1
|
Thakur MR, Tupe RS. l-Arginine: A multifaceted regulator of diabetic cardiomyopathy. Biochem Biophys Res Commun 2025; 761:151720. [PMID: 40186920 DOI: 10.1016/j.bbrc.2025.151720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
In diabetes mellitus, dysregulated glucose and lipid metabolism lead to diabetic cardiomyopathy (DCM) by imparting pathological myocardial remodeling and cellular injury. Accelerated glycation, oxidative stress, and activated inflammatory pathways culminate in cardiac fibrosis and hypertrophy in DCM. The regulatory effects of l-Arginine (L-Arg) have been elucidated in the pathological changes of DCM, including myocardial fibrosis, hypertrophy, and apoptosis, by inhibiting glycation and oxidative stress-induced inflammation. Disturbed L-Arg metabolism and decreased intracellular L-Arg pool are correlated with the progression of DCM; therefore, L-Arg supplementation has been prescribed for various cardiovascular dysfunctions. This review expands the therapeutic potential of L-Arg supplementation in DCM by elucidating its molecular mechanism of action and exploring potential clinical outcomes.
Collapse
Affiliation(s)
- Muskan R Thakur
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
2
|
Pati P, De Miguel C, Paul JR, Zhang D, Colson J, Allan JM, Edell CJ, Rhoads MK, Dunaway LS, Biswal SN, Zhong Y, Sedaka R, Millender-Swain T, Bailey SM, Gamble KL, Pollock DM, Pollock JS. Time-restricted feeding reduces cardiovascular disease risk in obese mice. JCI Insight 2025; 10:e160257. [PMID: 39812779 PMCID: PMC11949066 DOI: 10.1172/jci.insight.160257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Disrupted feeding and fasting cycles as well as chronic high-fat diet-induced (HFD-induced) obesity are associated with cardiovascular disease risk factors. We designed studies that determined whether 2 weeks of time-restricted feeding (TRF) intervention in mice fed a chronic HFD would reduce cardiovascular disease risk factors. Mice were fed a normal diet (ND; 10% fat) ad libitum or HFD (45% fat) for 18 weeks ad libitum to establish diet-induced obesity. ND or HFD mice were continued on ad libitum diet or subjected to TRF (limiting food availability to 12 hours only during the dark phase) during the final 2 weeks of the feeding protocol. TRF improved whole-body metabolic diurnal rhythms without a change in body weight. HFD mice showed reduced blood pressure dipping compared with ND, which was restored by TRF. Further, TRF reduced aortic wall thickness, decreased aortic stiffness, as well as increased kidney tubular brush border integrity, decreased renal medullary fibrosis, and reduced renal medullary T cell inflammation in HFD mice. These findings indicate that TRF may be an effective intervention for improving vascular and kidney health in a model of established diet-induced obesity.
Collapse
Affiliation(s)
- Paramita Pati
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Carmen De Miguel
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Jodi R. Paul
- Division of Behavioral Neurobiology, Department of Psychiatry; and
| | - Dingguo Zhang
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Jackson Colson
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - John Miller Allan
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Claudia J. Edell
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Megan K. Rhoads
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Luke S. Dunaway
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Sara N. Biswal
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Yihan Zhong
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Randee Sedaka
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Telisha Millender-Swain
- Division of Molecular and Cellular Pathology, Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shannon M. Bailey
- Division of Molecular and Cellular Pathology, Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Karen L. Gamble
- Division of Behavioral Neurobiology, Department of Psychiatry; and
| | - David M. Pollock
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| | - Jennifer S. Pollock
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine
| |
Collapse
|
3
|
Xiao X, Li R, Cui B, Lv C, Zhang Y, Zheng J, Hui R, Wang Y. Liver ACSM3 deficiency mediates metabolic syndrome via a lauric acid-HNF4α-p38 MAPK axis. EMBO J 2024; 43:507-532. [PMID: 38191811 PMCID: PMC10897460 DOI: 10.1038/s44318-023-00020-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Metabolic syndrome combines major risk factors for cardiovascular disease, making deeper insight into its pathogenesis important. We here explore the mechanistic basis of metabolic syndrome by recruiting an essential patient cohort and performing extensive gene expression profiling. The mitochondrial fatty acid metabolism enzyme acyl-CoA synthetase medium-chain family member 3 (ACSM3) was identified to be significantly lower expressed in the peripheral blood of metabolic syndrome patients. In line, hepatic ACSM3 expression was decreased in mice with metabolic syndrome. Furthermore, Acsm3 knockout mice showed glucose and lipid metabolic abnormalities, and hepatic accumulation of the ACSM3 fatty acid substrate lauric acid. Acsm3 depletion markedly decreased mitochondrial function and stimulated signaling via the p38 MAPK pathway cascade. Consistently, Acsm3 knockout mouse exhibited abnormal mitochondrial morphology, decreased ATP contents, and enhanced ROS levels in their livers. Mechanistically, Acsm3 deficiency, and lauric acid accumulation activated nuclear receptor Hnf4α-p38 MAPK signaling. In line, the p38 inhibitor Adezmapimod effectively rescued the Acsm3 depletion phenotype. Together, these findings show that disease-associated loss of ACSM3 facilitates mitochondrial dysfunction via a lauric acid-HNF4a-p38 MAPK axis, suggesting a novel therapeutic vulnerability in systemic metabolic dysfunction.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruofei Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing Cui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Lv
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Zheng
- Rizhao Port Hospital, Shandong, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Engin A. Endothelial Dysfunction in Obesity and Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:489-538. [PMID: 39287863 DOI: 10.1007/978-3-031-63657-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Parallel to the increasing prevalence of obesity in the world, the mortality from cardiovascular disease has also increased. Low-grade chronic inflammation in obesity disrupts vascular homeostasis, and the dysregulation of adipocyte-derived endocrine and paracrine effects contributes to endothelial dysfunction. Besides the adipose tissue inflammation, decreased nitric oxide (NO)-bioavailability, insulin resistance (IR), and oxidized low-density lipoproteins (oxLDLs) are the main factors contributing to endothelial dysfunction in obesity and the development of cardiorenal metabolic syndrome. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in the profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Higher stiffness parameter β, increased oxidative stress, upregulation of pro-inflammatory cytokines, and nicotinamide adenine dinucleotide phosphate (NADP) oxidase in PVAT turn the macrophages into pro-atherogenic phenotypes by oxLDL-induced adipocyte-derived exosome-macrophage crosstalk and contribute to the endothelial dysfunction. In clinical practice, carotid ultrasound, higher leptin levels correlate with irisin over-secretion by human visceral and subcutaneous adipose tissues, and remnant cholesterol (RC) levels predict atherosclerotic disease in obesity. As a novel therapeutic strategy for cardiovascular protection, liraglutide improves vascular dysfunction by modulating a cyclic adenosine monophosphate (cAMP)-independent protein kinase A (PKA)-AMP-activated protein kinase (AMPK) pathway in PVAT in obese individuals. Because the renin-angiotensin-aldosterone system (RAAS) activity, hyperinsulinemia, and the resultant IR play key roles in the progression of cardiovascular disease in obesity, RAAS-targeted therapies contribute to improving endothelial dysfunction. By contrast, arginase reciprocally inhibits NO formation and promotes oxidative stress. Thus, targeting arginase activity as a key mediator in endothelial dysfunction has therapeutic potential in obesity-related vascular comorbidities. Obesity-related endothelial dysfunction plays a pivotal role in the progression of type 2 diabetes (T2D). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone (thiazolidinedione), is a popular drug for treating diabetes; however, it leads to increased cardiovascular risk. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin (EMPA) significantly improves endothelial dysfunction and mortality occurring through redox-dependent mechanisms. Although endothelial dysfunction and oxidative stress are alleviated by either metformin or EMPA, currently used drugs to treat obesity-related diabetes neither possess the same anti-inflammatory potential nor simultaneously target endothelial cell dysfunction and obesity equally. While therapeutic interventions with glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide or bariatric surgery reverse regenerative cell exhaustion, support vascular repair mechanisms, and improve cardiometabolic risk in individuals with T2D and obesity, the GLP-1 analog exendin-4 attenuates endothelial endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
5
|
Shen Y, Dong Z, Fan F, Li K, Zhu S, Dai R, Huang J, Xie N, He L, Gong Z, Yang X, Tan J, Liu L, Yu F, Tang Y, You Z, Xi J, Wang Y, Kong W, Zhang Y, Fu Y. Targeting cytokine-like protein FAM3D lowers blood pressure in hypertension. Cell Rep Med 2023:101072. [PMID: 37301198 DOI: 10.1016/j.xcrm.2023.101072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/08/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Current antihypertensive options still incompletely control blood pressure, suggesting the existence of uncovered pathogenic mechanisms. Here, whether cytokine-like protein family with sequence similarity 3, member D (FAM3D) is involved in hypertension etiology is evaluated. A case-control study exhibits that FAM3D is elevated in patients with hypertension, with a positive association with odds of hypertension. FAM3D deficiency significantly ameliorates angiotensin II (AngII)-induced hypertension in mice. Mechanistically, FAM3D directly causes endothelial nitric oxide synthase (eNOS) uncoupling and impairs endothelium-dependent vasorelaxation, whereas 2,4-diamino-6-hydroxypyrimidine to induce eNOS uncoupling abolishes the protective effect of FAM3D deficiency against AngII-induced hypertension. Furthermore, antagonism of formyl peptide receptor 1 (FPR1) and FPR2 or the suppression of oxidative stress blunts FAM3D-induced eNOS uncoupling. Translationally, targeting endothelial FAM3D by adeno-associated virus or intraperitoneal injection of FAM3D-neutralizing antibodies markedly ameliorates AngII- or deoxycorticosterone acetate (DOCA)-salt-induced hypertension. Conclusively, FAM3D causes eNOS uncoupling through FPR1- and FPR2-mediated oxidative stress, thereby exacerbating the development of hypertension. FAM3D may be a potential therapeutic target for hypertension.
Collapse
Affiliation(s)
- Yicong Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Zhigang Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Fangfang Fan
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Cardiology, Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China
| | - Kaiyin Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Cardiology, Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China
| | - Shirong Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Rongbo Dai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Nan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong 518057, China
| | - Li He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Ze Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Xueyuan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jiaai Tan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yida Tang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zhen You
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianzhong Xi
- Department of Biomedicine, College of Engineering, Peking University, Beijing 100871, China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
| | - Yan Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Cardiology, Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China.
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
| |
Collapse
|
6
|
Forzano I, Avvisato R, Varzideh F, Jankauskas SS, Cioppa A, Mone P, Salemme L, Kansakar U, Tesorio T, Trimarco V, Santulli G. L-Arginine in diabetes: clinical and preclinical evidence. Cardiovasc Diabetol 2023; 22:89. [PMID: 37072850 PMCID: PMC10114382 DOI: 10.1186/s12933-023-01827-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/06/2023] [Indexed: 04/20/2023] Open
Abstract
L-Arginine (L-Arg), is a semi-essential amino acid involved in the formation of nitric oxide. The functional relevance of L-Arg in diabetes mellitus has been evaluated both in animal models and in human subjects. In the literature there are several lines of evidence indicating that L-Arg has beneficial effects in diabetes and numerous studies advocate its administration to attenuate glucose intolerance in diabetic patients. Here we present a comprehensive overview of the main studies exploring the effects of L-Arg in diabetes, including preclinical and clinical reports on this topic.
