1
|
Ni H, Li T, Chen J, Wei Y, Xia M, Wang Q. Store-operated Ca 2+ entry contributes to the ASM phenotype transition in asthma. Exp Lung Res 2025; 51:23-37. [PMID: 40205756 DOI: 10.1080/01902148.2025.2486951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/31/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
AIM OF THE STUDY Phenotype modulation of airway smooth muscle cells (ASMC), characterized by a shift toward a more proliferative and synthetic phenotype from contractile cells, plays a crucial role in airway remodeling in asthma. STIM1 and Orai1, key components of store-operated Ca2+ entry (SOCE), have been demonstrated to enhance ASMC proliferation and migration. This study investigated the impact of STIM1/Orai1-mediated SOCE on ASMC phenotype transition and extracellular matrix (ECM) deposition in asthma. MATERIALS AND METHODS The ASMCs were treated with PDGF-BB and SOCE inhibitors. Immunocytochemistry staining, enzyme-linked immunosorbent assay, and western blot assay were employed to detect the ASMC's proliferation as well as the expressions of contractile proteins, inflammatory cytokines and ECM. Moreover, the effect of SOCE repression in ECM deposition were evaluated in an asthmatic mouse model. RESULTS ASMCs from airways of mice were treated with PDGF-BB to induce the 'proliferative/synthetic' phenotype. We observed elevated expressions of STIM1 and Orai1 in phenotype-switched ASMCs, along with enhanced SOCE. SKF-96365 and RO2959, which target of STIM1/Orai1, could significantly inhibit SOCE activation in ASMCs. Moreover, these SOCE inhibitors mitigated the elevated proliferation rate, decreased the secretion of inflammatory cytokines and restored the reduced levels of contractile proteins in phenotype-switched ASMCs induced by PDGF-BB. Furthermore, we observed that PDGF-BB-induced 'proliferative/synthetic' ASMCs exhibited increased production of ECM components, including collagen I and fibronectin, as well as metalloproteinases (MMPs) such as MMP2 and MMP9, all of which were effectively inhibited by SKF-96365 and RO2959. In vivo experiments also demonstrated that SOCE inhibitors decreased ECM deposition and MMPs production in the asthmatic mouse model. CONCLUSIONS These findings underscored the significant role of STIM1/Orai1-mediated SOCE in ASMC phenotype modulation and its impact on the excessive ECM deposition driven by ASMCs. Thus, our findings suggest that STIM1/Orai1-mediated SOCE may contribute to airway remodeling in asthma.
Collapse
Affiliation(s)
- Hangqi Ni
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, P.R. China
| | - Ting Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, P.R. China
| | - Junjun Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, P.R. China
| | - Yuying Wei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, P.R. China
| | - Mengling Xia
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, P.R. China
| | - Qing Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, P.R. China
| |
Collapse
|
2
|
Wu S, Chen H, Yu R, Li H, Zhao J, Stanton C, Paul Ross R, Chen W, Yang B. Human milk oligosaccharides 2'-fucosyllactose and 3-fucosyllactose attenuate ovalbumin-induced food allergy through immunoregulation and gut microbiota modulation. Food Funct 2025; 16:1267-1283. [PMID: 39918321 DOI: 10.1039/d4fo04638b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The prebiotic properties of human milk oligosaccharides (HMOs) and emerging evidence of immunomodulatory effects suggest their potential therapeutic value in allergy management. 2'-Fucosyllactose (2'-FL) has been reported to alleviate food allergies, while the effect of other fucosylated HMOs on food allergy remains unclear. In this study, we assess the effect of two HMOs, 2'-FL and 3-fucosyllactose (3-FL), on symptomatology and immunological responses in an ovalbumin (OVA)-sensitized mouse model of food allergy as well as their influence on gut microbiota. The assessment of allergic symptoms, specific immunoglobulin E (IgE), and related gene expression levels in sensitized mice indicated that 3-FL was as effective as 2'-FL in alleviating food allergy. 2'-FL and 3-FL significantly decreased serum levels of OVA-specific IgE, mouse mast cell protease (mMCP-1) and IL-4 while increasing the levels of IFN-γ. Additionally, 2'-FL and 3-FL down-regulated gene expression of allergy-related cytokines in the small intestine and improved intestinal barrier damage. Furthermore, both 2'-FL and 3-FL treatment positively influenced the gut microbial profiles, in particular by enhancing the proportion of beneficial bacteria such as Lactobacillus and Bifidobacterium and decreasing the percentage of Turicibacter and Lachnospiraceae NK4A136 group, thereby modulating the immune system. Therefore, this study can provide insights into 2'-FL and 3-FL to alleviate OVA-induced allergy.
Collapse
Affiliation(s)
- Siya Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Renqiang Yu
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, China.
| | - Huizhen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
| | - Catherine Stanton
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - R Paul Ross
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Chen X, Shen A, Niu S, Xiao M, Zhang J, Lu T, He Z, Li S, Yang W. Modulation of NF-κB/Nrf2 signaling by nobiletin mitigates airway inflammation and oxidative stress in PM2.5-exposed asthmatic mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-14. [PMID: 39953847 DOI: 10.1080/09603123.2025.2466237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Exposure to fine particulate matter (PM2.5) is a significant risk factor for asthma, promoting airway inflammation and oxidative stress. This study evaluates Nobiletin's (NOB) efficacy in mitigating airway inflammation and oxidative lung damage in asthma-induced mice exposed to PM2.5. Using an ovalbumin (OVA) plus PM2.5-induced asthma model in BALB/c mice, we investigated the therapeutic impacts of NOB compared to dexamethasone (DEX). NOB significantly moderated lung index values and inflammatory markers without affecting body weight. Notably, NOB enhanced Nrf2 expression and decreased NF-κB-p65, IKK, and Keap-1 levels, aligning with reductions in malondialdehyde (MDA) and reactive oxygen species (ROS) while increasing superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. These findings suggest that NOB can effectively reduce airway inflammation and oxidative lung damage by modulating the NF-κB/Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Xiaodi Chen
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Ao Shen
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Sen Niu
- Department of Emergency, Children's hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, P.R. China
| | - Miaorong Xiao
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Jin Zhang
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Tongtong Lu
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Zijun He
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Shuzhen Li
- Department of Immunology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Weiwei Yang
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| |
Collapse
|
4
|
Zhang X, Duan X, Chen Y, Wang L, Chen Y. A Long-Term Follow-Up Study of Serum NFATc3 Levels in Pediatric Patients with Bronchial Asthma: A Prospective Observational Case-Control Investigation. DNA Cell Biol 2025; 44:46-53. [PMID: 39504128 DOI: 10.1089/dna.2024.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
The early and precise diagnosis of asthma significantly impacts the long-term health outcomes of pediatric patients. The sensitivity and specificity of current biomarkers, however, are frequently limited. Our study aimed to evaluate the clinical significance of nuclear factor of activated T cells, cytoplasmic 3 (NFATc3), in pediatric bronchial asthma, focusing on its diagnostic and prognostic value for disease severity and recurrence. This observational, prospective case-control study involved 200 pediatric patients with bronchial asthma and 200 age- and sex-matched healthy controls, from January 2020 to January 2023. Follow-up varied from 1 to 3 years. We measured levels of NFATc3 and inflammatory cytokines interleukin-1β (IL-1β), IL-6, and TNF-α via enzyme-linked immunosorbent assay. NFATc3 and IL-1β levels at enrollment were markedly higher in patients with acute exacerbations and those classified as severe, compared with their less severe counterparts. Throughout the study, NFATc3, IL-1β, and IL-6 levels significantly increased in severe or acutely exacerbating cases. The diagnostic value of NFATc3 was assessed through receiver operating characteristic curve analysis, which showed its potential in diagnosing bronchial asthma and identifying severe cases. Spearman's analysis confirmed positive associations between peak NFATc3 and cytokine levels. Importantly, disease type, NFATc3 values at enrollment, as well as peak IL-6 levels were identified as independent risk factors for severe bronchial asthma. Elevated NFATc3 is linked with the severity of pediatric bronchial asthma and serves as a potential biomarker for diagnosis and severity prediction, emphasizing its role in guiding treatment strategies.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha, China
| | - Xiaojun Duan
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha, China
| | - Yuan Chen
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha, China
| | - Lili Wang
- Research Institute of Children, Hunan Children's Hospital, Changsha, China
| | - Yanping Chen
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
5
|
Cui L, Song X, Peng Y, Shi M. Clinical Significance of Combined Detection of CCL22 and IL-1 as Potential New Bronchial Inflammatory Mediators in Children's Asthma. Immun Inflamm Dis 2024; 12:e70043. [PMID: 39508721 PMCID: PMC11542289 DOI: 10.1002/iid3.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUNDS Severe asthma is a significant health burden because children with severe asthma are vulnerable to medication-related side effects, life-threatening deterioration, and impaired quality of life. However, there is a lack of data to elucidate the role of inflammatory variables in asthma. This study aimed to compare the levels of inflammatory factors in serum and sputum in children with acute and stable asthma to those in healthy children and the ability to predict clinical response to azithromycin therapy. METHODS This study recruited 95 individuals aged 1-3 years old and collected data from January 2018 to 2020. We examined serum and sputum inflammatory factors and constructed the least absolute shrinkage and selection operator (LASSO) model. Predictive models were constructed through multifactor logistic regression and presented in the form of column-line plots. The performance of the column-line diagrams was measured by subject work characteristics (ROC) curves, calibration plots, and decision curve analysis (DCA). Then, filter-paper samples were collected from 45 children with acute asthma who were randomly assigned to receive either azithromycin (10 mg/kg, n = 22) or placebo (n = 23). Pretreatment levels of immune mediators were then analyzed and compared with clinical response to azithromycin therapy. RESULTS Of the 95 eligible participants, 21 (22.11%) were healthy controls, 29 (30.53%) had stable asthma, and 45 (47.37%) had acute asthma. The levels of interferon-γ (IFN-γ), tumor necrosis factor-a (TNF-α), chemokine CCL22 (CCL22), interleukin 12 (IL-12), chemokine CCL4 (CCL4), chemokine CCL2 (CCL2), and chemokine CCL13 (CCL13)were significantly higher in the acute asthma group than in the stable asthma group. A logistic regression analysis was performed using CCL22 and IL-1 as independent variables. Additionally, IFN-γ, TNF-α, IL-1, IL-13, and CCL22 were identified in the LASSO model. Finally, we found that CCL22 and IL-1 were more responsive in predicting the response to azithromycin treatment. CONCLUSION Our results show that CCL22 and IL-1 are both representative markers during asthma symptom exacerbations and an immune mediator that can predict response to azithromycin therapy.
Collapse
Affiliation(s)
- Lei Cui
- Department of PediatricsPeople's Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affliated Hospital of Jishou UniversityJishouChina
| | - Xiaozhen Song
- Department of PediatricsPeople's Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affliated Hospital of Jishou UniversityJishouChina
| | - Yanping Peng
- Department of PediatricsPeople's Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affliated Hospital of Jishou UniversityJishouChina
| | - Min Shi
- Department of PediatricsPeople's Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affliated Hospital of Jishou UniversityJishouChina
| |
Collapse
|
6
|
Jin M, Komine M, Tsuda H, Sashikawa-Kimura M, Nakae S, Motegi SI, Ohtsuki M. Interleukin-33 Deficiency Protects the Skin From Ulcer Formation in an Ischemia-Reperfusion-Induced Decubitus Mouse Model. Exp Dermatol 2024; 33:e70014. [PMID: 39555678 DOI: 10.1111/exd.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024]
Abstract
Interleukin-33 (IL-33) is an alarmin released upon epithelial tissue damage. It functions as a nuclear factor for regulating gene expression. We hypothesised that IL-33 is involved in the formation of decubitus ulcers through damaged epidermis. Therefore, this study aimed to clarify the mechanism of IL-33 action in decubitus ulcer formation. IL-33 knockout (KO), soluble stimulation-2 (ST2) transgenic, and wild-type (WT) mice were used to construct an ischemia-reperfusion (I/R) injury as a decubitus model. The ulcer area was significantly reduced in IL-33 KO mice compared to WT mice but was not reduced in ST2 transgenic mice. Anti-IL-33 receptor (transmembrane ST2) antibodies effectively prevented ulcer formation; however, an anti-IL-33 neutralising antibody was ineffective. The number of infiltrating macrophages was higher, while that of neutrophils and mast cells was lower in IL-33 KO mice than in WT mice. The number of M2 macrophages increased in IL-33 KO mice. Characterisation of gene expression levels revealed significantly reduced interleukin-1 beta (IL-1β) and increased C-C motif chemokine ligand 17 expression in IL-33 KO mice. Macrophages isolated from ulcers in WT or IL-33 KO mice stimulated with exogenous IL-33 produced comparable amounts of IL-1β. In conclusion, our study indicates that IL-33 is released in response to I/R injury in the skin, contributing to inflammatory macrophage and mast cell infiltration and stimulation, resulting in IL-1β production and the massive infiltration of effector cells, including neutrophils, which finally induces decubitus ulcer formation. These results suggest that suppressing IL-33 expression could be beneficial for treating early-phase decubitus ulcers.
