1
|
Gibb M, Reinert AN, Schedin T, Merrick DT, Brown JM, Bauer AK. Mast cells are key mediators in the pulmonary inflammatory response to formaldehyde exposure. Toxicol Sci 2025; 205:180-190. [PMID: 39992237 DOI: 10.1093/toxsci/kfaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Formaldehyde (FA) is a common chemical linked to respiratory problems such as airway hyperresponsiveness and pulmonary inflammation. Due to its toxicological effects and ease of mass production, FA is also recognized as a significant chemical threat by the U.S. Department of Homeland Security. This study investigates the role of mast cells in the pulmonary inflammatory response to acute high-dose FA exposure. Using wild-type (C57BL/6J) and mast cell-deficient (KitW-sh) mouse models, we assessed the impact of oropharyngeal aspiration of FA on lung pathology. Our findings reveal that C57BL/6J mice experienced significant increases in cellular infiltration, altered immune cell populations, and changes in lipid mediator profiles. In contrast, KitW-sh mice exhibited significantly reduced inflammatory responses. Notably, the presence of mast cells was associated with enhanced dendritic cell migration and differential production of bioactive lipid mediators, such as specialized pro-resolving mediators and pro-inflammatory leukotrienes in C57BL/6J mice. These results highlight the crucial role of mast cells in the immune response to FA and suggest they could be therapeutic targets for treating FA-induced lung inflammation.
Collapse
Affiliation(s)
- Matthew Gibb
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Angela N Reinert
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Troy Schedin
- Department of Immunology and Microbiology, Human Immune Monitoring Shared Resource, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Daniel T Merrick
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Alison K Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| |
Collapse
|
2
|
Huether KM, Lamb JM, Skelly J, Brigham E, McCormack MC, Bose S, Garrow OJ, Dixon AE. Omega-3 Fatty Acid Intake Potentiates Bronchodilator Response in Patients with Obesity and Poorly Controlled Asthma. Respir Med 2025:108131. [PMID: 40294806 DOI: 10.1016/j.rmed.2025.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/14/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
RATIONALE Obesity is linked to poorly controlled asthma and may impair bronchodilator response. This study examines dietary factors affecting asthma symptoms, control, and lung function. METHODS In a multi-center, cross-sectional study of 102 individuals with obesity and poorly controlled asthma, we assessed dietary intake (Arizona Food Frequency Questionnaire), asthma symptoms and control (standardized questionnaires), and lung function (spirometry and bronchodilator response). Correlations between omega-3 and -6 fatty acids with asthma outcomes and lung function were examined using Pearson correlations and multivariate regression. RESULTS Median age was 56 (IQR 41-64) years, and median BMI was 37 (35-42) kg/m2. Fifty-five percent were African American and 75 % were female. Median total calorie intake was 2029 (1199 - 3837) kcal, median total omega-3 intake was 1.07 (0.63-2.04) g, and median omega-6 intake was 24.54 (13.31-45.35) g. No significant relationship was found between fatty acid intake and asthma symptoms, asthma control, or baseline lung function. However, percent bronchodilator response was positively correlated with omega-3 fatty acids (r = 0.273, p = 0.0074). After adjusting for caloric intake, for every 1 g increase in omega-3 intake, there was a 4% increase in percent bronchodilator response. CONCLUSIONS Dietary intake of omega-3 fatty acids may influence bronchodilator response in patients with poorly controlled asthma and obesity. Interventions to improve overall dietary quality, such as increased omega-3 intake, may improve medication response in people with obesity and poorly controlled asthma. Future research is needed to better understand this association and determine if additional dietary factors might affect medication responses.
Collapse
Affiliation(s)
| | | | | | | | - Meredith C McCormack
- Center for Clinical Trials, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA.
| | - Sonali Bose
- Icahn School of Medicine, New York, NY, USA.
| | | | | |
Collapse
|
3
|
Zailani H, Satyanarayanan SK, Liao WC, Su KP, Chang JPC. Omega-3 Polyunsaturated Fatty Acids in Chronic Obstructive Pulmonary Disease Patients with COVID-19: A Review. Curr Nutr Rep 2025; 14:12. [PMID: 39760917 DOI: 10.1007/s13668-024-00599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE OF THE REVIEW Mounting evidence indicates that individuals with chronic obstructive pulmonary disease (COPD) face a heightened risk of severe outcomes upon contracting coronavirus disease 2019 (COVID-19). Current medications for COVID-19 often carry side effects, necessitating alternative therapies with improved tolerance. This review explores the biological mechanisms rendering COPD patients more susceptible to severe COVID-19 and investigates the potential of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in mitigating the severity of COVID-19 in COPD patients. RECENT FINDINGS Current evidence indicates that COPD patients are at an increased risk of severe COVID-19 due to factors including compromised pulmonary function, dysregulated inflammation, weakened immune response, increased oxidative stress, elevated expression of angiotensin-converting enzyme (ACE2) receptors in the lungs, and genetic predispositions. Remarkably, n-3 PUFAs exhibit the potential in ameliorating the clinical outcomes of COPD patients with COVID-19 by modulating inflammation, reinforcing the body's antioxidant defenses, reducing viral entry and replication, and enhancing immunity. N-3 PUFAs hold potential for improving COVID-19 outcomes in patients with COPD. However, there has been limited investigation into the therapeutic effects of n-3 PUFAs in enhancing clinical outcomes for COPD patients. Rigorous clinical studies are essential to evaluate the impact of n-3 PUFAs on COPD patients with concurrent COVID-19 infection.
Collapse
Grants
- MOST 109-2320-B-038-057- MY3, 110-2321-B-006-004, 110-2811-B-039-507, 110-2320-B-039-048-MY2,110-2320-B-039- 047-MY3, 110-2813-C-039-327-B, 110-2314-B-039-029-MY3, 111-2321-B-006-008, and NSTC 111-2314-B-039-041-MY3 Ministry of Science and Technology, Taiwan
- MOST 109-2320-B-038-057- MY3, 110-2321-B-006-004, 110-2811-B-039-507, 110-2320-B-039-048-MY2,110-2320-B-039- 047-MY3, 110-2813-C-039-327-B, 110-2314-B-039-029-MY3, 111-2321-B-006-008, and NSTC 111-2314-B-039-041-MY3 Ministry of Science and Technology, Taiwan
- ANHRF 109-31, 109-40, 110-13, 110-26, 110-44, 110-45, 111-27, 111-28, 111-47, 111-48, and 111-52 An-Nan Hospital, China Medical University, Tainan, Taiwan
- CMRC-CMA-2 Higher Education Sprout Project by the Ministry of Education, Taiwan
- CMRC-CMA-2 Higher Education Sprout Project by the Ministry of Education, Taiwan
- CMU 110- AWARD-02, 110-N-17, 1110-SR-73 China Medical University, Taiwan
- CMU 110- AWARD-02, 110-N-17, 1110-SR-73 China Medical University, Taiwan
- DMR-106-101, 106-227, 109-102, 109-244, 110-124, 111-245, 112-097, 112-086, 112-109 and DMR-HHC-109-11, HHC-109-12, HHC-110-10, and HHC-111-8 China Medical University Hospital
- DMR-106-101, 106-227, 109-102, 109-244, 110-124, 111-245, 112-097, 112-086, 112-109 and DMR-HHC-109-11, HHC-109-12, HHC-110-10, and HHC-111-8 China Medical University Hospital
Collapse
Affiliation(s)
- Halliru Zailani
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Nutrition, China Medical University, Taichung, Taiwan
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Senthil Kumaran Satyanarayanan
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China
| | - Wei-Chih Liao
- Division of Pulmonary and Critical Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.