Collapse
Affiliation(s)
- Imma Forzano
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
| | - Roberta Avvisato
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
| | - Stanislovas S Jankauskas
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
| | - Angelo Cioppa
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
- Montevergine Clinic, Mercogliano (AV), Italy
| | - Pasquale Mone
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
| | | | - Urna Kansakar
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
| | | | - Valentina Trimarco
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
- Department of Neuroscience, Reproductive Sciences and Dentistry, "Federico II" University, Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA.
- Department of Molecular Pharmacology, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
mTOR contributes to endothelium-dependent vasorelaxation by promoting eNOS expression and preventing eNOS uncoupling. Commun Biol 2022; 5:726. [PMID: 35869262 PMCID: PMC9307829 DOI: 10.1038/s42003-022-03653-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
Clinically used inhibitors of mammalian target of rapamycin (mTOR) negatively impacts endothelial-dependent vasodilatation (EDD) through unidentified mechanisms. Here we show that either the endothelium-specific deletion of Mtor to inhibit both mTOR complexes, or depletion of Raptor or Rictor to disrupt mTORC1 or mTORC2, causes impaired EDD, accompanied by reduced NO in the serum of mice. Consistently, inhibition of mTOR decreases NO production by human and mouse EC. Specifically, inhibition of mTORC1 suppresses eNOS gene expression, due to impairment in p70S6K-mediated posttranscriptional regulation of the transcription factor KLF2 expression. In contrast to mTORC1 inhibition, a positive-feedback between MAPK (p38 and JNK) activation and Nox2 upregulation contributes to the excessive generation of reactive oxygen species (ROS), which causes eNOS uncoupling and decreased NO bioavailability in mTORC2-inhibited EC. Adeno-associated virus-mediated EC-specific overexpression of KLF2 or suppression of Nox2 restores EDD function in endothelial mTORC1- or mTORC2-inhibited mice. The endothelium-specific inhibition of either of mammalian target of rapamycin (mTOR) complexes impairs endothelial-dependent vasodilatation (EDD), accompanied by decreased nitric oxide bioavailability in both human and mice endothelial cells.
Collapse
|
8
|
Ren Y, Li Z, Li W, Fan X, Han F, Huang Y, Yu Y, Qian L, Xiong Y. Arginase: Biological and Therapeutic Implications in Diabetes Mellitus and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2419412. [PMID: 36338341 PMCID: PMC9629921 DOI: 10.1155/2022/2419412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 09/21/2023]
Abstract
Arginase is a ubiquitous enzyme in the urea cycle (UC) that hydrolyzes L-arginine to urea and L-ornithine. Two mammalian arginase isoforms, arginase1 (ARG1) and arginase2 (ARG2), play a vital role in the regulation of β-cell functions, insulin resistance (IR), and vascular complications via modulating L-arginine metabolism, nitric oxide (NO) production, and inflammatory responses as well as oxidative stress. Basic and clinical studies reveal that abnormal alterations of arginase expression and activity are strongly associated with the onset and development of diabetes mellitus (DM) and its complications. As a result, targeting arginase may be a novel and promising approach for DM treatment. An increasing number of arginase inhibitors, including chemical and natural inhibitors, have been developed and shown to protect against the development of DM and its complications. In this review, we discuss the fundamental features of arginase. Next, the regulatory roles and underlying mechanisms of arginase in the pathogenesis and progression of DM and its complications are explored. Furthermore, we review the development and discuss the challenges of arginase inhibitors in treating DM and its related pathologies.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Zhuozhuo Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Wenqing Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Feifei Han
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Yaoyao Huang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yi Yu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Endothelial Nitric Oxide Synthase in the Perivascular Adipose Tissue. Biomedicines 2022; 10:biomedicines10071754. [PMID: 35885059 PMCID: PMC9313312 DOI: 10.3390/biomedicines10071754] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/08/2023] Open
Abstract
Perivascular adipose tissue (PVAT) is a special type of ectopic fat depot that adheres to most vasculatures. PVAT has been shown to exert anticontractile effects on the blood vessels and confers protective effects against metabolic and cardiovascular diseases. PVAT plays a critical role in vascular homeostasis via secreting adipokine, hormones, and growth factors. Endothelial nitric oxide synthase (eNOS; also known as NOS3 or NOSIII) is well-known for its role in the generation of vasoprotective nitric oxide (NO). eNOS is primarily expressed, but not exclusively, in endothelial cells, while recent studies have identified its expression in both adipocytes and endothelial cells of PVAT. PVAT eNOS is an important player in the protective role of PVAT. Different studies have demonstrated that, under obesity-linked metabolic diseases, PVAT eNOS may be even more important than endothelium eNOS in obesity-induced vascular dysfunction, which may be attributed to certain PVAT eNOS-specific functions. In this review, we summarized the current understanding of eNOS expression in PVAT, its function under both physiological and pathological conditions and listed out a few pharmacological interventions of interest that target eNOS in PVAT.
Collapse
|
10
|
Niu F, Yu Y, Li Z, Ren Y, Li Z, Ye Q, Liu P, Ji C, Qian L, Xiong Y. Arginase: An emerging and promising therapeutic target for cancer treatment. Biomed Pharmacother 2022; 149:112840. [PMID: 35316752 DOI: 10.1016/j.biopha.2022.112840] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 11/19/2022] Open
Abstract
Arginase is a key hydrolase in the urea cycle that hydrolyses L-arginine to urea and L-ornithine. Increasing number of studies in recent years demonstrate that two mammalian arginase isoforms, arginase 1 (ARG1) and arginase 2 (ARG2), were aberrantly upregulated in various types of cancers, and played crucial roles in the regulation of tumor growth and metastasis through various mechanisms such as regulating L-arginine metabolism, influencing tumor immune microenvironment, etc. Thus, arginase receives increasing focus as an attractive target for cancer therapy. In this review, we provide a comprehensive overview of the physiological and biological roles of arginase in a variety of cancers, and shed light on the underlying mechanisms of arginase mediating cancer cells growth and development, as well as summarize the recent clinical research advances of targeting arginase for cancer therapy.
Collapse
Affiliation(s)
- Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Zi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Qiang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Ping Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China; Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an 710018, Shaanxi, China
| | - Chenshuang Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China; Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an 710018, Shaanxi, China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Dunn S, Hilgers RH, Das KC. Thioredoxin deficiency exacerbates vascular dysfunction during diet-induced obesity in small mesenteric artery in mice. Microcirculation 2020; 28:e12674. [PMID: 33316843 DOI: 10.1111/micc.12674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/07/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Thioredoxin (Trx) is a small cellular redox protein with established antioxidant and disulfide reductase properties. We hypothesized that Trx deficiency in mice would cause increased oxidative stress with consequent redox imbalance that would exacerbate obesity-induced vascular dysfunction. METHODS Non-transgenic (NT, C57BL/6) and dominant-negative Trx (dnTrx-Tg, low levels of redox-active protein) mice were either fed a normal diet (NC) or high fat diet plus sucrose (HFS) diet for 4 months (3-month HFD+ 1-month HFS). Weight gain, glucose tolerance test (GTT), insulin tolerance test (ITT), and other metabolic parameters were performed following NC or HFS diet. Arterial structural remodeling and functional parameters were assessed by myography. RESULTS Our study found that dnTrx mice with lower levels of active Trx exacerbated myogenic tone, inward arterial remodeling, arterial stiffening, phenylephrine-induced contraction, and endothelial dysfunction of MA. Additionally, FeTMPyP, a peroxynitrite decomposition catalyst, acutely decreased myogenic tone and contraction and normalized endothelial function in MA from dnTrx-Tg mice on HFS via increasing nitric oxide (NO)-mediated relaxation. CONCLUSIONS Our results indicate that deficiency of active Trx exacerbates MA contractile and relaxing properties during diet-induced obesity demonstrating that loss of redox balance in obesity is a key mechanism of vascular endothelial dysfunction.
Collapse
Affiliation(s)
- Shannon Dunn
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert H Hilgers
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kumuda C Das
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
12
|
Huang J, Liu C, Ming XF, Yang Z. Inhibition of p38mapk Reduces Adipose Tissue Inflammation in Aging Mediated by Arginase-II. Pharmacology 2020; 105:491-504. [PMID: 32454488 DOI: 10.1159/000507635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/29/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Adipose tissue inflammation occurs not only in obesity but also in aging and is mechanistically linked with age-associated diseases. Studies show that ablation of the l-arginine-metabolizing enzyme arginase-II (Arg-II) reduces adipose tissue inflammation and improves glucose tolerance in obesity. However, the role of Arg-II in aging adipose tissue inflammation is not clear. OBJECTIVE This study investigated the role of Arg-II in age-associated adipose tissue inflammation. METHODS Visceral adipose tissues of young (3-6 months) and old (20-24 months) wild-type (WT) and Arg-II-/- mice were investigated. Immunofluorescence confocal microscopy was performed for analysis of macrophage accumulation and cellular localization of arginase and cytokines; expression of arginase and cytokines was analyzed by qRT-PCR or immunoblotting or ELISA; activation of mitogen-activated protein kinases in adipose tissues was analyzed by immunoblotting; and arginase activity was measured by colorimetric determination of urea production. RESULTS In the old WT mice, there is more macrophage accumulation in the visceral adipose tissues than in Arg-II knockout animals. An age-associated increase in arginase activity and Arg-II expression in adipose tissues of WT mice is observed. Arg-II knockout enhances Arg-I expression and activity, but inhibits interleukin (IL)-6 expression and secretion and reduces active p38mapk in aging adipose tissue macrophages and stromal cells. Treatment of aging adipose tissues of WT mice with a specific p38mapk inhibitor SB203580 reduces IL-6 secretion. CONCLUSIONS Arg-II promotes IL-6 production in aging adipose tissues through p38mapk. The results suggest that targeting Arg-II or inhibiting p38mapk could be beneficial in reducing age-associated adipose tissue inflammation.
