1
|
Guan T, Lu Z, Tai R, Guo S, Zhang Z, Deng S, Ye J, Chi K, Zhang B, Chen H, Deng Z, Ke Y, Huang A, Chen P, Wang C, Ou C. Silicified curcumin microspheres Combats cardiovascular diseases via Nrf2/HO-1 pathway. Bioact Mater 2025; 49:378-398. [PMID: 40144796 PMCID: PMC11937612 DOI: 10.1016/j.bioactmat.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/18/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Diabetes and chemotherapy frequently give rise to severe cardiovascular complications, including chemotherapy-induced cardiotoxicity and diabetes-associated vascular remodeling. Nevertheless, the precise epidemiological features of these cardiovascular ailments remain incompletely elucidated, resulting in a dearth of effective therapeutic strategies in clinical settings. To tackle this intricate challenge, we have delved extensively into database resources, conducted comprehensive analyses of pertinent epidemiological data, and designed silicified curcumin (Si/Cur) microspheres as a novel therapeutic approach for cardiovascular diseases. By harnessing the alkaline microenvironment generated by silicon (Si), Si/Cur markedly elevates the bioavailability of curcumin (Cur). Further investigations have elucidated that Si/Cur exerts its therapeutic actions primarily via the Nrf2/HO-1 signaling pathway, effectively suppressing vascular remodeling and mitigating myocardial injury, thus disrupting the vicious cycle of persistent cardiovascular damage. In conclusion, this study integrates clinical cohort research to dissect epidemiological characteristics, directs the design and application of biomaterials, and paves the way for a novel and efficacious therapeutic avenue for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Tianwang Guan
- Guangdong Engineering Research Center of Boron Neutron Therapy and Application in Malignant Tumors, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Dongguan Engineering Research Center for Innovative Boron Drugs and Novel Radioimmune Drugs, Cancer Center, The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong, 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
| | - Zhenxing Lu
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| | - Rundong Tai
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shuai Guo
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| | - Zhaowenbin Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shaohui Deng
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| | - Jujian Ye
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Kaiyi Chi
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510182, China
| | - Binghua Zhang
- Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, 510180, China
| | - Huiwan Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhilin Deng
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| | - Yushen Ke
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Andong Huang
- Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, 510180, China
| | - Peier Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Caiwen Ou
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| |
Collapse
|
2
|
AL-Noshokaty TM, Abdelhamid R, Abdelmaksoud NM, Khaled A, Hossam M, Ahmed R, Saber T, Khaled S, Elshaer SS, Abulsoud AI. Unlocking the multifaceted roles of GLP-1: Physiological functions and therapeutic potential. Toxicol Rep 2025; 14:101895. [PMID: 39911322 PMCID: PMC11795145 DOI: 10.1016/j.toxrep.2025.101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025] Open
Abstract
Glucagon (GCG) like peptide 1 (GLP-1) has emerged as a powerful player in regulating metabolism and a promising therapeutic target for various chronic diseases. This review delves into the physiological roles of GLP-1, exploring its impact on glucose homeostasis, insulin secretion, and satiety. We examine the compelling evidence supporting GLP-1 receptor agonists (GLP-1RAs) in managing type 2 diabetes (T2D), obesity, and other diseases. The intricate molecular mechanisms underlying GLP-1RAs are explored, including their interactions with pathways like extracellular signal-regulated kinase 1/2 (ERK1/2), activated protein kinase (AMPK), cyclic adenine monophosphate (cAMP), mitogen-activated protein kinase (MAPK), and protein kinase C (PKC). Expanding our understanding, the review investigates the potential role of GLP-1 in cancers. Also, microribonucleic acid (RNA) (miRNAs), critical regulators of gene expression, are introduced as potential modulators of GLP-1 signaling. We delve into the link between miRNAs and T2D obesity and explore specific miRNA examples influencing GLP-1R function. Finally, the review explores the rationale for seeking alternatives to GLP-1RAs and highlights natural products with promising GLP-1 modulatory effects.
Collapse
Affiliation(s)
- Tohada M. AL-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Aya Khaled
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mariam Hossam
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Razan Ahmed
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Toka Saber
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shahd Khaled
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed I. Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
- Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
3
|
Xu H, Liu T, Dai Y, Li N, Cao Z. The role of ERK1/2 signaling in diabetes: pathogenic and therapeutic implications. Front Pharmacol 2025; 16:1600251. [PMID: 40417223 PMCID: PMC12098375 DOI: 10.3389/fphar.2025.1600251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/28/2025] [Indexed: 05/27/2025] Open
Abstract
ERK1/2 (extracellular signal-regulated kinase 1/2) is an important member of the MAPK (mitogen-activated protein kinase) family and is widely involved in many biological processes such as cell proliferation, differentiation, apoptosis and migration. After activation by phosphorylation, ERK1/2 can be transferred into the nucleus and directly or indirectly affect the activity of transcription factors, thereby regulating gene expression. More and more studies have shown that ERK1/2 plays an important role in diabetes and its complications, such as insulin secretion, islet β cell function, diabetic cardiomyopathy, diabetic nephropathy, renal fibrosis, lipogenesis, diabetic vasculopathy, etc. These effects reveal the complexity and diversity of the ERK1/2 signaling pathway in the pathogenesis of diabetes, and its activation and inhibition mechanisms in multiple physiological and pathological processes provide potential targets for diabetes treatment. The purpose of this mini-review is to explore the key role of ERK1/2 in diabetes and the progress of research on targeted inhibitors of ERK1/2, which provides new strategies for the treatment of diabetes.
Collapse
Affiliation(s)
- Hanlin Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Liu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanfen Dai
- Department of Hyperbaric Oxygen, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Na Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhanqi Cao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Gera A, Latif F, Borra V, Naz S, Mittal V, Ayoobkhan FS, Kumar T, Wajid Z, Deb N, Prasad T, Mattumpuram J, Jaiswal V. Efficacy of glucagon-like peptide-1 receptor agonists for prevention of stroke among patients with and without diabetes: A meta-analysis with the SELECT and FLOW trails. IJC HEART & VASCULATURE 2025; 57:101638. [PMID: 40165866 PMCID: PMC11957674 DOI: 10.1016/j.ijcha.2025.101638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/09/2025] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
Background Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have shown a reduction in major adverse cardiovascular events (MACE) among patients with type 2 diabetes mellitus (T2DM). However, its efficacy on cerebrovascular events is yet to be well established among diabetic and non diabetic patients. Objective We sought to evaluate the efficacy of GLP-1 RAs on stroke risk among its different types in patients with and without Diabetes. Methods We performed a systematic literature search on PubMed, EMBASE, and ClinicalTrials.gov for relevant randomized controlled trials (RCTs) from inspection until 15th July 2024, without any language restrictions. Odds ratios (OR) and 95 % confidence intervals (CI) were pooled using a random-effect model, and a p-value of < 0.05 was considered statistically significant. Results A total of 11 RCTs with 85,373 patients were included (43,339 in GLP-1 RA and 42,034 in the placebo group) in the analysis. The mean age of the patients in GLP-1 RAs and the placebo groups was 63.5 and 63.1 years, respectively. Pooled analysis of primary and secondary endpoints showed that GLP-1 RAs significantly reduced the risk of incidence of stroke by 15 % (OR, 0.85(95 %CI: 0.77-0.93), P < 0.001) and nonfatal stroke by 13 % (OR, 0.87(95 %CI: 0.79-0.95), P < 0.001) compared with placebo. However, the risk of fatal stroke (OR, 0.94(95 %CI: 0.75-1.17), P = 0.56) was comparable between both groups of patients. Similarly, the risk of serious adverse events such as cerebrovascular accident (OR, 0.75(95 %CI: 0.57-1.00), P = 0.05), hemorrhagic stroke (OR, 0.82(95 %CI: 0.42-1.60), P = 0.57, and ischemic stroke (OR, 0.85(95 %CI: 0.64-1.13), P = 0.26) was comparable between GLP-1RAs and placebo. Conclusion Treatment with GLP-1 receptor agonists has beneficial effects in reducing the risk of stroke, and nonfatal stroke in patients with and without diabetes. However, no such effect was observed for fatal stroke.
Collapse
Affiliation(s)
- Asmita Gera
- Department of Internal Medicine, Tianjin Medical University, Wuqing District, Tianjin 301700, China
| | - Fakhar Latif
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Vamsikalyan Borra
- Department of Internal Medicine, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Sidra Naz
- The University of Texas, MD Anderson Cancer Center, Texas, USA
| | - Vivek Mittal
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, MI, USA
| | | | - Tushar Kumar
- Department of Cardiothoracic and Abdominal Radiology, University of Washington, Seattle, Washington, USA
| | - Zarghoona Wajid
- Hennepin Healthcare/University of Minnesota, S8, Minneapolis, MN 55415, USA
| | - Novonil Deb
- Department of Medicine, North Bengal Medical College, West Bengal, India
| | - Tanisha Prasad
- Department of Medicine, Royal College of Surgeons, Dublin, Ireland
| | - Jishanth Mattumpuram
- Division of Cardiology, University of Louisville School of Medicine, KY 40202, United States
| | - Vikash Jaiswal
- Department of Cardiovascular Research, Larkin Community Hospital, South Miami, FL, USA
| |
Collapse
|
5
|
Wang M, Wang L, Sun H, Yuan H, Li Y. Mechanisms of ferroptosis and glucagon-like peptide-1 receptor agonist in post-percutaneous coronary intervention restenosis. Mol Cell Biochem 2025; 480:1465-1480. [PMID: 39283562 DOI: 10.1007/s11010-024-05118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/06/2024] [Indexed: 02/21/2025]
Abstract
Cardiovascular disease (CVD) claims millions of lives every year, with atherosclerotic cardiovascular disease (ASCVD) being the main cause. ASCVD treatment includes drug therapy, lifestyle intervention, and Percutaneous Coronary Intervention (PCI) all of which significantly enhance cardiovascular function and reduce mortality. However, hyperplasia can lead to vascular obstruction, worsen angina symptoms, or even cause heart disease, affecting patients' long-term prognosis. Therefore, finding effective ways to combat hyperplasia is crucial for cardiovascular therapy. In recent years, ferroptosis has gained attention as a new form of cell death closely associated with several diseases, including cardiovascular diseases. It involves complex metabolic processes critical for cellular homeostasis and normal function. Abnormal proliferation and phenotypic transformation of vascular smooth muscle cells (VSMC) are crucial mechanisms underlying cardiovascular disease development. Inhibiting ferroptosis in VSMC has the potential to significantly reduce neointima proliferation. Glucagon-like peptide-1 receptor agonist (GLP-1RA) constitutes a widely employed class of hypoglycemic agents with direct implications for the cardiovascular system, mitigating adverse cardiovascular events. Research indicates that the stimulation of GLP-1 holds promise as a therapeutic strategy in mitigating cardiovascular events such as restenosis. Hence, investigating the potential of GLP-1RA as a treatment option for cardiovascular ailments carries immense clinical significance.
Collapse
Affiliation(s)
- Miao Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Liren Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Huanxin Sun
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Hong Yuan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yonghong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266071, China.
| |
Collapse
|
6
|
Zhang Y, Chen Y, Li K, Chen C, Hu Y, Li X. Ghrelin promotes chronic diabetic wound healing by regulating keratinocyte proliferation and migration through the ERK1/2 pathway. Peptides 2025; 184:171350. [PMID: 39824309 DOI: 10.1016/j.peptides.2025.171350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/05/2025] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Delayed wound healing is a complication of diabetes mellitus and can lead to infection, sepsis, and amputation. Despite the currently available treatments, the global burden of diabetes-related wounds is growing; thus, more effective therapy for diabetic wounds is urgently needed. Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is a 28-amino acid peptide hormone. Some reports have confirmed the therapeutic effects of ghrelin on diabetes mellitus and its complications. However, the effects and corresponding mechanisms of ghrelin on chronic diabetic wounds remain unknown. In this study, we explored the effect of ghrelin on diabetic wound healing and investigated the associated mechanisms. We showed that ghrelin accelerated wound healing in diabetic rats by promoting the proliferation and migration of keratinocytes. Re-epithelialization was accelerated in ghrelin-treated wounds, thicker and longer newly formed epidermis and more dividing keratinocytes were observed. We further confirmed that ghrelin regulated keratinocytes by activating the ERK1/2 pathway through its receptor growth hormone secretagogue receptor 1a (GHSR1a). Ghrelin also significantly reduced the levels of pro-inflammatory cytokines and increased the deposition of collagen in diabetic wounds. Our data provides preclinical evidence for the potential application of ghrelin as a compound to promote diabetic wound healing and clarifies the molecular mechanism.