- College of Medicine, China Medical University, Taichung, Taiwan.
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Jane Pei-Chen Chang
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.
- College of Medicine, China Medical University, Taichung, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Child and Adolescent Psychiatry Division, Department of Psychiatry, China Medical University Hospital, No. 2 Yu-Der Rd, North District, Taichung, 404, Taiwan.
| |
Collapse
|
4
|
Nicolas E, Kosmider B, Cukierman E, Borghaei H, Golemis EA, Borriello L. Cancer treatments as paradoxical catalysts of tumor awakening in the lung. Cancer Metastasis Rev 2024; 43:1165-1183. [PMID: 38963567 PMCID: PMC11554904 DOI: 10.1007/s10555-024-10196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Much of the fatality of tumors is linked to the growth of metastases, which can emerge months to years after apparently successful treatment of primary tumors. Metastases arise from disseminated tumor cells (DTCs), which disperse through the body in a dormant state to seed distant sites. While some DTCs lodge in pre-metastatic niches (PMNs) and rapidly develop into metastases, other DTCs settle in distinct microenvironments that maintain them in a dormant state. Subsequent awakening, induced by changes in the microenvironment of the DTC, causes outgrowth of metastases. Hence, there has been extensive investigation of the factors causing survival and subsequent awakening of DTCs, with the goal of disrupting these processes to decrease cancer lethality. We here provide a detailed overview of recent developments in understanding of the factors controlling dormancy and awakening in the lung, a common site of metastasis for many solid tumors. These factors include dynamic interactions between DTCs and diverse epithelial, mesenchymal, and immune cell populations resident in the lung. Paradoxically, among key triggers for metastatic outgrowth, lung tissue remodeling arising from damage induced by the treatment of primary tumors play a significant role. In addition, growing evidence emphasizes roles for inflammation and aging in opposing the factors that maintain dormancy. Finally, we discuss strategies being developed or employed to reduce the risk of metastatic recurrence.
Collapse
Affiliation(s)
- Emmanuelle Nicolas
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Beata Kosmider
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
- Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Hossein Borghaei
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Erica A Golemis
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
| | - Lucia Borriello
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA.
| |
Collapse
|
5
|
Maliha A, Tahsin M, Fabia TZ, Rahman SM, Rahman MM. Pro-resolving metabolites: Future of the fish oil supplements. J Funct Foods 2024; 121:106439. [DOI: 10.1016/j.jff.2024.106439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
6
|
Roe K. Are secondary bacterial pneumonia mortalities increased because of insufficient pro-resolving mediators? J Infect Chemother 2024; 30:959-970. [PMID: 38977072 DOI: 10.1016/j.jiac.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Respiratory viral infections, including respiratory syncytial virus (RSV), parainfluenza viruses and type A and B influenza viruses, can have severe outcomes. Bacterial infections frequently follow viral infections, and influenza or other viral epidemics periodically have higher mortalities from secondary bacterial pneumonias. Most secondary bacterial infections can cause lung immunosuppression by fatty acid mediators which activate cellular receptors to manipulate neutrophils, macrophages, natural killer cells, dendritic cells and other lung immune cells. Bacterial infections induce synthesis of inflammatory mediators including prostaglandins and leukotrienes, then eventually also special pro-resolving mediators, including lipoxins, resolvins, protectins and maresins, which normally resolve inflammation and immunosuppression. Concurrent viral and secondary bacterial infections are more dangerous, because viral infections can cause inflammation and immunosuppression before the secondary bacterial infections worsen inflammation and immunosuppression. Plausibly, the higher mortalities of secondary bacterial pneumonias are caused by the overwhelming inflammation and immunosuppression, which the special pro-resolving mediators might not resolve.
Collapse
Affiliation(s)
- Kevin Roe
- Retired United States Patent and Trademark Office, San Jose, CA, USA.
| |
Collapse
|
7
|
Zhu X, Meng L, Xu L, Hua Y, Feng J. Novel Therapeutic Target for ALI/ARDS: Forkhead Box Transcription Factors. Lung 2024; 202:513-522. [PMID: 39259274 DOI: 10.1007/s00408-024-00740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024]
Abstract
ALI/ARDS can be a pulmonary manifestation of a systemic inflammatory response or a result of overexpression of the body's normal inflammatory response involving various effector cells, cytokines, and inflammatory mediators, which regulate the body's immune response through different signalling pathways. Forkhead box transcription factors are evolutionarily conserved transcription factors that play a crucial role in various cellular processes, such as cell cycle progression, proliferation, differentiation, migration, metabolism, and DNA damage response. Transcription factors control protein synthesis by regulating gene transcription levels, resulting in diverse biological outcomes. The Fox family plays a role in activating or inhibiting the expression of various molecules related to ALI/ARDS through phosphorylation, acetylation/deacetylation, and control of multiple signalling pathways. An in-depth analysis of the integrated Fox family's role in ALI/ARDS can aid in the development of potential diagnostic and therapeutic targets for the condition.
Collapse
Affiliation(s)
- Xi Zhu
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Key Laboratory of Nantong, Affiliated Hospital of Nantong University, 20 Xi-Si Road, Nantong, 226001, Jiangsu, China
| | - Leyuan Meng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Liqin Xu
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Key Laboratory of Nantong, Affiliated Hospital of Nantong University, 20 Xi-Si Road, Nantong, 226001, Jiangsu, China
| | - Yun Hua
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Key Laboratory of Nantong, Affiliated Hospital of Nantong University, 20 Xi-Si Road, Nantong, 226001, Jiangsu, China
| | - Jian Feng
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Key Laboratory of Nantong, Affiliated Hospital of Nantong University, 20 Xi-Si Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
8
|
Gao H, Cheng X, Zuo X, Huang Z. Exploring the Impact of Adequate Energy Supply on Nutrition, Immunity, and Inflammation in Elderly Patients with Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2024; 19:1391-1402. [PMID: 38915774 PMCID: PMC11194172 DOI: 10.2147/copd.s450209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/08/2024] [Indexed: 06/26/2024] Open
Abstract
Background Chronic Obstructive Pulmonary Disease (COPD) progression in the elderly is notably influenced by nutritional, immune, and inflammatory status. This study aimed to investigate the impact of adequate energy supply on these indicators in COPD patients. Methods COPD patients meeting specific criteria were recruited and categorized into energy-adequate and energy-deficient groups based on their energy supply. Comparable demographic factors such as age, gender, smoking and drinking history, COPD duration, inhaled drug classification, and home oxygen therapy application were observed. Notable differences were found in BMI and inhaled drug use between the two groups. Results The energy-adequate group exhibited significant improvements in various health indicators, including lymphocyte count, hemoglobin, CRP, total cholesterol, prealbumin, albumin, PNI, SII, SIRI, CAR, and CONUT scores in the secondary auxiliary examination. These positive changes suggest a notable enhancement in nutritional, immune, and inflammatory status. Conclusion This research highlights the substantial benefits of adequate energy supply in elderly COPD patients. The observed improvements in nutritional, immune, and inflammatory markers underscore the importance of addressing energy needs to positively influence disease-related outcomes in this population. These findings have implications for developing targeted interventions to optimize the well-being of elderly individuals with COPD.