Collapse
Affiliation(s)
- Ji Huang
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Chang Liu
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Xiu-Fen Ming
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Zhihong Yang
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland, .,National Center of Competence in Research "Kidney.CH", Zurich, Switzerland,
| |
Collapse
|
13
|
Koo BH, Won MH, Kim YM, Ryoo S. p32-Dependent p38 MAPK Activation by Arginase II Downregulation Contributes to Endothelial Nitric Oxide Synthase Activation in HUVECs. Cells 2020; 9:cells9020392. [PMID: 32046324 PMCID: PMC7072651 DOI: 10.3390/cells9020392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/26/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022] Open
Abstract
Arginase II reciprocally regulates endothelial nitric oxide synthase (eNOS) through a p32-dependent Ca2+ control. We investigated the signaling pathway of arginase II-dependent eNOS phosphorylation. Western blot analysis was applied for examining protein activation and [Ca2+]c was analyzed by microscopic and FACS analyses. Nitric oxide (NO) and reactive oxygen species (ROS) productions were measured using specific fluorescent dyes under microscopy. NO signaling pathway was tested by measuring vascular tension. Following arginase II downregulation by chemical inhibition or gene knockout (KO, ArgII−/−), increased eNOS phosphorylation at Ser1177 and decreased phosphorylation at Thr495 was depend on p38 MAPK activation, which induced by CaMKII activation through p32-dependent increase in [Ca2+]c. The protein amount of p32 negatively regulated p38 MAPK activation. p38 MAPK contributed to Akt-induced eNOS phosphorylation at Ser1177 that resulted in accelerated NO production and reduced reactive oxygen species production in aortic endothelia. In vascular tension assay, p38 MAPK inhibitor decreased acetylcholine-induced vasorelaxation responses and increased phenylephrine-dependent vasoconstrictive responses. In ApoE−/− mice fed a high cholesterol diet, arginase II inhibition restored p32/CaMKII/p38 MAPK/Akt/eNOS signaling cascade that was attenuated by p38 MAPK inhibition. Here, we demonstrated a novel signaling pathway contributing to understanding of the relationship between arginase II, endothelial dysfunction, and atherogenesis.
Collapse
Affiliation(s)
- Bon-Hyeock Koo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Sungwoo Ryoo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
- Correspondence: ; Tel.: +82-33-250-8534; Fax: +82-33-251-3990
| |
Collapse
|
14
|
Zhang Z, Xie X, Yao Q, Liu J, Tian Y, Yang C, Xiao L, Wang N. PPARδ agonist prevents endothelial dysfunction via induction of dihydrofolate reductase gene and activation of tetrahydrobiopterin salvage pathway. Br J Pharmacol 2019; 176:2945-2961. [PMID: 31144304 PMCID: PMC6637045 DOI: 10.1111/bph.14745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Impaired endothelium-dependent relaxation (EDR) is a hallmark of endothelial dysfunction. A deficiency of tetrahydrobiopterin (BH4 ) causes endothelial NOS to produce ROS rather than NO. PPARδ is an emerging target for pharmacological intervention of endothelial dysfunction. Thus, the present study examined the role of PPARδ in the regulation of dihydrofolate reductase (DHFR), a key enzyme in the BH4 salvage pathway. EXPERIMENTAL APPROACH Gene expression was measured by using qRT-PCR and western blotting. Biopterins and ROS were determined by using HPLC. NO was measured with fluorescent dye and electron paramagnetic resonance spectroscopy. Vasorelaxation was measured by Multi Myograph System. KEY RESULTS The PPARδ agonist GW501516 increased DHFR and BH4 levels in endothelial cells (ECs). The effect was blocked by PPARδ antagonist GSK0660. Chromatin immunoprecipitation identified PPAR-responsive elements within the 5'-flanking region of the human DHFR gene. The promoter activity was examined with luciferase assays using deletion reporters. Importantly, DHFR expression was suppressed by palmitic acid (PA, a saturated fatty acid) but increased by docosahexaenoic acid (DHA, a polyunsaturated fatty acid). GSK0660 prevented DHA-induced increased DHFR expression. Conversely, the suppressive effect of PA was mitigated by GW501516. In mouse aortae, GW501516 ameliorated the PA-impaired EDR. However, this vasoprotective effect was attenuated by DHFR siRNA or methotrexate. In EC-specific Ppard knockout mice, GW501516 failed to improve vasorelaxation. CONCLUSION AND IMPLICATIONS PPARδ prevented endothelial dysfunction by increasing DHFR and activating the BH4 salvage pathway. These results provide a novel mechanism for the protective roles of PPARδ against vascular diseases.
Collapse
Affiliation(s)
- Zihui Zhang
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Xinya Xie
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Qinyu Yao
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Jia Liu
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Ying Tian
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Chunmiao Yang
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Lei Xiao
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Nanping Wang
- The Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| |
Collapse
|
15
|
Koch SR, Choi H, Mace EH, Stark RJ. Toll-like receptor 3-mediated inflammation by p38 is enhanced by endothelial nitric oxide synthase knockdown. Cell Commun Signal 2019; 17:33. [PMID: 30987646 PMCID: PMC6466662 DOI: 10.1186/s12964-019-0345-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/21/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Vascular dysfunction is commonly seen during severe viral infections. Endothelial nitric oxide synthase (eNOS), has been postulated to play an important role in regulating vascular homeostasis as well as propagation of the inflammatory reaction. We hypothesized that the loss of eNOS would negatively impact toll-like receptor 3 (TLR3) signaling and worsen vascular function to viral challenge. METHODS Human microvascular endothelial cells (HMVECs) were exposed to either control or eNOS siRNA and then treated with Poly I:C, a TLR3 agonist and mimicker of dsRNA viruses. Cells were assessed for protein-protein associations, cytokine and chemokine analysis as well as transendothelial electrical resistance (TEER) as a surrogate of permeability. RESULTS HMVECs that had reduced eNOS expression had a significantly elevated increase in IL-6, IL-8 and IP-10 production after Poly I:C. In addition, the knockdown of eNOS enhanced the change in TEER after Poly I:C stimulation. Western blot analysis showed enhanced phosphorylation of p38 in sieNOS treated cells with Poly I:C compared to siControl cells. Proximity ligation assays further demonstrated direct eNOS-p38 protein-protein interactions. The addition of the p38 inhibitor, SB203580, in eNOS knockdown cells reduced both cytokine production after Poly I:C, and as well as mitigated the reduction in TEER, suggesting a direct link between eNOS and p38 in TLR3 signaling. CONCLUSIONS These results suggest that reduction of eNOS increases TLR3-mediated inflammation in human endothelial cells in a p38-dependent manner. This finding has important implications for understanding the pathogenesis of severe viral infections and the associated vascular dysfunction.
Collapse
Affiliation(s)
- Stephen R Koch
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, 5121 Doctors' Office Tower, Nashville, TN, 37232-9075, USA
| | - Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, 5121 Doctors' Office Tower, Nashville, TN, 37232-9075, USA
| | - Eric H Mace
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, 5121 Doctors' Office Tower, Nashville, TN, 37232-9075, USA.
| |
Collapse
|
16
|
Role of Arginase 2 in Systemic Metabolic Activity and Adipose Tissue Fatty Acid Metabolism in Diet-Induced Obese Mice. Int J Mol Sci 2019; 20:ijms20061462. [PMID: 30909461 PMCID: PMC6472154 DOI: 10.3390/ijms20061462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022] Open
Abstract
Visceral adipose tissue (VAT) inflammation and metabolic dysregulation are key components of obesity-induced metabolic disease. Upregulated arginase, a ureahydrolase enzyme with two isoforms (A1-cytosolic and A2-mitochondrial), is implicated in pathologies associated with obesity and diabetes. This study examined A2 involvement in obesity-associated metabolic and vascular disorders. WT and globally deleted A2(−/−) or A1(+/−) mice were fed either a high fat/high sucrose (HFHS) diet or normal diet (ND) for 16 weeks. Increases in body and VAT weight of HFHS-fed WT mice were abrogated in A2−/−, but not A1+/−, mice. Additionally, A2−/− HFHS-fed mice exhibited higher energy expenditure, lower blood glucose, and insulin levels compared to WT HFHS mice. VAT and adipocytes from WT HFHS fed mice showed greater A2 expression and adipocyte size and reduced expression of PGC-1α, PPAR-γ, and adiponectin. A2 deletion blunted these effects, increased levels of active AMPK-α, and upregulated genes involved in fatty acid metabolism. A2 deletion prevented HFHS-induced VAT collagen deposition and inflammation, which are involved in adipocyte metabolic dysfunction. Endothelium-dependent vasorelaxation, impaired by HFHS diet, was significantly preserved in A2−/− mice, but more prominently maintained in A1+/− mice. In summary, A2 is critically involved in HFHS-induced VAT inflammation and metabolic dysfunction.
Collapse
|
17
|
Atawia RT, Bunch KL, Toque HA, Caldwell RB, Caldwell RW. Mechanisms of obesity-induced metabolic and vascular dysfunctions. FRONT BIOSCI-LANDMRK 2019; 24:890-934. [PMID: 30844720 PMCID: PMC6689231 DOI: 10.2741/4758] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity has reached epidemic proportions and its prevalence is climbing. Obesity is characterized by hypertrophied adipocytes with a dysregulated adipokine secretion profile, increased recruitment of inflammatory cells, and impaired metabolic homeostasis that eventually results in the development of systemic insulin resistance, a phenotype of type 2 diabetes. Nitric oxide synthase (NOS) is an enzyme that converts L-arginine to nitric oxide (NO), which functions to maintain vascular and adipocyte homeostasis. Arginase is a ureohydrolase enzyme that competes with NOS for L-arginine. Arginase activity/expression is upregulated in obesity, which results in diminished bioavailability of NO, impairing both adipocyte and vascular endothelial cell function. Given the emerging role of NO in the regulation of adipocyte physiology and metabolic capacity, this review explores the interplay between arginase and NO, and their effect on the development of metabolic disorders, cardiovascular diseases, and mitochondrial dysfunction in obesity. A comprehensive understanding of the mechanisms involved in the development of obesity-induced metabolic and vascular dysfunction is necessary for the identification of more effective and tailored therapeutic avenues for their prevention and treatment.
Collapse
Affiliation(s)
- Reem T Atawia
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Katharine L Bunch
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Haroldo A Toque
- Department of Pharmacology and Toxicology,and Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Robert W Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904,USA,
| |
Collapse
|
18
|
Moretto J, Girard C, Demougeot C. The role of arginase in aging: A systematic review. Exp Gerontol 2019; 116:54-73. [DOI: 10.1016/j.exger.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
|
19
|
Tang H, Deng S, Cai JG, Ma XN, Liu M, Zhou L. Muscle-derived IL-6 improved insulin resistance of C2C12 cells through activating AMPK and inhibiting p38MAPK signal pathway in vitro. Int J Diabetes Dev Ctries 2018. [DOI: 10.1007/s13410-018-0680-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
20
|
van den Berg MP, Meurs H, Gosens R. Targeting arginase and nitric oxide metabolism in chronic airway diseases and their co-morbidities. Curr Opin Pharmacol 2018; 40:126-133. [PMID: 29729549 DOI: 10.1016/j.coph.2018.04.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/22/2023]
Abstract
In the airways, arginase and NOS compete for the common substrate l-arginine. In chronic airway diseases, such as asthma and COPD, elevated arginase expression contributes to airway contractility, hyperresponsiveness, inflammation and remodeling. The disrupted l-arginine homeostasis, through changes in arginase and NOS expression and activity, does not only play a central role in the development of various airways diseases such as asthma or COPD. It possibly also affects l-arginine homeostasis throughout the body contributing to the emergence of co-morbidities. This review focusses on the role of arginase, NOS and ADMA in co-morbidities of asthma and COPD and speculates on their possible connection.