Collapse
Affiliation(s)
- Meijuan Jin
- Department of Dermatology, Jichi Medical University, Tochigi, Japan
| | - Mayumi Komine
- Department of Dermatology, Jichi Medical University, Tochigi, Japan
- Department of Biochemistry, Jichi Medical University, Tochigi, Japan
| | - Hidetoshi Tsuda
- Department of Dermatology, Jichi Medical University, Tochigi, Japan
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | | | - Susumu Nakae
- Graduate School of Integrated Science of Life, Hiroshima University Graduate School, Hiroshima, Japan
| | | | - Mamitaro Ohtsuki
- Department of Dermatology, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
7
|
Xu C, Huang H, Zou H, Zhao Y, Liu L, Chai R, Zhang J. The miR-9-5p/KLF5/IL-1β Axis Regulates Airway Smooth Muscle Cell Proliferation and Apoptosis to Aggravate Airway Remodeling and Inflammation in Asthma. Biochem Genet 2024; 62:3996-4010. [PMID: 38267617 DOI: 10.1007/s10528-023-10640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
The aim of this study was to investigate the underlying mechanism of miR-9-5p in airway smooth muscle cells (ASMCs) of asthmatic mice. An asthmatic mouse model was established through the intraperitoneal injection of ovalbumin. Histopathological changes in lung tissues of asthmatic mice were observed using HE staining. ASMCs was identified using immunofluorescence staining and cell morphology. The mRNA expressions of miR-9-5p, KLF5, and IL-1β were measured using RT-qPCR. Additionally, CCK8 assay and flow cytometry were applied for ASMC proliferation and apoptosis, respectively. The protein levels of OPN, KLF5, and IL-1β were assessed using western blotting. The results showed that miR-9-5p was abnormally downregulated in lung tissues and ASMCs of asthmatic mice. Dual-Luciferase Reporter Assay and Chromatin immunoprecipitation confirmed that miR-9-5p targeted KLF5 that bounds to IL-1β promoter. Besides, miR-9-5p negatively regulated IL-1β mRNA and protein level via KLF5. Moreover, miR-9-5p was found to positively regulate ASMC apoptosis, negatively regulate ASMC proliferation and OPN protein expression, albeit with partial reversal by KLF5. Mechanistically, the regulation of ASMC proliferation and apoptosis by miR-9-5p is achieved by targeting KLF5/IL-1β axis.
Collapse
Affiliation(s)
- Chong Xu
- Department of Respiration, General Hospital of Northern Theater Command, No 83 Wenhua Road, Shenyang, 110016, China
| | - Hehua Huang
- Department of Respiration, General Hospital of Northern Theater Command, No 83 Wenhua Road, Shenyang, 110016, China
| | - Hongmei Zou
- Department of Respiration, General Hospital of Northern Theater Command, No 83 Wenhua Road, Shenyang, 110016, China
| | - Yumeng Zhao
- Department of Respiration, General Hospital of Northern Theater Command, No 83 Wenhua Road, Shenyang, 110016, China
| | - Lu Liu
- Department of Respiration, Xinmi Traditional Chinese Medicine Hospital, Xinmi, 452370, China
| | - Ruonan Chai
- Department of Respiration, General Hospital of Northern Theater Command, No 83 Wenhua Road, Shenyang, 110016, China.
| | - Junli Zhang
- Department of Respiration, General Hospital of Northern Theater Command, No 83 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
8
|
Hu K, Wen H, Song T, Che Z, Song Y, Song M. Deciphering the Role of LncRNAs in Osteoarthritis: Inflammatory Pathways Unveiled. J Inflamm Res 2024; 17:6563-6581. [PMID: 39318993 PMCID: PMC11421445 DOI: 10.2147/jir.s489682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Long non-coding RNA (LncRNA), with transcripts over 200 nucleotides in length, play critical roles in numerous biological functions and have emerged as significant players in the pathogenesis of osteoarthritis (OA), an inflammatory condition traditionally viewed as a degenerative joint disease. This review comprehensively examines the influence of LncRNA on the inflammatory processes driving OA progression, focusing on their role in regulating gene expression, cellular activities, and inflammatory pathways. Notably, LncRNAs such as MALAT1, H19, and HOTAIR are upregulated in OA and exacerbate the inflammatory milieu by modulating key signaling pathways like NF-κB, TGF-β/SMAD, and Wnt/β-catenin. Conversely, LncRNA like MEG3 and GAS5, which are downregulated in OA, show potential in dampening inflammatory responses and protecting against cartilage degradation by influencing miRNA interactions and cytokine production. By enhancing our understanding of LncRNA' roles in OA inflammation, we can better leverage them as potential biomarkers for the disease and develop innovative therapeutic strategies for OA management. This paper aims to delineate the mechanisms by which LncRNA influence inflammatory responses in OA and propose them as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kangyi Hu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Haonan Wen
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Ting Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Zhixin Che
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yongjia Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Min Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
9
|
Quoc QL, Kim Y, Park G, Cao TBT, Choi Y, Park YH, Park HS. Downregulation of otulin induces inflammasome activation in neutrophilic asthma. J Allergy Clin Immunol 2024; 154:557-570. [PMID: 38599290 DOI: 10.1016/j.jaci.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Neutrophilic asthma (NA) is a severe asthma phenotype associated with steroid resistance and IL-1β overproduction; however, the exact mechanism remains unclear. Moreover, the dysfunction of TNF-α signaling pathway, a regulator of IL-1β production, was associated with the deficiency of ovarian tumor protease deubiquitinase with linear linkage specificity (otulin) in autoimmune patients. OBJECTIVE We hypothesized that otulin downregulation in macrophages (Mφ) could trigger Mφ activation via the nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome signaling pathway. METHODS We assessed the expressions of otulin in blood monocyte subsets from NA patients and in alveolar Mφ from NA mice. Additionally, we evaluated the functional consequences of otulin deficiency in bone marrow-derived Mφ. The effects of inhibiting receptor-interacting protein kinase (RIPK)-1 and RIPK-3 on neutrophils and group 3 innate lymphoid cells (ILC3s) were assessed in vitro and in vivo. RESULTS When comparing nonclassical monocytes, a significant downregulation of otulin in the intracellular components was observed in NA patients compared to healthy controls (P = .005). Moreover, isolated alveolar Mφ from the NA mice exhibited lower otulin expression compared to those from control mice. After otulin knockdown in bone marrow-derived Mφ, we observed spontaneous IL-1β production depending on NLRP3 inflammasome. Moreover, the infiltrated neutrophils and ILC3s were significantly decreased by combined treatment of RIPK-1 and RIPK-3 inhibitors through blocking IL-1β release in NA. CONCLUSIONS IL-1β overproduction caused by a deficiency of otulin, an upstream triggering factor, could be a promising diagnostic and therapeutic target for NA.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - YeJi Kim
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea; Department of Microbiology, Ajou University School of Medicine, Suwon, Korea
| | - Gunwoo Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Youngwoo Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea
| | - Yong Hwan Park
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea; Department of Microbiology, Ajou University School of Medicine, Suwon, Korea.
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
10
|
Zhang C, Li G, Zhang F, Zhang Y, Hong S, Gao S, Liu Y, Du J, Li Y. IL-33 Facilitates Fibro-Adipogenic Progenitors to Establish the Pro-Regenerative Niche after Muscle Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405299. [PMID: 39037903 PMCID: PMC11425282 DOI: 10.1002/advs.202405299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/03/2024] [Indexed: 07/24/2024]
Abstract
During the process of muscle regeneration post-injury in adults, muscle stem cells (MuSCs) function is facilitated by neighboring cells within the pro-regenerative niche. However, the precise mechanism triggering the initiation of signaling in the pro-regenerative niche remains unknown. Using single-cell RNA sequencing, 14 different muscle cells are comprehensively mapped during the initial stage following injury. Among these, macrophages and fibro-adipogenic progenitor cells (FAPs) exhibit the most pronounced intercellular communication with other cells. In the FAP subclusters, the study identifies an activated FAP phenotype that secretes chemokines, such as CXCL1, CXCL5, CCL2, and CCL7, to recruit macrophages after injury. Il1rl1, encoding the protein of the interleukin-33 (IL-33) receptor, is identified as a highly expressed signature surface marker of the FAP phenotype. Following muscle injury, autocrine IL-33, an alarmin, has been observed to activate quiescent FAPs toward this inflammatory phenotype through the IL1RL1-MAPK/NF-κB signaling pathway. Il1rl1 deficiency results in decreased chemokine expression and recruitment of macrophages, accompanied by impaired muscle regeneration. These findings elucidate a novel mechanism involving the IL-33/IL1RL1 signaling pathway in promoting the activation of FAPs and facilitating muscle regeneration, which can aid the development of therapeutic strategies for muscle-related disorders and injuries.
Collapse
Affiliation(s)
- Congcong Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Guoqi Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Fan Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Yanhong Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Shiyao Hong
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Shijuan Gao
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Yan Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Yulin Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| |
Collapse
|
11
|
Monedeiro F, Ehall B, Tiffner K, Eberl A, Svehlikova E, Prietl B, Pfeifer V, Senekowitsch J, Remm A, Rebane A, Magnes C, Pieber T, Sinner F, Birngruber T. Characterization of Inflammatory Mediators and Metabolome in Interstitial Fluid Collected with Dermal Open Flow Microperfusion before and at the End of Dupilumab Treatment in Atopic Dermatitis. J Proteome Res 2024; 23:3496-3514. [PMID: 38986055 PMCID: PMC11304394 DOI: 10.1021/acs.jproteome.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Dupilumab is a monoclonal antibody approved for the treatment of atopic dermatitis (AD); however, its effects on molecular, cellular, and immunological levels remain to be elucidated. In this study, blood and dermal interstitial fluid (ISF) from nonlesional (NL) and lesional (L) skin were collected from eight patients with moderate to severe AD, before (visit 2-v2) and at the end of a 16-week treatment with dupilumab (visit 10-v10). Clinical treatment effect was demonstrated by significantly decreased AD severity scores at the end of treatment. At v10 versus v2, the percentages of CD4+ interleukin-producing cells showed a decreasing trend in ISF L and NL, unbound IL-4 levels in plasma were increased, IL-5 levels in ISF L reduced, and levels of factors involved in anti-inflammatory pathways and re-epithelization increased. At v2, ISF L showed that AD lesions might have altered amino acid pathways and lipid signaling compared to ISF NL. At v10, ISF L exhibited raised levels of long- and very-long-chain fatty acids and lipids compared to v2. Furthermore, dupilumab administration caused reduced expression of miR-155-5p and miR-378a-3p in ISF L. In conclusion, results from the present study provided novel knowledge by linking local immune and metabolic alterations to AD pathogenesis and treatment response.
Collapse
Affiliation(s)
- Fernanda Monedeiro
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
| | - Barbara Ehall
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
- BioTechMed, Mozartgasse
12, Graz 8010, Austria
| | - Katrin Tiffner
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
| | - Anita Eberl
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
| | - Eva Svehlikova
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
| | - Barbara Prietl
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
- Center
for Biomarker Research in Medicine (CBmed) GmbH, Stiftingtalstrasse 5, Graz 8010, Austria
| | - Verena Pfeifer
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
- Center
for Biomarker Research in Medicine (CBmed) GmbH, Stiftingtalstrasse 5, Graz 8010, Austria
| | - Julia Senekowitsch
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
| | - Anu Remm
- Institute
of Biomedicine and Translational Medicine, University of Tartu, Biomeedikum, Ravila 19, Tartu 50411, Estonia
| | - Ana Rebane
- Institute
of Biomedicine and Translational Medicine, University of Tartu, Biomeedikum, Ravila 19, Tartu 50411, Estonia
| | - Christoph Magnes
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
| | - Thomas Pieber
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
- Center
for Biomarker Research in Medicine (CBmed) GmbH, Stiftingtalstrasse 5, Graz 8010, Austria
| | - Frank Sinner
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
| | - Thomas Birngruber
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
| |
Collapse
|
12
|
Chen Z, Zhou Y, Tan Y, He SD, Ji X, Xiao B, Chen H. Network pharmacology analysis and experimental validation of Xiao-Qing-Long-Tang's therapeutic effects against neutrophilic asthma. J Pharm Biomed Anal 2024; 243:116063. [PMID: 38479305 DOI: 10.1016/j.jpba.2024.116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Xiao-Qing-Long-Tang (XQLT), a classical Chinese herbal medicine formula, has been extensively used for allergic asthma treatment. However, there is limited research on its anti-inflammatory effects and mechanisms specifically in neutrophilic asthma (NA). PURPOSE This study aims to investigate the potential therapeutic effects of XQLT against NA using a combination of network pharmacology and experimental validation. STUDY DESIGN By utilizing traditional Chinese medicine and disease databases, we constructed an XQLT-asthma network to identify potential targets of XQLT for NA. In the experimental phase, we utilized an ovalbumin (OVA)/lipopolysaccharide (LPS)-induced model for neutrophilic asthma and examined the therapeutic effects of XQLT. RESULTS Our research identified 174 bioactive components within XQLT and obtained 140 target genes of XQLT against asthma. Functional enrichment analysis revealed that these target genes were primarily associated with inflammation and cytokines. In the experimental validation, mice induced with OVA-LPS showcased eosinophilic and neutrophilic cell infiltration in peri-bronchial areas, elevated levels of IL-4 and IL-17 in both serum and lung, increased percentages of Th2 and Th17 cells in the spleen, as well as elevated levels of CD11b+ and CD103+ dendritic cells (DCs) within the lung. Treatment with XQLT effectively reduced IL-4 and IL-17 levels, decreased the percentages of Th2, Th17, CD11b+, and CD103+ DCs, and improved inflammatory cell infiltrations in lung tissues. These findings serve as a foundation for the potential clinical application of XQLT in neutrophilic asthma.