Collapse
Affiliation(s)
- Yukang Zhang
- Department of Hand and Foot Surgery, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Yuan Chen
- Department of Central Research Lab, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Kailin Li
- Department of Central Research Lab, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Cong Chen
- Department of Hand and Foot Surgery, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Yong Hu
- Department of Hand and Foot Surgery, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Xian Li
- Department of Hand and Foot Surgery, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, China.
| |
Collapse
|
7
|
Wang X, Yang X, Qi X, Fan G, Zhou L, Peng Z, Yang J. Anti-atherosclerotic effect of incretin receptor agonists. Front Endocrinol (Lausanne) 2024; 15:1463547. [PMID: 39493783 PMCID: PMC11527663 DOI: 10.3389/fendo.2024.1463547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Incretin receptor agonists (IRAs), primarily composed of glucagon-like peptide-1 receptor agonists (GLP-1RAs) and glucose-dependent insulinotropic polypeptide receptor agonists (GIPRAs), work by mimicking the actions of the endogenous incretin hormones in the body. GLP-1RAs have been approved for use as monotherapy and in combination with GIPRAs for the management of type 2 diabetes mellitus (T2DM). In addition to their role in glucose regulation, IRAs have demonstrated various benefits such as cardiovascular protection, obesity management, and regulation of bone turnover. Some studies have suggested that IRAs not only aid in glycemic control but also exhibit anti-atherosclerotic effects. These agents have been shown to modulate lipid abnormalities, reduce blood pressure, and preserve the structural and functional integrity of the endothelium. Furthermore, IRAs have the ability to mitigate inflammation by inhibiting macrophage activation and promoting M2 polarization. Research has also indicated that IRAs can decrease macrophage foam cell formation and prevent vascular smooth muscle cell (VSMC) phenotype switching, which are pivotal in atheromatous plaque formation and stability. This review offers a comprehensive overview of the protective effects of IRAs in atherosclerotic disease, with a focus on their impact on atherogenesis.
Collapse
Affiliation(s)
- Xin Wang
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin Yang
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoyan Qi
- Department of Metabolism and Endocrinology, Shenzhen Nanshan People's Hospital; The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Gang Fan
- Department of Urology, Shenzhen Nanshan People's Hospital; The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Lingzhi Zhou
- Department of pediatrics, Shenzhen Nanshan People's Hospital; The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Zhengliang Peng
- Department of Emergency, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Yang
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Metabolism and Endocrinology, Shenzhen Nanshan People's Hospital; The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Lian K, Zhang K, Kan C, Hou N, Han F, Sun X, Qiu H, Guo Z. Emerging therapeutic landscape: Incretin agonists in chronic kidney disease management. Life Sci 2024; 351:122801. [PMID: 38862060 DOI: 10.1016/j.lfs.2024.122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
The increasing incidence of chronic kidney disease (CKD) poses a significant public health concern, prompting heightened attention to its treatment. Incretins, including glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide, are intestinal peptides released after nutrient intake, known for their hypoglycemic effects in diabetes management. Recent advancements highlight the promising outcomes of GLP-1 receptor agonists in reducing CKD risk factors and improving renal outcomes. The multifaceted functions of GLP-1, such as its anti-obesity, anti-hypertensive, anti-hyperglycemic, anti-lipid, anti-inflammatory, and endothelial function protective properties, contribute to its potential as a therapeutic agent for CKD. Although experiments suggest the potential benefits of incretin in CKD, a comprehensive understanding of its specific mechanisms is still lacking. This review aims to provide a detailed examination of current evidence and potential future directions, emphasizing the promising yet evolving landscape of incretin agonists in the context of CKD.
Collapse
Affiliation(s)
- Kexin Lian
- Department of Nephropathy, Affiliated Hospital of Shandong Second Medical University, Weifang, China; Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China.
| | - Zhentao Guo
- Department of Nephropathy, Affiliated Hospital of Shandong Second Medical University, Weifang, China.
| |
Collapse
|
9
|
Janota O, Kwiendacz H, Olejarz A, Włosowicz A, Pabis P, Gumprecht J, Alam U, Lip GYH, Nabrdalik K. Cardio-reno-vascular protection in type 2 diabetes mellitus: new insights into pharmacotherapeutic management. Expert Opin Pharmacother 2024; 25:1605-1624. [PMID: 39150280 DOI: 10.1080/14656566.2024.2392017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
INTRODUCTION From 2008 and following the withdrawal of rosiglitazone, obligatory cardiovascular outcomes trials are performed for glucose lowering drugs introduced to the market to ensure their cardiovascular (CV) safety. Paradoxically, these studies have demonstrated CV safety but also shown additional cardio-reno-vascular protection of some therapeutic agents. Additionally, nonsteroidal mineralocorticoid receptor antagonists (ns-MRA) have emerged as novel drugs for cardio - and renoprotection in type 2 diabetes (T2D) and chronic kidney disease (CKD). In addition to atherosclerotic CV disease, heart failure (HF) and CKD are important clinical problems in T2D leading to poor quality of life and premature death as such cardio-reno-vascular protection is an important clinical issue. AREAS COVERED We provide new insights into pharmacotherapeutic cardio-reno-vascular protection in T2D based on the new glucose lowering drugs and ns-MRA. PUB MED/CINAHL/Web of Science/Scopus were searched (May 2024). EXPERT OPINION The conventional glucose lowering approach alone which was implemented for decades is now replaced by the use of disease modifying drugs which lower the rates of CV events, HF decompensation, hospitalization due to HF, slow progression of CKD and all-cause mortality. Indeed, the choice of medications in T2D should be focused on underlying co-morbidities with cardio-reno-vascular protection rather than a gluco-centric approach.
Collapse
Affiliation(s)
- Oliwia Janota
- Doctoral School, Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Hanna Kwiendacz
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Anna Olejarz
- Students' Scientific Association by the Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Aleksandra Włosowicz
- Students' Scientific Association by the Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Patrycja Pabis
- Students' Scientific Association by the Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Uazman Alam
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Diabetes & Endocrinology Research and Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Katarzyna Nabrdalik
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
| |
Collapse
|
10
|
Dave BP, Chorawala MR, Shah IV, Shah NN, Bhagat SU, Prajapati BG, Thakkar PC. From diabetes to diverse domains: the multifaceted roles of GLP-1 receptor agonists. Mol Biol Rep 2024; 51:835. [PMID: 39042283 DOI: 10.1007/s11033-024-09793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Glucagon-like Peptide-1 (GLP-1) receptor agonists (GLP-1RAs) emerged as a primary treatment for type-2 diabetes mellitus (T2DM), however, their multifaceted effects on various target organs beyond glycemic control opened a new era of treatment. We conducted a comprehensive literature search using databases including Scopus, Google Scholar, PubMed, and the Cochrane Library to identify clinical, in-vivo, and in-vitro studies focusing on the diverse effects of GLP-1 receptor agonists. Eligible studies were selected based on their relevance to the varied roles of GLP-1RAs in T2DM management and their impact on other physiological functions. Numerous studies have reported the efficacy of GLP-1RAs in improving outcomes in T2DM, with demonstrated benefits including glucose-dependent insulinotropic actions, modulation of insulin signaling pathways, and reductions in glycemic excursions. Additionally, GLP-1 receptors are expressed in various tissues and organs, suggesting their widespread physiological functions beyond glycemic control potentially include neuroprotective, anti-inflammatory, cardioprotective, and metabolic benefits. However, further scientific studies are still underway to maximize the benefits of GLP-1RAs and to discover additional roles in improving health benefits. This article sought to review not only the actions of GLP1RAs in the treatment of T2DM but also explore its effects on potential targets in other disorders.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Ishika V Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nidhi N Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Shivam U Bhagat
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Pratik C Thakkar
- Department of Physiology, Faculty of Medical & Health Sciences, Manaaki Mānawa - The Centre for Heart Research, University of Auckland, 85 Park Road, Auckland, 1142, New Zealand.
| |
Collapse
|
11
|
Dardano A, Bianchi C, Garofolo M, Del Prato S. The current landscape for diabetes treatment: Preventing diabetes-associated CV risk. Atherosclerosis 2024; 394:117560. [PMID: 38688748 DOI: 10.1016/j.atherosclerosis.2024.117560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Despite the risk of atherosclerosis has progressively declined over the past few decades, subjects with type 2 diabetes mellitus (T2DM) continue to experience substantial excess of atherosclerotic cardiovascular disease (ASCVD)-related events. Therefore, there is urgent need to treat ASCVD disease in T2DM earlier, more intensively, and with greater precision. Many factors concur to increase the risk of atherosclerosis, and multifactorial intervention remains the basis for effective prevention or reduction of atherosclerotic events. The role of anti-hyperglycemic medications in reducing the risk of ASCVD in subjects with T2DM has evolved over the past few years. Multiple cardiovascular outcome trials (CVOTs) with new and emerging glucose-lowering agents, namely SGLT2 inhibitors (SGLT2i) and GLP-1 receptor agonists (GLP1-RA), have demonstrated significant reductions of major cardiovascular events and additional benefits. This robust evidence has changed the landscape for managing people with T2DM. In addition to glycemic and ancillary extra-glycemic properties, SGLT2i and GLP1-RA might exert favorable effects on subclinical and clinical atherosclerosis. Therefore, the objective of this review is to discuss the available evidence supporting anti-atherosclerotic properties of SGLT2i and GLP1-RA, with a quick nod to sotagliflozin and tirzepatide.
Collapse
Affiliation(s)
- Angela Dardano
- Department of Clinical and Experimental Medicine, University of Pisa, Italy; Section of Diabetes and Metabolic Diseases, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Cristina Bianchi
- Section of Diabetes and Metabolic Diseases, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Monia Garofolo
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Stefano Del Prato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy.
| |
Collapse
|
12
|
Park B, Bakbak E, Teoh H, Krishnaraj A, Dennis F, Quan A, Rotstein OD, Butler J, Hess DA, Verma S. GLP-1 receptor agonists and atherosclerosis protection: the vascular endothelium takes center stage. Am J Physiol Heart Circ Physiol 2024; 326:H1159-H1176. [PMID: 38426865 DOI: 10.1152/ajpheart.00574.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Atherosclerotic cardiovascular disease is a chronic condition that often copresents with type 2 diabetes and obesity. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are incretin mimetics endorsed by major professional societies for improving glycemic status and reducing atherosclerotic risk in people living with type 2 diabetes. Although the cardioprotective efficacy of GLP-1RAs and their relationship with traditional risk factors are well established, there is a paucity of publications that have summarized the potentially direct mechanisms through which GLP-1RAs mitigate atherosclerosis. This review aims to narrow this gap by providing comprehensive and in-depth mechanistic insight into the antiatherosclerotic properties of GLP-1RAs demonstrated across large outcome trials. Herein, we describe the landmark cardiovascular outcome trials that triggered widespread excitement around GLP-1RAs as a modern class of cardioprotective agents, followed by a summary of the origins of GLP-1RAs and their mechanisms of action. The effects of GLP-1RAs at each major pathophysiological milestone of atherosclerosis, as observed across clinical trials, animal models, and cell culture studies, are described in detail. Specifically, this review provides recent preclinical and clinical evidence that suggest GLP-1RAs preserve vessel health in part by preventing endothelial dysfunction, achieved primarily through the promotion of angiogenesis and inhibition of oxidative stress. These protective effects are in addition to the broad range of atherosclerotic processes GLP-1RAs target downstream of endothelial dysfunction, which include systemic inflammation, monocyte recruitment, proinflammatory macrophage and foam cell formation, vascular smooth muscle cell proliferation, and plaque development.