Collapse
Affiliation(s)
- Mariska Pm van den Berg
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1 (XB10), 9713 AV Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1 (XB10), 9713 AV Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1 (XB10), 9713 AV Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
21
|
Grandl G, Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin Immunopathol 2018; 40:215-224. [PMID: 29209827 PMCID: PMC5809518 DOI: 10.1007/s00281-017-0666-5] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 12/23/2022]
Abstract
Obesity and the metabolic syndrome (MS) are two of the pressing healthcare problems of our time. The MS is defined as increased abdominal obesity in concert with elevated fasting glucose levels, insulin resistance, elevated blood pressure, and plasma lipids. It is a key risk factor for type 2 diabetes mellitus (T2DM) and for cardiovascular complications and mortality. Here, we review work demonstrating that various aspects of coagulation and hemostasis, as well as vascular reactivity and function, become impaired progressively during chronic ingestion of a western diet, but also acutely after meals. We outline that both T2DM and cardiovascular disease should be viewed as inflammatory diseases and describe that chronic overload of free fatty acids and glucose can trigger inflammatory pathways directly or via increased production of ROS. We propose that since endothelial stress and increases in platelet activity precede inflammation and overt symptoms of the MS, they are likely the first hit. This suggests that endothelial activation and insulin resistance are probably causative in the observed chronic low-level metabolic inflammation, and thus both metabolic and cardiovascular complications linked to consumption of a western diet.
Collapse
Affiliation(s)
- Gerald Grandl
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Parkring 13, D-85748, Garching, Germany.
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
22
|
Bhatta A, Yao L, Xu Z, Toque HA, Chen J, Atawia RT, Fouda AY, Bagi Z, Lucas R, Caldwell RB, Caldwell RW. Obesity-induced vascular dysfunction and arterial stiffening requires endothelial cell arginase 1. Cardiovasc Res 2017; 113:1664-1676. [PMID: 29048462 PMCID: PMC6410953 DOI: 10.1093/cvr/cvx164] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 03/16/2017] [Accepted: 08/09/2017] [Indexed: 02/04/2023] Open
Abstract
AIMS Elevation of arginase activity has been linked to vascular dysfunction in diabetes and hypertension by a mechanism involving decreased nitric oxide (NO) bioavailability due to L-arginine depletion. Excessive arginase activity also can drive L-arginine metabolism towards the production of ornithine, polyamines, and proline, promoting proliferation of vascular smooth muscle cells and collagen formation, leading to perivascular fibrosis. We hypothesized that there is a specific involvement of arginase 1 expression within the vascular endothelial cells in this pathology. METHODS AND RESULTS To test this proposition, we used models of type 2 diabetes and metabolic syndrome. Studies were performed using wild type (WT), endothelial-specific arginase 1 knockout (EC-A1-/-) and littermate controls(A1con) mice fed high fat-high sucrose (HFHS) or normal diet (ND) for 6 months and isolated vessels exposed to palmitate-high glucose (PA/HG) media. Some WT mice or isolated vessels were treated with an arginase inhibitor, ABH [2-(S)-amino-6-boronohexanoic acid. In WT mice, the HFHS diet promoted increases in body weight, fasting blood glucose, and post-prandial insulin levels along with arterial stiffening and fibrosis, elevated blood pressure, decreased plasma levels of L-arginine, and elevated L-ornithine. The HFHS diet or PA/HG treatment also induced increases in vascular arginase activity along with oxidative stress, reduced vascular NO levels, and impaired endothelial-dependent vasorelaxation. All of these effects except obesity and hypercholesterolemia were prevented or significantly reduced by endothelial-specific deletion of arginase 1 or ABH treatment. CONCLUSION Vascular dysfunctions in diet-induced obesity are prevented by deletion of arginase 1 in vascular endothelial cells or arginase inhibition. These findings indicate that upregulation of arginase 1 expression/activity in vascular endothelial cells has an integral role in diet-induced cardiovascular dysfunction and metabolic syndrome.
Collapse
MESH Headings
- Animals
- Arginase/antagonists & inhibitors
- Arginase/genetics
- Arginase/metabolism
- Arginine/blood
- Blood Glucose/metabolism
- Blood Pressure
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Experimental/prevention & control
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/physiopathology
- Diabetes Mellitus, Type 2/prevention & control
- Diet, High-Fat
- Dietary Sucrose
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/pharmacology
- Fibrosis
- Genetic Predisposition to Disease
- Insulin/blood
- Male
- Metabolic Syndrome/enzymology
- Metabolic Syndrome/genetics
- Metabolic Syndrome/physiopathology
- Metabolic Syndrome/prevention & control
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide/metabolism
- Obesity/drug therapy
- Obesity/enzymology
- Obesity/genetics
- Obesity/physiopathology
- Ornithine/blood
- Oxidative Stress
- Phenotype
- Signal Transduction
- Vascular Diseases/enzymology
- Vascular Diseases/genetics
- Vascular Diseases/physiopathology
- Vascular Diseases/prevention & control
- Vascular Stiffness/drug effects
- Vasodilation
Collapse
Affiliation(s)
- Anil Bhatta
- Department of Pharmacology and Toxicology, Medical College of Georgia,
Augusta University, Augusta, GA 30912, USA
| | - Lin Yao
- Department of Pharmacology and Toxicology, Medical College of Georgia,
Augusta University, Augusta, GA 30912, USA
- School of Pharmaceutical Sciences, South China Research Centre for
Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR
China
| | - Zhimin Xu
- Vascular Biology Centre, Medical College of Georgia, Augusta University,
Augusta, GA 30912, USA
| | - Haroldo A. Toque
- Department of Pharmacology and Toxicology, Medical College of Georgia,
Augusta University, Augusta, GA 30912, USA
| | - Jijun Chen
- Department of Pharmacology and Toxicology, Medical College of Georgia,
Augusta University, Augusta, GA 30912, USA
| | - Reem T. Atawia
- Department of Pharmacology and Toxicology, Medical College of Georgia,
Augusta University, Augusta, GA 30912, USA
| | - Abdelrahman Y. Fouda
- Department of Pharmacology and Toxicology, Medical College of Georgia,
Augusta University, Augusta, GA 30912, USA
- Vascular Biology Centre, Medical College of Georgia, Augusta University,
Augusta, GA 30912, USA
| | - Zsolt Bagi
- Vascular Biology Centre, Medical College of Georgia, Augusta University,
Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University,
Augusta, GA 30912, USA
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Medical College of Georgia,
Augusta University, Augusta, GA 30912, USA
- Vascular Biology Centre, Medical College of Georgia, Augusta University,
Augusta, GA 30912, USA
| | - Ruth B. Caldwell
- Vascular Biology Centre, Medical College of Georgia, Augusta University,
Augusta, GA 30912, USA
- Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta
University, Augusta, GA 30912, USA
- Veterans Administration Medical Centre, Augusta, GA 30912, USA
| | - Robert W. Caldwell
- Department of Pharmacology and Toxicology, Medical College of Georgia,
Augusta University, Augusta, GA 30912, USA
- Vascular Biology Centre, Medical College of Georgia, Augusta University,
Augusta, GA 30912, USA
| |
Collapse
|
23
|
Nickless A, Cheruiyot A, Flanagan KC, Piwnica-Worms D, Stewart SA, You Z. p38 MAPK inhibits nonsense-mediated RNA decay in response to persistent DNA damage in noncycling cells. J Biol Chem 2017; 292:15266-15276. [PMID: 28765281 DOI: 10.1074/jbc.m117.787846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/01/2017] [Indexed: 12/31/2022] Open
Abstract
Persistent DNA damage induces profound alterations in gene expression that, in turn, influence tissue homeostasis, tumorigenesis, and cancer treatment outcome. However, the underlying mechanism for gene expression reprogramming induced by persistent DNA damage remains poorly understood. Here, using a highly effective bioluminescence-based reporter system and other tools, we report that persistent DNA damage inhibits nonsense-mediated RNA decay (NMD), an RNA surveillance and gene-regulatory pathway, in noncycling cells. NMD suppression by persistent DNA damage required the activity of the p38α MAPK. Activating transcription factor 3 (ATF3), an NMD target and a key stress-inducible transcription factor, was stabilized in a p38α- and NMD-dependent manner following persistent DNA damage. Our results reveal a novel p38α-dependent pathway that regulates NMD activity in response to persistent DNA damage, which, in turn, controls ATF3 expression in affected cells.
Collapse
Affiliation(s)
- Andrew Nickless
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Abigael Cheruiyot
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Kevin C Flanagan
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - David Piwnica-Worms
- the Department of Cancer Systems Imaging, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Sheila A Stewart
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Zhongsheng You
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| |
Collapse
|
24
|
Xiong Y, Yepuri G, Necetin S, Montani JP, Ming XF, Yang Z. Arginase-II Promotes Tumor Necrosis Factor-α Release From Pancreatic Acinar Cells Causing β-Cell Apoptosis in Aging. Diabetes 2017; 66:1636-1649. [PMID: 28356309 DOI: 10.2337/db16-1190] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/21/2017] [Indexed: 11/13/2022]
Abstract
Aging is associated with glucose intolerance. Arginase-II (Arg-II), the type-II L-arginine-ureahydrolase, is highly expressed in pancreas. However, its role in regulation of pancreatic β-cell function is not known. Here we show that female (not male) mice deficient in Arg-II (Arg-II-/-) are protected from age-associated glucose intolerance and reveal greater glucose induced-insulin release, larger islet size and β-cell mass, and more proliferative and less apoptotic β-cells compared with the age-matched wild-type (WT) controls. Moreover, Arg-II is mainly expressed in acinar cells and is upregulated with aging, which enhances p38 mitogen-activated protein kinase (p38 MAPK) activation and release of tumor necrosis factor-α (TNF-α). Accordingly, conditioned medium of isolated acinar cells from old WT (not Arg-II-/-) mice contains higher TNF-α levels than the young mice and stimulates β-cell apoptosis and dysfunction, which are prevented by a neutralizing anti-TNF-α antibody. In acinar cells, our study demonstrates an age-associated Arg-II upregulation, which promotes TNF-α release through p38 MAPK leading to β-cell apoptosis, insufficient insulin secretion, and glucose intolerance in female rather than male mice.