Collapse
Affiliation(s)
- Hui Gao
- Department of General Practice, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province430000, People’s Republic of China
| | - Xi Cheng
- Department of General Practice, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province430000, People’s Republic of China
| | - Xu Zuo
- Department of Respiratory and Digestive, Geriatric Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, Hubei Province, 430000, People’s Republic of China
| | - Zhaolan Huang
- Department of Respiratory and Digestive, Geriatric Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, Hubei Province, 430000, People’s Republic of China
| |
Collapse
|
9
|
Younes S. The role of nutrition on the treatment of Covid 19. HUMAN NUTRITION & METABOLISM 2024; 36:200255. [DOI: 10.1016/j.hnm.2024.200255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
|
10
|
Mann V, Sundaresan A, Shishodia S. Overnutrition and Lipotoxicity: Impaired Efferocytosis and Chronic Inflammation as Precursors to Multifaceted Disease Pathogenesis. BIOLOGY 2024; 13:241. [PMID: 38666853 PMCID: PMC11048223 DOI: 10.3390/biology13040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Overnutrition, driven by the consumption of high-fat, high-sugar diets, has reached epidemic proportions and poses a significant global health challenge. Prolonged overnutrition leads to the deposition of excessive lipids in adipose and non-adipose tissues, a condition known as lipotoxicity. The intricate interplay between overnutrition-induced lipotoxicity and the immune system plays a pivotal role in the pathogenesis of various diseases. This review aims to elucidate the consequences of impaired efferocytosis, caused by lipotoxicity-poisoned macrophages, leading to chronic inflammation and the subsequent development of severe infectious diseases, autoimmunity, and cancer, as well as chronic pulmonary and cardiovascular diseases. Chronic overnutrition promotes adipose tissue expansion which induces cellular stress and inflammatory responses, contributing to insulin resistance, dyslipidemia, and metabolic syndrome. Moreover, sustained exposure to lipotoxicity impairs the efferocytic capacity of macrophages, compromising their ability to efficiently engulf and remove dead cells. The unresolved chronic inflammation perpetuates a pro-inflammatory microenvironment, exacerbating tissue damage and promoting the development of various diseases. The interaction between overnutrition, lipotoxicity, and impaired efferocytosis highlights a critical pathway through which chronic inflammation emerges, facilitating the development of severe infectious diseases, autoimmunity, cancer, and chronic pulmonary and cardiovascular diseases. Understanding these intricate connections sheds light on potential therapeutic avenues to mitigate the detrimental effects of overnutrition and lipotoxicity on immune function and tissue homeostasis, thereby paving the way for novel interventions aimed at reducing the burden of these multifaceted diseases on global health.
Collapse
Affiliation(s)
| | | | - Shishir Shishodia
- Department of Biology, Texas Southern University, Houston, TX 77004, USA; (V.M.); (A.S.)
| |
Collapse
|
11
|
Gillan R, Bachtel G, Webber K, Ezzair Y, Myers NE, Bishayee A. Osteopathic manipulative treatment for chronic inflammatory diseases. J Evid Based Med 2024; 17:172-186. [PMID: 38488211 DOI: 10.1111/jebm.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/25/2024] [Indexed: 04/02/2024]
Abstract
Chronic inflammatory diseases (CIDs) are debilitating and potentially lethal illnesses that affect a large proportion of the global population. Osteopathic manipulative treatment (OMT) is a manual therapy technique developed and performed by osteopathic physicians that facilitates the body's innate healing processes. Therefore, OMT may prove a beneficial anti-inflammatory modality useful in the management and treatment of CIDs. This work aims to objectively evaluate the therapeutic benefits of OMT in patients with various CIDs. In this review, a structured literature search was performed. The included studies involving asthma, chronic obstructive pulmonary disease, irritable bowel syndrome, ankylosing spondylitis, and peripheral arterial disease were selected for this work. Various OMT modalities, including lymphatic, still, counterstain, and muscle energy techniques, were utilized. Control treatments included sham techniques, routine care, or no treatment. OMT utilization led to variable patient outcomes in individuals with pathologies linked to CID.
Collapse
Affiliation(s)
- Ross Gillan
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Gabrielle Bachtel
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Yasmine Ezzair
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Nicole E Myers
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
12
|
Pasechnik I, Talyzin P, Skobelev E. Nutritional support for intensive care patients: the role of lipid component. RUSSIAN JOURNAL OF ANESTHESIOLOGY AND REANIMATOLOGY 2024:58. [DOI: 10.17116/anaesthesiology202403158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Amin Mohedin J, Rezaiemanesh A, Asadi S, Haddadi M, Abdul Ahmed B, Gorgin Karaji A, Salari F. Resolvin D1 (Rvd1) Attenuates In Vitro LPS-Stimulated Inflammation Through Downregulation of miR-155, miR -146, miR -148 and Krupple Like Factor 5. Rep Biochem Mol Biol 2024; 12:566-574. [PMID: 39086587 PMCID: PMC11288237 DOI: 10.61186/rbmb.12.4.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/15/2024] [Indexed: 08/02/2024]
Abstract
Background Chronic inflammation is associated with many inflammatory diseases. Specialized pro-resolving mediators (SPMs) are well known for their crucial role in promoting the resolution phase of inflammation and restoring tissue homeostasis. Resolvin D1 (RvD1) is an endogenous omega-3-derived lipid mediator with pro-resolving activity. This study aimed to evaluate the effect of Resolvin D1 (RvD1) on some inflammatory miRNAs (mir-155-5p, miR146a-5p and miR148-3p) and Krüppel-like factors 5 (KLF5) in an LPS-stimulated THP-1 preclinical model of inflammation. Methods PMA-differentiated THP-1 cells (macrophages) were pre-incubated with or without various concentrations of RvD1 (10, 50, or 100 nM) for 2 h prior to stimulation by 1 μg/ml LPS. Un-stimulated PMA-differentiated THP-1 cells were as the control group. Then, the expression levels of target genes were evaluated by real-time PCR. Results Compared with untreated macrophages, stimulation with 1 µg/ml LPS increased mRNA expression levels of TNF-α, KLF5, miR-155-5p, miR-146-5p, and miR-148a-3p. When the cells were exposed to various concentrations (10, 50 and 100 nM) of RvD1 for 2 h prior to LPS stimulation, the TNF-α, KLF5, miR-155-5p, miR-146-5p, and miR-148a-3p mRNA expression levels were significantly downregulated in a dose-dependent manner, compared to the LPS group. Conclusions The results demonstrate that RvD1 can attenuate inflammatory response in LPS-stimulated macrophages. Our data also showed that RvD1 may exert anti-inflammatory effects by inhibiting miR-155-5p, miR-146a-5p, and miR-148-3p.