Collapse
Affiliation(s)
- Brady Park
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ehab Bakbak
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Fallon Dennis
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Ori D Rotstein
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of General Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, United States
- Department of Medicine, University of Mississippi, Jackson, Mississippi, United States
| | - David A Hess
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Butler J, Shah SJ, Petrie MC, Borlaug BA, Abildstrøm SZ, Davies MJ, Hovingh GK, Kitzman DW, Møller DV, Verma S, Einfeldt MN, Lindegaard ML, Rasmussen S, Abhayaratna W, Ahmed FZ, Ben-Gal T, Chopra V, Ezekowitz JA, Fu M, Ito H, Lelonek M, Melenovský V, Merkely B, Núñez J, Perna E, Schou M, Senni M, Sharma K, van der Meer P, Von Lewinski D, Wolf D, Kosiborod MN. Semaglutide versus placebo in people with obesity-related heart failure with preserved ejection fraction: a pooled analysis of the STEP-HFpEF and STEP-HFpEF DM randomised trials. Lancet 2024; 403:1635-1648. [PMID: 38599221 PMCID: PMC11317105 DOI: 10.1016/s0140-6736(24)00469-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND In the STEP-HFpEF (NCT04788511) and STEP-HFpEF DM (NCT04916470) trials, the GLP-1 receptor agonist semaglutide improved symptoms, physical limitations, bodyweight, and exercise function in people with obesity-related heart failure with preserved ejection fraction. In this prespecified pooled analysis of the STEP-HFpEF and STEP-HFpEF DM trials, we aimed to provide a more definitive assessment of the effects of semaglutide across a range of outcomes and to test whether these effects were consistent across key patient subgroups. METHODS We conducted a prespecified pooled analysis of individual patient data from STEP-HFpEF and STEP-HFpEF DM, randomised, double-blind, placebo-controlled trials at 129 clinical research sites in 18 countries. In both trials, eligible participants were aged 18 years or older, had heart failure with a left ventricular ejection fraction of at least 45%, a BMI of at least 30 kg/m2, New York Heart Association class II-IV symptoms, and a Kansas City Cardiomyopathy Questionnaire Clinical Summary Score (KCCQ-CSS; a measure of heart failure-related symptoms and physical limitations) of less than 90 points. In STEP-HFpEF, people with diabetes or glycated haemoglobin A1c concentrations of at least 6·5% were excluded, whereas for inclusion in STEP-HFpEF DM participants had to have been diagnosed with type 2 diabetes at least 90 days before screening and to have an HbA1c of 10% or lower. In both trials, participants were randomly assigned to either 2·4 mg semaglutide once weekly or matched placebo for 52 weeks. The dual primary endpoints were change from baseline to week 52 in KCCQ-CSS and bodyweight in all randomly assigned participants. Confirmatory secondary endpoints included change from baseline to week 52 in 6-min walk distance, a hierarchical composite endpoint (all-cause death, heart failure events, and differences in changes in KCCQ-CSS and 6-min walk distance); and C-reactive protein (CRP) concentrations. Heterogeneity in treatment effects was assessed across subgroups of interest. We assessed safety in all participants who received at least one dose of study drug. FINDINGS Between March 19, 2021 and March 9, 2022, 529 people were randomly assigned in STEP-HFpEF, and between June 27, 2021 and Sept 2, 2022, 616 were randomly assigned in STEP-HFpEF DM. Overall, 1145 were included in our pooled analysis, 573 in the semaglutide group and 572 in the placebo group. Improvements in KCCQ-CSS and reductions in bodyweight between baseline and week 52 were significantly greater in the semaglutide group than in the placebo group (mean between-group difference for the change from baseline to week 52 in KCCQ-CSS 7·5 points [95% CI 5·3 to 9·8]; p<0·0001; mean between-group difference in bodyweight at week 52 -8·4% [-9·2 to -7·5]; p<0·0001). For the confirmatory secondary endpoints, 6-min walk distance (mean between-group difference at week 52 17·1 metres [9·2 to 25·0]) and the hierarchical composite endpoint (win ratio 1·65 [1·42 to 1·91]) were significantly improved, and CRP concentrations (treatment ratio 0·64 [0·56 to 0·72]) were significantly reduced, in the semaglutide group compared with the placebo group (p<0·0001 for all comparisons). For the dual primary endpoints, the efficacy of semaglutide was largely consistent across multiple subgroups, including those defined by age, race, sex, BMI, systolic blood pressure, baseline CRP, and left ventricular ejection fraction. 161 serious adverse events were reported in the semaglutide group compared with 301 in the placebo group. INTERPRETATION In this prespecified pooled analysis of the STEP-HFpEF and STEP-HFpEF DM trials, semaglutide was superior to placebo in improving heart failure-related symptoms and physical limitations, and reducing bodyweight in participants with obesity-related heart failure with preserved ejection fraction. These effects were largely consistent across patient demographic and clinical characteristics. Semaglutide was well tolerated. FUNDING Novo Nordisk.
Collapse
Affiliation(s)
- Javed Butler
- Baylor Scott & White Research Institute, Dallas, TX, USA; Department of Medicine, University of Mississippi, Jackson, MS, USA
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mark C Petrie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Melanie J Davies
- Diabetes Research Centre, University of Leicester, Leicester, UK; National Institute for Health and Care Research Leicester Biomedical Research Centre, Leicester, UK
| | | | - Dalane W Kitzman
- Department of Cardiovascular Medicine and Section on Geriatrics and Gerontology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Subodh Verma
- Division of Cardiac Surgery, Li Ka Shing Knowledge Institute of St Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada
| | | | | | | | - Walter Abhayaratna
- College of Health and Medicine, Australian National University, Canberra, ACT, Australia
| | - Fozia Z Ahmed
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Tuvia Ben-Gal
- Heart Failure Unit, Department of Cardiology, Rabin Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vijay Chopra
- Max Super Speciality Hospital, Saket, New Delhi, India
| | | | - Michael Fu
- Section of Cardiology, Department of Medicine, Sahlgrenska University Hospital-Ostra, Gothenburg, Sweden
| | - Hiroshi Ito
- Department of General Internal Medicine 3, Kawasaki Medical School, Okayama, Japan
| | - Małgorzata Lelonek
- Department of Noninvasive Cardiology, Medical University of Lodz, Lodz, Poland
| | - Vojtěch Melenovský
- Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
| | - Bela Merkely
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| | - Julio Núñez
- Hospital Clínico Universitario de Valencia, INCLIVA, Universidad de Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red Cardiovascular, Valencia, Spain
| | - Eduardo Perna
- Instituto de Cardiologia J F Cabral, Corrientes, Argentina
| | - Morten Schou
- Department of Cardiology, Herlev-Gentofte Hospital, Hellerup, Denmark; Department of Clinical Medicine, University of Copenhagen, Herlev, Denmark
| | - Michele Senni
- Azienda Socio Sanitaria Territorial Papa Giovanni XXIII, Bergamo, Italy
| | - Kavita Sharma
- Heart Failure & Cardiac Transplantation, Johns Hopkins University Heart Failure with Preserved Ejection Fraction Program, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Dennis Wolf
- Cardiology and Angiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mikhail N Kosiborod
- Department of Cardiovascular Disease, Saint Luke's Mid America Heart Institute, Kansas City, MO, USA; University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA.
| |
Collapse
|
14
|
Luna-Marco C, Iannantuoni F, Hermo-Argibay A, Devos D, Salazar JD, Víctor VM, Rovira-Llopis S. Cardiovascular benefits of SGLT2 inhibitors and GLP-1 receptor agonists through effects on mitochondrial function and oxidative stress. Free Radic Biol Med 2024; 213:19-35. [PMID: 38220031 DOI: 10.1016/j.freeradbiomed.2024.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Overloaded glucose levels in several metabolic diseases such as type 2 diabetes (T2D) can lead to mitochondrial dysfunction and enhanced production of reactive oxygen species (ROS). Oxidative stress and altered mitochondrial homeostasis, particularly in the cardiovascular system, contribute to the development of chronic comorbidities of diabetes. Diabetes-associated hyperglycemia and dyslipidemia can directly damage vascular vessels and lead to coronary artery disease or stroke, and indirectly damage other organs and lead to kidney dysfunction, known as diabetic nephropathy. The new diabetes treatments include Na+-glucose cotransporter 2 inhibitors (iSGLT2) and glucagon-like 1 peptide receptor agonists (GLP-1RA), among others. The iSGLT2 are oral anti-diabetic drugs, whereas GLP-1RA are preferably administered through subcutaneous injection, even though GLP-1RA oral formulations have recently become available. Both therapies are known to improve both carbohydrate and lipid metabolism, as well as to improve cardiovascular and cardiorenal outcomes in diabetic patients. In this review, we present an overview of current knowledge on the relationship between oxidative stress, mitochondrial dysfunction, and cardiovascular therapeutic benefits of iSGLT2 and GLP-1RA. We explore the benefits, limits and common features of the treatments and remark how both are an interesting target in the prevention of obesity, T2D and cardiovascular diseases, and emphasize the lack of a complete understanding of the underlying mechanism of action.
Collapse
Affiliation(s)
- Clara Luna-Marco
- INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain
| | - Francesca Iannantuoni
- Service of di Immunohematology and Transfusion Medicine, Ospedale Infermi, AUSL Romagna, Rimini, Italy
| | - Alberto Hermo-Argibay
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - Deédeni Devos
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - Juan D Salazar
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - Víctor M Víctor
- INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain; Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia; National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd).
| | - Susana Rovira-Llopis
- INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain; Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia.
| |
Collapse
|
15
|
Xu C, Zhang N, Yuan H, Wang L, Li Y. Sacubitril/valsartan inhibits the proliferation of vascular smooth muscle cells through notch signaling and ERK1/2 pathway. BMC Cardiovasc Disord 2024; 24:106. [PMID: 38355423 PMCID: PMC10865611 DOI: 10.1186/s12872-024-03764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
AIMS To explore the role and mechanism of Notch signaling and ERK1/2 pathway in the inhibitory effect of sacubitril/valsartan on the proliferation of vascular smooth muscle cells (VSMCs). MAIN METHODS Human aortic vascular smooth muscle cells (HA-VSMCs) were cultured in vitro. The proliferating VSMCs were divided into three groups as control group, Ang II group and Ang II + sacubitril/valsartan group. Cell proliferation and migration were detected by CCK8 and scratch test respectively. The mRNA and protein expression of PCNA, MMP-9, Notch1 and Jagged-1 were detected by qRT-PCR and Western blot respectively. The p-ERK1/2 expression was detected by Western blot. KEY FINDINGS Compared with the control group, proliferation and migration of VSMCs and the expression of PCNA, MMP-9, Notch1, Jagged-1 and p-ERK1/2 was increased in Ang II group. Sacubitril/valsartan significantly reduced the proliferation and migration. Additionally, pretreatment with sacubitril/valsartan reduced the PCNA, MMP-9, Notch1, Jagged-1 and p-ERK1/2 expression.
Collapse
Affiliation(s)
- Congfeng Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266000, China
| | - Ning Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266000, China
| | - Hong Yuan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266000, China
| | - Liren Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266000, China
| | - Yonghong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266000, China.
| |
Collapse
|
16
|
Shi L, Hao M, Qu G, Xu Y, Cui Z, Geng L, Kuang H. The Key Role of Liraglutide in Preventing Autophagy of Vascular Smooth Muscle Cells in High Glucose Conditions. Balkan Med J 2024; 41:54-63. [PMID: 37953594 PMCID: PMC10767783 DOI: 10.4274/balkanmedj.galenos.2023.2023-8-44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Background The glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide (LIRA) is a potential hypoglycemic drug with anti-atherosclerosis (AS) effects. Autophagy in the vascular smooth muscle cells (VSMCs) facilitates AS. However, the role of autophagy in the anti-AS mechanism of LIRA remains unclear. Aims To examine the role and mechanisms of autophagy in LIRA’s improvement of the biological characteristics of VSMCs in high glucose conditions. Study Design Experimental animal study. Methods VSMCs isolated from the thoracic aorta of male SD rats were subjected to a high glucose (HG) condition (25 mM) in Dulbecco’s Modified Eagle’s Medium with or without LIRA, the GLP-1 receptor antagonist exendin9-39 (Exe9-39), a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), and autophagy inhibitors (3-methyladenine [3-MA] and bafilomycin A1 [Baf A1]). Acridine orange staining, western blotting, transmission electron microscopy, and mCherry-GFP-LC3 transfection were performed to evaluate the autophagy flux. Additionally, VSMC migration, calcification, proliferation, and apoptosis in HG conditions were observed. Results Addition of LIRA alone or in combination with autophagy inhibitors significantly downregulated Beclin, increased the LC3-II/LC3-I ratio, and upregulated p62 in VSMCs in HG conditions. Furthermore, autophagolysosome formation was markedly curbed after treatment with LIRA and/or autophagy inhibitors. Inhibition of autophagy by LIRA and/or the autophagy inhibitors attenuated VSMC phenotype conversion, proliferation, migration, and calcification and promoted VSMC apoptosis in HG conditions. This protective role of LIRA was augmented by LY294002, but inhibited by Exe9-39. Conclusion LIRA plays a significant role in the improvement of the biological features of VSMCs in HG conditions.