Collapse
Affiliation(s)
- Zhifeng Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaoliang Zhou
- The Emergency Department, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuanfei Tan
- The Physical Examination Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Sheng-Dong He
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaoying Ji
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Bing Xiao
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, P. R. China; Department of Emergency Medicine, The Guilin Hospital of The Second Xiangya Hospital of Central South University, Guilin, Guangxi, China.
| | - Hongda Chen
- Department of Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
13
|
Mohamed MME, Amrani Y. Obesity Enhances Non-Th2 Airway Inflammation in a Murine Model of Allergic Asthma. Int J Mol Sci 2024; 25:6170. [PMID: 38892358 PMCID: PMC11172812 DOI: 10.3390/ijms25116170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Obese patients with asthma present with aggravated symptoms that are also harder to treat. Here, we used a mouse model of allergic asthma sensitised and challenged to house dust mite (HDM) extracts to determine whether high-fat-diet consumption would exacerbate the key features of allergic airway inflammation. C57BL/6 mice were intranasally sensitised and challenged with HDM extracts over a duration of 3 weeks. The impact of high-fat-diet (HFD) vs. normal diet (ND) chow was studied on HDM-induced lung inflammation and inflammatory cell infiltration as well as cytokine production. HFD-fed mice had greater inflammatory cell infiltration around airways and blood vessels, and an overall more severe degree of inflammation than in the ND-fed mice (semiquantitative blinded evaluation). Quantitative assessment of HDM-associated Th2 responses (numbers of lung CD4+ T cells, eosinophils, serum levels of allergen-specific IgE as well as the expression of Th2 cytokines (Il5 and Il13)) did not show significant changes between the HFD and ND groups. Interestingly, the HFD group exhibited a more pronounced neutrophilic infiltration within their lung tissues and an increase in non-Th2 cytokines (Il17, Tnfa, Tgf-b, Il-1b). These findings provide additional evidence that obesity triggered by a high-fat-diet regimen may exacerbate asthma by involving non-Th2 and neutrophilic pathways.
Collapse
Affiliation(s)
| | - Yassine Amrani
- Department of Respiratory Sciences, Clinical Sciences, Glenfield Hospital, University of Leicester, Leicester LE3 9QP, UK;
| |
Collapse
|
14
|
Chen Y, Song Y, Wang Z, Lai Y, Yin W, Cai Q, Han M, Cai Y, Xue Y, Chen Z, Li X, Chen J, Li M, Li H, He R. The chemerin-CMKLR1 axis in keratinocytes impairs innate host defense against cutaneous Staphylococcus aureus infection. Cell Mol Immunol 2024; 21:533-545. [PMID: 38532043 PMCID: PMC11143357 DOI: 10.1038/s41423-024-01152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
The skin is the most common site of Staphylococcus aureus infection, which can lead to various diseases, including invasive and life-threatening infections, through evasion of host defense. However, little is known about the host factors that facilitate the innate immune evasion of S. aureus in the skin. Chemerin, which is abundantly expressed in the skin and can be activated by proteases derived from S. aureus, has both direct bacteria-killing activity and immunomodulatory effects via interactions with its receptor CMKLR1. Here, we demonstrate that a lack of the chemerin/CMKLR1 axis increases the neutrophil-mediated host defense against S. aureus in a mouse model of cutaneous infection, whereas chemerin overexpression, which mimics high levels of chemerin in obese individuals, exacerbates S. aureus cutaneous infection. Mechanistically, we identified keratinocytes that express CMKLR1 as the main target of chemerin to suppress S. aureus-induced IL-33 expression, leading to impaired skin neutrophilia and bacterial clearance. CMKLR1 signaling specifically inhibits IL-33 expression induced by cell wall components but not secreted proteins of S. aureus by inhibiting Akt activation in mouse keratinocytes. Thus, our study revealed that the immunomodulatory effect of the chemerin/CMKLR1 axis mediates innate immune evasion of S. aureus in vivo and likely increases susceptibility to S. aureus infection in obese individuals.
Collapse
Affiliation(s)
- Yu Chen
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yan Song
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhe Wang
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Yangfan Lai
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Wei Yin
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Qian Cai
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Miaomiao Han
- Allergy Center, Department of Otolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yiheng Cai
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Yushan Xue
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Zhengrong Chen
- Department of Respiratory Diseases, Children's Hospital of Soochow University, Suzhou, China
| | - Xi Li
- Biology Science Institutes, Chongqing Medical University, Chongqing, 400032, China
| | - Jing Chen
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Faculty of Medical Laboratory Science, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Huabin Li
- Allergy Center, Department of Otolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Rui He
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Research Center of Allergy and Diseases, Fudan University, 200040, Shanghai, China.
| |
Collapse
|
15
|
Sang L, Gong X, Huang Y, Zhang L, Sun J. Immunotherapeutic implications on targeting the cytokines produced in rhinovirus-induced immunoreactions. FRONTIERS IN ALLERGY 2024; 5:1427762. [PMID: 38859875 PMCID: PMC11163110 DOI: 10.3389/falgy.2024.1427762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Rhinovirus is a widespread virus associated with several respiratory diseases, especially asthma exacerbation. Currently, there are no accurate therapies for rhinovirus. Encouragingly, it is found that during rhinovirus-induced immunoreactions the levels of certain cytokines in patients' serum will alter. These cytokines may have pivotal pro-inflammatory or anti-inflammatory effects via their specific mechanisms. Thus far, studies have shown that inhibitions of cytokines such as IL-1, IL-4, IL-5, IL-6, IL-13, IL-18, IL-25, and IL-33 may attenuate rhinovirus-induced immunoreactions, thereby relieving rhinovirus infection. Furthermore, such therapeutics for rhinovirus infection can be applied to viruses of other species, with certain practicability.
Collapse
Affiliation(s)
- Le Sang
- Department of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Xia Gong
- Department of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Yunlei Huang
- Department of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Linling Zhang
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province, China
| | - Jian Sun
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province, China
| |
Collapse
|
16
|
Vecchié A, Bonaventura A, Golino M, Thomas G, Abbate A. Novel Therapeutic Insights Into the Treatment of Pericarditis: Targeting the Innate Immune System. J Cardiovasc Pharmacol 2024; 83:377-383. [PMID: 38422218 DOI: 10.1097/fjc.0000000000001553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
ABSTRACT Acute pericarditis is characterized by pericardial inflammation that can be treated with anti-inflammatory drugs. A considerable percentage of patients develops recurrent pericarditis with several relapses. In developed countries, the idiopathic form is the most frequent and has a high risk of recurrences. Two pathophysiological mechanisms have been described for idiopathic recurrent pericarditis: autoimmune and autoinflammatory. The autoimmune mechanism is more frequently encountered in patients with rheumatologic disorders, especially systemic lupus erythematosus. The innate immune system plays a central role in the pathophysiology of pericarditis, especially in the autoinflammatory phenotype. Current evidence highlights the central role played by interleukin 1 and NLRP3 (NACHT, leucine-rich repeat, and pyrin domain-containing protein 3) in idiopathic recurrent pericarditis. Accordingly, interleukin 1 blockers have been approved for the treatment of this condition. Neutrophils are likely to be important in such setting; however, their role has only been partially investigated. In the present review, we have collected the current knowledge on the role of innate immune system in pericarditis pathophysiology and how this can be used to provide targeted treatments for patients with recurrent pericarditis.
Collapse
Affiliation(s)
| | - Aldo Bonaventura
- Department of Internal Medicine, ASST Sette Laghi, Varese, Italy
| | - Michele Golino
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
- Department of Medicine and Surgery, University of Insubria, Varese, Italy; and
| | - Georgia Thomas
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, Department of Internal Medicine, Heart and Vascular Center, University of Virginia, Charlottesville, VA
| |
Collapse
|
17
|
Read J, Reid AT, Thomson C, Plit M, Mejia R, Knight DA, Lize M, El Kasmi K, Grainge CL, Stahl H, Schuliga M. Alveolar epithelial cells of lung fibrosis patients are susceptible to severe virus-induced injury. Clin Sci (Lond) 2024; 138:537-554. [PMID: 38577922 DOI: 10.1042/cs20240220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
Patients with pulmonary fibrosis (PF) often experience exacerbations of their disease, characterised by a rapid, severe deterioration in lung function that is associated with high mortality. Whilst the pathobiology of such exacerbations is poorly understood, virus infection is a trigger. The present study investigated virus-induced injury responses of alveolar and bronchial epithelial cells (AECs and BECs, respectively) from patients with PF and age-matched controls (Ctrls). Air-liquid interface (ALI) cultures of AECs, comprising type I and II pneumocytes or BECs were inoculated with influenza A virus (H1N1) at 0.1 multiplicity of infection (MOI). Levels of interleukin-6 (IL-6), IL-36γ and IL-1β were elevated in cultures of AECs from PF patients (PF-AECs, n = 8-11), being markedly higher than Ctrl-AECs (n = 5-6), 48 h post inoculation (pi) (P<0.05); despite no difference in H1N1 RNA copy numbers 24 h pi. Furthermore, the virus-induced inflammatory responses of PF-AECs were greater than BECs (from either PF patients or controls), even though viral loads in the BECs were overall 2- to 3-fold higher than AECs. Baseline levels of the senescence and DNA damage markers, nuclear p21, p16 and H2AXγ were also significantly higher in PF-AECs than Ctrl-AECs and further elevated post-infection. Senescence induction using etoposide augmented virus-induced injuries in AECs (but not viral load), whereas selected senotherapeutics (rapamycin and mitoTEMPO) were protective. The present study provides evidence that senescence increases the susceptibility of AECs from PF patients to severe virus-induced injury and suggests targeting senescence may provide an alternative option to prevent or treat the exacerbations that worsen the underlying disease.
Collapse
Affiliation(s)
- Jane Read
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Andrew T Reid
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Claire Thomson
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Saint Vincent's Hospital, Sydney, NSW, Australia
| | | | - Ross Mejia
- John Hunter Hospital, Newcastle, NSW, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Providence Health Care Research Institute, Vancouver, British Columbia, Canada
| | - Muriel Lize
- Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| | | | - Christopher L Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- John Hunter Hospital, Newcastle, NSW, Australia
| | - Heiko Stahl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| | - Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
18
|
Bao T, Liu X, Hu J, Ma M, Li J, Cao L, Yu B, Cheng H, Zhao S, Tian Z. Recruitment of PVT1 Enhances YTHDC1-Mediated m6A Modification of IL-33 in Hyperoxia-Induced Lung Injury During Bronchopulmonary Dysplasia. Inflammation 2024; 47:469-482. [PMID: 37917328 PMCID: PMC11074042 DOI: 10.1007/s10753-023-01923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease that specifically affects preterm infants. Oxygen therapy administered to treat BPD can lead to hyperoxia-induced lung injury, characterized by apoptosis of lung alveolar epithelial cells. Our epitranscriptomic microarray analysis of normal mice lungs and hyperoxia-stimulated mice lungs revealed elevated RNA expression levels of IL-33, as well as increased m6A RNA methylation levels of IL-33 and PVT1 in the hyperoxia-stimulated lungs. This study aimed to investigate the role of the PVT1/IL-33 axis in BPD. A mouse model of BPD was established through hyperoxia induction, and lung histological changes were assessed by hematoxylin-eosin staining. Parameters such as radial alveolar count and mean chord length were measured to assess lung function. Mouse and human lung alveolar epithelial cells (MLE12 and A549, respectively) were stimulated with hyperoxia to create an in vitro BPD model. Cell apoptosis was detected using Western blotting and flow cytometry analysis. Our results demonstrated that silencing PVT1 suppressed apoptosis in MLE12 and A549 cells and improved lung function in hyperoxia-stimulated lungs. Additionally, IL-33 reversed the effects of PVT1 both in vivo and in vitro. Through online bioinformatics analysis and RNA-binding protein immunoprecipitation assays, YTHDC1 was identified as a RNA-binding protein (RBP) for both PVT1 and IL-33. We found that PVT1 positively regulated IL-33 expression by recruiting YTHDC1 to mediate m6A modification of IL-33. In conclusion, silencing PVT1 demonstrated beneficial effects in alleviating BPD by facilitating YTHDC1-mediated m6A modification of IL-33. Inhibition of the PVT1/IL-33 axis to suppress apoptosis in lung alveolar epithelial cells may hold promise as a therapeutic approach for managing hyperoxia-induced lung injury in BPD.