Collapse
Affiliation(s)
- Jabbar Amin Mohedin
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Laboratory, Ministry of Health, Sulamania, KRG, Iraq.
| | - Alireza Rezaiemanesh
- Department of immunology, school of medicine, Kermanshah University of Medical Science, Kermanshah, Iran.
| | - Soheila Asadi
- Department of biochemistry, school of medicine, Kermanshah University of Medical Science, Kermanshah, Iran.
| | - Maryam Haddadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bahroz Abdul Ahmed
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Gorgin Karaji
- Department of immunology, school of medicine, Kermanshah University of Medical Science, Kermanshah, Iran.
| | - Farhad Salari
- Department of immunology, school of medicine, Kermanshah University of Medical Science, Kermanshah, Iran.
| |
Collapse
|
14
|
Rogovskii V. Cancer and Autoimmune Diseases as Two Sides of Chronic Inflammation and the Method of Therapy. Curr Cancer Drug Targets 2024; 24:1089-1103. [PMID: 38288812 DOI: 10.2174/0115680096282480240105071638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 09/20/2024]
Abstract
Chronic inflammation is associated with a prolonged increase in various inflammatory factors. According to clinical data, it can be linked with both cancer and autoimmune diseases in the same patients. This raises the critical question of how chronic inflammation relates to seemingly opposing diseases - tumors, in which there is immunosuppression, and autoimmune diseases, in which there is over-activation of the immune system. In this review, we consider chronic inflammation as a prerequisite for both immune suppression and an increased likelihood of autoimmune damage. We also discuss potential disease-modifying therapies targeting chronic inflammation, which can be helpful for both cancer and autoimmunity. On the one hand, pro-inflammatory factors persisting in the areas of chronic inflammation stimulate the production of anti-inflammatory factors due to a negative feedback loop, eliciting immune suppression. On the other hand, chronic inflammation can bring the baseline immunity closer to the threshold level required for triggering an autoimmune response using the bystander activation of immune cells. Focusing on the role of chronic inflammation in cancer and autoimmune diseases may open prospects for more intensive drug discovery for chronic inflammation.
Collapse
Affiliation(s)
- Vladimir Rogovskii
- Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
15
|
Rais N, Ved A, Ahmad R, Kumar M. Valorization potential of custard apple seeds. VALORIZATION OF FRUIT SEED WASTE FROM FOOD PROCESSING INDUSTRY 2024:249-284. [DOI: 10.1016/b978-0-443-15535-2.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Tallei TE, Fatimawali, Adam AA, Ekatanti D, Celik I, Fatriani R, Nainu F, Kusuma WA, Rabaan AA, Idroes R. Molecular insights into the anti-inflammatory activity of fermented pineapple juice using multimodal computational studies. Arch Pharm (Weinheim) 2024; 357:e2300422. [PMID: 37861276 DOI: 10.1002/ardp.202300422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
Pineapple has been recognized for its potential to enhance health and well-being. This study aimed to gain molecular insights into the anti-inflammatory properties of fermented pineapple juice using multimodal computational studies. In this study, pineapple juice was fermented using Lactobacillus paracasei, and the solution underwent liquid chromatography-mass spectrometry analysis. Network pharmacology was applied to investigate compound interactions and targets. In silico methods assessed compound bioactivities. Protein-protein interactions, network topology, and enrichment analysis identified key compounds. Molecular docking explored compound-receptor interactions in inflammation regulation. Molecular dynamics simulations were conducted to confirm the stability of interactions between the identified crucial compounds and their respective receptors. The study revealed several compounds including short-chain fatty acids, peptides, dihydroxyeicosatrienoic acids, and glycerides that exhibited promising anti-inflammatory properties. Leucyl-leucyl-norleucine and Leu-Leu-Tyr exhibited robust and stable interactions with mitogen-activated protein kinase 14 and IκB kinase β, respectively, indicating their potential as promising therapeutic agents for inflammation modulation. This proposition is grounded in the pivotal involvement of these two proteins in inflammatory signaling pathways. These findings provide valuable insights into the anti-inflammatory potential of these compounds, serving as a foundation for further experimental validation and exploration. Future studies can build upon these results to advance the development of these compounds as effective anti-inflammatory agents.
Collapse
Grants
- 053/E5/PG.02.00.PL/2023 Directorate of Research, Technology, and Community Service of the Ministry of Education, Culture, Research, and Technology, Republic of Indonesia
- 189/UN12.13/LT/2023 Directorate of Research, Technology, and Community Service of the Ministry of Education, Culture, Research, and Technology, Republic of Indonesia
Collapse
Affiliation(s)
- Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Science, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Science, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Ahmad Akroman Adam
- Dentistry Study Program, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Dewi Ekatanti
- Pharmacy Study Program, Faculty of Mathematics and Natural Science, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Rizka Fatriani
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Wisnu Ananta Kusuma
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh, Aceh, Indonesia
| |
Collapse
|
17
|
Mortada MI, Shahin D, Abousamra N, Aladle DA, El-Ashwah S, Ghobrial FEI, El-Baiomy MA, Soliman EA, Niazy NA, Ghannam MA. Prognostic Impact of IL17 A Gene Polymorphismson Egyptian Patients with Multiple Myeloma. Asian Pac J Cancer Prev 2023; 24:2421-2425. [PMID: 37505775 PMCID: PMC10676498 DOI: 10.31557/apjcp.2023.24.7.2421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
INTRODUCTION Multiple myeloma (MM) is a B-cell lymphoproliferative disease in which the bone marrow microenvironment plays an important role in pathogenesis. The T helper (Th-17) cell plays an important role in the development of cancer by releasing pro-inflammatory cytokines such as IL-17A and IL-17F. Th-17 cells have been studied in a variety of solid tumors, as well as few hematological malignancies, including acute myeloid leukemia, non-Hodgkin lymphoma, and monoclonal gammopathy of unknown significance. AIM Our study aimed to assess the association between IL-17A polymorphism and MM risk and other MM characteristics in Egyptian patients. PATIENTS & METHODS a prospective study involving 77 patients with MM (mean age 54.6 years; males 53.2%; females 46.8%) and a healthy control group of same age and gender. It was performed at the Mansoura University Oncology Center (OCMU). The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) approach was used to detect IL17A 197 G/A (rs2275913) genotypes in genomic DNA from MM patients and healthy controls. RESULTS The IL-17A polymorphism may not be associated to myeloma predilection in the Egyptians as a whole. There was also no significant correlation in statistical study between gender and the IL-17A polymorphism. (p 0.14), a number of clinical and laboratory characteristics, including hypercalcemia (p 0.28), hypoalbuminemia (p 0.49), renal impairment (p 0.13), high LDH (p 0.62), osteolytic bone lesions (p 0.26), and pathological fracture (p 0.96), are also present. Nevertheless, no statistically significant difference in the OS of MM patients was detected for the IL-17A polymorphism (p 0.83). CONCLUSION Our research demonstrated that IL-17A polymorphism may not be linked to multiple myeloma susceptibility in our population and did not influence its different clinical and laboratory features. IL-17A polymorphism had no effect on OS in MM patients.