Collapse
Affiliation(s)
- Lili Shi
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- These authors contributed equally
| | - Ming Hao
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- These authors contributed equally
| | - Guangjing Qu
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingying Xu
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhe Cui
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Geng
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Kuang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Lee J, Hong SW, Kim MJ, Moon SJ, Kwon H, Park SE, Rhee EJ, Lee WY. Glucagon-Like Peptide Receptor Agonist Inhibits Angiotensin II-Induced Proliferation and Migration in Vascular Smooth Muscle Cells and Ameliorates Phosphate-Induced Vascular Smooth Muscle Cells Calcification. Diabetes Metab J 2024; 48:83-96. [PMID: 38173373 PMCID: PMC10850275 DOI: 10.4093/dmj.2022.0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGRUOUND Glucagon-like peptide-1 receptor agonist (GLP-1RA), which is a therapeutic agent for the treatment of type 2 diabetes mellitus, has a beneficial effect on the cardiovascular system. METHODS To examine the protective effects of GLP-1RAs on proliferation and migration of vascular smooth muscle cells (VSMCs), A-10 cells exposed to angiotensin II (Ang II) were treated with either exendin-4, liraglutide, or dulaglutide. To examine the effects of GLP-1RAs on vascular calcification, cells exposed to high concentration of inorganic phosphate (Pi) were treated with exendin-4, liraglutide, or dulaglutide. RESULTS Ang II increased proliferation and migration of VSMCs, gene expression levels of Ang II receptors AT1 and AT2, proliferation marker of proliferation Ki-67 (Mki-67), proliferating cell nuclear antigen (Pcna), and cyclin D1 (Ccnd1), and the protein expression levels of phospho-extracellular signal-regulated kinase (p-Erk), phospho-c-JUN N-terminal kinase (p-JNK), and phospho-phosphatidylinositol 3-kinase (p-Pi3k). Exendin-4, liraglutide, and dulaglutide significantly decreased the proliferation and migration of VSMCs, the gene expression levels of Pcna, and the protein expression levels of p-Erk and p-JNK in the Ang II-treated VSMCs. Erk inhibitor PD98059 and JNK inhibitor SP600125 decreased the protein expression levels of Pcna and Ccnd1 and proliferation of VSMCs. Inhibition of GLP-1R by siRNA reversed the reduction of the protein expression levels of p-Erk and p-JNK by exendin-4, liraglutide, and dulaglutide in the Ang II-treated VSMCs. Moreover, GLP-1 (9-36) amide also decreased the proliferation and migration of the Ang II-treated VSMCs. In addition, these GLP-1RAs decreased calcium deposition by inhibiting activating transcription factor 4 (Atf4) in Pi-treated VSMCs. CONCLUSION These data show that GLP-1RAs ameliorate aberrant proliferation and migration in VSMCs through both GLP-1Rdependent and independent pathways and inhibit Pi-induced vascular calcification.
Collapse
Affiliation(s)
- Jinmi Lee
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok-Woo Hong
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Jeong Kim
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Joon Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyemi Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Duan S, Qin N, Pi J, Sun P, Gao Y, Liu L, Li Z, Li Y, Shi L, Gao Q, Qiu Y, Tang S, Wang CH, Chen TY, Wang ST, Young KC, Sun HY. Antagonizing apolipoprotein J chaperone promotes proteasomal degradation of mTOR and relieves hepatic lipid deposition. Hepatology 2023; 78:1182-1199. [PMID: 37013405 DOI: 10.1097/hep.0000000000000185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/26/2022] [Indexed: 04/05/2023]
Abstract
BACKGROUND AND AIMS Overnutrition-induced activation of mammalian target of rapamycin (mTOR) dysregulates intracellular lipid metabolism and contributes to hepatic lipid deposition. Apolipoprotein J (ApoJ) is a molecular chaperone and participates in pathogen-induced and nutrient-induced lipid accumulation. This study investigates the mechanism of ApoJ-regulated ubiquitin-proteasomal degradation of mTOR, and a proof-of-concept ApoJ antagonist peptide is proposed to relieve hepatic steatosis. APPROACH AND RESULTS By using omics approaches, upregulation of ApoJ was found in high-fat medium-fed hepatocytes and livers of patients with NAFLD. Hepatic ApoJ level associated with the levels of mTOR and protein markers of autophagy and correlated positively with lipid contents in the liver of mice. Functionally, nonsecreted intracellular ApoJ bound to mTOR kinase domain and prevented mTOR ubiquitination by interfering FBW7 ubiquitin ligase interaction through its R324 residue. In vitro and in vivo gain-of-function or loss-of-function analysis further demonstrated that targeting ApoJ promotes proteasomal degradation of mTOR, restores lipophagy and lysosomal activity, thus prevents hepatic lipid deposition. Moreover, an antagonist peptide with a dissociation constant (Kd) of 2.54 µM interacted with stress-induced ApoJ and improved hepatic pathology, serum lipid and glucose homeostasis, and insulin sensitivity in mice with NAFLD or type II diabetes mellitus. CONCLUSIONS ApoJ antagonist peptide might be a potential therapeutic against lipid-associated metabolic disorders through restoring mTOR and FBW7 interaction and facilitating ubiquitin-proteasomal degradation of mTOR.
Collapse
Affiliation(s)
- Shuangdi Duan
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, China
| | - Nong Qin
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, China
| | - Jiayi Pi
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, China
| | - Pei Sun
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, China
| | - Yating Gao
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, China
| | - Lamei Liu
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, China
| | - Zenghui Li
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Ya Li
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, China
| | - Liyang Shi
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, China
| | - Qiang Gao
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Ye Qiu
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, China
| | - Songqing Tang
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha, China
| | - Chun-Hsiang Wang
- Division of Gastroenterology, Tainan Municipal Hospital, Tainan, Taiwan
| | - Tzu-Ying Chen
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sin-Tian Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kung-Chia Young
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Yu Sun
- Institute of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
19
|
Cases A. Glucagon-like peptide 1(GLP-1) receptor agonists in the management of the patient with type 2diabetes mellitus and chronic kidney disease: an approach for the nephrologist. Nefrologia 2023; 43:399-412. [PMID: 37813741 DOI: 10.1016/j.nefroe.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 10/11/2023] Open
Abstract
Diabetic kidney disease, a common complication in patients with type 2 diabetes mellitus, is associated with a markedly increased morbidity and mortality, especially of cardiovascular origin, and faster progression to end-stage renal disease. To date, reducing cardiovascular and renal risk in this population was based on strict control of cardiovascular risk factors and the renin-angiotensin system blockade. More recently, sodium-glucose cotransporter type 2 inhibitors have demonstrated to offer cardiovascular and renal protection, but the residual risk remains high and their antihyperglycemic efficacy is limited in moderate-severe CKD. Therefore, drugs with a potent antihyperglycemic effect, independent of the glomerular filtration rate, with a low risk of hypoglycemia, that reduce weight in overweight/obese patients and that provide cardiovascular and renal protection, such as GLP-1 receptor agonists, are needed. However, these drugs require subcutaneous administration, which may limit their early use. The recent availability of oral semaglutide may facilitate the early introduction of this family with proven cardiovascular and renal benefits and excellent safety profile. In this review the family is analyzed as well as their cardiovascular and renal effects.
Collapse
Affiliation(s)
- Aleix Cases
- Departament de Medicina, Facultat de Medicina, Campus Clínic, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
20
|
Bernardini F, Nusca A, Coletti F, La Porta Y, Piscione M, Vespasiano F, Mangiacapra F, Ricottini E, Melfi R, Cavallari I, Ussia GP, Grigioni F. Incretins-Based Therapies and Their Cardiovascular Effects: New Game-Changers for the Management of Patients with Diabetes and Cardiovascular Disease. Pharmaceutics 2023; 15:1858. [PMID: 37514043 PMCID: PMC10386670 DOI: 10.3390/pharmaceutics15071858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Atherosclerosis is the leading cause of death worldwide, especially in patients with type 2 diabetes mellitus (T2D). GLP-1 receptor agonists and DPP-4 inhibitors were demonstrated to play a markedly protective role for the cardiovascular system beyond their glycemic control. Several cardiovascular outcome trials (CVOT) reported the association between using these agents and a significant reduction in cardiovascular events in patients with T2D and a high cardiovascular risk profile. Moreover, recent evidence highlights a favorable benefit/risk profile in myocardial infarction and percutaneous coronary revascularization settings. These clinical effects result from their actions on multiple molecular mechanisms involving the immune system, platelets, and endothelial and vascular smooth muscle cells. This comprehensive review specifically concentrates on these cellular and molecular processes mediating the cardiovascular effects of incretins-like molecules, aiming to improve clinicians' knowledge and stimulate a more extensive use of these drugs in clinical practice as helpful cardiovascular preventive strategies.
Collapse
Affiliation(s)
- Federico Bernardini
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Annunziata Nusca
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Federica Coletti
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Ylenia La Porta
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Mariagrazia Piscione
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Francesca Vespasiano
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Fabio Mangiacapra
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Elisabetta Ricottini
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Rosetta Melfi
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Ilaria Cavallari
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Gian Paolo Ussia
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Francesco Grigioni
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| |
Collapse
|
21
|
Alicic RZ, Neumiller JJ, Tuttle KR. Mechanisms and clinical applications of incretin therapies for diabetes and chronic kidney disease. Curr Opin Nephrol Hypertens 2023; 32:377-385. [PMID: 37195250 PMCID: PMC10241427 DOI: 10.1097/mnh.0000000000000894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
PURPOSE OF REVIEW Diabetic kidney disease (DKD) is the leading cause of kidney failure worldwide. Development of DKD increases risks for cardiovascular events and death. Glucagon-like peptide-1 (GLP-1) receptor agonist have demonstrated improved cardiovascular and kidney outcomes in large-scale clinical trials. RECENT FINDING GLP-1 and dual GLP-1/glucose-depending insulinotropic polypeptide (GIP) receptor agonists have robust glucose-lowering efficacy with low risk of hypoglycemia even in advanced stages of DKD. Initially approved as antihyperglycemic therapies, these agents also reduce blood pressure and body weight. Cardiovascular outcome and glycemic lowering trials have reported decreased risks of development and progression of DKD and atherosclerotic cardiovascular events for GLP-1 receptor agonists. Kidney and cardiovascular protection is mediated partly, but not entirely, by lowering of glycemia, body weight, and blood pressure. Experimental data have identified modulation of the innate immune response as a biologically plausible mechanism underpinning kidney and cardiovascular effects. SUMMARY An influx of incretin-based therapies has changed the landscape of DKD treatment. GLP-1 receptor agonist use is endorsed by all major guideline forming organizations. Ongoing clinical trials and mechanistic studies with GLP-1 and dual GLP-1/GIP receptor agonists will further define the roles and pathways for these agents in the treatment of DKD.
Collapse
Affiliation(s)
- Radica Z. Alicic
- Providence Medical Research Center, Providence Inland Northwest Health
- Department of Medicine, University of Washington School of Medicine
| | - Joshua J. Neumiller
- Providence Medical Research Center, Providence Inland Northwest Health
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University
| | - Katherine R. Tuttle
- Providence Medical Research Center, Providence Inland Northwest Health
- Department of Medicine, University of Washington School of Medicine
- Nephrology Division, Kidney Research Institute and Institute of Translational Health Sciences, University of Washington, Spokane and Seattle, Washington, USA
| |
Collapse
|
22
|
Andreadi A, Muscoli S, Tajmir R, Meloni M, Muscoli C, Ilari S, Mollace V, Della Morte D, Bellia A, Di Daniele N, Tesauro M, Lauro D. Recent Pharmacological Options in Type 2 Diabetes and Synergic Mechanism in Cardiovascular Disease. Int J Mol Sci 2023; 24:1646. [PMID: 36675160 PMCID: PMC9862607 DOI: 10.3390/ijms24021646] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Diabetes Mellitus is a multifactorial disease with a critical impact worldwide. During prediabetes, the presence of various inflammatory cytokines and oxidative stress will lead to the pathogenesis of type 2 diabetes. Furthermore, insulin resistance and chronic hyperglycemia will lead to micro- and macrovascular complications (cardiovascular disease, heart failure, hypertension, chronic kidney disease, and atherosclerosis). The development through the years of pharmacological options allowed us to reduce the persistence of chronic hyperglycemia and reduce diabetic complications. This review aims to highlight the specific mechanisms with which the new treatments for type 2 diabetes reduce oxidative stress and insulin resistance and improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Aikaterini Andreadi
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Saverio Muscoli
- Division of Cardiology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Rojin Tajmir
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marco Meloni
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Carolina Muscoli
- Department of Health Science, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Sara Ilari
- Department of Health Science, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Science, University of Magna Graecia, 88100 Catanzaro, Italy
| | - David Della Morte
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Internal Medicine—Hypertension, Department of Medical Sciences, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alfonso Bellia
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Internal Medicine—Hypertension, Department of Medical Sciences, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
| | - Manfredi Tesauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Internal Medicine—Hypertension, Department of Medical Sciences, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
23
|
Chen J, Mei A, Wei Y, Li C, Qian H, Min X, Yang H, Dong L, Rao X, Zhong J. GLP-1 receptor agonist as a modulator of innate immunity. Front Immunol 2022; 13:997578. [PMID: 36569936 PMCID: PMC9772276 DOI: 10.3389/fimmu.2022.997578] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a 30-amino acid hormone secreted by L cells in the distal ileum, colon, and pancreatic α cells, which participates in blood sugar regulation by promoting insulin release, reducing glucagon levels, delaying gastric emptying, increasing satiety, and reducing appetite. GLP-1 specifically binds to the glucagon-like peptide-1 receptor (GLP-1R) in the body, directly stimulating the secretion of insulin by pancreatic β-cells, promoting proliferation and differentiation, and inhibiting cell apoptosis, thereby exerting a glycemic lowering effect. The glycemic regulating effect of GLP-1 and its analogues has been well studied in human and murine models in the circumstance of many diseases. Recent studies found that GLP-1 is able to modulate innate immune response in a number of inflammatory diseases. In the present review, we summarize the research progression of GLP-1 and its analogues in immunomodulation and related signal pathways.