Collapse
Affiliation(s)
- Tianping Bao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Xiangye Liu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Jian Hu
- Department of Pediatrics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Mengmeng Ma
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Jingyan Li
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Linxia Cao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Bingrui Yu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Huaiping Cheng
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Sai Zhao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China.
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
19
|
Zhao Y, Wang H, Jin L, Zhang Z, Liu L, Zhou M, Zhang X, Zhang L. Targeting fusion proteins of the interleukin family: A promising new strategy for the treatment of autoinflammatory diseases. Eur J Pharm Sci 2024; 192:106647. [PMID: 37984595 DOI: 10.1016/j.ejps.2023.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
As a means of communication between immune cells and non-immune cells, Interleukins (ILs) has the main functions of stimulating the proliferation and activation of inflammatory immune cells such as dendritic cells and lymphocytes, promote the development of blood cells and so on. However, dysregulation of ILs expression is a major feature of autoinflammatory diseases. The drugs targeting ILs or IL-like biologics have played an important role in the clinical treatment of autoinflammatory diseases. Nevertheless, the widespread use of IL products may result in significant off-target adverse reactions. Thus, there is a clear need to develop next-generation ILs products in the biomedical field. Fusion proteins are proteins created through the joining of two or more genes that originally coded for separate proteins. Over the last 30 years, there has been increasing interest in the use of fusion protein technology for developing anti-inflammatory drugs. In comparison to single-target drugs, fusion proteins, as multiple targets drugs, have the ability to enhance the cytokine therapeutic index, resulting in improved efficacy over classical drugs. The strategy of preparing ILs or their receptors as fusion proteins is increasingly used in the treatment of autoimmune and chronic inflammation. This review focuses on the efficacy of several fusion protein drugs developed with ILs or their receptors in the treatment of autoinflammatory diseases, in order to illustrate the prospects of this new technology as an anti-inflammatory drug development protocol in the future.
Collapse
Affiliation(s)
- Yuchen Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China.
| |
Collapse
|
20
|
Zhou Y, Xu Z, Liu Z. Role of IL-33-ST2 pathway in regulating inflammation: current evidence and future perspectives. J Transl Med 2023; 21:902. [PMID: 38082335 PMCID: PMC10714644 DOI: 10.1186/s12967-023-04782-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Interleukin (IL)-33 is an alarmin of the IL-1 superfamily localized to the nucleus of expressing cells, such as endothelial cells, epithelial cells, and fibroblasts. In response to cellular damage or stress, IL-33 is released and activates innate immune responses in some immune and structural cells via its receptor interleukin-1 receptor like-1 (IL-1RL1 or ST2). Recently, IL-33 has become a hot topic of research because of its role in pulmonary inflammation. The IL-33-ST2 signaling pathway plays a pro-inflammatory role by activating the type 2 inflammatory response, producing type 2 cytokines and chemokines. Elevated levels of IL-33 and ST2 have been observed in chronic pulmonary obstructive disease (COPD). Notably, IL-33 is present in COPD induced by cigarette smoke or acute inflammations. The role of IL-33 in sepsis is becoming increasingly prominent, and understanding its significance in the treatment of sepsis associated with high mortality is critical. In addition to its pro-inflammatory effects, the IL-33-ST2 axis appears to play a role in bacterial clearance and tissue repair. In this review, we focused on the role of the IL-33-ST2 axis in sepsis, asthma, and COPD and summarized the therapeutic targets associated with this axis, providing a basis for future treatment.
Collapse
Affiliation(s)
- Yilu Zhou
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhendong Xu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zhiqiang Liu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
21
|
D’Evelyn SM, Bein KJ, Laing EA, Nyguen T, Wu CW, Zhang Q, Pinkerton KE. Short-term and repeated exposure to particulate matter sizes from Imperial Valley, California to induce inflammation and asthmatic-like symptoms in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:909-927. [PMID: 37698070 PMCID: PMC10550522 DOI: 10.1080/15287394.2023.2257232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Imperial Valley, California has become increasingly hot, dry, and polluted over the past decade. Particulate matter (PM) levels are amongst the highest in this State, associated with significantly higher asthma prevalence among children in the region compared to national and state averages. The present study was performed to test the hypothesis that Imperial Valley PM by size and chemical composition might possess allergenic properties following introduction into murine lungs without prior sensitization to a known allergen with size fraction as a determining factor. In acute exposure experiments, BALB/c male mice were administered a single 50-μl oropharyngeal aspiration of nanopure water (H2O; control) or a stock 1 μg/μl PM solution. In sub-acute exposure experiments, male and female mice were treated with a total of six 16.6-μl intranasal instillations of H2O or stock PM solution over the course of 14 days. In all experiments, pulmonary function tests were performed 24 hr after the final instillation followed by necropsies for the collection of biological samples. Inflammatory responses measured via cellularity in histopathological tissue sections as well as significant, marked influxes of eosinophils and lymphocytes were noted in the bronchoalveolar lavage fluid in mice administered PM compared to control. Allergic responses, including airway hyperresponsiveness and significantly increased expression of IL-1ß, were found in male mice exposed to either PM2.5 or ultrafine (PMUF). A combination of all three size fractions of PM from Imperial Valley initiated atopic and asthmatic-like symptoms in the lungs of mice in the absence of additional allergen or preexisting condition.
Collapse
Affiliation(s)
- Savannah M. D’Evelyn
- Center for Health and the Environment, University of California, Davis, CA, US
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, US
| | - Keith J. Bein
- Center for Health and the Environment, University of California, Davis, CA, US
- Air Quality Research Center, University of California, Davis, CA, US
| | - Emilia A. Laing
- Center for Health and the Environment, University of California, Davis, CA, US
| | - Tran Nyguen
- Department of Environmental Toxicology, University of California, Davis, CA, US
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, CA, US
| | - Qi Zhang
- Department of Environmental Toxicology, University of California, Davis, CA, US
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California, Davis, CA, US
| |
Collapse
|
22
|
Lv X, Wang B, Dong M, Wang W, Tang W, Qin J, Gao Y, Wei Y. The crosstalk between ferroptosis and autophagy in cancer. Autoimmunity 2023; 56:2289362. [PMID: 38069487 DOI: 10.1080/08916934.2023.2289362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND In order to better understand the interplay between ferroptosis and autophagy, enhance the interpretation of the crosstalk between these two forms of regulated cell death, develop the effective pharmacological mechanisms for cancer treatment, discover novel biomarkers for better diagnostic, and envisage the future hotspots of the research on ferroptosis and autophagy, we harnessed bibliometric tools to study the articles published from 2012 to 2022 on the relationship between ferroptosis and autophagy. METHODS Web of Science Core Collection (WOSCC) database was used to conduct a comprehensive search and analysis of articles in this field from January 1, 2012, to September 1, 2022. The Citespace 6.1.R2 software and VOS viewer 6.1.8 software were utilized to analyze the overall structure of the network, network clusters, links between clusters, key nodes or pivot points, and pathways. RESULTS A total of 756 articles associated with the crosstalk between ferroptosis and autophagy were published in 512 journals by 4183 authors in 980 organizations from 55 countries or regions. The distribution of countries and organizations was demonstrated using CiteSpace and VOS viewer. The top three countries with the most articles were China (n = 511), United States (n = 166), and Germany (n = 37). The most productive institutions were Guangzhou Medical University and Central South University (n = 42), but their centralities were relatively low, which values were respective 0.04 and 0.03. Kang and Tang published the most articles related to ferroptosis and autophagy (n = 49), followed by Jiao Liu (n = 22), Guido Kroemer (n = 20), and Daniel Klionsky (n = 12). Published studies on ferroptosis and asthma have the most cited counts. The top three keywords with the highest frequencies were autophagy (n = 283), cell death (n = 243), and oxidative stress (n = 165). CONCLUSION Our results provide insights into the development of recognition related to the crosstalk between ferroptosis and autophagy, and the current molecular crosslinked mechanisms in the context of common signal transduction pathways or affecting cellular environment to induce the adaptive stress response and to activate the particular form of regulated cell death (RCD), and the development of cancer treatment based on novel targets and signaling regulatory networks provided by ferroptosis and autophagy.
Collapse
Affiliation(s)
- Xiaodi Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Bin Wang
- Medicine School of Hexi College, Zhangye, Gansu, China
| | - Ming Dong
- Gumei community Health center of Minhang district of Shanghai, Shanghai, China
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yanglai Gao
- Medicine School of Hexi College, Zhangye, Gansu, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Duan S, Wang J, Lou X, Chen D, Shi P, Jiang H, Wang Z, Li W, Qian F. A novel anti-IL-33 antibody recognizes an epitope FVLHN of IL-33 and has a therapeutic effect on inflammatory diseases. Int Immunopharmacol 2023; 122:110578. [PMID: 37423158 DOI: 10.1016/j.intimp.2023.110578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023]
Abstract
As a crucial member of the Interleukin-1 (IL-1) family, IL-33 plays an indispensable role in modulating inflammatory responses. Here, we developed an effective anti-human IL-33 monoclonal antibody (mAb) named 5H8. Importantly, we have identified an epitope (FVLHN) of IL-33 protein as a recognition sequence for 5H8, which plays an important role in mediating the biological activity of IL-33. We observed that 5H8 significantly suppressed IL-33-induced IL-6 expression in bone marrow cells and mast cells in a dose-dependent manner in vitro. Furthermore, 5H8 effectively relievedHDM-induced asthma and PR8-induced acute lung injury in vivo. These findings indicate that targeting the FVLHN epitope is critical for inhibiting IL-33 function. In addition, wedetected that the Tm value of 5H8 was 66.47℃ and the KD value was 173.0 pM, which reflected that 5H8 had good thermal stability and high affinity. Taken together, our data suggest that our newly developed 5H8 antibody has potential as a therapeutic antibody for treating inflammatory diseases.
Collapse
Affiliation(s)
- Shixin Duan
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jun Wang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; Xiamen Innovax Biotech Co, Xiamen, Fujian 361005, PR China
| | - Xinyi Lou
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Dongxin Chen
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Peiyunfeng Shi
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hongchao Jiang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zhiming Wang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wen Li
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Feng Qian
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
24
|
Kunč P, Fábry J, Grendár M, Ferenc P, Strachan T, Ištvánková K, Hurtová T, Péčová R. Association of selected inflammatory biomarkers with cough reflex sensitivity in asthmatic children. Physiol Res 2023; 72:349-358. [PMID: 37449748 PMCID: PMC10668995 DOI: 10.33549/physiolres.935063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/31/2023] [Indexed: 08/26/2023] Open
Abstract
Bronchial asthma is the most common chronic respiratory disease of childhood. Cough is one of its defining symptoms. This study investigated the associations between selected inflammatory biomarkers and cough reflex sensitivity after capsaicin inhalation in children with mild and moderate well-controlled type 2 endotype asthma compared with non-asthmatic probands. Sensitivity to the cough reflex was measured by recording the cough response after capsaicin inhalation. The sandwich ELISA method was used to measure serum concentrations of the investigated potential inflammatory biomarkers (interleukin 13, interleukin 1beta, eosinophil-derived neurotoxin). The acquired data were statistically evaluated according to descriptive analyses for summarization and comparison between cough reflex sensitivity parameters and individual biomarker values in the observed and control groups modeled by a simple linear regression model. Statistical significance was defined as p<0.05. We showed a statistically significant association (p-value 0.03) between cough reflex sensitivity - C2 value (capsaicin concentration required for two cough responses) and interleukin 1beta serum concentrations in the asthma group compared with the control group of non-asthmatic children. Our results support the possibility of interleukin 1beta as a potential additive inflammatory biomarker used in clinical practice in children with asthma because of its correlation with the activity of the afferent nerve endings in the airways.