Collapse
Affiliation(s)
- Metwaly Ibrahim Mortada
- Hematology Unit, Department of Clinical Pathology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Doaa Shahin
- Hematology Unit, Department of Clinical Pathology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Nashwa Abousamra
- Hematology Unit, Department of Clinical Pathology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Doaa Abdalla Aladle
- Hematology Unit, Department of Clinical Pathology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Shaimaa El-Ashwah
- Clinical Hematology Unit, Department of Internal Medicine, Oncology Center, Mansoura University, Mansoura, Egypt.
| | - F E I Ghobrial
- Departement of Oncology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - M. A. El-Baiomy
- Departement of Oncology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Eman A. Soliman
- Departement of Molecular Biology, Oncology Center, Mansoura University, Mansoura, Egypt.
| | - Nermeen A. Niazy
- Department of Public Health and Community Medicine, Faculty of Medicine, Mansoura, Egypt.
| | - Mayada A Ghannam
- Hematology Unit, Department of Clinical Pathology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
18
|
Tran M, Yang K, Glukhova A, Holinstat M, Holman T. Inhibitory Investigations of Acyl-CoA Derivatives against Human Lipoxygenase Isozymes. Int J Mol Sci 2023; 24:10941. [PMID: 37446119 PMCID: PMC10341549 DOI: 10.3390/ijms241310941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Lipid metabolism is a complex process crucial for energy production resulting in high levels of acyl-coenzyme A (acyl-CoA) molecules in the cell. Acyl-CoAs have also been implicated in inflammation, which could be possibly linked to lipoxygenase (LOX) biochemistry by the observation that an acyl-CoA was bound to human platelet 12-lipoxygenase via cryo-EM. Given that LOX isozymes play a pivotal role in inflammation, a more thorough investigation of the inhibitory effects of acyl-CoAs on lipoxygenase isozymes was judged to be warranted. Subsequently, it was determined that C18 acyl-CoA derivatives were the most potent against h12-LOX, human reticulocyte 15-LOX-1 (h15-LOX-1), and human endothelial 15-LOX-2 (h15-LOX-2), while C16 acyl-CoAs were more potent against human 5-LOX. Specifically, oleoyl-CoA (18:1) was most potent against h12-LOX (IC50 = 32 μM) and h15-LOX-2 (IC50 = 0.62 μM), stearoyl-CoA against h15-LOX-1 (IC50 = 4.2 μM), and palmitoleoyl-CoA against h5-LOX (IC50 = 2.0 μM). The inhibition of h15-LOX-2 by oleoyl-CoA was further determined to be allosteric inhibition with a Ki of 82 +/- 70 nM, an α of 3.2 +/- 1, a β of 0.30 +/- 0.07, and a β/α = 0.09. Interestingly, linoleoyl-CoA (18:2) was a weak inhibitor against h5-LOX, h12-LOX, and h15-LOX-1 but a rapid substrate for h15-LOX-1, with comparable kinetic rates to free linoleic acid (kcat = 7.5 +/- 0.4 s-1, kcat/KM = 0.62 +/- 0.1 µM-1s-1). Additionally, it was determined that methylated fatty acids were not substrates but rather weak inhibitors. These findings imply a greater role for acyl-CoAs in the regulation of LOX activity in the cell, either through inhibition of novel oxylipin species or as a novel source of oxylipin-CoAs.
Collapse
Affiliation(s)
- Michelle Tran
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (M.T.); (K.Y.)
| | - Kevin Yang
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (M.T.); (K.Y.)
| | - Alisa Glukhova
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC 3010, Australia;
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Theodore Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (M.T.); (K.Y.)
| |
Collapse
|
19
|
Tonc E, Omwanda GK, Tovar KA, Golden XME, Chatterjea D. Immune mechanisms in vulvodynia: key roles for mast cells and fibroblasts. Front Cell Infect Microbiol 2023; 13:1215380. [PMID: 37360527 PMCID: PMC10285386 DOI: 10.3389/fcimb.2023.1215380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Vulvodynia is a debilitating condition characterized by painful sensitivity to touch and pressure in the vestibular tissue surrounding the vaginal opening. It is often a "diagnosis of exclusion" of idiopathic pain made in the absence of visible inflammation or injury. However, the association between increased vulvodynia risk and a history of yeast infections and skin allergies has led researchers to explore whether immune mechanisms of dysregulated inflammation might underlie the pathophysiology of this chronic pain condition. Here we synthesize epidemiological investigations, clinical biopsies and primary cell culture studies, and mechanistic insights from several pre-clinical models of vulvar pain. Taken together, these findings suggest that altered inflammatory responses of tissue fibroblasts, and other immune changes in the genital tissues, potentially driven by the accumulation of mast cells may be key to the development of chronic vulvar pain. The association of increased numbers and function of mast cells with a wide variety of chronic pain conditions lends credence to their involvement in vulvodynia pathology and underscores their potential as an immune biomarker for chronic pain. Alongside mast cells, neutrophils, macrophages, and numerous inflammatory cytokines and mediators are associated with chronic pain suggesting immune-targeted approaches including the therapeutic administration of endogenous anti-inflammatory compounds could provide much needed new ways to treat, manage, and control the growing global pandemic of chronic pain.