Collapse
Affiliation(s)
- Jun Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Yingying Wei
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlei Li
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoquan Rao
- Department of Cardiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
24
|
Wei J, Yang B, Wang R, Ye H, Wang Y, Wang L, Zhang X. Risk of stroke and retinopathy during GLP-1 receptor agonist cardiovascular outcome trials: An eight RCTs meta-analysis. Front Endocrinol (Lausanne) 2022; 13:1007980. [PMID: 36545339 PMCID: PMC9760859 DOI: 10.3389/fendo.2022.1007980] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose To explore the risk of stroke (including ischemic and hemorrhagic stroke) in type 2 diabetes mellitus treated with glucagon-like peptide 1 receptor agonist (GLP-1RA) medication according to data from the Cardiovascular Outcome Trials(CVOT). Methods Randomized controlled trials (RCT) on GLP-1RA therapy and cardiovascular outcomes in type 2 diabetics published in full-text journal databases such as Medline (via PubMed), Embase, Clinical Trials.gov, and the Cochrane Library from establishment to May 1, 2022 were searched. We assess the quality of individual studies by using the Cochrane risk of bias algorithm. RevMan 5.4.1 software was use for calculating meta- analysis. Results A total of 60,081 randomized participants were included in the data of these 8 GLP-1RA cardiovascular outcomes trials. Pooled analysis reported statistically significant effect on total stroke risk[RR=0.83, 95%CI(0.73, 0.95), p=0.005], and its subtypes such as ischemic Stroke [RR=0.83, 95%CI(0.73, 0.95), p=0.008] from treatment with GLP-1RA versus placebo, and have no significant effect on the risk of hemorrhagic stroke[RR=0.83, 95%CI(0.57, 1.20), p=0.31] and retinopathy [RR=1.54, 95%CI(0.74, 3.23), p=0.25]. Conclusion GLP-1RA significantly reduces the risk of ischemic stroke in type 2 diabetics with cardiovascular risk factors.
Collapse
Affiliation(s)
- Jinjing Wei
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bing Yang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruxin Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haowen Ye
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ying Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lihong Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaofang Zhang
- Department Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Liraglutide Improves the Angiogenic Capability of EPC and Promotes Ischemic Angiogenesis in Mice under Diabetic Conditions through an Nrf2-Dependent Mechanism. Cells 2022; 11:cells11233821. [PMID: 36497087 PMCID: PMC9736458 DOI: 10.3390/cells11233821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
The impairment in endothelial progenitor cell (EPC) functions results in dysregulation of vascular homeostasis and dysfunction of the endothelium under diabetic conditions. Improving EPC function has been considered as a promising strategy for ameliorating diabetic vascular complications. Liraglutide has been widely used as a therapeutic agent for diabetes. However, the effects and mechanisms of liraglutide on EPC dysfunction remain unclear. The capability of liraglutide in promoting blood perfusion and angiogenesis under diabetic conditions was evaluated in the hind limb ischemia model of diabetic mice. The effect of liraglutide on the angiogenic function of EPC was evaluated by cell scratch recovery assay, tube formation assay, and nitric oxide production. RNA sequencing was performed to assess the underlying mechanisms. Liraglutide enhanced blood perfusion and angiogenesis in the ischemic hindlimb of db/db mice and streptozotocin-induced type 1 diabetic mice. Additionally, liraglutide improved tube formation, cell migration, and nitric oxide production of high glucose (HG)-treated EPC. Assessment of liraglutide target pathways revealed a network of genes involved in antioxidant activity. Further mechanism study showed that liraglutide decreased the production of reactive oxygen species and increased the activity of nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 deficiency attenuated the beneficial effects of liraglutide on improving EPC function and promoting ischemic angiogenesis under diabetic conditions. Moreover, liraglutide activates Nrf2 through an AKT/GSK3β/Fyn pathway, and inhibiting this pathway abolished liraglutide-induced Nrf2 activation and EPC function improvement. Overall, these results suggest that Liraglutide represents therapeutic potential in promoting EPC function and ameliorating ischemic angiogenesis under diabetic conditions, and these beneficial effects relied on Nrf2 activation.
Collapse
|
26
|
Gutierrez AD, Gao Z, Hamidi V, Zhu L, Saint Andre KB, Riggs K, Ruscheinsky M, Wang H, Yu Y, Miller C, Vasquez H, Taegtmeyer H, Kolonin MG. Anti-diabetic effects of GLP1 analogs are mediated by thermogenic interleukin-6 signaling in adipocytes. Cell Rep Med 2022; 3:100813. [PMID: 36384099 PMCID: PMC9729831 DOI: 10.1016/j.xcrm.2022.100813] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
Mechanisms underlying anti-diabetic effects of GLP1 analogs remain incompletely understood. We observed that in prediabetic humans exenatide treatment acutely induces interleukin-6 (IL-6) secretion by monocytes and IL-6 in systemic circulation. We hypothesized that GLP1 analogs signal through IL-6 in adipose tissue (AT) and used the mouse model to test if IL-6 receptor (IL-6R) signaling underlies the effects of the GLP1-IL-6 axis. We show that liraglutide transiently increases IL-6 in mouse circulation and IL-6R signaling in AT. Metronomic liraglutide treatment resulted in AT browning and thermogenesis linked with STAT3 activation. IL-6-blocking antibody treatment inhibited STAT3 activation in AT and suppressed liraglutide-induced increase in thermogenesis and glucose utilization. We show that adipose IL-6R knockout mice still display liraglutide-induced weight loss but lack thermogenic adipocyte browning and metabolism activation. We conclude that the anti-diabetic effects of GLP1 analogs are mediated by transient upregulation of IL-6, which activates canonical IL-6R signaling and thermogenesis.
Collapse
Affiliation(s)
- Absalon D Gutierrez
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Zhanguo Gao
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Vala Hamidi
- Department of Medicine, Division of Endocrinology, University of California San Diego, La Jolla, CA 92093, USA
| | - Liang Zhu
- Department of Internal Medicine, Division of Clinical and Translational Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA
| | | | - Kayla Riggs
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern, Dallas, TX 75225, USA
| | - Monika Ruscheinsky
- Department of Pathology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Hongyu Wang
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yongmei Yu
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Charles Miller
- Department of Cardiothoracic and Vascular Surgery, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Hernan Vasquez
- Department of Internal Medicine, Division of Cardiovascular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiovascular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Agonistas del receptor de péptido similar al glucagón tipo 1 (GLP-1) en el manejo del paciente con diabetes mellitus tipo 2. Una aproximación para el nefrólogo. Nefrologia 2022. [DOI: 10.1016/j.nefro.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Glycaemic Control in Patients Undergoing Percutaneous Coronary Intervention: What Is the Role for the Novel Antidiabetic Agents? A Comprehensive Review of Basic Science and Clinical Data. Int J Mol Sci 2022; 23:ijms23137261. [PMID: 35806265 PMCID: PMC9266811 DOI: 10.3390/ijms23137261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Coronary artery disease (CAD) remains one of the most important causes of morbidity and mortality worldwide, and revascularization through percutaneous coronary interventions (PCI) significantly improves survival. In this setting, poor glycaemic control, regardless of diabetes, has been associated with increased incidence of peri-procedural and long-term complications and worse prognosis. Novel antidiabetic agents have represented a paradigm shift in managing patients with diabetes and cardiovascular diseases. However, limited data are reported so far in patients undergoing coronary stenting. This review intends to provide an overview of the biological mechanisms underlying hyperglycaemia-induced vascular damage and the contrasting actions of new antidiabetic drugs. We summarize existing evidence on the effects of these drugs in the setting of PCI, addressing pre-clinical and clinical studies and drug-drug interactions with antiplatelet agents, thus highlighting new opportunities for optimal long-term management of these patients.
Collapse
|
29
|
He W, Wang Y, Yang R, Ma H, Qin X, Yan M, Rong Y, Xie Y, Li L, Si J, Li X, Ma K. Molecular Mechanism of Naringenin Against High-Glucose-Induced Vascular Smooth Muscle Cells Proliferation and Migration Based on Network Pharmacology and Transcriptomic Analyses. Front Pharmacol 2022; 13:862709. [PMID: 35754483 PMCID: PMC9219407 DOI: 10.3389/fphar.2022.862709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Although the protective effects of naringenin (Nar) on vascular smooth muscle cells (VSMCs) have been confirmed, whether it has anti-proliferation and anti-migration effects in high-glucose-induced VSMCs has remained unclear. This study aimed to clarify the potential targets and molecular mechanism of Nar when used to treat high-glucose-induced vasculopathy based on transcriptomics, network pharmacology, molecular docking, and in vivo and in vitro assays. We found that Nar has visible anti-proliferation and anti-migration effects both in vitro (high-glucose-induced VSMC proliferation and migration model) and in vivo (type 1 diabetes mouse model). Based on the results of network pharmacology and molecular docking, vascular endothelial growth factor A (VEGFA), the proto-oncogene tyrosine-protein kinase Src (Src) and the kinase insert domain receptor (KDR) are the core targets of Nar when used to treat diabetic angiopathies, according to the degree value and the docking score of the three core genes. Interestingly, not only the Biological Process (BP), Molecular Function (MF), and KEGG enrichment results from network pharmacology analysis but also transcriptomics showed that phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) is the most likely downstream pathway involved in the protective effects of Nar on VSMCs. Notably, according to the differentially expressed genes (DEGs) in the transcriptomic analysis, we found that cAMP-responsive element binding protein 5 (CREB5) is a downstream protein of the PI3K/Akt pathway that participates in VSMCs proliferation and migration. Furthermore, the results of molecular experiments in vitro were consistent with the bioinformatic analysis. Nar significantly inhibited the protein expression of the core targets (VEGFA, Src and KDR) and downregulated the PI3K/Akt/CREB5 pathway. Our results indicated that Nar exerted anti-proliferation and anti-migration effects on high-glucose-induced VSMCs through decreasing expression of the target protein VEGFA, and then downregulating the PI3K/Akt/CREB5 pathway, suggesting its potential for treating diabetic angiopathies.
Collapse
Affiliation(s)
- Wenjun He
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Yanming Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Rui Yang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Huihui Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Xuqing Qin
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Meijuan Yan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Yi Rong
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Yufang Xie
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Li Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
| | - Junqiang Si
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
30
|
Kiernan R, Persand D, Maddie N, Cai W, Carrillo-Sepulveda MA. Obesity-related vascular dysfunction persists after weight loss and is associated with decreased vascular glucagon-like peptide (GLP-1) receptor in female rats. Am J Physiol Heart Circ Physiol 2022; 323:H301-H311. [PMID: 35749717 PMCID: PMC9291415 DOI: 10.1152/ajpheart.00031.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity-related cardiovascular complications are a major health problem worldwide. Overconsumption of the Western diet is a well-known culprit for the development of obesity. While short-term weight loss through switching from a Western diet to a normal diet is known to promote metabolic improvement, its short-term effects on vascular parameters are not well-characterized. Glucagon-like peptide 1 (GLP-1), an incretin with vasculo-protective properties, is decreased in plasma from obese patients. We hypothesize that obesity causes persistent vascular dysfunction in association with downregulation of vascular GLP-1R. Female Wistar rats were randomized into three groups: lean received a chow diet for 28 weeks, obese received a Western diet for 28 weeks, and reverse obese received a Western diet for 18 weeks followed by 12 weeks of standard chow diet. The obese group exhibited increased body weight and body mass index, while the reverse obese group lost weight. Weight loss failed to reverse impaired vasodilation and high systolic blood pressure in obese rats. Strikingly, our results show that obese rats exhibit decreased serum levels of GLP-1 accompanied by decreased vascular GLP-1R expression. Weight loss recovered GLP-1 serum levels, however GLP-1R expression remained downregulated. Decreased Akt phosphorylation was observed in the obese and reverse obese group, suggesting that GLP-1/Akt signaling is persistently downregulated. Our results support that GLP-1 signaling is associated with obesity-related vascular dysfunction in females and short-term weight loss does not guarantee recovery of vascular function. This study suggests that GLP-1R may be a potential target for therapeutic intervention in obesity-related hypertension in females.
