW 264.7 cells were treated with various concentrations of H-SN1 for 2 h followed by incubation with or without 1 μg/ml LPS for 0.5 or 24 h. The mRNA expression of inflammatory cytokines was determined via RT-PCR and protein levels in the supernatants were measured via ELISA. Extracellular-signal related kinase 1/2 (ERK1/2) and nuclear factor-κB (NF-κB) pathways were analyzed via western blot. H-SN1 improved pulmonary edema status, decreased vascular permeability, suppressed pro-inflammatory cytokine production, and lessened lung morphological injury. H-SN1 also dose-dependently inhibited the mRNA expression and release of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW 264.7 cells. Moreover, H-SN1 inhibited the LPS-induced phosphorylation of ERK1/2 and the nuclear translocation of NF-κB. Our results suggest that H-SN1 could attenuate LPS-induced ALI in mice, which is associated with the anti-inflammatory effect of H-SN1. The mechanism might involve inhibiting the production of inflammatory cytokines by, at least in part, interfering with the ERK1/2 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Guosheng Wu
- Department of Burn Surgery, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - Junjie Wang
- Department of Burn Surgery, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - Pengfei Luo
- Department of Burn Surgery, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - An Li
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Song Tian
- Department of Burn Surgery, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - Hailong Jiang
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Yongjun Zheng
- Department of Burn Surgery, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - Feng Zhu
- Department of Burn Surgery, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - Yiming Lu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Zhaofan Xia
- Department of Burn Surgery, Changhai Hospital, Second Military Medical UniversityShanghai, China
| |
Collapse
|
32
|
Xu W, Song Y. Biomarkers for patients with trauma associated acute respiratory distress syndrome. Mil Med Res 2017; 4:25. [PMID: 28824814 PMCID: PMC5558771 DOI: 10.1186/s40779-017-0134-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022] Open
Abstract
Trauma is a major factor that contributes to the risk for acute respiratory distress syndrome (ARDS). Biomarkers that predict the risk, diagnosis, treatment response and prognosis of ARDS after trauma have been widely investigated. In addition to their applications in clinical diagnosis and treatment, these biomarkers provide important insights into our understanding of the pathogenesis of ARDS. This review begins with a brief introduction regarding the incidence and pathogenesis of trauma-associated ARDS. Then, we focus on reviewing the clinical trials that have been designed to investigate the value of biomarkers in ARDS after trauma. Biomarkers with a confirmed value in ARDS have been organized on the basis of key pathogenic processes that are central to ARDS and are described in detail. Among these, angiopoietin 2 (Ang-2), L-selectin, Clara cell protein 16 (CC16), soluable receptor for advanced glycation end products (sRAGE), Surfactant protein D (SP-D), histones, mtDNAs and some biomarker panels had a certain association with the diagnosis and prognosis of trauma-related ARDS. Further investigations are needed regarding the design of trials, the best sampling approaches and the optimal combinations of the biomarker panels.
Collapse
Affiliation(s)
- Wujian Xu
- Department of Respiratory Medicine, Jinling Hospital, 305 Zhongshan Road, Nanjing, 210002 China.,Nanjing University Institute of Respiratory Medicine, Nanjing, 210002 China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, 305 Zhongshan Road, Nanjing, 210002 China.,Nanjing University Institute of Respiratory Medicine, Nanjing, 210002 China
| |
Collapse
|