Collapse
|
20
|
Stotts C, Corrales-Medina VF, Rayner KJ. Pneumonia-Induced Inflammation, Resolution and Cardiovascular Disease: Causes, Consequences and Clinical Opportunities. Circ Res 2023; 132:751-774. [PMID: 36927184 DOI: 10.1161/circresaha.122.321636] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Pneumonia is inflammation in the lungs, which is usually caused by an infection. The symptoms of pneumonia can vary from mild to life-threatening, where severe illness is often observed in vulnerable populations like children, older adults, and those with preexisting health conditions. Vaccines have greatly reduced the burden of some of the most common causes of pneumonia, and the use of antimicrobials has greatly improved the survival to this infection. However, pneumonia survivors do not return to their preinfection health trajectories but instead experience an accelerated health decline with an increased risk of cardiovascular disease. The mechanisms of this association are not well understood, but a persistent dysregulated inflammatory response post-pneumonia appears to play a central role. It is proposed that the inflammatory response during pneumonia is left unregulated and exacerbates atherosclerotic vascular disease, which ultimately leads to adverse cardiac events such as myocardial infarction. For this reason, there is a need to better understand the inflammatory cross talk between the lungs and the heart during and after pneumonia to develop therapeutics that focus on preventing pneumonia-associated cardiovascular events. This review will provide an overview of the known mechanisms of inflammation triggered during pneumonia and their relevance to the increased cardiovascular risk that follows this infection. We will also discuss opportunities for new clinical approaches leveraging strategies to promote inflammatory resolution pathways as a novel therapeutic target to reduce the risk of cardiac events post-pneumonia.
Collapse
Affiliation(s)
- Cameron Stotts
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| | - Vicente F Corrales-Medina
- Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (V.F.C-M).,Ottawa Hospital Research Institute, Ottawa, ON, Canada (V.F.C.-M)
| | - Katey J Rayner
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| |
Collapse
|
21
|
Inflammation-mediated tissue damage in pulmonary tuberculosis and host-directed therapeutic strategies. Semin Immunol 2023; 65:101672. [PMID: 36469987 DOI: 10.1016/j.smim.2022.101672] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Treatment of tuberculosis (TB) involves the administration of anti-mycobacterial drugs for several months. The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb, the causative agent) together with increased disease severity in people with co-morbidities such as diabetes mellitus and HIV have hampered efforts to reduce case fatality. In severe disease, TB pathology is largely attributable to over-exuberant host immune responses targeted at controlling bacterial replication. Non-resolving inflammation driven by host pro-inflammatory mediators in response to high bacterial load leads to pulmonary pathology including cavitation and fibrosis. The need to improve clinical outcomes and reduce treatment times has led to a two-pronged approach involving the development of novel antimicrobials as well as host-directed therapies (HDT) that favourably modulate immune responses to Mtb. HDT strategies incorporate aspects of immune modulation aimed at downregulating non-productive inflammatory responses and augmenting antimicrobial effector mechanisms to minimise pulmonary pathology and accelerate symptom resolution. HDT in combination with existing antimycobacterial agents offers a potentially promising strategy to improve the long-term outcome for TB patients. In this review, we describe components of the host immune response that contribute to inflammation and tissue damage in pulmonary TB, including cytokines, matrix metalloproteinases, lipid mediators, and neutrophil extracellular traps. We then proceed to review HDT directed at these pathways.
Collapse
|
22
|
Anti-Inflammatory Effect of Specialized Proresolving Lipid Mediators on Mesenchymal Stem Cells: An In Vitro Study. Cells 2022; 12:cells12010122. [PMID: 36611915 PMCID: PMC9818697 DOI: 10.3390/cells12010122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
An interconnection between tissue inflammation and regeneration has been established through the regulation of defense and repair mechanisms within diseased dental tissue triggered by the release of immune-resolvent mediators. To better our understanding of the role of specific pro-resolving mediators (SPMs) in inflamed human bone marrow-derived mesenchymal stem cells (hBMMSCs), we studied the effects of Resolvin E1 (RvE1) and Maresin 1 (MaR1) in lipopoly-saccharide (LPS) stimulated hBMMSCs. The hBMMSCs were divided into five different groups, each of which was treated with or without SPMs. Group-1: negative control (no LPS stimulation), Group-2: positive control (LPS-stimulated), Group-3: RvE1 100 nM + 1 μg/mL LPS, Group-4: MaR1 100 nM + 1 µg/mL LPS, and Group-5: RvE1 100 nM + MaR1100 nM + 1 μg/mL LPS. Cell proliferation, apoptosis, migration, colony formation, Western blotting, cytokine array, and LC/MS analysis were all performed on each group to determine the impact of SPMs on inflammatory stem cells. According to our data, RvE1 plus MaR1 effectively reduced inflammation in hBMMSCs. In particular, IL-4, 1L-10, and TGF-β1 activation and downregulation of RANKL, TNF-α, and IFN-γ compared to groups receiving single SPM were shown to be significantly different (Group 3 and 4). In addition, the LC/MS analysis revealed the differentially regulated peptide's role in immunological pathways that define the cellular state against inflammation. Inflamed hBMMSCs treated with a combination of Resolvin E1 (RvE1) and Maresin 1 (MaR1) promoted the highest inflammatory resolution compared to the other groups; this finding suggests a potential new approach of treating bacterially induced dental infections.
Collapse
|
23
|
Resolution Potential of Necrotic Cell Death Pathways. Int J Mol Sci 2022; 24:ijms24010016. [PMID: 36613458 PMCID: PMC9819908 DOI: 10.3390/ijms24010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
During tissue damage caused by infection or sterile inflammation, not only damage-associated molecular patterns (DAMPs), but also resolution-associated molecular patterns (RAMPs) can be activated. These dying cell-associated factors stimulate immune cells localized in the tissue environment and induce the production of inflammatory mediators or specialized proresolving mediators (SPMs). Within the current prospect of science, apoptotic cell death is considered the main initiator of resolution. However, more RAMPs are likely to be released during necrotic cell death than during apoptosis, similar to what has been observed for DAMPs. The inflammatory potential of many regulated forms of necrotic cell death modalities, such as pyroptosis, necroptosis, ferroptosis, netosis, and parthanatos, have been widely studied in necroinflammation, but their possible role in resolution is less considered. In this review, we aim to summarize the relationship between necrotic cell death and resolution, as well as present the current available data regarding the involvement of certain forms of regulated necrotic cell death in necroresolution.