Collapse
Affiliation(s)
- Risa Kiernan
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, United States
| | - Dhandevi Persand
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, United States
| | - Nicole Maddie
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, United States
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, United States
| | | |
Collapse
|
31
|
Ekhzaimy AA, Masood A, Benabdelkamel H, Elhassan T, Musambil M, Alfadda AA. Plasma proteomics reveals an improved cardio-metabolic profile in patients with type 2 diabetes post-liraglutide treatment. Diab Vasc Dis Res 2022; 19:14791641221094322. [PMID: 35616478 PMCID: PMC9152203 DOI: 10.1177/14791641221094322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Diabetes mellitus is a chronic multisystem disease with a high global prevalence, including in Saudi Arabia. The Glucagon-like Peptide (GLP-1) receptor agonist liraglutide is known to lower glucose levels, reduce weight and improve cardiovascular outcome. However, mechanisms underlying the benefits of liraglutide treatment in patients with type 2 diabetes mellitus (T2DM) remain unclear. METHODS In the present study, a 2D-DIGE MALDI-TOF mass spectrometric approach combined with bioinformatics and network pathway analysis explore the plasma proteomic profile. The study involved 20 patients with T2DM with mean age of 54.4 ± 9.5 years and Hemoglobin A1c (HbA1c) between 8% and 11% (inclusive). RESULTS A statistically significant change (p < .006) was observed in HbA1c with no significant changes in body weight, renal function, or markers of dyslipidemia post-treatment with liraglutide. 2 D-DIGE gel analysis identified significant changes (⩾1.5-fold change, Analysis of variance (ANOVA), p ⩽ 0.05) in 72 proteins, (62 down and 10 up) in liraglutide pre-treatment compared to the post-treatment state. Proteins identified in our study were found to regulate metabolic processes including acute phase response proteins, enzymes, apolipoproteins with involvement of the inflammatory signaling pathways, NF-κB, AKT, and p38 MAPK. CONCLUSION Liraglutide treatment decreased levels of acute phase response that to reduce the systemic chronic inflammatory state and oxidative stress, and eventually improve the cardio-metabolic profile in these patients.
Collapse
Affiliation(s)
- Aishah A Ekhzaimy
- Department of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Tasnem Elhassan
- Department of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Mohthash Musambil
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Assim A Alfadda
- Department of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh, Saudi Arabia
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Assim A Alfadda, Department of Medicine, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia.
| |
Collapse
|
32
|
Suppression of COX-2/PGE2 levels by carbazole-linked triazoles via modulating methylglyoxal-AGEs and glucose-AGEs – Induced ROS/NF-κB signaling in monocytes. Cell Signal 2022; 97:110372. [DOI: 10.1016/j.cellsig.2022.110372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022]
|
33
|
Huang WQ, Zou Y, Tian Y, Ma XF, Zhou QY, Li ZY, Gong SX, Wang AP. Mammalian Target of Rapamycin as the Therapeutic Target of Vascular Proliferative Diseases: Past, Present, and Future. J Cardiovasc Pharmacol 2022; 79:444-455. [PMID: 34983907 DOI: 10.1097/fjc.0000000000001208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT The abnormal proliferation of vascular smooth muscle cells (VSMCs) is a key pathological characteristic of vascular proliferative diseases. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that plays an important role in regulating cell growth, motility, proliferation, and survival, as well as gene expression in response to hypoxia, growth factors, and nutrients. Increasing evidence shows that mTOR also regulates VSMC proliferation in vascular proliferative diseases and that mTOR inhibitors, such as rapamycin, effectively restrain VSMC proliferation. However, the molecular mechanisms linking mTOR to vascular proliferative diseases remain elusive. In our review, we summarize the key roles of the mTOR and the recent discoveries in vascular proliferative diseases, focusing on the therapeutic potential of mTOR inhibitors to target the mTOR signaling pathway for the treatment of vascular proliferative diseases. In this study, we discuss mTOR inhibitors as promising candidates to prevent VSMC-associated vascular proliferative diseases.
Collapse
Affiliation(s)
- Wen-Qian Huang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Yan Zou
- Department of Hand and Foot Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China ; and
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Xiao-Feng Ma
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Qin-Yi Zhou
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Zhen-Yu Li
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| |
Collapse
|
34
|
Zhang W, Guo Z, Li L, Shi Z, Zhu T. Hypoxia promotes human umbilical vein smooth muscle cell phenotypic switching via the ERK 1/2/c-fos/NF-κB signaling pathway. Ann Vasc Surg 2022; 84:371-380. [DOI: 10.1016/j.avsg.2022.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 11/01/2022]
|
35
|
Jahan H, Siddiqui NN, Iqbal S, Basha FZ, Khan MA, Aslam T, Choudhary MI. Indole-linked 1,2,3-triazole derivatives efficiently modulate COX-2 protein and PGE 2 levels in human THP-1 monocytes by suppressing AGE-ROS-NF-kβ nexus. Life Sci 2022; 291:120282. [PMID: 34990649 DOI: 10.1016/j.lfs.2021.120282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 12/25/2022]
Abstract
AIMS AGEs augment inflammatory responses by activating inflammatory cascade in monocytes, and hence lead to vascular dysfunction. The current study aims to study a plausible role and mechanism of a new library of indole-tethered 1,2,3-triazoles 2-13 in AGEs-induced inflammation. MATERIAL AND METHODS Initially, the analogs 2-13 were synthesized by cycloaddition reaction between prop-2-yn-1-yl-2-(1H-indol-3-yl) acetate (1) and azidoacetophenone (1a). In vitro glycation, and metabolic assays were employed to investigate antiglycation and cytotoxicity activities of new indole-triazoles. DCFH-DA, immunostaining, Western blotting, and ELISA techniques were used to study the reactive oxygen species (ROS), and pro-inflammatory mediators levels. KEY FINDINGS Among all the synthesized indole-triazoles, compounds 1-3, and 9-13, and their precursor molecule 1 were found to be active against AGEs production in in vitro glucose- and methylglyoxal (MGO)-BSA models. Compounds 1-2, and 11-13 were also found to be nontoxic against HEPG2, and THP-1 cells. Our results show that pretreatment of THP-1 monocytes with selected lead compounds 1-2, and 11-13, particularly compounds 12, and 13, reduced glucose- and MGO-derived AGEs-mediated ROS production (P < 0.001), as compared to standards, PDTC, rutin, and quercetin. They also significantly (P < 0.001) suppressed NF-ĸB translocation in THP-1 monocytes. Moreover, compounds 12, and 13 attenuated the AGEs-induced COX-2 protein levels (P < 0.001), and PGE2 production (P < 0.001) in THP-1 monocytes. SIGNIFICANCE Our data revealed that the indole-triazoles 12, and 13 can significantly attenuate the AGEs-induced proinflammatory COX-2 levels, and associated PGE2 production by suppressing AGE-ROS-NF-Kβ nexus in THP-1 monocytes. These compounds can thus serve as leads for further evaluation as treatment to delay early onset of diabetic complications.
Collapse
Affiliation(s)
- Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Nimra Naz Siddiqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shazia Iqbal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Fatima Z Basha
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Maria Aqeel Khan
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Tooba Aslam
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C, Jl. Mulyorejo, Surabaya 60115, Indonesia.
| |
Collapse
|
36
|
Ferrari F, Scheffel RS, Martins VM, Santos RD, Stein R. Glucagon-Like Peptide-1 Receptor Agonists in Type 2 Diabetes Mellitus and Cardiovascular Disease: The Past, Present, and Future. Am J Cardiovasc Drugs 2021; 22:363-383. [PMID: 34958423 DOI: 10.1007/s40256-021-00515-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with high cardiovascular morbidity and mortality, and cardiovascular diseases are the leading causes of death and disability in people with T2DM. Unfortunately, therapies strictly aimed at glycemic control have poorly contributed to a significant reduction in the risk of cardiovascular events. On the other hand, randomized controlled trials have shown that five glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and one exendin-based GLP-1 RA reduced atherosclerotic cardiovascular events in patients with diabetes at high cardiovascular risk. Furthermore, a meta-analysis including these six agents showed a reduction in major adverse cardiovascular events as well as all-cause mortality compared with placebo, regardless of structural homology. Evidence has also shown that some drugs in this class have beneficial effects on renal outcomes, such as preventing the onset of macroalbuminuria. In addition to lowering blood pressure, these drugs also favorably impacted on body weight in large randomized controlled trials as in real-world studies, a result considered a priority in T2DM management; these and other factors may justify the benefits of GLP-1 RAs upon the cardiovascular system, regardless of glycemic control. Finally, studies showed safety with a low risk of hypoglycemia and no increase in pancreatitis events. Given these benefits, GLP-1 RAs were preferentially endorsed in the guidelines of the European and American societies for patients with these conditions. This narrative review provides a current and comprehensive overview of GLP-1 RAs as cardiovascular and renal protective agents, far beyond their use as glucose-lowering drugs, supporting their effectiveness in treating patients with T2DM at high cardiovascular risk.
Collapse
Affiliation(s)
- Filipe Ferrari
- Postgraduate Program in Cardiology and Cardiovascular Sciences, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, School of Medicine, Rua Ramiro Barcelos 2350, Serviço de Fisiatria/Térreo, Porto Alegre, RS, 90470-260, Brazil
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rafael S Scheffel
- Pharmacology Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, School of Medicine, Porto Alegre, RS, Brazil
| | - Vítor M Martins
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Raul D Santos
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Lipid Clinic Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ricardo Stein
- Postgraduate Program in Cardiology and Cardiovascular Sciences, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, School of Medicine, Rua Ramiro Barcelos 2350, Serviço de Fisiatria/Térreo, Porto Alegre, RS, 90470-260, Brazil.
- School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
37
|
Wen X, Xi Y, Zhang Y, Jiao L, Shi S, Bai S, Sun F, Chang G, Wu R, Hao J, Li H. DR1 activation promotes vascular smooth muscle cell apoptosis via up-regulation of CSE/H 2 S pathway in diabetic mice. FASEB J 2021; 36:e22070. [PMID: 34859931 DOI: 10.1096/fj.202101455r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022]
Abstract
The important role of hydrogen sulfide (H2 S) as a novel gasotransmitter in inhibiting proliferation and promoting apoptosis of vascular smooth muscle cells (VSMCs) has been widely recognized. The dopamine D1 receptor (DR1), a G protein coupled receptor, inhibits atherosclerosis by suppressing VSMC proliferation. However, whether DR1 contributes to VSMC apoptosis via the induction of endogenous H2 S in diabetic mice is unclear. Here, we found that hyperglycemia decreased the expressions of DR1 and cystathionine-γ-lyase (CSE, a key enzyme for endogenous H2 S production) and reduced endogenous H2 S generation in mouse arteries and cultured VSMCs. DR1 agonist SKF38393 increased DR1 and CSE expressions and stimulated endogenous H2 S generation. Sodium hydrosulfide (NaHS, a H2 S donor) increased CSE expressions and H2 S generation but had no effect on DR1 expression. In addition, high glucose (HG) increased VSMC apoptosis, up-regulated IGF-1-IGF-1R and HB-EGF-EGFR, and stimulated ERK1/2 and PI3K-Akt pathways. Overexpression of DR1, the addition of SKF38393 or supply of NaHS further promoted VSMC apoptosis and down-regulated the above pathways. Knock out of CSE or the addition of the CSE inhibitor poly propylene glycol diminished the effect of SKF38393. Moreover, calmodulin (CaM) interacted with CSE in VSMCs; HG increased intracellular Ca2+ concentration and induced CaM expression, further strengthened the interaction of CaM with CSE in VSMCs, which were further enhanced by SKF38393. CaM inhibitor W-7, inositol 1,4,5-trisphosphate (IP3 ) inhibitor 2-APB, or ryanodine receptor inhibitor tetracaine abolished the stimulatory effect of SKF38393 on CaM expression and intracellular Ca2+ concentration. Taken together, these results suggest that DR1 up-regulates CSE/H2 S signaling by inducing the Ca2+ -CaM pathway followed by down-regulations of IGF-1-IGF-1R and HB-EGF-EGFR and their downstream ERK1/2 and PI3K-Akt, finally promoting the apoptosis of VSMCs in diabetic mice.