Collapse
Affiliation(s)
- Yuyan Xiong
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
- Kidney Control of Homeostasis, Swiss National Centre of Competence in Research, Zurich, Switzerland
| | - Gautham Yepuri
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
| | - Sevil Necetin
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
| | - Jean-Pierre Montani
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
- Kidney Control of Homeostasis, Swiss National Centre of Competence in Research, Zurich, Switzerland
| | - Xiu-Fen Ming
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
- Kidney Control of Homeostasis, Swiss National Centre of Competence in Research, Zurich, Switzerland
| | - Zhihong Yang
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
- Kidney Control of Homeostasis, Swiss National Centre of Competence in Research, Zurich, Switzerland
| |
Collapse
|
25
|
Jankovic A, Korac A, Buzadzic B, Stancic A, Otasevic V, Ferdinandy P, Daiber A, Korac B. Targeting the NO/superoxide ratio in adipose tissue: relevance to obesity and diabetes management. Br J Pharmacol 2017; 174:1570-1590. [PMID: 27079449 PMCID: PMC5446578 DOI: 10.1111/bph.13498] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
Insulin sensitivity and metabolic homeostasis depend on the capacity of adipose tissue to take up and utilize excess glucose and fatty acids. The key aspects that determine the fuel-buffering capacity of adipose tissue depend on the physiological levels of the small redox molecule, nitric oxide (NO). In addition to impairment of NO synthesis, excessive formation of the superoxide anion (О2•- ) in adipose tissue may be an important interfering factor diverting the signalling of NO and other reactive oxygen and nitrogen species in obesity, resulting in metabolic dysfunction of adipose tissue over time. Besides its role in relief from superoxide burst, enhanced NO signalling may be responsible for the therapeutic benefits of different superoxide dismutase mimetics, in obesity and experimental diabetes models. This review summarizes the role of NO in adipose tissue and highlights the effects of NO/О2•- ratio 'teetering' as a promising pharmacological target in the metabolic syndrome. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Aleksandra Korac
- Faculty of Biology, Center for Electron MicroscopyUniversity of BelgradeBelgradeSerbia
| | - Biljana Buzadzic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Ana Stancic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Vesna Otasevic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Péter Ferdinandy
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- Pharmahungary GroupSzegedHungary
| | - Andreas Daiber
- Center for Cardiology ‐ Cardiology 1, Molecular CardiologyUniversity Medical CenterMainzGermany
| | - Bato Korac
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| |
Collapse
|
26
|
Nishikai-Yan Shen T, Kanazawa S, Kado M, Okada K, Luo L, Hayashi A, Mizuno H, Tanaka R. Interleukin-6 stimulates Akt and p38 MAPK phosphorylation and fibroblast migration in non-diabetic but not diabetic mice. PLoS One 2017; 12:e0178232. [PMID: 28542434 PMCID: PMC5441644 DOI: 10.1371/journal.pone.0178232] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
Persistent inflammatory environment and abnormal macrophage activation are characteristics of chronic diabetic wounds. Here, we attempted to characterize the differences in macrophage activation and temporal variations in cytokine expression in diabetic and non-diabetic wounds, with a focus on interleukin (IL)-6 mRNA expression and the p38 MAPK and PI3K/Akt signaling pathways. Cutaneous wound closure, CD68- and arginase-1 (Arg-1)-expressing macrophages, and cytokine mRNA expression were examined in non-diabetic and streptozotocin-induced type 1 diabetic mice at different time points after injury. The effect of IL-6 on p38 MAPK and Akt phosphorylation was investigated, and an in vitro scratch assay was performed to determine the role of IL-6 in primary skin fibroblast migration. Before injury, mRNA expression levels of the inflammatory markers iNOS, IL-6, and TNF-α were higher in diabetic mice; however, IL-6 expression was significantly lower 6 h post injury in diabetic wounds than that in non-diabetic wounds. Non-diabetic wounds exhibited increased p38 MAPK and Akt phosphorylation; however, no such increase was found in diabetic wounds. In fibroblasts from non-diabetic mice, IL-6 increased the phosphorylation of p38 MAPK and levels of its downstream factor CREB, and also significantly increased Akt phosphorylation and levels of its upstream factor P13K. These effects of IL-6 were not detected in fibroblasts derived from the diabetic mice. In scratch assays, IL-6 stimulated the migration of primary cultured skin fibroblasts from the non-diabetic mice, and the inhibition of p38 MAPK was found to markedly suppress IL-6–stimulated fibroblast migration. These findings underscore the critical differences between diabetic and non-diabetic wounds in terms of macrophage activation, cytokine mRNA expression profile, and involvement of the IL-6-stimulated p38 MAPK–Akt signaling pathway. Aberrant macrophage activation and abnormalities in the cytokine mRNA expression profile during different phases of wound healing should be addressed when designing effective therapeutic modalities for refractory diabetic wounds.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Cell Movement/drug effects
- Cell Movement/physiology
- Cells, Cultured
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Interleukin-6/administration & dosage
- Interleukin-6/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, Inbred C57BL
- Phosphorylation/drug effects
- Phosphorylation/physiology
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/metabolism
- Skin/drug effects
- Skin/metabolism
- Skin/pathology
- Wound Healing/drug effects
- Wound Healing/physiology
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Tsubame Nishikai-Yan Shen
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeyuki Kanazawa
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makiko Kado
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kayoko Okada
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Lin Luo
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Ayato Hayashi
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroshi Mizuno
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Rica Tanaka
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
27
|
Copy Number Variations in Candidate Genes and Intergenic Regions Affect Body Mass Index and Abdominal Obesity in Mexican Children. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2432957. [PMID: 28428959 PMCID: PMC5385910 DOI: 10.1155/2017/2432957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 01/11/2023]
Abstract
Introduction. Increase in body weight is a gradual process that usually begins in childhood and in adolescence as a result of multiple interactions among environmental and genetic factors. This study aimed to analyze the relationship between copy number variants (CNVs) in five genes and four intergenic regions with obesity in Mexican children. Methods. We studied 1423 children aged 6–12 years. Anthropometric measurements and blood levels of biochemical parameters were obtained. Identification of CNVs was performed by real-time PCR. The effect of CNVs on obesity or body composition was assessed using regression models adjusted for age, gender, and family history of obesity. Results. Gains in copy numbers of LEPR and NEGR1 were associated with decreased body mass index (BMI), waist circumference (WC), and risk of abdominal obesity, whereas gain in ARHGEF4 and CPXCR1 and the intergenic regions 12q15c, 15q21.1a, and 22q11.21d and losses in INS were associated with increased BMI and WC. Conclusion. Our results indicate a possible contribution of CNVs in LEPR, NEGR1, ARHGEF4, and CPXCR1 and the intergenic regions 12q15c, 15q21.1a, and 22q11.21d to the development of obesity, particularly abdominal obesity in Mexican children.
Collapse
|
28
|
Zhu C, Yu Y, Montani JP, Ming XF, Yang Z. Arginase-I enhances vascular endothelial inflammation and senescence through eNOS-uncoupling. BMC Res Notes 2017; 10:82. [PMID: 28153047 PMCID: PMC5290613 DOI: 10.1186/s13104-017-2399-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/24/2017] [Indexed: 12/27/2022] Open
Abstract
Background Augmented arginase-II (Arg-II) is implicated in endothelial senescence and inflammation through a mutual positive regulatory circuit with S6K1. This study was conducted to investigate whether Arg-I, another isoform of arginase that has been also reported to play a role in vascular endothelial dysfunction, promotes endothelial senescence through similar mechanisms. Results The non-senescent human endothelial cells from umbilical veins (passage 2 to 4) were transduced with empty recombinant adenovirus vector (rAd/CMV) as control or rAd/CMV-Arg-I to overexpress Arg-I. Overexpressing Arg-I promoted eNOS-uncoupling, enhanced senescence markers including p53-S15, p21 and senescence-associated β-galactosidase (SA-β-gal) staining, and increased inflammatory vascular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) as well as monocyte adhesion to endothelial cells without activating S6K1. All the effects of Arg-I were inhibited by the anti-oxidant N-acetylcysteine (NAC). Conclusions Our study demonstrates that Arg-I promotes endothelial senescence and inflammatory responses through eNOS-uncoupling unrelated to activation of the S6K1 pathway.
Collapse
Affiliation(s)
- Cuicui Zhu
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Yi Yu
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Jean-Pierre Montani
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| | - Xiu-Fen Ming
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland. .,National Center of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland.
| | - Zhihong Yang
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland. .,National Center of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland.
| |
Collapse
|
29
|
Abstract
Chronic inflammatory state in obesity causes dysregulation of the endocrine and paracrine actions of adipocyte-derived factors, which disrupt vascular homeostasis and contribute to endothelial vasodilator dysfunction and subsequent hypertension. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Adipose tissue inflammation, nitric oxide (NO)-bioavailability, insulin resistance and oxidized low-density lipoprotein (oxLDL) are main participating factors in endothelial dysfunction of obesity. In this chapter, disruption of inter-endothelial junctions between endothelial cells, significant increase in the production of reactive oxygen species (ROS), inflammation mediators, which are originated from inflamed endothelial cells, the balance between NO synthesis and ROS , insulin signaling and NO production, and decrease in L-arginine/endogenous asymmetric dimethyl-L-arginine (ADMA) ratio are discussed in connection with endothelial dysfunction in obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
30
|
Arginase 2 promotes neurovascular degeneration during ischemia/reperfusion injury. Cell Death Dis 2016; 7:e2483. [PMID: 27882947 PMCID: PMC5260867 DOI: 10.1038/cddis.2016.295] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/18/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023]
Abstract
Retinal ischemia is a major cause of visual impairment and blindness and is involved in various disorders including diabetic retinopathy, glaucoma, optic neuropathies and retinopathy of prematurity. Neurovascular degeneration is a common feature of these pathologies. Our lab has previously reported that the ureahydrolase arginase 2 (A2) is involved in ischemic retinopathies. Here, we are introducing A2 as a therapeutic target to prevent neurovascular injury after retinal ischemia/reperfusion (I/R) insult. Studies were performed with mice lacking both copies of A2 (A2−/−) and wild-type (WT) controls (C57BL6J). I/R insult was conducted on the right eye and the left eye was used as control. Retinas were collected for analysis at different times (3 h–4 week after injury). Neuronal and microvascular degeneration were evaluated using NeuN staining and vascular digests, respectively. Glial activation was evaluated by glial fibrillary acidic protein expression. Necrotic cell death was studied by propidium iodide labeling and western blot for RIP-3. Arginase expression was determined by western blot and quantitative RT-PCR. Retinal function was determined by electroretinography (ERG). A2 mRNA and protein levels were increased in WT I/R. A2 deletion significantly reduced ganglion cell loss and microvascular degeneration and preserved retinal morphology after I/R. Glial activation, reactive oxygen species formation and cell death by necroptosis were significantly reduced by A2 deletion. ERG showed improved positive scotopic threshold response with A2 deletion. This study shows for the first time that neurovascular injury after retinal I/R is mediated through increased expression of A2. Deletion of A2 was found to be beneficial in reducing neurovascular degeneration after I/R.