Collapse
|
24
|
Anand S, Azam Ansari M, Kumaraswamy Sukrutha S, Alomary MN, Anwar Khan A, Elderdery AY. Resolvins Lipid Mediators: Potential Therapeutic Targets in Alzheimer and Parkinson Disease. Neuroscience 2022; 507:139-148. [PMID: 36372297 DOI: 10.1016/j.neuroscience.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Inflammation and resolution are highly programmed processes involving a plethora of immune cells. Lipid mediators synthesized from arachidonic acid metabolism play a pivotal role in orchestrating the signaling cascades in the game of inflammation. The majority of the studies carried out so far on inflammation were aimed at inhibiting the generation of inflammatory molecules, whereas recent research has shifted more towards understanding the resolution of inflammation. Owing to chronic inflammation as evident in neuropathophysiology, the resolution of inflammation together with the class of lipid mediators actively involved in its regulation has attracted the attention of the scientific community as therapeutic targets. Both omega-three polyunsaturated fatty acids, eicosapentaenoic acid and docosahexaenoic acid, orchestrate a vital regulatory role in inflammation development. Resolvins derived from these fatty acids comprise the D-and E-series resolvins. A growing body of evidence using in vitro and in vivo models has revealed the pro-resolving and anti-inflammatory potential of resolvins. This systematic review sheds light on the synthesis, specialized receptors, and resolution of inflammation mediated by resolvins in Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Santosh Anand
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Sambamurthy Kumaraswamy Sukrutha
- Department of Microbiology, Biotechnology and Food Technology, Jnana Bharathi Campus, Bangalore University, Bengaluru, Karnataka, India
| | - Mohammad N Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Anmar Anwar Khan
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abozer Y Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Saudi Arabia
| |
Collapse
|
25
|
Seed Waste from Custard Apple (Annona squamosa L.): A Comprehensive Insight on Bioactive Compounds, Health Promoting Activity and Safety Profile. Processes (Basel) 2022. [DOI: 10.3390/pr10102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Annona squamosa L. (custard apple or sugar apple), belonging to the Annonaceae family, is a small tree or shrub that grows natively in subtropical and tropical regions. Seeds of the custard apple have been employed in folk medicines because of the presence of bioactive chemicals/compounds such as alkaloids, flavonoids and phenolic compounds and acetogenins and cyclopeptides that are responsible for various biological activities. The seeds also show the presence of tannins, vitamin C, vitamin E and a higher content of amino acids. From investigations, it has been shown that the seeds of A. squamosa have considerable potential to be used as an antibacterial, hepatoprotective, antioxidant and antitumor/anticancer agent. Cyclosquamosin B, extracted from the custard apple seed, possesses vasorelaxant properties. Tocopherols and fatty acids, notably oleic acid and linoleic acid, are also found in the seed oil. A. squamosa seeds contain a high amount of annonaceous acetogenins compounds, which are potent mitochondrial complex I inhibitors and have high cytotoxicity. A survey primarily based on the nutritional, phytochemical and biological properties showed that A. squamosa seeds can be used for the discovery of novel products, including pharmaceutical drugs. Although there are sufficient in vitro and in vivo experimental investigations supporting the benefits of seeds, clinical investigations/trials are still needed to determine the health contributing benefits of A. squamosa seeds.
Collapse
|
26
|
Marzec JM, Nadadur SS. Inflammation resolution in environmental pulmonary health and morbidity. Toxicol Appl Pharmacol 2022; 449:116070. [PMID: 35618031 PMCID: PMC9872158 DOI: 10.1016/j.taap.2022.116070] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 02/07/2023]
Abstract
Inflammation and resolution are dynamic processes comprised of inflammatory activation and neutrophil influx, followed by mediator catabolism and efferocytosis. These critical pathways ensure a return to homeostasis and promote repair. Over the past decade research has shown that diverse mediators play a role in the active process of resolution. Specialized pro-resolving mediators (SPMs), biosynthesized from fatty acids, are released during inflammation to facilitate resolution and are deficient in a variety of lung disorders. Failed resolution results in remodeling and cellular deposition through pro-fibrotic myofibroblast expansion that irreversibly narrows the airways and worsens lung function. Recent studies indicate environmental exposures may perturb and deregulate critical resolution pathways. Environmental xenobiotics induce lung inflammation and generate reactive metabolites that promote oxidative stress, injuring the respiratory mucosa and impairing gas-exchange. This warrants recognition of xenobiotic associated molecular patterns (XAMPs) as new signals in the field of inflammation biology, as many environmental chemicals generate free radicals capable of initiating the inflammatory response. Recent studies suggest that unresolved, persistent inflammation impacts both resolution pathways and endogenous regulatory mediators, compromising lung function, which over time can progress to chronic lung disease. Chronic ozone (O3) exposure overwhelms successful resolution, and in susceptible individuals promotes asthma onset. The industrial contaminant cadmium (Cd) bioaccumulates in the lung to impair resolution, and recurrent inflammation can result in chronic obstructive pulmonary disease (COPD). Persistent particulate matter (PM) exposure increases systemic cardiopulmonary inflammation, which reduces lung function and can exacerbate asthma, COPD, and idiopathic pulmonary fibrosis (IPF). While recurrent inflammation underlies environmentally induced pulmonary morbidity and may drive the disease process, our understanding of inflammation resolution in this context is limited. This review aims to explore inflammation resolution biology and its role in chronic environmental lung disease(s).
Collapse
Affiliation(s)
- Jacqui M Marzec
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Srikanth S Nadadur
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
27
|
Costa BTD, Araújo GRL, da Silva Júnior RT, Santos LKDS, Lima de Souza Gonçalves V, Lima DBA, Cuzzuol BR, Santos Apolonio J, de Carvalho LS, Marques HS, Silva CS, Barcelos IDS, Oliveira MV, Freire de Melo F. Effects of nutrients on immunomodulation in patients with severe COVID-19: Current knowledge. World J Crit Care Med 2022; 11:201-218. [PMID: 36051942 PMCID: PMC9305681 DOI: 10.5492/wjccm.v11.i4.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Recent research has demonstrated that critically ill patients with coronavirus disease 2019 (COVID-19) show significant immune system dysregulation. Due to that, some nutrients that influence immunomodulation have been suggested as a form of treatment against the infection. This review collected the information on the impact of vitamins on the prognosis of COVID-19, with the intention of facilitating treatment and prevention of the disease risk status in patients. The collected information was obtained using the PubMed electronic database by searching for articles that relate COVID-19 and the mechanisms/effects of the nutrients: Proteins, glucose, lipids, vitamin B12, vitamin D, calcium, iron, copper, zinc, and magnesium, including prospective, retrospective, and support articles. The findings reveal an optimal response related mainly to omega-3, eicosapentaenoic acid, docosahexaenoic acid, calcium, and iron that might represent benefits in the treatment of critically ill patients. However, nutrient supplementation should be done with caution due to the limited availability of randomized controlled studies.