Collapse
Affiliation(s)
- Xin Wen
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yuxin Xi
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yuanzhou Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijie Jiao
- School of Medicine, Xiamen University, Xiamen, China
| | - Sa Shi
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shuzhi Bai
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Fengqi Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Guiquan Chang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ren Wu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jinghui Hao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Hongzhu Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China.,School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
38
|
Zhao YY, Chen LH, Huang L, Li YZ, Yang C, Zhu Y, Qu SL, Zhang C. Cardiovascular protective effects of GLP-1:A focus on the MAPK signaling pathway. Biochem Cell Biol 2021; 100:9-16. [PMID: 34658256 DOI: 10.1139/bcb-2021-0365] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular and related metabolic diseases are significant global health challenges. Glucagon-like peptide 1 (GLP-1) is a brain-gut peptide secreted by ileal endocrine that is now an established drug target in type 2 diabetes (T2DM). GLP-1 targeting agents have been shown not only to treat T2DM, but also to exert cardiovascular protective effects through regulating multiple signaling pathways. The mitogen-activated protein kinase (MAPK) pathway, a common signal transduction pathway for transmitting extracellular signals to downstream effector molecules, is involved in regulating diverse cell physiological processes, including cell proliferation, differentiation, stress, inflammation, functional synchronization, transformation and apoptosis. The purpose of this review is to highlight the relationship between GLP-1 and cardiovascular disease (CVD), and discuss how GLP-1 exerts cardiovascular protective effects through MAPK signaling pathway. This review also discusses the future challenges in fully characterizing and evaluating the CVD protective effects of GLP-1 receptor agonists (GLP-1RA) at the cellular and molecular level. A better understanding of MAPK signaling pathway that are disregulated in CVD may aid in the design and development of promising GLP-1RA.
Collapse
Affiliation(s)
- Yu-Yan Zhao
- Hengyang Medical College, 34706, Institute of Cardiovascular Disease, Hengyang, China, 421001;
| | - Lin-Hui Chen
- University of South China, 34706, Hengyang, Hunan, China;
| | - Liang Huang
- University of South China, 34706, Hengyang, Hunan, China;
| | - Yong-Zhen Li
- University of South China, 34706, Hengyang, Hunan, China;
| | - Chen Yang
- University of South China, 34706, Hengyang, Hunan, China;
| | - Ying Zhu
- University of South China, 34706, Department of Health Inspection and Quarantine, Hengyang, Hunan, China;
| | - Shun-Lin Qu
- University of South China, 34706, Hengyang, Hunan, China;
| | - Chi Zhang
- University of South China, 34706, Hengyang, Hunan, China, 421001;
| |
Collapse
|
39
|
Berndt J, Ooi SL, Pak SC. What Is the Mechanism Driving the Reduction of Cardiovascular Events from Glucagon-like Peptide-1 Receptor Agonists?-A Mini Review. Molecules 2021; 26:4822. [PMID: 34443410 PMCID: PMC8400553 DOI: 10.3390/molecules26164822] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are considered the standard of care for type 2 diabetes in many countries worldwide. These molecules have profound anti-hyperglycaemic actions with a favourable safety profile. They are now being considered for their robust cardiovascular (CV) protective qualities in diabetic patients. Most recent CV outcome trials have reported that GLP-1 RAs reduce major adverse cardiovascular events (MACE). Furthermore, the GLP-1 RAs seem to target the atherosclerotic CV disease processes preferentially. GLP-1 RAs also improve a wide range of routinely measured surrogate markers associated with CV risk. However, mediation analysis suggests these modest improvements may contribute indirectly to the overall anti-atherogenic profile of the molecules but fall short in accounting for the significant reduction in MACE. This review explores the body of literature to understand the possible mechanisms that contribute to the CV protective profile of GLP-1 RAs.
Collapse
Affiliation(s)
- Jared Berndt
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia; (J.B.); (S.L.O.)
- Eli Lilly Australia Pty. Ltd., West Ryde, NSW 2114, Australia
| | - Soo Liang Ooi
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia; (J.B.); (S.L.O.)
| | - Sok Cheon Pak
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia; (J.B.); (S.L.O.)
| |
Collapse
|
40
|
Ma X, Liu Z, Ilyas I, Little PJ, Kamato D, Sahebka A, Chen Z, Luo S, Zheng X, Weng J, Xu S. GLP-1 receptor agonists (GLP-1RAs): cardiovascular actions and therapeutic potential. Int J Biol Sci 2021; 17:2050-2068. [PMID: 34131405 PMCID: PMC8193264 DOI: 10.7150/ijbs.59965] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is closely associated with cardiovascular diseases (CVD), including atherosclerosis, hypertension and heart failure. Some anti-diabetic medications are linked with an increased risk of weight gain or hypoglycemia which may reduce the efficacy of the intended anti-hyperglycemic effects of these therapies. The recently developed receptor agonists for glucagon-like peptide-1 (GLP-1RAs), stimulate insulin secretion and reduce glycated hemoglobin levels without having side effects such as weight gain and hypoglycemia. In addition, GLP1-RAs demonstrate numerous cardiovascular protective effects in subjects with or without diabetes. There have been several cardiovascular outcomes trials (CVOTs) involving GLP-1RAs, which have supported the overall cardiovascular benefits of these drugs. GLP1-RAs lower plasma lipid levels and lower blood pressure (BP), both of which contribute to a reduction of atherosclerosis and reduced CVD. GLP-1R is expressed in multiple cardiovascular cell types such as monocyte/macrophages, smooth muscle cells, endothelial cells, and cardiomyocytes. Recent studies have indicated that the protective properties against endothelial dysfunction, anti-inflammatory effects on macrophages and the anti-proliferative action on smooth muscle cells may contribute to atheroprotection through GLP-1R signaling. In the present review, we describe the cardiovascular effects and underlying molecular mechanisms of action of GLP-1RAs in CVOTs, animal models and cultured cells, and address how these findings have transformed our understanding of the pharmacotherapy of T2DM and the prevention of CVD.
Collapse
Affiliation(s)
- Xiaoxuan Ma
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Zhenghong Liu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Iqra Ilyas
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Peter J Little
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD 4575, Australia.,School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Amirhossein Sahebka
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad, Iran
| | - Zhengfang Chen
- Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, Jiangsu Province, China
| | - Sihui Luo
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xueying Zheng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jianping Weng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Suowen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
41
|
Liu YY, Liu X, Zhou JG, Liang SJ. MicroRNA-302a promotes neointimal formation following carotid artery injury in mice by targeting PHLPP2 thus increasing Akt signaling. Acta Pharmacol Sin 2021; 42:550-559. [PMID: 32694755 PMCID: PMC8115114 DOI: 10.1038/s41401-020-0440-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/12/2020] [Indexed: 01/12/2023]
Abstract
The excessive proliferation and migration of smooth muscle cells (SMCs) play an important role in restenosis following percutaneous coronary interventions. MicroRNAs are able to target various genes and involved in the regulation of diverse cellular processes including cell growth and proliferation. In this study we investigated whether and how MicroRNAs regulated vascular SMC proliferation and vascular remodeling following carotid artery injury in mice. We showed that carotid artery injury-induced neointimal formation was remarkably ameliorated in microRNA (miR)-302 heterozygous mice and SMC-specific miR-302 knockout mice. In contrast, delivery of miR-302a adenovirus to the injured carotid artery enhanced neointimal formation. Upregulation of miR-302a enhanced the proliferation and migration of mouse aorta SMC (MASMC) in vitro by promoting cell cycle transition, whereas miR-302a inhibition caused the opposite results. Moreover, miR-302a promoted Akt activation by corporately decreasing Akt expression and increasing Akt phosphorylation in MASMCs. Application of the Akt inhibitor GSK690693 (5 μmol/L) counteracted the functions of miR-302a in promoting MASMC proliferation and migration. We further revealed that miR-302a directly targeted at the 3' untranslated region of PH domain and leucine rich repeat protein phosphatase 2 (PHLPP2) and negatively regulated PHLPP2 expression. Restoration of PHLPP2 abrogated the effects of miR-302a on Akt activation and MASMC motility. Furthermore, knockdown of PHLPP2 largely abolished the inhibition of neointimal formation that was observed in miR-302 heterozygous mice. Our data demonstrate that miR-302a exacerbates SMC proliferation and restenosis through increasing Akt signaling by targeting PHLPP2.
Collapse
Affiliation(s)
- Ying-Ying Liu
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiu Liu
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jia-Guo Zhou
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Si-Jia Liang
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
42
|
Zhao X, Wang M, Wen Z, Lu Z, Cui L, Fu C, Xue H, Liu Y, Zhang Y. GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects. Front Endocrinol (Lausanne) 2021; 12:721135. [PMID: 34497589 PMCID: PMC8419463 DOI: 10.3389/fendo.2021.721135] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Glucagon like peptide-1 (GLP-1) is an incretin secretory molecule. GLP-1 receptor agonists (GLP-1RAs) are widely used in the treatment of type 2 diabetes (T2DM) due to their attributes such as body weight loss, protection of islet β cells, promotion of islet β cell proliferation and minimal side effects. Studies have found that GLP-1R is widely distributed on pancreatic and other tissues and has multiple biological effects, such as reducing neuroinflammation, promoting nerve growth, improving heart function, suppressing appetite, delaying gastric emptying, regulating blood lipid metabolism and reducing fat deposition. Moreover, GLP-1RAs have neuroprotective, anti-infectious, cardiovascular protective, and metabolic regulatory effects, exhibiting good application prospects. Growing attention has been paid to the relationship between GLP-1RAs and tumorigenesis, development and prognosis in patient with T2DM. Here, we reviewed the therapeutic effects and possible mechanisms of action of GLP-1RAs in the nervous, cardiovascular, and endocrine systems and their correlation with metabolism, tumours and other diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Minghe Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Zhitong Wen
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Zhihong Lu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Chao Fu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Huan Xue
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yi Zhang, ; Yunfeng Liu,
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yi Zhang, ; Yunfeng Liu,
| |
Collapse
|
43
|
Woo MS, Park J, Ok SH, Park M, Sohn JT, Cho MS, Shin IW, Kim YA. The proper concentrations of dextrose and lidocaine in regenerative injection therapy: in vitro study. Korean J Pain 2021; 34:19-26. [PMID: 33380564 PMCID: PMC7783851 DOI: 10.3344/kjp.2021.34.1.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/18/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background Prolotherapy is a proliferation therapy as an alternative medicine. A combination of dextrose solution and lidocaine is usually used in prolotherapy. The concentrations of dextrose and lidocaine used in the clinical field are very high (dextrose 10%-25%, lidocaine 0.075%-1%). Several studies show about 1% dextrose and more than 0.2% lidocaine induced cell death in various cell types. We investigated the effects of low concentrations of dextrose and lidocaine in fibroblasts and suggest the optimal range of concentrations of dextrose and lidocaine in prolotherapy. Methods Various concentrations of dextrose and lidocaine were treated in NIH-3T3. Viability was examined with trypan blue exclusion assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Migration assay was performed for measuring the motile activity. Extracellular signal-regulated kinase (Erk) activation and protein expression of collagen I and α-smooth muscle actin (α-SMA) were determined with western blot analysis. Results The cell viability was decreased in concentrations of more than 5% dextrose and 0.1% lidocaine. However, in the concentrations 1% dextrose (D1) and 0.01% lidocaine (L0.01), fibroblasts proliferated mildly. The ability of migration in fibroblast was increased in the D1, L0.01, and D1 + L0.01 groups sequentially. D1 and L0.01 increased Erk activation and the expression of collagen I and α-SMA and D1 + L0.01 further increased. The inhibition of Erk activation suppressed fibroblast proliferation and the synthesis of collagen I. Conclusions D1, L0.01, and the combination of D1 and L0.01 induced fibroblast proliferation and increased collagen I synthesis via Erk activation.