Collapse
|
31
|
Huang J, Rajapakse A, Xiong Y, Montani JP, Verrey F, Ming XF, Yang Z. Genetic Targeting of Arginase-II in Mouse Prevents Renal Oxidative Stress and Inflammation in Diet-Induced Obesity. Front Physiol 2016; 7:560. [PMID: 27920727 PMCID: PMC5118905 DOI: 10.3389/fphys.2016.00560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/04/2016] [Indexed: 12/03/2022] Open
Abstract
Obesity is associated with development and progression of chronic kidney disease (CKD). Recent evidence demonstrates that enhanced levels of the L-arginine:ureahydrolase, including the two isoenzymes arginase-I (Arg-I) and arginase-II (Arg-II) in vascular endothelial cells promote uncoupling of endothelial nitric oxide synthase (eNOS), leading to increased superoxide radical anion and decreased NO production thereby endothelial dysfunction. Arg-II but not Arg-I is abundantly expressed in kidney and the role of Arg-II in CKD is uncertain and controversial. We aimed to investigate the role of Arg-II in renal damage associated with diet-induced obesity mouse model. Wild type (WT) C57BL/6 mice and mice deficient in Arg-II gene (Arg-II−/−) were fed with either a normal chow (NC) or a high-fat-diet (HFD) for 14 weeks (starting at the age of 7 weeks) to induce obesity. In WT mice, HFD feeding caused frequent renal lipid accumulation, enhancement of renal reactive oxygen species (ROS) levels which could be attenuated by a NOS inhibitor, suggesting uncoupling of NOS in kidney. HFD feeding also significantly augmented renal Arg-II expression and activity. All the alterations in the kidney under HFD feeding were reduced in Arg-II−/− mice. Moreover, mesangial expansion as analyzed by Periodic Acid Schiff (PAS) staining and renal expression of vascular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in HFD-fed WT mouse assessed by immunoblotting were reduced in the HFD-fed Arg-II−/− mice, although there was no significant difference in body weight and renal weight/body weight ratio between the WT and Arg-II−/− mice. Thus, Arg-II expression/activity is enhanced in kidney of diet-induced obesity mice. Genetic targeting of Arg-II prevents renal damage associated with obesity, suggesting an important role of Arg-II in obesity-associated renal disease development.
Collapse
Affiliation(s)
- Ji Huang
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of FribourgFribourg, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis "Kidney.CH"Zurich, Switzerland
| | - Angana Rajapakse
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Yuyan Xiong
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Jean-Pierre Montani
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of FribourgFribourg, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis "Kidney.CH"Zurich, Switzerland
| | - François Verrey
- Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis "Kidney.CH"Zurich, Switzerland; Institute of Physiology, University of ZurichZurich, Switzerland
| | - Xiu-Fen Ming
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of FribourgFribourg, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis "Kidney.CH"Zurich, Switzerland
| | - Zhihong Yang
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of FribourgFribourg, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis "Kidney.CH"Zurich, Switzerland
| |
Collapse
|
32
|
Xia N, Li H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction. Br J Pharmacol 2016; 174:3425-3442. [PMID: 27761903 PMCID: PMC5610151 DOI: 10.1111/bph.13650] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 12/18/2022] Open
Abstract
Under physiological conditions, perivascular adipose tissue (PVAT) attenuates agonist‐induced vasoconstriction by releasing vasoactive molecules including hydrogen peroxide, angiotensin 1–7, adiponectin, methyl palmitate, hydrogen sulfide, NO and leptin. This anticontractile effect of PVAT is lost under conditions of obesity. The central mechanism underlying this PVAT dysfunction in obesity is likely to be an ‘obesity triad’ (consisting of PVAT hypoxia, inflammation and oxidative stress) that leads to the impairment of PVAT‐derived vasoregulators. The production of hydrogen sulfide, NO and adiponectin by PVAT is reduced in obesity, whereas the vasodilator response to leptin is impaired (vascular leptin resistance). Strikingly, the vasodilator response to acetylcholine is reduced only in PVAT‐containing, but not in PVAT‐free thoracic aorta isolated from diet‐induced obese mice, indicating a unique role for PVAT in obesity‐induced vascular dysfunction. Furthermore, PVAT dysfunction has also been observed in small arteries isolated from the gluteal/visceral fat biopsy samples of obese individuals. Therefore, PVAT may represent a new therapeutic target for vascular complications in obesity. A number of approaches are currently being tested under experimental conditions. Potential therapeutic strategies improving PVAT function include body weight reduction, enhancing PVAT hydrogen sulfide release (e.g. rosiglitazone, atorvastatin and cannabinoid CB1 receptor agonists) and NO production (e.g. arginase inhibitors), inhibition of the renin–angiotensin–aldosterone system, inhibition of inflammation with melatonin or cytokine antagonists, activators of AMP‐activated kinase (e.g. metformin, resveratrol and diosgenin) and adiponectin releasers or expression enhancers. Linked Articles This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue – Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc
Collapse
Affiliation(s)
- Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany.,Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
33
|
Su W, Zhang Y, Zhang Q, Xu J, Zhan L, Zhu Q, Lian Q, Liu H, Xia ZY, Xia Z, Lei S. N-acetylcysteine attenuates myocardial dysfunction and postischemic injury by restoring caveolin-3/eNOS signaling in diabetic rats. Cardiovasc Diabetol 2016; 15:146. [PMID: 27733157 PMCID: PMC5062884 DOI: 10.1186/s12933-016-0460-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023] Open
Abstract
Background Patients with diabetes are prone to develop cardiac hypertrophy and more susceptible to myocardial ischemia–reperfusion (I/R) injury, which are concomitant with hyperglycemia-induced oxidative stress and impaired endothelial nitric oxide (NO) synthase (eNOS)/NO signaling. Caveolae are critical in the transduction of eNOS/NO signaling in cardiovascular system. Caveolin (Cav)-3, the cardiomyocytes-specific caveolae structural protein, is decreased in the diabetic heart in which production of reactive oxygen species are increased. We hypothesized that treatment with antioxidant N-acetylcysteine (NAC) could enhance cardiac Cav-3 expression and attenuate caveolae dysfunction and the accompanying eNOS/NO signaling abnormalities in diabetes. Methods Control or streptozotocin-induced diabetic rats were either untreated or treated with NAC (1.5 g/kg/day, NAC) by oral gavage for 4 weeks. Rats in subgroup were randomly assigned to receive 30 min of left anterior descending artery ligation followed by 2 h of reperfusion. Isolated rat cardiomyocytes or H9C2 cells were exposed to low glucose (LG, 5.5 mmol/L) or high glucose (HG, 25 mmol/L) for 36 h before being subjected to 4 h of hypoxia followed by 4 h of reoxygenation (H/R). Results NAC treatment ameliorated myocardial dysfunction and cardiac hypertrophy, and attenuated myocardial I/R injury and post-ischemic cardiac dysfunction in diabetic rats. NAC attenuated the reductions of NO, Cav-3 and phosphorylated eNOS and mitigated the augmentation of O2−, nitrotyrosine and 15-F2t-isoprostane in diabetic myocardium. Immunofluorescence analysis demonstrated the colocalization of Cav-3 and eNOS in isolated cardiomyocytes. Immunoprecipitation analysis revealed that diabetic conditions decreased the association of Cav-3 and eNOS in isolated cardiomyocytes, which was enhanced by treatment with NAC. Disruption of caveolae by methyl-β-cyclodextrin or Cav-3 siRNA transfection reduced eNOS phosphorylation. NAC treatment attenuated the reductions of Cav-3 expression and eNOS phosphorylation in HG-treated cardiomyocytes or H9C2 cells. NAC treatment attenuated HG and H/R induced cell injury, which was abolished during concomitant treatment with Cav-3 siRNA or eNOS siRNA. Conclusions Hyperglycemia-induced inhibition of eNOS activity might be consequences of caveolae dysfunction and reduced Cav-3 expression. Antioxidant NAC attenuated myocardial dysfunction and myocardial I/R injury by improving Cav-3/eNOS signaling.
Collapse
Affiliation(s)
- Wating Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiongxia Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinjin Xu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liying Zhan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huimin Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhengyuan Xia
- Department of Anesthesiology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China.
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
34
|
El Assar M, Angulo J, Santos-Ruiz M, Ruiz de Adana JC, Pindado ML, Sánchez-Ferrer A, Hernández A, Rodríguez-Mañas L. Asymmetric dimethylarginine (ADMA) elevation and arginase up-regulation contribute to endothelial dysfunction related to insulin resistance in rats and morbidly obese humans. J Physiol 2016; 594:3045-60. [PMID: 26840628 PMCID: PMC4887698 DOI: 10.1113/jp271836] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/18/2016] [Indexed: 01/04/2023] Open
Abstract
KEY POINTS The presence of insulin resistance (IR) is determinant for endothelial dysfunction associated with obesity. Although recent studies have implicated the involvement of mitochondrial superoxide and inflammation in the defective nitric oxide (NO)-mediated responses and subsequent endothelial dysfunction in IR, other mechanisms could compromise this pathway. In the present study, we assessed the role of asymmetric dimethylarginine (ADMA) and arginase with respect to IR-induced impairment of endothelium-dependent vasodilatation in human morbid obesity and in a non-obese rat model of IR. We show that both increased ADMA and up-regulated arginase are determinant factors in the alteration of the l-arginine/NO pathway associated with IR in both models and also that acute treatment of arteries with arginase inhibitor or with l-arginine significantly alleviate endothelial dysfunction. These results help to expand our knowledge regarding the mechanisms of endothelial dysfunction that are related to obesity and IR and establish potential therapeutic targets for intervention. ABSTRACT Insulin resistance (IR) is determinant for endothelial dysfunction in human obesity. Although we have previously reported the involvement of mitochondrial superoxide and inflammation, other mechanisms could compromise NO-mediated responses in IR. We evaluated the role of the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA) and arginase with respect to IR-induced impairment of l-arginine/NO-mediated vasodilatation in human morbid obesity and in a non-obese rat model of IR. Bradykinin-induced vasodilatation was evaluated in microarteries derived from insulin-resistant morbidly obese (IR-MO) and non-insulin-resistant MO (NIR-MO) subjects. Defective endothelial vasodilatation in IR-MO was improved by l-arginine supplementation. Increased levels of ADMA were detected in serum and adipose tissue from IR-MO. Serum ADMA positively correlated with IR score and negatively with pD2 for bradykinin. Gene expression determination by RT-PCR revealed not only the decreased expression of ADMA degrading enzyme dimethylarginine dimethylaminohydrolase (DDAH)1/2 in IR-MO microarteries, but also increased expression of arginase-2. Arginase inhibition improved endothelial vasodilatation in IR-MO. Analysis of endothelial vasodilatation in a non-obese IR model (fructose-fed rat) confirmed an elevation of circulating and aortic ADMA concentrations, as well as reduced DDAH aortic content and increased aortic arginase activity in IR. Improvement of endothelial vasodilatation in IR rats by l-arginine supplementation and arginase inhibition provided functional corroboration. These results demonstrate that increased ADMA and up-regulated arginase contribute to endothelial dysfunction as determined by the presence of IR in human obesity, most probably by compromising arginine availability. The results provide novel insights regarding the mechanisms of endothelial dysfunction related to obesity and IR and establish potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Mariam El Assar
- Instituto de Investigación Sanitaria de Getafe, Getafe, Madrid, Spain
| | - Javier Angulo
- Unidad de Investigación Cardiovascular (IRYCIS/UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | | | | | | | | | - Leocadio Rodríguez-Mañas
- Instituto de Investigación Sanitaria de Getafe, Getafe, Madrid, Spain
- Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| |
Collapse
|
35
|
Lee WB, Kang JS, Choi WY, Zhang Q, Kim CH, Choi UY, Kim-Ha J, Kim YJ. Mincle-mediated translational regulation is required for strong nitric oxide production and inflammation resolution. Nat Commun 2016; 7:11322. [PMID: 27089465 PMCID: PMC4837483 DOI: 10.1038/ncomms11322] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/14/2016] [Indexed: 12/21/2022] Open
Abstract
In response to persistent mycobacteria infection, the host induces a granuloma, which often fails to eradicate bacteria and results in tissue damage. Diverse host receptors are required to control the formation and resolution of granuloma, but little is known concerning their regulatory interactions. Here we show that Mincle, the inducible receptor for mycobacterial cord factor, is the key switch for the transition of macrophages from cytokine expression to high nitric oxide production. In addition to its stimulatory role on TLR-mediated transcription, Mincle enhanced the translation of key genes required for nitric oxide synthesis through p38 and eIF5A hypusination, leading to granuloma resolution. Thus, Mincle has dual functions in the promotion and subsequent resolution of inflammation during anti-mycobacterial defence using both transcriptional and translational controls.