Collapse
Affiliation(s)
- P Kunč
- Clinic of Pediatric Respiratory Diseases and Tuberculosis, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, National Institute of Pediatric Tuberculosis and Respiratory Diseases, Dolny Smokovec, Slovak Republic, Department of Pathological Physiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Silva LLSD, Barbosa JAS, João JMLG, Fukuzaki S, Camargo LDN, Dos Santos TM, Campos ECD, Costa AS, Saraiva-Romanholo BM, Bezerra SKM, Lopes FTQDS, Bonturi CR, Oliva MLV, Leick EA, Righetti RF, Tibério IDFLC. Effects of a Peptide Derived from the Primary Sequence of a Kallikrein Inhibitor Isolated from Bauhinia bauhinioides (pep-BbKI) in an Asthma-COPD Overlap (ACO) Model. Int J Mol Sci 2023; 24:11261. [PMID: 37511021 PMCID: PMC10379932 DOI: 10.3390/ijms241411261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
(1) There are several patients with asthma-COPD overlap (ACO). A peptide derived from the primary sequence of a kallikrein inhibitor isolated from Bauhinia bauhinioides (pep-BbKI) has potent anti-inflammatory and antioxidant effects. Purpose: To investigate the effects of pep-BbKI treatment in an ACO model and compare them with those of corticosteroids. (2) BALB/c mice were divided into groups: SAL (saline), OVA (ovalbumin), ELA (elastase), ACO (ovalbumin + elastase), ACO-pep-BbKI (treated with inhibitor), ACO-DX (dexamethasone treatment), ACO-DX-pep-BbKI (both treatments), and SAL-pep-BbKI (saline group treated with inhibitor). We evaluated: hyperresponsiveness to methacholine, bronchoalveolar lavage fluid (BALF), exhaled nitric oxide (eNO), IL-1β, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, IFN-γ, TNF-α, MMP-9, MMP-12, TGF-β, collagen fibers, iNOS, eNO, linear mean intercept (Lm), and NF-κB in airways (AW) and alveolar septa (AS). (3) ACO-pep-BbKI reversed ACO alterations and was similar to SAL in all mechanical parameters, Lm, neutrophils, IL-5, IL-10, IL-17, IFN-γ, TNF-α, MMP-12 (AW), collagen fibers, iNOS (AW), and eNO (p > 0.05). ACO-DX reversed ACO alterations and was similar to SAL in all mechanical parameters, Lm, total cells and differentials, IL-1β(AS), IL-5 (AS), IL-6 (AS), IL-10 (AS), IL-13 (AS), IFN-γ, MMP-12 (AS), TGF-β (AS), collagen fibers (AW), iNOS, and eNO (p > 0.05). SAL was similar to SAL-pep-BbKI for all comparisons (p > 0.05). (4) Pep-BbKI was similar to dexamethasone in reducing the majority of alterations of this ACO model.
Collapse
Affiliation(s)
| | | | | | - Silvia Fukuzaki
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | | | | | | | - Arthur Silva Costa
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Beatriz Mangueira Saraiva-Romanholo
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
- Department of Medicine, University City of São Paulo, São Paulo 03071-000, Brazil
| | | | | | - Camila Ramalho Bonturi
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Edna Aparecida Leick
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Renato Fraga Righetti
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
- Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | | |
Collapse
|
26
|
Khalil BA, Sharif-Askari NS, Halwani R. Role of inflammasome in severe, steroid-resistant asthma. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100061. [PMID: 37304814 PMCID: PMC10250931 DOI: 10.1016/j.crimmu.2023.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 06/13/2023] Open
Abstract
Purpose of review Asthma is a common heterogeneous group of chronic inflammatory diseases with different pathological phenotypes classified based on the various clinical, physiological and immunobiological profiles of patients. Despite similar clinical symptoms, asthmatic patients may respond differently to treatment. Hence, asthma research is becoming more focused on deciphering the molecular and cellular pathways driving the different asthma endotypes. This review focuses on the role of inflammasome activation as one important mechanism reported in the pathogenesis of severe steroid resistant asthma (SSRA), a Th2-low asthma endotype. Although SSRA represents around 5-10% of asthmatic patients, it is responsible for the majority of asthma morbidity and more than 50% of asthma associated healthcare costs with clear unmet need. Therefore, deciphering the role of the inflammasome in SSRA pathogenesis, particularly in relation to neutrophil chemotaxis to the lungs, provides a novel target for therapy. Recent findings The literature highlighted several activators of inflammasomes that are elevated during SSRA and result in the release of proinflammatory mediators, mainly IL-1β and IL-18, through different signaling pathways. Consequently, the expression of NLRP3 and IL-1β is shown to be positively correlated with neutrophil recruitment and negatively correlated with airflow obstruction. Furthermore, exaggerated NLRP3 inflammasome/IL-1β activation is reported to be associated with glucocorticoid resistance. Summary In this review, we summarized the reported literature on the activators of the inflammasome during SSRA, the role of IL-1β and IL-18 in SSRA pathogenesis, and the pathways by which inflammasome activation contributes to steroid resistance. Finally, our review shed light on the different levels to target inflammasome involvement in an attempt to ameliorate the serious outcomes of SSRA.
Collapse
Affiliation(s)
- Bariaa A. Khalil
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Rabih Halwani
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Saudi Arabia
| |
Collapse
|
27
|
Schworer SA, Chason KD, Chen G, Chen J, Zhou H, Burbank AJ, Kesic MJ, Hernandez ML. IL-1 receptor antagonist attenuates proinflammatory responses to rhinovirus in airway epithelium. J Allergy Clin Immunol 2023; 151:1577-1584.e4. [PMID: 36708816 PMCID: PMC10257744 DOI: 10.1016/j.jaci.2023.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/15/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Rhinoviruses (RVs) are the most common trigger for asthma exacerbations, and there are currently no targeted therapies for viral-induced asthma exacerbations. RV infection causes neutrophilic inflammation, which is often resistant to effects of glucocorticoids. IL-1 receptor antagonist (IL-1RA) treatment reduces neutrophilic inflammation in humans challenged with inhaled endotoxin and thus may have therapeutic potential for RV-induced asthma exacerbations. OBJECTIVE We sought to test the hypothesis that IL-1RA treatment of airway epithelium reduces RV-mediated proinflammatory cytokine production, which is important for neutrophil recruitment. METHODS Human bronchial epithelial cells from deceased donors without prior pulmonary disease were cultured at air-liquid interface and treated with IL-13 to approximate an asthmatic inflammatory milieu. Human bronchial epithelial cells were infected with human RV-16 with or without IL-1RA treatment. RESULTS RV infection promoted the release of IL-1α and the neutrophil-attractant cytokines IL-6, IL-8, and CXCL10. Proinflammatory cytokine secretion was significantly reduced by IL-1RA treatment without significant change in IFN-β release or RV titer. In addition, IL-1RA reduced MUC5B expression after RV infection without impacting MUC5AC. CONCLUSIONS These data suggest that IL-1RA treatment significantly reduced proinflammatory cytokines while preserving the antiviral response. These results provide evidence for further investigation of IL-1RA as a novel targeted therapy against neutrophil-attractant cytokine release in RV-induced airway inflammatory responses.
Collapse
Affiliation(s)
- Stephen A Schworer
- Division of Allergy and Immunology, Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC; Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kelly D Chason
- Division of Allergy and Immunology, Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC
| | - Gang Chen
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jie Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Haibo Zhou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Allison J Burbank
- Division of Allergy and Immunology, Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC
| | - Matthew J Kesic
- Campbell University College of Pharmacy and Health Sciences, Buies Creek, NC
| | - Michelle L Hernandez
- Division of Allergy and Immunology, Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC.
| |
Collapse
|
28
|
Wei C, Wang Y, Hu C. Bioinformatic analysis and experimental validation of the potential gene in the airway inflammation of steroid-resistant asthma. Sci Rep 2023; 13:8098. [PMID: 37208441 DOI: 10.1038/s41598-023-35214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/15/2023] [Indexed: 05/21/2023] Open
Abstract
Steroid-resistant asthma is a troublesome clinical problem in public health. The pathogenesis of steroid-resistant asthma is complex and remains to be explored. In our work, the online Gene Expression Omnibus microarray dataset GSE7368 was used to explore differentially expressed genes (DEGs) between steroid-resistant asthma patients and steroid-sensitive asthma patients. Tissue-specific gene expression of DEGs was analyzed using BioGPS. The enrichment analyses were performed using GO, KEGG, and GSEA analysis. The protein-protein interaction network and key gene cluster were constructed using STRING, Cytoscape, MCODE, and Cytohubba. A steroid-resistant neutrophilic asthma mouse model was established using lipopolysaccharide (LPS) and ovalbumin (OVA). An LPS-stimulated J744A.1 macrophage model was prepared to validate the underlying mechanism of the interesting DEG gene using the quantitative reverse transcription-polymerase chain reaction (qRT-PCR). A total of 66 DEGs were identified, most of which were present in the hematologic/immune system. Enrichment analysis displayed that the enriched pathways were the IL-17 signaling pathway, MAPK signal pathway, Toll-like receptor signaling pathway, and so on. DUSP2, as one of the top upregulated DEGs, has not been clearly demonstrated in steroid-resistant asthma. In our study, we observed that the salubrinal administration (DUSP2 inhibitor) reversed neutrophilic airway inflammation and cytokine responses (IL-17A, TNF-α) in a steroid-resistant asthma mouse model. We also found that salubrinal treatment reduced inflammatory cytokines (CXCL10 and IL-1β) in LPS-stimulated J744A.1 macrophages. DUSP2 may be a candidate target for the therapy of steroid-resistant asthma.
Collapse
Affiliation(s)
- Chaochao Wei
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Haikou, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Affiliated Hainan Hospital of Hainan Medical University, Haikou, People's Republic of China
- Department of Oncology, Xiangya Hospital Central South University, Changsha, People's Republic of China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Yang Wang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Chengping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
29
|
Woodrow JS, Sheats MK, Cooper B, Bayless R. Asthma: The Use of Animal Models and Their Translational Utility. Cells 2023; 12:cells12071091. [PMID: 37048164 PMCID: PMC10093022 DOI: 10.3390/cells12071091] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Asthma is characterized by chronic lower airway inflammation that results in airway remodeling, which can lead to a permanent decrease in lung function. The pathophysiology driving the development of asthma is complex and heterogenous. Animal models have been and continue to be essential for the discovery of molecular pathways driving the pathophysiology of asthma and novel therapeutic approaches. Animal models of asthma may be induced or naturally occurring. Species used to study asthma include mouse, rat, guinea pig, cat, dog, sheep, horse, and nonhuman primate. Some of the aspects to consider when evaluating any of these asthma models are cost, labor, reagent availability, regulatory burden, relevance to natural disease in humans, type of lower airway inflammation, biological samples available for testing, and ultimately whether the model can answer the research question(s). This review aims to discuss the animal models most available for asthma investigation, with an emphasis on describing the inciting antigen/allergen, inflammatory response induced, and its translation to human asthma.
Collapse
Affiliation(s)
- Jane Seymour Woodrow
- Department of Clinical Studies, New Bolton Center, College of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA
| | - M Katie Sheats
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Bethanie Cooper
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Rosemary Bayless
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
30
|
Lv X, Tang W, Qin J, Wang W, Dong J, Wei Y. The crosslinks between ferroptosis and autophagy in asthma. Front Immunol 2023; 14:1140791. [PMID: 37063888 PMCID: PMC10090423 DOI: 10.3389/fimmu.2023.1140791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Autophagy is an evolutionarily conserved cellular process capable of degrading various biological molecules and organelles via the lysosomal pathway. Ferroptosis is a type of oxidative stress-dependent regulated cell death associated with the iron accumulation and lipid peroxidation. The crosslinks between ferroptosis and autophagy have been focused on since the dependence of ferroptosis on autophagy was discovered. Although the research and theories on the relationship between autophagy and ferroptosis remain scattered and fragmented, the crosslinks between these two forms of regulated cell death are closely related to the treatment of various diseases. Thereof, asthma as a chronic inflammatory disease has a tight connection with the occurrence of ferroptosis and autophagy since the crosslinked signal pathways may be the crucial regulators or exactly regulated by cells and secretion in the immune system. In addition, non-immune cells associated with asthma are also closely related to autophagy and ferroptosis. Further studies of cross-linking asthma inflammation with crosslinked signaling pathways may provide us with several key molecules that regulate asthma through specific regulators. The crosslinks between autophagy and ferroptosis provide us with a new perspective to interpret and understand the manifestations of asthma, potential drug discovery targets, and new therapeutic options to effectively intervene in the imbalance caused by abnormal inflammation in asthma. Herein, we introduce the main molecular mechanisms of ferroptosis, autophagy, and asthma, describe the role of crosslinks between ferroptosis and autophagy in asthma based on their common regulatory cells or molecules, and discuss potential drug discovery targets and therapeutic applications in the context of immunomodulatory and symptom alleviation.