Collapse
Affiliation(s)
- Bruna Teixeira da Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Glauber Rocha Lima Araújo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Luana Kauany de Sá Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Daniel Bastos Alves Lima
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Beatriz Rocha Cuzzuol
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Lorena Sousa de Carvalho
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Bahia, Brazil
| | - Camilo Santana Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Isadora de Souza Barcelos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Márcio Vasconcelos Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
28
|
LipoxinA4 as a Potential Prognostic Marker of COVID-19. J Lipids 2022; 2022:8527305. [PMID: 35812307 PMCID: PMC9259546 DOI: 10.1155/2022/8527305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
This pilot study aimed to determine early changes of LXA4 levels among the hospitalized patients confirmed as COVID-19 cases following the clinical management and its correlation with commonly used inflammatory markers, including erythrocyte sedimentation rate (ESR), c-reactive protein (CRP), and ferritin. Thirty-one adult hospitalized patients infected with the non-severe COVID-19 were included. LXA4 levels were measured at the baseline and 48-72 hours after hospitalization. Accordingly, ESR and CRP levels were collected on the first day of hospitalization. Moreover, the maximum serum ferritin levels were determined during the five days. LXA4 levels significantly increased at 48-72 hours compared to the baseline. ESR, CRP, and ferritin levels were positively correlated with the increased LXA4. In contrast, aging was shown to negatively correlate with the increased LXA4 levels. LXA4 may be known as a valuable marker to assess the treatment response among non-elderly patients with non-severe COVID-19. Furthermore, LXA4 could be considered as a potential treatment option under inflammatory conditions. Further studies are necessary to clarify LXA4 role in COVID-19 pathogenesis, as well as the balance between such pro-resolving mediators and inflammatory parameters.
Collapse
|
29
|
Kotlyarov S, Kotlyarova A. Molecular Pharmacology of Inflammation Resolution in Atherosclerosis. Int J Mol Sci 2022; 23:4808. [PMID: 35563200 PMCID: PMC9104781 DOI: 10.3390/ijms23094808] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Atherosclerosis is one of the most important problems of modern medicine as it is the leading cause of hospitalizations, disability, and mortality. The key role in the development and progression of atherosclerosis is the imbalance between the activation of inflammation in the vascular wall and the mechanisms of its control. The resolution of inflammation is the most important physiological mechanism that is impaired in atherosclerosis. The resolution of inflammation has complex, not fully known mechanisms, in which lipid mediators derived from polyunsaturated fatty acids (PUFAs) play an important role. Specialized pro-resolving mediators (SPMs) represent a group of substances that carry out inflammation resolution and may play an important role in the pathogenesis of atherosclerosis. SPMs include lipoxins, resolvins, maresins, and protectins, which are formed from PUFAs and regulate many processes related to the active resolution of inflammation. Given the physiological importance of these substances, studies examining the possibility of pharmacological effects on inflammation resolution are of interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
30
|
Kotlyarov S. Role of Short-Chain Fatty Acids Produced by Gut Microbiota in Innate Lung Immunity and Pathogenesis of the Heterogeneous Course of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2022; 23:4768. [PMID: 35563159 PMCID: PMC9099629 DOI: 10.3390/ijms23094768] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a widespread socially significant disease. The development of COPD involves the innate immune system. Interestingly, the regulation of the innate lung immune system is related to the gut microbiota. This connection is due to the production by gut microorganisms of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate. Nutritional disturbances and changes in the structure of the intestinal microbiota lead to a decrease in SCFAs production and their effect on pulmonary immunity. The presence of a metabolic and immune axis linking the lungs and gut plays an important role in the pathogenesis of COPD. In addition, the nature of nutrition and SCFAs may participate in the development of the clinically heterogeneous course of COPD.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
31
|
Immune Modulatory Effects of Nonsteroidal Anti-inflammatory Drugs in the Perioperative Period and Their Consequence on Postoperative Outcome. Anesthesiology 2022; 136:843-860. [PMID: 35180291 DOI: 10.1097/aln.0000000000004141] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonsteroidal anti-inflammatory drugs are among the most commonly administered drugs in the perioperative period due to their prominent role in pain management. However, they potentially have perioperative consequences due to immune-modulating effects through the inhibition of prostanoid synthesis, thereby affecting the levels of various cytokines. These effects may have a direct impact on the postoperative outcome of patients since the immune system aims to restore homeostasis and plays an indispensable role in regeneration and repair. By affecting the immune response, consequences can be expected on various organ systems. This narrative review aims to highlight these potential immune system-related consequences, which include systemic inflammatory response syndrome, acute respiratory distress syndrome, immediate and persistent postoperative pain, effects on oncological and neurologic outcome, and wound, anastomotic, and bone healing.
Collapse
|
32
|
Alshibani N. Resolvins as a Treatment Modality in Experimental Periodontitis: A Systematic Review of Preclinical Studies. Cureus 2022; 14:e21095. [PMID: 35036235 PMCID: PMC8754062 DOI: 10.7759/cureus.21095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
This systematic review aimed to assess scientific data of existing literature to identify the efficacy of resolvins (Rv) in the treatment of periodontitis. The electronic databases, Web of Science (WOS), Medline/PubMed, The Cochrane Library, Scopus, and Saudi digital library (SDL), were searched for eligible studies in the field of periodontics. A thorough analysis of the retrieved literature provided five articles that were assessed and included in this systematic review. The quality of these studies was assessed by updated Essential Animal Research: Reporting of In-Vivo Experiments (ARRIVE) guidelines. The five included studies were published between 2005 and 2018 and investigated resolvins as a treatment approach in experimental periodontitis of animals. Among the study animals employed, New Zealand white rabbits were used in three studies, Wistar rats and Albino mice in two studies, respectively. Four studies have evaluated eicosapentaenoic acid-derived RvE1, and one study evaluated docosahexaenoic acid-derived RvD2. Oral-topical application of Rv was followed in four studies, and intra-peritoneal Rv injection was administered in one study. The study duration in these studies have ranged between 4-12 weeks, and the Rv dose was between 0.1 μg to 0.5 μg. One study evaluated the influence of RvE1 topical application on both the prevention and treatment of experimental periodontitis. Resolvins (RvE1 and RvD2) have been studied in periodontitis-induced animal models to assess their potential role in periodontal inflammation resolution. There are promising preclinical data of using resolvins as a treatment modality in experimental periodontitis. Resolvins have been demonstrated to inhibit the destructive inflammatory process and alveolar bone loss in laboratory-induced periodontitis under controlled experimental conditions.
Collapse
Affiliation(s)
- Nouf Alshibani
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, SAU
| |
Collapse
|
33
|
Kotlyarov S, Kotlyarova A. Anti-Inflammatory Function of Fatty Acids and Involvement of Their Metabolites in the Resolution of Inflammation in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:12803. [PMID: 34884621 PMCID: PMC8657960 DOI: 10.3390/ijms222312803] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism plays an important role in many lung functions. Disorders of lipid metabolism are part of the pathogenesis of chronic obstructive pulmonary disease (COPD). Lipids are involved in numerous cross-linkages with inflammation. Recent studies strongly support the involvement of fatty acids as participants in inflammation. They are involved in the initiation and resolution of inflammation, including acting as a substrate for the formation of lipid mediators of inflammation resolution. Specialized pro-inflammatory mediators (SPMs) belonging to the classes of lipoxins, resolvins, maresins, and protectins, which are formed enzymatically from unsaturated fatty acids, are now described. Disorders of their production and function are part of the pathogenesis of COPD. SPMs are currently the subject of active research in order to find new drugs. Short-chain fatty acids are another important participant in metabolic and immune processes, and their role in the pathogenesis of COPD is of great clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|