Collapse
Affiliation(s)
- Wook-Bin Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji-Seon Kang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Won Young Choi
- Department of Integrated Omics for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Quanri Zhang
- Department of Integrated Omics for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Chul Han Kim
- Department of Integrated Omics for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Un Yung Choi
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeongsil Kim-Ha
- Department of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Department of Integrated Omics for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
36
|
Villalba N, Sackheim AM, Nunez IA, Hill-Eubanks DC, Nelson MT, Wellman GC, Freeman K. Traumatic Brain Injury Causes Endothelial Dysfunction in the Systemic Microcirculation through Arginase-1-Dependent Uncoupling of Endothelial Nitric Oxide Synthase. J Neurotrauma 2016; 34:192-203. [PMID: 26757855 DOI: 10.1089/neu.2015.4340] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Endothelial dysfunction is a hallmark of many chronic diseases, including diabetes and long-term hypertension. We show that acute traumatic brain injury (TBI) leads to endothelial dysfunction in rat mesenteric arteries. Endothelial-dependent dilation was greatly diminished 24 h after TBI because of impaired nitric oxide (NO) production. The activity of arginase, which competes with endothelial NO synthase (eNOS) for the common substrate l-arginine, were also significantly increased in arteries, suggesting that arginase-mediated depletion of l-arginine underlies diminished NO production. Consistent with this, substrate restoration by exogenous application of l-arginine or inhibition of arginase recovered endothelial function. Moreover, evidence for increased reactive oxygen species production, a consequence of l-arginine starvation-dependent eNOS uncoupling, was detected in endothelium and plasma. Collectively, our findings demonstrate endothelial dysfunction in a remote vascular bed after TBI, manifesting as impaired endothelial-dependent vasodilation, with increased arginase activity, decreased generation of NO, and increased O2- production. We conclude that blood vessels have a "molecular memory" of neurotrauma, 24 h after injury, because of functional changes in vascular endothelial cells; these effects are pertinent to understanding the systemic inflammatory response that occurs after TBI even in the absence of polytrauma.
Collapse
Affiliation(s)
- Nuria Villalba
- 1 Department of Pharmacology, University of Vermont , Burlington, Vermont
| | - Adrian M Sackheim
- 2 Department of Surgery, University of Vermont , Burlington, Vermont
| | - Ivette A Nunez
- 2 Department of Surgery, University of Vermont , Burlington, Vermont
| | | | - Mark T Nelson
- 1 Department of Pharmacology, University of Vermont , Burlington, Vermont.,2 Department of Surgery, University of Vermont , Burlington, Vermont.,3 Institute of Cardiovascular Sciences, University of Manchester , Manchester, United Kingdom
| | - George C Wellman
- 1 Department of Pharmacology, University of Vermont , Burlington, Vermont.,2 Department of Surgery, University of Vermont , Burlington, Vermont
| | - Kalev Freeman
- 1 Department of Pharmacology, University of Vermont , Burlington, Vermont.,2 Department of Surgery, University of Vermont , Burlington, Vermont
| |
Collapse
|
37
|
Abdelzaher LA, Imaizumi T, Suzuki T, Tomita K, Takashina M, Hattori Y. Astaxanthin alleviates oxidative stress insults-related derangements in human vascular endothelial cells exposed to glucose fluctuations. Life Sci 2016; 150:24-31. [PMID: 26924495 DOI: 10.1016/j.lfs.2016.02.087] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/12/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023]
Abstract
Glycemic fluctuations may play a critical role in the pathogenesis of diabetic complications, such as cardiovascular disease. We investigated whether the oxycarotenoid astaxanthin can reduce the detrimental effects of fluctuating glucose on vascular endothelial cells. Human umbilical venous endothelial cells were incubated for 3 days in media containing 5.5mM glucose, 22 mM glucose, or 5.5mM glucose alternating with 22 mM glucose in the absence or presence of astaxanthin or N-acetyl-L-cysteine (NAC). Constant high glucose increased reactive oxygen species (ROS) generation, but such an effect was more pronounced in fluctuating glucose. This was associated with up-regulated p22(phox) expression and down-regulated peroxisome proliferator activated receptor-γ coactivator (PGC-1α) expression. Astaxanthin inhibited ROS generation, p22(phox) up-regulation, and PGC-1α down-regulation by the stimuli of glucose fluctuation. Fluctuating glucose, but not constant high glucose, significantly decreased the endothelial nitric oxide synthase (eNOS) phosphorylation level at Ser-1177 without affecting total eNOS expression, which was prevented by astaxanthin as well as by the anti-oxidant NAC. Transferase-mediated dUTP nick end labeling (TUNEL) showed increased cell apoptosis in fluctuating glucose. Glucose fluctuation also resulted in up-regulating gene expression of pro-inflammatory mediators, interleukin-6 and intercellular adhesion molecule-1. These adverse changes were subdued by astaxanthin. The phosphorylation levels of c-Jun N-terminal kinase (JNK) and p38 were significantly increased by glucose fluctuations, and astaxanthin significantly inhibited the increase in JNK and p38 phosphorylation. Taken together, our results suggest that astaxanthin can protect vascular endothelial cells against glucose fluctuation by reducing ROS generation.
Collapse
Affiliation(s)
- Lobna A Abdelzaher
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Takahiro Imaizumi
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Tokiko Suzuki
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Kengo Tomita
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Michinori Takashina
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
38
|
Yu Y, Xiong Y, Montani JP, Yang Z, Ming XF. En Face Detection of Nitric Oxide and Superoxide in Endothelial Layer of Intact Arteries. J Vis Exp 2016:53718. [PMID: 26967197 DOI: 10.3791/53718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Endothelium-derived nitric oxide (NO) produced from endothelial NO-synthase (eNOS) is one of the most important vasoprotective molecules in cardiovascular physiology. Dysfunctional eNOS such as uncoupling of eNOS leads to decrease in NO bioavailability and increase in superoxide anion (O2(.-)) production, and in turn promotes cardiovascular diseases. Therefore, appropriate measurement of NO and O2(.-) levels in the endothelial cells are pivotal for research on cardiovascular diseases and complications. Because of the extremely labile nature of NO and O2(.-), it is difficult to measure NO and O2(.-) directly in a blood vessel. Numerous methods have been developed to measure NO and O2(.-) production. It is, however, either insensitive, or non-specific, or technically demanding and requires special equipment. Here we describe an adaption of the fluorescence dye method for en face simultaneous detection and visualization of intracellular NO and O2(.-) using the cell permeable diaminofluorescein-2 diacetate (DAF-2DA) and dihydroethidium (DHE), respectively, in intact aortas of an obesity mouse model induced by high-fat-diet feeding. We could demonstrate decreased intracellular NO and enhanced O2(.-) levels in the freshly isolated intact aortas of obesity mouse as compared to the control lean mouse. We demonstrate that this method is an easy technique for direct detection and visualization of NO and O2(.-) in the intact blood vessels and can be widely applied for investigation of endothelial (dys)function under (physio)pathological conditions.
Collapse
Affiliation(s)
- Yi Yu
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg; Kidney Control of Homeostasis, Swiss National Centre of Competence in Research
| | - Yuyan Xiong
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg; Kidney Control of Homeostasis, Swiss National Centre of Competence in Research
| | - Jean-Pierre Montani
- Kidney Control of Homeostasis, Swiss National Centre of Competence in Research; System Physiology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg
| | - Zhihong Yang
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg; Kidney Control of Homeostasis, Swiss National Centre of Competence in Research;
| | - Xiu-Fen Ming
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg; Kidney Control of Homeostasis, Swiss National Centre of Competence in Research
| |
Collapse
|
39
|
Hwang HM, Lee JH, Min BS, Jeon BH, Hoe KL, Kim YM, Ryoo S. A Novel Arginase Inhibitor Derived from Scutellavia indica Restored Endothelial Function in ApoE-Null Mice Fed a High-Cholesterol Diet. J Pharmacol Exp Ther 2015; 355:57-65. [PMID: 26265320 DOI: 10.1124/jpet.115.224592] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/07/2015] [Indexed: 11/22/2022] Open
Abstract
Elevated endothelial arginase activity decreases nitric oxide (NO) production by competing with the substrate l-arginine, previously reported, and reciprocally regulating endothelial nitric oxide synthase (eNOS) activity. Thus, arginase inhibitors may help treat vascular diseases associated with endothelial dysfunction. A screening of metabolites from medicinal plants revealed that (2S)-5,2',5'-trihydroxy-7,8-dimethoxy flavanone (TDF) was a noncompetitive inhibitor of arginase. We investigated whether TDF reciprocally regulated endothelial NO production and its possible mechanism. TDF noncompetitively inhibited arginase I and II activity in a dose-dependent manner. TDF incubation decreased arginase activity and increased NO production in human umbilical vein endothelial cells and isolated mouse aortic vessels and reduced reactive oxygen species (ROS) generation in the endothelium of the latter. These TDF-mediated effects were associated with increased eNOS phosphorylation and dimerization but not with changes in protein content. Endothelium-dependent vasorelaxant responses to acetylcholine (Ach) were significantly increased in TDF-incubated aortic rings and attenuated by incubation with soluble guanylyl cyclase inhibitor. Phenylephrine-induced vasoconstrictor responses were markedly attenuated in TDF-treated vessels from wild-type mice. In atherogenic-prone ApoE(-/-) mice, TDF attenuated the high-cholesterol diet (HCD)-induced increase in arginase activity, which was accompanied by restoration of NO production and reduction of ROS generation. TDF incubation induced eNOS dimerization and phosphorylation at Ser1177. In addition, TDF improved Ach-dependent vasorelaxation responses and attenuated U46619-dependent contractile responses but did not change sodium nitroprusside-induced vasorelaxation or N-NAME-induced vasoconstriction. The findings suggest that TDF may help treat cardiovascular diseases by reducing pathophysiology derived from HCD-mediated endothelial dysfunction.