Collapse
Affiliation(s)
- Xiaodi Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Ying Wei, ; Jingcheng Dong,
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Ying Wei, ; Jingcheng Dong,
| |
Collapse
|
31
|
Tombetti E, Casarin F, Bizzi E, Bezer S, Mascolo R, Pallini G, Gabiati C, Bonaventura A, Trotta L, Pancrazi M, Maestroni S, Brucato A. Relapsing pericarditis: Peripheral blood neutrophilia, lymphopenia and high neutrophil-to-lymphocyte ratio herald acute attacks, high-grade inflammation, multiserosal involvement, and predict multiple recurrences. Int J Rheum Dis 2023; 26:337-343. [PMID: 36537284 DOI: 10.1111/1756-185x.14523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
AIMS To identify peripheral blood cellular correlates of active pericarditis and to verify whether peripheral blood neutrophils, lymphocytes and the neutrophil to-lymphocyte ratio (NLR) are associated with disease phenotype or prognosis. METHODS Observational prospective study on a cohort of 63 patients with idiopathic pericarditis followed for 12 months after each pericarditis recurrence. Two distinct analyses were performed: the "index attack" analysis focused on the first pericarditis episode in each patient, while the "all attacks" analysis included all episodes occurring during the study. RESULTS Absolute and relative neutrophilia and lymphopenia, together with high NLR, were observed during active pericarditis, as compared with disease remission, at both analyses. Neutrophils showed a positive correlation with plasma C-reactive protein levels, while lymphocyte count showed a negative correlation. Relative neutrophil count was higher, and lymphocyte count lower in patients with pleural effusion; a higher NLR and lower absolute lymphocyte count were observed in those with peritoneal involvement. No correlations were found between peripheral blood neutrophil or lymphocyte counts and size of pericardial effusion, or with the presence of myocardial involvement. Peripheral neutrophilia, lymphopenia and NLR during acute attacks predicted the number of recurrences in the following 12 months. CONCLUSIONS Peripheral blood neutrophilia and lymphopenia are typical of acute idiopathic pericarditis. Acute attacks of pericarditis are associated with neutrophilia and lymphopenia, as compared with disease remission. During acute attacks, neutrophilia and lymphopenia reflect the extent of serosal inflammation and could help to customize therapeutic management after remission has been achieved.
Collapse
Affiliation(s)
- Enrico Tombetti
- Department of Biomedical and Clinical Sciences, Fatebenefratelli Hospital, Università di Milano, Milan, Italy.,Department of Internal Medicine, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Francesca Casarin
- Department of Internal Medicine, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Emanuele Bizzi
- Department of Internal Medicine, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Sofia Bezer
- Department of Internal Medicine, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Ruggiero Mascolo
- Department of Internal Medicine, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Giada Pallini
- Department of Internal Medicine, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Claudia Gabiati
- Department of Internal Medicine, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Aldo Bonaventura
- Medicina Generale 1, Medical Center, Ospedale di Circolo e Fondazione Macchi, ASST Sette Laghi, Varese, Italy
| | - Lucia Trotta
- Department of Internal Medicine, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Massimo Pancrazi
- Department of Internal Medicine, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Silvia Maestroni
- Department of Internal Medicine, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Antonio Brucato
- Department of Biomedical and Clinical Sciences, Fatebenefratelli Hospital, Università di Milano, Milan, Italy.,Department of Internal Medicine, ASST Fatebenefratelli-Sacco, Milan, Italy
| |
Collapse
|
32
|
Zhai Y, Zheng P, Sun B, Li J, Wang B. Allergen-specific immunotherapy with Alutard SQ improves allergic inflammation in house-dust mites-induced allergic asthma rats through inactivation of the HMGB1/TLR4/NF-κB pathway. J Thorac Dis 2023; 15:77-89. [PMID: 36794148 PMCID: PMC9922602 DOI: 10.21037/jtd-22-715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/25/2022] [Indexed: 01/12/2023]
Abstract
Background Allergen-specific immunotherapy (AIT) is the only available safe, effective, and long-term treatment for allergic airway diseases, including allergic asthma. However, the potential molecular mechanism of AIT in ameliorating airway inflammation remains unknown. Methods Rats were sensitized and challenged with house dust mite (HDM) and administered with Alutard SQ or/and high mobility group box 1 (HMGB1) inhibitor, ammonium glycyrrhizinate (AMGZ) or HMGB1 lentivirus. The total and differential cell counts in rat bronchoalveolar lavage fluid (BALF) were detected. Hematoxylin and eosin staining (H&E) was performed to examine the pathological lesions in lung tissues. Enzyme-linked immunosorbent assay (ELISA) was performed to assess the expression of inflammatory factors in lungs, BALF, and serum. Quantitative real-time PCR (qRT-PCR) was used to measure the levels of inflammatory factors in the lungs. Western blot assay was used to evaluate the expression of HMGB1, Τoll-like receptor 4 (TLR4), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the lungs. Results Consequently, AIT with Alutard SQ attenuated airway inflammation, the total and differential cells in BALF, and expression of Th (T helper)2 related cytokines and transforming growth factor beta 1 (TGF-β1). The regimen also upregulated Th-1-related cytokine expression by inhibiting the HMGB1/TLR4/NF-κB pathway in HDM-induced asthmatic rats. Furthermore, AMGZ, a HMGB1 antagonist, amplified the functions of AIT with Alutard SQ in the asthma rat model. Nevertheless, overexpression of HMGB1 reversed the functions of AIT with Alutard SQ in the asthma rat model. Conclusions In summary, this work demonstrates the role of AIT with Alutard SQ, which inhibits the HMGB1/TLR4/NF-κB signaling pathway in allergic asthma management.
Collapse
Affiliation(s)
- Yingying Zhai
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China;,Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peiyan Zheng
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
33
|
Menegati LM, de Oliveira EE, Oliveira BDC, Macedo GC, de Castro E Silva FM. Asthma, obesity, and microbiota: A complex immunological interaction. Immunol Lett 2023; 255:10-20. [PMID: 36646290 DOI: 10.1016/j.imlet.2023.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Obesity and allergic asthma are inflammatory chronic diseases mediated by distinct immunological features, obesity presents a Th1/Th17 profile, asthma is commonly associated with Th2 response. However, when combined, they result in more severe asthma symptoms, greater frequency of exacerbation episodes, and lower therapy responsiveness. These features lead to decreased life quality, associated with higher morbidity/mortality rates. In addition, obesity prompts specific asthma phenotypes, which can be dependent on atopic status, age, and gender. In adults, obesity is associated with neutrophilic/Th17 profile, while in children, the outcome is diverse, in some cases children with obesity present aggravation of atopy, and Th2 inflammation, and in others an association with a Th1 profile, with reduced IgE levels and eosinophilia. These alterations occur due to a complex group of factors among which the microbiome has been recently explored. Particularly, evidence shows its important role in susceptibility or resistance to asthma development, via gut-lung-axis, and demonstrates its relevance to the immune pathogenesis of the syndrome. Few studies address the relevance of the lung microbiome in shaping the immune response, locally. However, specific bacteria, like Moraxella catarrhalis, Haemophilus influenza, and Streptococcus pneumoniae, correlate with important features of the obese-asthmatic phenotype. Although maternal obesity is known to increase asthma risk in offspring, the impact on lung colonization is unknown. This review details the main key immune mechanisms involved in obesity-aggravated asthma, featuring the effect of maternal obesity in the establishment of gut and lung microbiota of the offspring, acting as potential childhood asthma inducer.
Collapse
Affiliation(s)
- Laura Machado Menegati
- Faculdade de Medicina, Programa de Pós-Graduação em Saúde, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Erick Esteves de Oliveira
- Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora MG, Brazil
| | | | - Gilson Costa Macedo
- Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora MG, Brazil
| | - Flávia Márcia de Castro E Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas - RJ, Universidade do Estado do Rio de Janeiro, Brazil.
| |
Collapse
|
34
|
Nakatani A, Tsuda T, Maeda Y, Hayama M, Okuzaki D, Obata S, Kishikawa T, Takeda K, Inohara H. S100A8 enhances IL-1β production from nasal epithelial cells in eosinophilic chronic rhinosinusitis. Allergol Int 2023; 72:143-150. [PMID: 36117020 DOI: 10.1016/j.alit.2022.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/03/2022] [Accepted: 08/08/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Chronic rhinosinusitis is classified into eosinophilic chronic rhinosinusitis (ECRS) and non-eosinophilic chronic rhinosinusitis (NECRS). ECRS is a refractory allergic disease involving a variety of immune and epithelial cells. S100A8 is a damage-associated molecular pattern that is closely related to allergic inflammation. However, the pathological implications of S100A8 in ECRS have not been clarified. METHODS We evaluated the role of S100A8 in the pathogenesis of ECRS. Gene expression profiles of nasal polyps obtained from patients with ECRS or NECRS were evaluated using RNA sequencing. RESULTS S100A8 was identified as a significantly upregulated gene in nasal polyps associated with ECRS. Immunohistochemistry consistently revealed intense S100A8 staining in nasal polyps from patients with ECRS. Human nasal epithelial cells expressed the receptor for advanced glycation end products and Toll-like receptor 4. Recombinant S100A8 protein induced interleukin-1β secretion in human nasal epithelial cells. CONCLUSIONS Our data demonstrate that S100A8 results in production of interleukin-1β in the nasal epithelium, which may be involved in the pathogenesis of ECRS.
Collapse
Affiliation(s)
- Ayaka Nakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Tsuda
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Otorhinolaryngology, Osaka National Hospital, Osaka, Japan
| | - Yohei Maeda
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Masaki Hayama
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Sho Obata
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshihiro Kishikawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuya Takeda
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Otolaryngology, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
35
|
Wang S, Liu B, Huang J, He H, Zhou L, He Y, Yan J, Tao A. Succinate and mitochondrial DNA trigger atopic march from atopic dermatitis to intestinal inflammation. J Allergy Clin Immunol 2022; 151:1050-1066.e7. [PMID: 36587852 DOI: 10.1016/j.jaci.2022.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Atopic march has long been recognized as the progression from atopic dermatitis (AD) to food allergy and asthma during infancy and childhood. However, effective blocking is hampered by the lack of specific biomarkers. OBJECTIVES We aimed to investigate the pathologic progression of atopic march trajectories from skin to gut. METHODS We built an atopic march mouse model by mechanical skin injury and percutaneous sensitization to peanut allergen. Anaphylaxis from the skin to the small intestine was then investigated by ELISA, RNA sequencing, quantitative real-time PCR, histopathologic analysis, and flow cytometry. The findings from the mice results were also verified by the serum samples of allergic pediatric patients. RESULTS After modeling, inflammation in the skin and small intestine manifested as a mixed type of TH2 and TH17. Further analysis identified elevated succinate in the circulation and expanded tuft cells with upregulated IL-25 in the small intestine, resulting in increased intestinal type 2 innate lymphoid cells and an enhanced type 2 inflammatory response. In addition, free mitochondrial DNA (mtDNA) released after tissue damage was also involved in inflammation march from injured skin to small intestine through the STING pathway. Analysis of clinical samples verified that serum concentrations of succinate and mtDNA were higher in AD allergic children than non-AD allergic children. CONCLUSIONS Succinate and mtDNA play key roles in skin-to-gut cross talk during the atopic march from AD to food allergy, and can be considered as biomarkers for risk assessment or targets for atopic march prevention strategies.
Collapse
Affiliation(s)
- Shan Wang
- Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Bowen Liu
- Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jiahao Huang
- Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Huiru He
- Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Linghui Zhou
- Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Ying He
- Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jie Yan
- Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Ailin Tao
- Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
36
|
Zhao S, Luo J, Hu J, Wang H, Zhao N, Cao M, Zhang C, Hu R, Liu L. Role of Ezrin in Asthma-Related Airway Inflammation and Remodeling. Mediators Inflamm 2022; 2022:6255012. [PMID: 36530558 PMCID: PMC9750775 DOI: 10.1155/2022/6255012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 08/13/2023] Open
Abstract
Ezrin is an actin binding protein connecting the cell membrane and the cytoskeleton, which is crucial to maintaining cell morphology, intercellular adhesion, and cytoskeleton remodeling. Asthma involves dysfunction of inflammatory cells, cytokines, and airway structural cells. Recent studies have shown that ezrin, whose function is affected by extensive phosphorylation and protein interactions, is closely associated with asthma, may be a therapeutic target for asthma treatment. In this review, we summarize studies on ezrin and discuss its role in asthma-related airway inflammation and remodeling.
Collapse
Affiliation(s)
- Shumei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jiaqi Luo
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jun Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Hesheng Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Ningwei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Shimadzu Biomedical Research Laboratory, Shanghai 200233, China
| | - Meng Cao
- Nanjing University of Chinese Medicine, Nanjing 210029, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Cong Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Rongkui Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Lanying Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
37
|
Citrus junos Tanaka Peel Extract Ameliorates HDM-Induced Lung Inflammation and Immune Responses In Vivo. Nutrients 2022; 14:nu14235024. [PMID: 36501052 PMCID: PMC9740624 DOI: 10.3390/nu14235024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
In the wake of the COVID-19 pandemic, lung disorders have become a major health concern for humans. Allergic asthma is the most prevalent form of asthma, and its treatments target the inflammation process. Despite significant developments in the diagnosis and management of allergic asthma, side effects are a major concern. Additionally, its extreme heterogeneity impedes the efficacy of the majority of treatments. Thus, newer, safer therapeutic substances, such as natural products, are desired. Citrus junos Tanaka has traditionally been utilized as an anti-inflammatory, sedative, antipyretic, and antitoxic substance. In this study, the protective effects of Citrus junos Tanaka peel extract (B215) against lung inflammation were examined, and efforts were made to understand the underlying protective mechanism using an HDM-induced lung inflammation murine model. The administration of B215 reduced immune cell infiltration in the lungs, plasma IgE levels, airway resistance, mucus hypersecretions, and cytokine production. These favorable effects alleviated HDM-induced lung inflammation by modulating the NF-κB signaling pathway. Hence, B215 might be a promising functional food to treat lung inflammation without adverse effects.