Collapse
Affiliation(s)
- Hye Mi Hwang
- Departments of Biological Sciences (H.M.H., S.R.) and Biochemistry (J.H.L.), College of Natural Sciences, and Departments of Molecular and Cellular Biochemistry (Y.M.K.), School of Medicine, Kangwon National University, Chuncheon, Gangwon-do; College of Pharmacy, Catholic University, Daegu (B.S.M.); Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, (B.H.J.) and Department of New Drug Discovery and Development (K.L.H.), Chungnam National University, Daejeon, South Korea
| | - Jeong Hyung Lee
- Departments of Biological Sciences (H.M.H., S.R.) and Biochemistry (J.H.L.), College of Natural Sciences, and Departments of Molecular and Cellular Biochemistry (Y.M.K.), School of Medicine, Kangwon National University, Chuncheon, Gangwon-do; College of Pharmacy, Catholic University, Daegu (B.S.M.); Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, (B.H.J.) and Department of New Drug Discovery and Development (K.L.H.), Chungnam National University, Daejeon, South Korea
| | - Byung Sun Min
- Departments of Biological Sciences (H.M.H., S.R.) and Biochemistry (J.H.L.), College of Natural Sciences, and Departments of Molecular and Cellular Biochemistry (Y.M.K.), School of Medicine, Kangwon National University, Chuncheon, Gangwon-do; College of Pharmacy, Catholic University, Daegu (B.S.M.); Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, (B.H.J.) and Department of New Drug Discovery and Development (K.L.H.), Chungnam National University, Daejeon, South Korea
| | - Byeong Hwa Jeon
- Departments of Biological Sciences (H.M.H., S.R.) and Biochemistry (J.H.L.), College of Natural Sciences, and Departments of Molecular and Cellular Biochemistry (Y.M.K.), School of Medicine, Kangwon National University, Chuncheon, Gangwon-do; College of Pharmacy, Catholic University, Daegu (B.S.M.); Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, (B.H.J.) and Department of New Drug Discovery and Development (K.L.H.), Chungnam National University, Daejeon, South Korea
| | - Kwang Lae Hoe
- Departments of Biological Sciences (H.M.H., S.R.) and Biochemistry (J.H.L.), College of Natural Sciences, and Departments of Molecular and Cellular Biochemistry (Y.M.K.), School of Medicine, Kangwon National University, Chuncheon, Gangwon-do; College of Pharmacy, Catholic University, Daegu (B.S.M.); Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, (B.H.J.) and Department of New Drug Discovery and Development (K.L.H.), Chungnam National University, Daejeon, South Korea
| | - Young Myeong Kim
- Departments of Biological Sciences (H.M.H., S.R.) and Biochemistry (J.H.L.), College of Natural Sciences, and Departments of Molecular and Cellular Biochemistry (Y.M.K.), School of Medicine, Kangwon National University, Chuncheon, Gangwon-do; College of Pharmacy, Catholic University, Daegu (B.S.M.); Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, (B.H.J.) and Department of New Drug Discovery and Development (K.L.H.), Chungnam National University, Daejeon, South Korea
| | - Sungwoo Ryoo
- Departments of Biological Sciences (H.M.H., S.R.) and Biochemistry (J.H.L.), College of Natural Sciences, and Departments of Molecular and Cellular Biochemistry (Y.M.K.), School of Medicine, Kangwon National University, Chuncheon, Gangwon-do; College of Pharmacy, Catholic University, Daegu (B.S.M.); Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, (B.H.J.) and Department of New Drug Discovery and Development (K.L.H.), Chungnam National University, Daejeon, South Korea
| |
Collapse
|
40
|
Wu Z, Yu Y, Liu C, Xiong Y, Montani JP, Yang Z, Ming XF. Role of p38 mitogen-activated protein kinase in vascular endothelial aging: interaction with Arginase-II and S6K1 signaling pathway. Aging (Albany NY) 2015; 7:70-81. [PMID: 25635535 PMCID: PMC4350325 DOI: 10.18632/aging.100722] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
p38 mitogen-activated protein kinase (p38) regulates cellular senescence and senescence-associated secretory phenotype (SASP), i.e., secretion of cytokines and/or chemokines. Previous work showed that augmented arginase-II (Arg-II) and S6K1 interact with each other to promote endothelial senescence through uncoupling of endothelial nitric oxide synthase (eNOS). Here we demonstrate eNOS-uncoupling, augmented expression/secretion of IL-6 and IL-8, elevation of p38 activation and Arg-II levels in senescent endothelial cells. Silencing Arg-II or p38α in senescent cells recouples eNOS and inhibits IL-6 and IL-8 secretion. Overexpression of Arg-II in young endothelial cells causes eNOS-uncoupling and enhances IL-6 and IL-8 expression/secretion, which is prevented by p38 inhibition or by antioxidant. Moreover, p38 activation and expression of IL-6 and KC (the murine IL-8 homologue) are increased in the heart and/or aortas of wild type (WT) old mice, which is abolished in mice with Arg-II gene deficiency (Arg-II−/−). In addition, inhibition of p38 in the old WT mice recouples eNOS function and reduces IL-6 and KC expression in the aortas and heart. Silencing Arg-II or p38α or S6K1 inhibits each other in senescence endothelial cells. Thus, Arg-II, p38, and S6K1 form a positive circuit which regulates endothelial senescence and cardiovascular aging.
Collapse
Affiliation(s)
- Zongsong Wu
- Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Yi Yu
- Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Chang Liu
- Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Yuyan Xiong
- Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Jean-Pierre Montani
- Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Zhihong Yang
- Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Xiu-Fen Ming
- Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
41
|
Tissue inflammation and nitric oxide-mediated alterations in cardiovascular function are major determinants of endotoxin-induced insulin resistance. Cardiovasc Diabetol 2015; 14:56. [PMID: 25986700 PMCID: PMC4484635 DOI: 10.1186/s12933-015-0223-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/05/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Endotoxin (i.e. LPS) administration induces a robust inflammatory response with accompanying cardiovascular dysfunction and insulin resistance. Overabundance of nitric oxide (NO) contributes to the vascular dysfunction. However, inflammation itself also induces insulin resistance in skeletal muscle. We sought to investigate whether the cardiovascular dysfunction induced by increased NO availability without inflammatory stress can promote insulin resistance. Additionally, we examined the role of inducible nitric oxide synthase (iNOS or NOS2), the source of the increase in NO availability, in modulating LPS-induced decrease in insulin-stimulated muscle glucose uptake (MGU). METHODS The impact of NO donor infusion on insulin-stimulated whole-body and muscle glucose uptake (hyperinsulinemic-euglycemic clamps), and the cardiovascular system was assessed in chronically catheterized, conscious mice wild-type (WT) mice. The impact of LPS on insulin action and the cardiovascular system were assessed in WT and global iNOS knockout (KO) mice. Tissue blood flow and cardiac function were assessed using microspheres and echocardiography, respectively. Insulin signaling activity, and gene expression of pro-inflammatory markers were also measured. RESULTS NO donor infusion decreased mean arterial blood pressure, whole-body glucose requirements, and MGU in the absence of changes in skeletal muscle blood flow. LPS lowered mean arterial blood pressure and glucose requirements in WT mice, but not in iNOS KO mice. Lastly, despite an intact inflammatory response, iNOS KO mice were protected from LPS-mediated deficits in cardiac output. LPS impaired MGU in vivo, regardless of the presence of iNOS. However, ex vivo, insulin action in muscle obtained from LPS treated iNOS KO animals was protected. CONCLUSION Nitric oxide excess and LPS impairs glycemic control by diminishing MGU. LPS impairs MGU by both the direct effect of inflammation on the myocyte, as well as by the indirect NO-driven cardiovascular dysfunction.
Collapse
|
42
|
Nabavi SF, Russo GL, Daglia M, Nabavi SM. Role of quercetin as an alternative for obesity treatment: you are what you eat! Food Chem 2015; 179:305-10. [PMID: 25722169 DOI: 10.1016/j.foodchem.2015.02.006] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/05/2015] [Accepted: 02/02/2015] [Indexed: 12/19/2022]
Abstract
Obesity is one of the most serious global health problems, which increases the risk of other different chronic diseases. The crucial role of oxidative stress in the initiation and progression of obesity leads to the hypothesis that antioxidants can be used as therapeutic agents for obesity treatment. Among antioxidants, much attention has been paid to polyphenols due to their negligible adverse effects. Among them, quercetin is one of the most common dietary antioxidants widely distributed in different plant materials, such as fruits, vegetables and cereals. Quercetin shows a wide range of biological and health-promoting effects, such as anticancer, hepatoprotective, antidiabetic, anti-inflammatory and antibacterial activities. Furthermore, quercetin has anti-obesity activity through mitogen-activated protein kinase and adenine monophosphate-activated protein kinase signaling pathways. In this study, we reviewed the available scientific reports concerning the beneficial role of quercetin against obesity with emphasis on its mechanisms of action.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Yang Z, Ming XF. Functions of arginase isoforms in macrophage inflammatory responses: impact on cardiovascular diseases and metabolic disorders. Front Immunol 2014; 5:533. [PMID: 25386179 PMCID: PMC4209887 DOI: 10.3389/fimmu.2014.00533] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/09/2014] [Indexed: 12/18/2022] Open
Abstract
Macrophages play a paramount role in immunity and inflammation-associated diseases, including infections, cardiovascular diseases, obesity-associated metabolic imbalances, and cancer. Compelling evidence from studies of recent years demonstrates that macrophages are heterogeneous and undergo heterogeneous phenotypic changes in response to microenvironmental stimuli. The M1 killer type response and the M2 repair type response are best known, and are two extreme examples. Among other markers, inducible nitric oxide synthase and type-I arginase (Arg-I), the enzymes that are involved in l-arginine/nitric oxide (NO) metabolism, are associated with the M1 and M2 phenotype, respectively, and therefore widely used as the markers for characterization of the two macrophage phenotypes. There is also a type-II arginase (Arg-II), which is expressed in macrophages and prevalently viewed as having the same function as Arg-I in the cells. In contrast to Arg-I, little information on the role of Arg-II in macrophage inflammatory responses is available. Emerging evidence, however, suggests that differential roles of Arg-I and Arg-II in regulating macrophage functions. In this article, we will review recent developments on the functional roles of the two arginase isoforms in regulation of macrophage inflammatory responses by focusing on their impact on the pathogenesis of cardiovascular diseases and metabolic disorders.
Collapse
Affiliation(s)
- Zhihong Yang
- Vascular Biology, Division of Physiology, Department of Medicine, Faculty of Science, University of Fribourg , Fribourg , Switzerland
| | - Xiu-Fen Ming
- Vascular Biology, Division of Physiology, Department of Medicine, Faculty of Science, University of Fribourg , Fribourg , Switzerland
| |
Collapse
|