Collapse
|
38
|
Ba MA, Aiyuk A, Hernández K, Evasovic JM, Wuebbles RD, Burkin DJ, Singer CA. Transgenic overexpression of α7 integrin in smooth muscle attenuates allergen-induced airway inflammation in a murine model of asthma. FASEB Bioadv 2022; 4:724-740. [PMID: 36349295 PMCID: PMC9635010 DOI: 10.1096/fba.2022-00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
Asthma is a chronic inflammatory disorder of the lower airways characterized by modulation of airway smooth muscle (ASM) function. Infiltration of smooth muscle by inflammatory mediators is partially regulated by transmembrane integrins and the major smooth muscle laminin receptor α7β1 integrin plays a critical role in the maintenance of ASM phenotype. The goal of the current study was to investigate the role of α7 integrin in asthma using smooth muscle-specific α7 integrin transgenic mice (TgSM-Itgα7) using both acute and chronic OVA sensitization and challenge protocols that mimic mild to severe asthmatic phenotypes. Transgenic over-expression of the α7 integrin in smooth muscle resulted in a significant decrease in airway resistance relative to controls, reduced the total number of inflammatory cells and substantially inhibited the production of crucial Th2 and Th17 cytokines in airways. This was accompanied by decreased secretion of various inflammatory chemokines such as eotaxin/CCL11, KC/CXCL3, MCP-1/CCL2, and MIP-1β/CCL4. Additionally, α7 integrin overexpression significantly decreased ERK1/2 phosphorylation in the lungs of TgSM-Itgα7 mice and affected proliferative, contractile, and inflammatory downstream effectors of ERK1/2 that drive smooth muscle phenotype in the lung. Taken together, these results support the hypothesis that enhanced expression of α7 integrin in vivo inhibits allergic inflammation and airway resistance. Moreover, we identify ERK1/2 as a potential target by which α7 integrin signals to regulate airway inflammation. We conclude that identification of therapeutics targeting an increase in smooth muscle α7 integrin expression could serve as a potential novel treatment for asthma.
Collapse
Affiliation(s)
- Mariam A. Ba
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| | - Annemarie Aiyuk
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| | - Karla Hernández
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| | - Jon M. Evasovic
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| | - Ryan D. Wuebbles
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| | - Dean J. Burkin
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| | - Cherie A. Singer
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| |
Collapse
|
39
|
Saleem A, Najda A, Mubeen A, Akhtar MF, Bukhari SA, Zeb A. HPLC-DAD analysis of Quercus leucotrichophora extract and appraisal of its antiasthmatic potential via modulation of aquaporins, inflammatory, and oxidative stress biomarkers in Albino mice. Biomed Pharmacother 2022; 155:113702. [PMID: 36115113 DOI: 10.1016/j.biopha.2022.113702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Herbal drugs offer an alternative approach for the treatment of diseases like asthma due to low cost and comparatively less adverse effects in contrast to synthetic drugs. Leaves of Quercus leucotrichophora are traditionally used for the treatment of asthma. The study was aimed to assess the anti-asthmatic activity of Quercus leucotrichophora (QL) methanolic (QLME) and aqueous extracts (QLAE) in ovalbumin-(OVA) induced asthma and chemical characterization of QL extract by High Performance Liquid Chromatography-Diode array detector (HPLC-DAD). Animals were inoculated with OVA (i.p) on day 1 and 14 followed by intranasal challenge on 27th and 29th day. Both extracts of QL at 600, 300 and 150 mg/kg and dexamethasone (2 mg/kg) l were administered consecutively from days 15-26 via oral gavage. The QL extracts notably reduced (p < 0.0001-p < 0.05) total and differential leukocyte counts in blood and BALF and serum IgE levels in contrast to disease control. Both extracts and Dex substantially improved activities of superoxide dismutase, catalase, and GSH, while reduced malondialdehyde level in treated mice. Treatment with extracts and Dex caused significant (p < 0.0001-p < 0.05) downregulation of tumor necrosis factor-α, interleukin-4, - 5, - 13, - 6, - 1β, and NF-κB whereas, increased expression of Aquaporin (AQP) 1 and AQP5 in contrast to disease control. It was inferenced from findings that both extract of QL exhibited notable antiasthmatic potential might be due to presence of Daidzein-glucuronic acid, 3-Hydroxyphloretin 6'-hexoside, Catechin, Quercetin, and Kaemferol.
Collapse
Affiliation(s)
- Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Afza Mubeen
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 38000, Pakistan.
| | - Shazia Anwer Bukhari
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan
| |
Collapse
|
40
|
GSDME deficiency leads to the aggravation of UVB-induced skin inflammation through enhancing recruitment and activation of neutrophils. Cell Death Dis 2022; 13:841. [PMID: 36182937 PMCID: PMC9526747 DOI: 10.1038/s41419-022-05276-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
Abstract
Gasdermin E (GSDME)-mediated pyroptosis is induced in keratinocytes of UVB-challenged skin. The role of GSDME in UVB-caused skin damage remains unknown. To explore the role of GSDME in UVB-induced skin inflammation. We compared differences in skin appearance, histological features, keratinocyte death modalities, infiltration of immune cells, and levels of some inflammatory cytokines between Gsdme-/- mice and wild type (WT) mice after UVB exposure. We explored whether keratinocytes contribute to GSDME deficiency-caused aggravation of UVB-induced skin inflammation in GSDME knockdown keratinocyte cultured in vitro and keratinocyte-specific Gsdme conditional knockout mice. We used anti-Ly6G antibody to deplete neutrophils and explore their role in UVB-caused skin damage. Skin damage and neutrophils infiltration were aggravated in UVB-challenged Gsdme-/- mice, compared with UVB-challenged WT mice. Apoptosis and necroptosis, which were initiated together with GSDME-mediated pyroptosis in UVB-challenged WT mice, were not enhanced in UVB-challenged Gsdme-/- mice. Neutrophils activation indicators and its recruiting cytokines were increased in skin tissue of UVB-challenged Gsdme-/- mice. However, GSDME knockdown did not lead to the further increase of mRNA and secretion of TNF-α and IL-6 in UVB-challenged keratinocytes. Skin damage was not aggravated in UVB-challenged Gsdme cKO mice. Neutrophils depletion alleviated UVB-caused skin damage in WT mice and Gsdme-/- mice, and eliminated its aggravation in Gsdme-/- mice. This study demonstrates that GSDME plays a restrictive role in UVB-induced skin damage through inhibiting excessive recruitment and activation of neutrophils in the immune microenvironment in UVB-caused skin inflammation. However, keratinocytes might not contribute to this restrictive function.
Collapse
|
41
|
Park SY, Kang MJ, Jin N, Lee SY, Lee YY, Jo S, Eom JY, Han H, Chung SI, Jang K, Kim TH, Park J, Han JS. House dust mite-induced Akt-ERK1/2-C/EBP beta pathway triggers CCL20-mediated inflammation and epithelial-mesenchymal transition for airway remodeling. FASEB J 2022; 36:e22452. [PMID: 35916017 DOI: 10.1096/fj.202200150rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022]
Abstract
House dust mite (HDM) allergens cause inflammatory responses and chronic allergic diseases such as bronchial asthma and atopic dermatitis. Here, we investigate the mechanism by which HDM induces C-C chemokine ligand 20 (CCL20) expression to promote chronic inflammation and airway remodeling in an HDM-induced bronchial asthma mouse model. We showed that HDM increased CCL20 levels via the Akt-ERK1/2-C/EBPβ pathway. To investigate the role of CCL20 in chronic airway inflammation and remodeling, we made a mouse model of CCL20-induced bronchial asthma. Treatment of anti-CCL20Ab in this mouse model showed the reduced airway hyper-responsiveness and inflammatory cell infiltration into peribronchial region by neutralizing CCL20. In addition, CCL20 induced the Nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation through NLRP3 deubiquitination and transcriptional upregulation in BEAS-2B cells. As expected, anti-CCL20Ab markedly suppressed NLRP3 activation induced by CCL20. Moreover, HDM-induced CCL20 leads to epithelial-mesenchymal transition in the lung epithelium which appears to be an important regulator of airway remodeling in allergic asthma. We also found that anti-CCL20Ab attenuates airway inflammation and remodeling in an HDM-induced mouse model of bronchial asthma. Taken together, our results suggest that HDM-induced CCL20 is required for chronic inflammation that contributes airway remodeling in a mouse model of asthma.
Collapse
Affiliation(s)
- Shin-Young Park
- Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Min-Jeong Kang
- Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Nuri Jin
- Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - So Young Lee
- EONE-DIAGNOMICS Genome Center Co. Ltd., Incheon, Republic of Korea
| | | | - Sungsin Jo
- Institute for Rheumatology Research, Hanyang University, Seoul, Republic of Korea
| | - Jeong Yun Eom
- Department of Pathology, Hanyang University Hospital, Seoul, Republic of Korea
| | - Heejae Han
- Institute for Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sook In Chung
- Institute for Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University Hospital, Seoul, Republic of Korea
| | - Tae-Hwan Kim
- Institute for Rheumatology Research, Hanyang University, Seoul, Republic of Korea
| | - Jungwon Park
- Institute for Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joong-Soo Han
- Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
42
|
Zhang J, Yang X, Yang Y, Xiong M, Li N, Ma L, Tian J, Yin H, Zhang L, Jin Y. NF-κB mediates silica-induced pulmonary inflammation by promoting the release of IL-1β in macrophages. ENVIRONMENTAL TOXICOLOGY 2022; 37:2235-2243. [PMID: 35635254 DOI: 10.1002/tox.23590] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/08/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Long-term exposure to respirable silica particles causes pulmonary inflammation and fibrosis primarily promoted by cytokines released from alveolar macrophages, yet the underlying mechanism is still unclear. From the perspective of nuclear factor kappa B (NF-κB), we studied the mechanism of IL-1β biosynthesis and release. Utilizing BAY 11-7082, an NF-κB specific inhibitor, we showed the alteration of macrophage viability and examined the expression of both IL-1β and NF-κB in vitro. We found that silica nanoparticles (SiNPs) were internalized by macrophages and caused damage to cell integrity. The immunofluorescence assay showed that SiNPs exposure enhanced the expression of IL-1β and NF-κB, which could be effectively suppressed by BAY 11-7082. Besides, we built silica exposure mouse model by intratracheally instilling 5 mg of SiNPs and checked the effect of silica exposure on pulmonary pathological changes. Consistently, we found an upregulation of IL-1β and NF-κB after SiNPs exposure, along with the aggravated inflammatory cell infiltration, thickened alveolar wall, and enhanced expression of collagens. In conclusion, SiNPs exposure causes pulmonary inflammation and fibrosis that is regulated by NK-κB through upregulating IL-1β in alveolar macrophages.
Collapse
Affiliation(s)
- Jing Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xiaojing Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yushan Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Min Xiong
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ning Li
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Lan Ma
- School of Public Health, Weifang Medical University, Weifang, China
| | - Jiaqi Tian
- School of Public Health, Weifang Medical University, Weifang, China
| | - Haoyu Yin
- School of Public Health, Weifang Medical University, Weifang, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan, China
| | - Yulan Jin
- School of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
43
|
Zhang QN, Xiao H, Fang LT, Sun QX, Li LD, Xu SY, Li CQ. Aerosol inhalation of Mycobacterium vaccae ameliorates airway structural remodeling in chronic asthma mouse model. Exp Lung Res 2022; 48:239-250. [PMID: 36001552 DOI: 10.1080/01902148.2022.2115166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background: Airway remodeling is accepted to be a determining component within the natural history of asthma. Nebulized inhalation of Mycobacterium vaccae (M. vaccae) has a protective effect on asthmatic mice. However, little is known regarding the effect of M. vaccae on airway structural remodeling in asthmatic mice. The purpose of this study was to explore the effect and the underlying mechanism of M. vaccae aerosol inhalation on airway structural remodeling in an asthma mouse model. Methods: Chronic asthma mouse models were established by ovalbumin induction. The number of inflammatory cells in bronchoalveolar lavage fluid (BALF), pathological alterations in lung tissue, and levels of associated cytokines (IL-5, IL-13, TNF-α, and ovalbumin-specific immunoglobulin E [OVA-sIgE]) were all assessed after M. vaccae therapy. The relative expression of interleukin (IL)-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor kappa B (NF-κB), and Wnt1-induced signaling protein 1 (WISP1) mRNA were detected. Western blotting and immunohistochemistry detected the expression of Wnt/β-catenin pathway-related proteins in lung tissue. Results: M. vaccae aerosol inhalation relieved airway inflammation, airway hyper-responsiveness, and airway remodeling. M. vaccae reduced the levels of IL-5, IL-13, TNF-α, and OVA-sIgE in and downregulated the expression of IL-1β, TNF-α, NF-κB, and WISP1 mRNA in the pulmonary. In addition, M. vaccae inhibited the expression of β-catenin, WISP1, and Wnt1 protein and upregulated the expression of glycogen synthase kinase-3beta (GSK-3β). Conclusion: Nebulized inhalation of M. vaccae can reduce airway remodeling during asthma.
Collapse
Affiliation(s)
- Qian-Nan Zhang
- Departments of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huan Xiao
- Departments of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li-Ting Fang
- Departments of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qi-Xiang Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lao-Dong Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Si-Yue Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao-Qian Li
- Departments of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
44
|
MicroRNA-29b Suppresses Inflammation and Protects Blood-Brain Barrier Integrity in Ischemic Stroke. Mediators Inflamm 2022; 2022:1755416. [PMID: 36052307 PMCID: PMC9427322 DOI: 10.1155/2022/1755416] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives. Following cerebral ischemia, microRNA- (miR-) 29b in circulating blood is downregulated. This study investigates the underlying mechanism and implications of miR-29b in leukocyte induction. Methods. miR-29b from stroke patients and rats with middle cerebral artery occlusion (MCAO) were assessed using real-time polymerase chain reaction (PCR). miR-29b agomir was used to increase miR-29b expression in leukocytes via intravenous injection. C1q and tumor necrosis factor (C1QTNF) 6, interleukin- (IL-) 1β, zonula occludens- (ZO-) 1, occludin, and ischemic outcomes were assessed in MCAO rats. Additionally, hCMEC/D3 cells were subjected to oxygen–glucose deprivation (OGD) and cocultured with HL-60 cells. Results. miR-29b levels in neutrophils were found to be significantly lower in stroke patients compared with healthy controls, which may indicate its high diagnostic sensitivity and specificity for stroke. Moreover, miR-29b levels in leukocytes showed a negative correlation with National Institute of Health Stroke Scale (NIHSS) scores and C1QTNF6 levels. In MCAO rats, miR-29b overexpression reduced brain infarct volume and brain edema, decreasing IL-1β levels in leukocytes and in the brain 24 hours poststroke. miR-29b attenuated IL-1β expression via C1QTNF6 inhibition, leading to decreased blood-brain barrier (BBB) disruption and leukocyte infiltration. Moreover, miR-29b overexpression in HL-60 cells downregulated OGD-induced hCMEC/D3 cell apoptosis and increased ZO-1 and occludin levels in vitro. Conclusion. Leukocytic miR-29b attenuates inflammatory response by augmenting BBB integrity through C1QTNF6, suggesting a novel miR-29b-based therapeutic therapy for ischemic stroke.
Collapse
|
45
|
Network Pharmacology and Molecular Docking Study of Yupingfeng Powder in the Treatment of Allergic Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1323744. [PMID: 35855823 PMCID: PMC9288288 DOI: 10.1155/2022/1323744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Objective To explore the potential mechanisms of Yupingfeng Powder (YPFP) in the treatment of allergic diseases by using network pharmacology and molecular docking technology. Methods The active components and targets of YPFP were screened by the TCMSP database. The targets associated with atopic dermatitis, asthma, allergic rhinitis, and food allergy were obtained from GeneCards and OMIM databases, respectively. The intersection of the above disease-related targets was identified as allergy-related targets. Then, allergy-related targets and YPFP-related targets were crossed to obtain the potential targets of YPFP for allergy treatment. A protein-protein-interaction (PPI) network and a drug-target-disease topology network were constructed to screen hub targets and key ingredients. Next, GO and KEGG pathway enrichment analyses were performed separately on the potential targets and hub targets to identify the biological processes and signaling pathways involved. Finally, molecular docking was conducted to verify the binding affinity between key ingredients and hub targets. Results In this study, 45 active ingredients were identified from YPFP, and 48 allergy-related targets were predicted by network pharmacology. IL6, TNF, IL1B, PTGS2, CXCL8, JUN, CCL2, IL10, IFNG, and IL4 were screened as hub targets by the PPI network. However, quercetin, kaempferol, wogonin, formononetin, and 7-O-methylisomucronulatol were identified as key ingredients by the drug-target-disease topological network. GO and KEGG pathway enrichment analysis indicated that the therapeutic effect of YPFP on allergy involved multiple biological processes and signaling pathways, including positive regulation of fever generation, positive regulation of neuroinflammatory response, vascular endothelial growth factor production, negative regulation of cytokine production involved in immune response, positive regulation of mononuclear cell migration, type 2 immune response, and negative regulation of lipid storage. Molecular docking verified that all the key ingredients had good binding affinity with hub targets. Conclusion This study revealed the key ingredients, hub targets, and potential mechanisms of YPFP antiallergy, and these data can provide some theoretical basis for subsequent allergy treatment and drug development.
Collapse
|
46
|
Li M, Zhong X, Xu WT. Substance P promotes the progression of bronchial asthma through activating the PI3K/AKT/NF-κB pathway mediated cellular inflammation and pyroptotic cell death in bronchial epithelial cells. Cell Cycle 2022; 21:2179-2191. [PMID: 35726575 DOI: 10.1080/15384101.2022.2092166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
NOD-like receptor family pyrin domain containing three (NLRP3) inflammasome-mediated pyroptotic cell death and inflammation contribute to the pathogenesis of bronchial asthma, and it is reported that Substance P (SP) plays important role in the process, however, the detailed molecular mechanisms by which SP participates in the aggravation of bronchial asthma have not been fully studied. Here, our clinical data showed that SP and its receptor Neurokinin-1 receptor (NK1R) were significantly elevated in the plasma and peripheral blood mononuclear cell (PBMC) collected from patients with bronchial asthma, and further pre-clinical experiments evidenced that SP suppressed cell viability, accelerated lactate dehydrogenase (LDH) release, and upregulated ASC, Caspase-1, NLRP3, IL-1β and IL-18 to promote pyroptotic cell death and cellular inflammation in the human bronchial epithelial cells and asthmatic mice models in vitro and in vivo. Interestingly, SP-induced pyroptotic cell death was reversed by NK1R inhibitor L732138. Then, we uncovered the underlying mechanisms, and found that SP activated the downstream PI3K/AKT/NF-κB signal pathway in a NK1R-dependent manner, and blockage of this pathway by both PI3K inhibitor (LY294002) and NF-κB inhibitor (MG132) reversed SP-induced pyroptotic cell death and recovered cell viability in bronchial epithelial cells. Collectively, we concluded that SP interacted with its receptor NK1R to activate the PI3K/AKT/NF-κB pathway, which further triggered NLRP3-mediated pyroptotic cell death in the bronchial epithelial cells, resulting in the aggravation of bronchial asthma.
Collapse
Affiliation(s)
- Miao Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiao Zhong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wen-Ting Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
47
|
Matarazzo L, Hernandez Santana YE, Walsh PT, Fallon PG. The IL-1 cytokine family as custodians of barrier immunity. Cytokine 2022; 154:155890. [DOI: 10.1016/j.cyto.2022.155890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
|
48
|
Blockade of NLRP3/Caspase-1/IL-1β Regulated Th17/Treg Immune Imbalance and Attenuated the Neutrophilic Airway Inflammation in an Ovalbumin-Induced Murine Model of Asthma. J Immunol Res 2022; 2022:9444227. [PMID: 35664352 PMCID: PMC9159827 DOI: 10.1155/2022/9444227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Asthma is a heterogeneous inflammatory disorder of the airways, and multiple studies have addressed the vital role of the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3)/caspase-1/interleukin-1β (IL-1β) pathway in asthma, but its impact on ovalbumin- (OVA-) induced neutrophilic asthma remains unclear. Here, we explored this pathway's effect on airway inflammation in neutrophilic asthma to clarify whether blocking this signaling could alleviate asthmatic airway inflammation. Using an established OVA-induced neutrophilic asthma mouse model, we provided asthmatic mice with a highly selective NLRP3 inhibitor, MCC950, and a specific caspase-1 inhibitor, Ac-YVAD-cmk. Our results indicated that asthmatic mice exhibited increased airway hyperresponsiveness, neutrophil infiltration, and airway mucus hypersecretion, upregulated retinoid-related orphan receptor-γt (RORγt) mRNA expression, and downregulated fork head box p3 (Foxp3) mRNA expression, which was concurrent with NLRP3 inflammasome activation and upregulation of caspase-1, IL-1β, and IL-18 expression in lung. Treatment of NLRP3 inflammasome inhibitors significantly attenuated airway hyperresponsiveness, airway inflammation, and reversed T helper 17 (Th17)/regulatory T (Treg) cell imbalance in asthmatic mice. We propose that the NLRP3/caspase-1/IL-1β pathway plays an important role in the pathological process of neutrophilic asthma and provides evidence that blocking this pathway could potentially be a treatment strategy to ameliorate airway inflammation in asthma after validation with future experimental and clinical studies.
Collapse
|
49
|
Neutrophils and Asthma. Diagnostics (Basel) 2022; 12:diagnostics12051175. [PMID: 35626330 PMCID: PMC9140072 DOI: 10.3390/diagnostics12051175] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Although eosinophilic inflammation is characteristic of asthma pathogenesis, neutrophilic inflammation is also marked, and eosinophils and neutrophils can coexist in some cases. Based on the proportion of sputum cell differentiation, asthma is classified into eosinophilic asthma, neutrophilic asthma, neutrophilic and eosinophilic asthma, and paucigranulocytic asthma. Classification by bronchoalveolar lavage is also performed. Eosinophilic asthma accounts for most severe asthma cases, but neutrophilic asthma or a mixture of the two types can also present a severe phenotype. Biomarkers for the diagnosis of neutrophilic asthma include sputum neutrophils, blood neutrophils, chitinase-3-like protein, and hydrogen sulfide in sputum and serum. Thymic stromal lymphoprotein (TSLP)/T-helper 17 pathways, bacterial colonization/microbiome, neutrophil extracellular traps, and activation of nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 pathways are involved in the pathophysiology of neutrophilic asthma and coexistence of obesity, gastroesophageal reflux disease, and habitual cigarette smoking have been associated with its pathogenesis. Thus, targeting neutrophilic asthma is important. Smoking cessation, neutrophil-targeting treatments, and biologics have been tested as treatments for severe asthma, but most clinical studies have not focused on neutrophilic asthma. Phosphodiesterase inhibitors, anti-TSLP antibodies, azithromycin, and anti-cholinergic agents are promising drugs for neutrophilic asthma. However, clinical research targeting neutrophilic inflammation is required to elucidate the optimal treatment.
Collapse
|
50
|
Niessen NM, Fricker M, McDonald VM, Gibson PG. T2-low: what do we know?: Past, present, and future of biologic therapies in noneosinophilic asthma. Ann Allergy Asthma Immunol 2022; 129:150-159. [PMID: 35487388 DOI: 10.1016/j.anai.2022.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
Abstract
T2-low asthma is an often severe asthma subtype with limited treatment options and biologic therapeutics are lacking. Several monoclonal antibodies (mAbs) targeting non-T2 cytokines were previously reported to be ineffective in asthma. These trials often investigated heterogeneous asthma populations and negative outcomes could be related to unsuitable study cohorts. More tailored approaches in selecting participants based on specific biomarkers have been beneficial in treating severe T2-high asthma. Similarly, mAbs previously deemed ineffective bear the potential to be useful when administered to the correct target population. Here, we review individual clinical trials conducted between 2005 and 2021 and assess the suitability of the selected cohorts, whether study end points were met, and whether outcome measures were appropriate to investigate the effectiveness of the respective drug. We discuss potential target groups within the T2-low asthma population and suggest biomarkers that may predict a treatment response. Furthermore, we assess whether biomarker-guided approaches or subgroup analyses were associated with more positive study outcomes. The mAbs directed against alarmins intervene early in the inflammatory cascade and are the first mAbs found to have efficacy in T2-low asthma. Several randomized controlled trials performed predefined subgroup analyses that included T2-low asthma. Subgroup analyses were associated with positive outcomes and were able to reveal a stronger response in at least 1 subgroup. A better understanding of T2-low subgroups and specific biomarkers is necessary to identify the most responsive target population for a given mAb.
Collapse
Affiliation(s)
- Natalie M Niessen
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia.
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Vanessa M McDonald
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Nursing and Midwifery, The University of Newcastle, Newcastle, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Peter G Gibson
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|