Collapse
Affiliation(s)
- Min Seok Woo
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, Korea
| | - Jiyoung Park
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Seong-Ho Ok
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital, Changwon, Korea.,Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Miyeong Park
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Ju-Tae Sohn
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju, Korea.,Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Man Seok Cho
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Il-Woo Shin
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju, Korea.,Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Yeon A Kim
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital, Changwon, Korea.,Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Korea
| |
Collapse
|
44
|
Bjørnholm KD, Skovsted GF, Mitgaard-Thomsen A, Rakipovski G, Tveden-Nyborg P, Lykkesfeldt J, Povlsen GK. Liraglutide treatment improves endothelial function in the Ldlr-/- mouse model of atherosclerosis and affects genes involved in vascular remodelling and inflammation. Basic Clin Pharmacol Toxicol 2021; 128:103-114. [PMID: 32896073 DOI: 10.1111/bcpt.13486] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022]
Abstract
Recent clinical intervention studies have shown that the GLP1 analogue liraglutide lowers cardiovascular risk, but the underlying mechanism has not yet been fully elucidated. This study investigated the effects of liraglutide on endothelial function in the Ldlr-/- mouse model. Mice (n = 12/group) were fed Western diet (WD) or chow for 12 weeks followed by 4 weeks of treatment with liraglutide (1 mg/kg/day) or vehicle subcutaneously. Weight loss, blood lipid content, plaque burden, vasomotor function of the aorta and gene expression pattern in aorta and brachiocephalic artery were monitored. Liraglutide treatment significantly induced weight loss (P < .0001), decreased blood triglycerides (P < .0001) and total cholesterol (P < .0001) in WD-fed mice but did not decrease plaque burden. Liraglutide also improved endothelium-mediated dilation of the distal thoracis aorta (P = .0067), but it did not affect phenylephrine or sodium nitroprusside responses. Fluidigm analyses of 96 genes showed significantly altered expression of seven genes related to inflammation, vascular smooth muscle cells and extracellular matrix composition in liraglutide-treated animals. We conclude that treatment with liraglutide decreased endothelial dysfunction and that this could be linked to decreased inflammation or regulation of vascular remodelling.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Atherosclerosis/drug therapy
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Gene Expression Regulation
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/physiopathology
- Inflammation/prevention & control
- Liraglutide/pharmacology
- Male
- Mice, Knockout
- Plaque, Atherosclerotic
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Signal Transduction
- Vascular Remodeling/drug effects
- Vasodilation/drug effects
- Mice
Collapse
Affiliation(s)
- Katrine Dahl Bjørnholm
- Department of Experimental Animal Models, University of Copenhagen, Frederiksberg, Denmark
- Department of Cardiovascular Disease Research, Novo Nordisk, Måløv, Denmark
| | - Gry Freja Skovsted
- Department of Experimental Animal Models, University of Copenhagen, Frederiksberg, Denmark
| | | | - Günaj Rakipovski
- Department of Cardiovascular Disease Research, Novo Nordisk, Måløv, Denmark
| | - Pernille Tveden-Nyborg
- Department of Experimental Animal Models, University of Copenhagen, Frederiksberg, Denmark
| | - Jens Lykkesfeldt
- Department of Experimental Animal Models, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
45
|
Zareba L, Fitas A, Wolska M, Junger E, Eyileten C, Wicik Z, De Rosa S, Siller-Matula JM, Postula M. MicroRNAs and Long Noncoding RNAs in Coronary Artery Disease: New and Potential Therapeutic Targets. Cardiol Clin 2020; 38:601-617. [PMID: 33036721 DOI: 10.1016/j.ccl.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Noncoding RNAs (ncRNAs), including long noncoding RNAs and microRNAs, play an important role in coronary artery disease onset and progression. The ability of ncRNAs to simultaneously regulate many target genes allows them to modulate various key processes involved in atherosclerosis, including lipid metabolism, smooth muscle cell proliferation, autophagy, and foam cell formation. This review focuses on the therapeutic potential of the most important ncRNAs in coronary artery disease. Moreover, various other promising microRNAs and long noncoding RNAs that attract substantial scientific interest as potential therapeutic targets in coronary artery disease and merit further investigation are presented.
Collapse
Affiliation(s)
- Lukasz Zareba
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Marta Wolska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Eva Junger
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland; Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Alameda da Universidade, s/n-Anchieta, São Paulo 09606-045, Brazil
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, "Magna Graecia" University, Viale Europa, Catanzaro 88100, Italy
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland; Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland; Longevity Center, Warsaw, Poland.
| |
Collapse
|
46
|
Yuan P, Ma D, Gao X, Wang J, Li R, Liu Z, Wang T, Wang S, Liu J, Liu X. Liraglutide Ameliorates Erectile Dysfunction via Regulating Oxidative Stress, the RhoA/ROCK Pathway and Autophagy in Diabetes Mellitus. Front Pharmacol 2020; 11:1257. [PMID: 32903510 PMCID: PMC7435068 DOI: 10.3389/fphar.2020.01257] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
Background Erectile dysfunction (ED) occurs more frequently and causes a worse response to the first-line therapies in diabetics compared with nondiabetic men. Corpus cavernosum vascular dysfunction plays a pivotal role in the occurrence of diabetes mellitus ED (DMED). The aim of this study was to investigate the protective effects of glucagon-like peptide-1 (GLP-1) analog liraglutide on ED and explore the underlying mechanisms in vivo and in vitro. Methods Type 1 diabetes was induced in rats by streptozotocin, and the apomorphine test was for screening the DMED model in diabetic rats. Then they were randomly treated with subcutaneous injections of liraglutide (0.3 mg/kg/12 h) for 4 weeks. Erectile function was assessed by cavernous nerve electrostimulation. The corpus cavernosum was used for further study. In vitro, effects of liraglutide were evaluated by primary corpus cavernosum smooth muscle cells (CCSMCs) exposed to low or high glucose (HG)-containing medium with or without liraglutide and GLP-1 receptor (GLP-1R) inhibitor. Western blotting, fluorescent probe, immunohistochemistry, and relevant assay kits were performed to measure the levels of target proteins. Results Administration of liraglutide did not significantly affect plasma glucose and body weights in diabetic rats, but improved erectile function, reduced levels of NADPH oxidases and ROS production, downregulated expression of Ras homolog gene family (RhoA) and Rho-associated protein kinase (ROCK) 2 in the DMED group dramatically. The liraglutide treatment promoted autophagy further and restored expression of GLP-1R in the DMED group. Besides, cultured CCSMCs with liraglutide exhibited a lower level of oxidative stress accompanied by inhibition of the RhoA/ROCK pathway and a higher level of autophagy compared with HG treatment. These beneficial effects of liraglutide effectively reversed by GLP-1R inhibitor. Conclusion Liraglutide exerts protective effects on ED associated with the regulation of smooth muscle dysfunction, oxidative stress and autophagy, independently of a glucose- lowering effect. It provides new insight into the extrapancreatic actions of liraglutide and preclinical evidence for a potential treatment for DMED.
Collapse
Affiliation(s)
- Penghui Yuan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Delin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xintao Gao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxing Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Lin C, Zhang LJ, Li B, Zhang F, Shen QR, Kong GQ, Wang XF, Cui SH, Dai R, Cao WQ, Zhang P. Selenium-Containing Protein From Selenium-Enriched Spirulina platensis Attenuates High Glucose-Induced Calcification of MOVAS Cells by Inhibiting ROS-Mediated DNA Damage and Regulating MAPK and PI3K/AKT Pathways. Front Physiol 2020; 11:791. [PMID: 32733280 PMCID: PMC7363841 DOI: 10.3389/fphys.2020.00791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/15/2020] [Indexed: 01/29/2023] Open
Abstract
Hyperglycemia is the main feature of diabetes and may increase the risk of vascular calcification (VC), which is an independent predictor for cardiovascular and cerebrovascular diseases (CCD). Selenium (Se) may decrease the risk of CCD, and previous studies confirmed that Se-containing protein from Se-enriched Spirulina platensis (Se-SP) exhibited novel antioxidant potential. However, the effect of Se-SP against VC has been not investigated. Herein, the protective effect and underlying mechanism of Se-SP against high glucose-induced calcification in mouse aortic vascular smooth muscle cells (MOVAS) were explored. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) results showed time-dependent uptake of Se-SP in MOVAS cells, which significantly inhibited high glucose-induced abnormal proliferation. Se-SP co-treatment also effectively attenuated high glucose-induced calcification of MOVAS cells, followed by decreased activity and expression of alkaline phosphatase (ALP). Further investigation revealed that Se-SP markedly prevented reactive oxygen species (ROS)-mediated DNA damage in glucose-treated MOVAS cells. ROS inhibition by glutathione (GSH) effectively inhibited high glucose-induced calcification, indicating that Se-SP could act as ROS inhibitor to inhibit high glucose-induced DNA damage and calcification. Moreover, Se-SP dramatically attenuated high glucose-induced dysfunction of mitogen-activated protein kinases (MAPKs) and phosphatidylinositol-3-kinase/AKT (PI3K/AKT) pathways. Se-SP after Se addition achieved enhanced potential in inhibiting high glucose-induced calcification, which validated that Se-SP as a new Se species could be a highly effective treatment for human CCD.
Collapse
Affiliation(s)
- Cong Lin
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li-Jun Zhang
- Department of Neurology, People's Hospital of Linyi Affiliated to Qingdao University, Linyi, China
| | - Bo Li
- Department of Emergency, Taian City Central Hospital, Taian, China
| | - Feng Zhang
- Physical Examination Center, Taian City Central Hospital, Taian, China
| | - Qing-Rong Shen
- Department of Emergency, Taian City Central Hospital, Taian, China
| | - Guo-Qing Kong
- Department of Emergency, Taian City Central Hospital, Taian, China
| | - Xiao-Fan Wang
- Department of Emergency, Taian City Central Hospital, Taian, China
| | - Shou-Hong Cui
- Department of Emergency, Taian City Central Hospital, Taian, China
| | - Rong Dai
- Department of Emergency, Taian City Central Hospital, Taian, China
| | - Wen-Qiang Cao
- Department of Biotechnology, Zhuhai Hopegenes Medical and Phamaceutical Institute, Zhuhai, China
| | - Pu Zhang
- Department of Cardiovascular Medicine, Taian City Central Hospital, Taian, China
| |
Collapse
|
48
|
Zhang P, Wang AP, Yang HP, Ai L, Zhang HJ, Wang YM, Bi YL, Fan HH, Gao J, Zhang HY, Liu JZ. Apelin-13 attenuates high glucose-induced calcification of MOVAS cells by regulating MAPKs and PI3K/AKT pathways and ROS-mediated signals. Biomed Pharmacother 2020; 128:110271. [PMID: 32450527 DOI: 10.1016/j.biopha.2020.110271] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022] Open
Abstract
Vascular calcification (VC) is an inducement of many cardiovascular diseases. Clinic evidences have confirmed that diabetes was the independent risk factor for VC, and the mechanism has not been well explored. Apelin as a ligand molecule is widely found in the cardiovascular system and showed potential in inhibiting VC, but the inhibitory effect and mechanism of apelin-13 against high glucose-induced VC have not been investigated yet. Herein, apelin-13 was employed to inhibit high glucose-induced VC in mouse aortic vascular smooth muscle cells (MOVAS), and the underlying mechanism was explored. The results showed that apelin-13 significantly inhibited high glucose-induced cells proliferation, migration and invasion of MOVAS cells. Apelin-13 also effectively attenuated high glucose-induced calcification by inhibiting alkaline phosphatase (ALP) activity and expression. Further investigation revealed that apelin-13 dramatically suppressed high glucose-induced DNA damage through inhibiting reactive oxide species (ROS) generation. Moreover, apelin-13 also effectively improved high glucose-induced dysfunction of MAPKs and PI3K/AKT. Inhibition of ERK by inhibitor (U0126) significantly blocked high glucose-induced calcification, which further confirmed the significance of MAPKs. Taken together, these results suggested that apelin-13 had the potential to attenuate high glucose-induced calcification of MOVAS cells by inhibiting ROS-mediated DNA damage and regulating MAPKs and PI3K/AKT pathways. Our findings validated the strategy of using apelin-13 maybe a novel way in treating high glucose-mediated VC.
Collapse
MESH Headings
- Alkaline Phosphatase/antagonists & inhibitors
- Alkaline Phosphatase/metabolism
- Animals
- Aorta/drug effects
- Aorta/enzymology
- Aorta/pathology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- DNA Damage/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Glucose/toxicity
- Intercellular Signaling Peptides and Proteins/pharmacology
- Mice
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Oxidative Stress/drug effects
- Phosphatidylinositol 3-Kinase/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Vascular Calcification/enzymology
- Vascular Calcification/pathology
- Vascular Calcification/prevention & control
Collapse
Affiliation(s)
- Pu Zhang
- Department of Cardiovascular Medicine, Taian City Central Hospital, Taian, Shandong, 271000, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ai-Ping Wang
- Department of Cardiovascular Medicine, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Hong-Peng Yang
- Department of Cardiovascular Medicine, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Lei Ai
- Department of Clinical Laboratory, Taishan Coal Sanitarium of Shandong, Taian, Shandong, 271000, China
| | - Hong-Jun Zhang
- Department of Anesthesiology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, 471003, China
| | - Yong-Mei Wang
- Department of Cardiovascular Medicine, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Yan-Ling Bi
- Department of Cardiovascular Medicine, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Huai-Hai Fan
- Department of Intensive Medicine, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Jing Gao
- Department of Stomatology, Taian City Central Hospital, Taian, Shandong, 271000, China.
| | - Huan-Yi Zhang
- Department of Cardiovascular Medicine, Taian City Central Hospital, Taian, Shandong, 271000, China.
| | - Jian-Zhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
49
|
Ye D, Lou GH, Li AC, Dong FQ, Chen GP, Xu WW, Liu YN, Hu SJ. MicroRNA‑125a‑mediated regulation of the mevalonate signaling pathway contributes to high glucose‑induced proliferation and migration of vascular smooth muscle cells. Mol Med Rep 2020; 22:165-174. [PMID: 32319638 PMCID: PMC7248521 DOI: 10.3892/mmr.2020.11077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 03/11/2020] [Indexed: 01/14/2023] Open
Abstract
Hyperglycemia contributes to the excessive proliferation and migration of vascular smooth muscle cells (VSMC), which are closely associated with atherosclerosis. MicroRNAs (miRNAs/miRs) constitute a novel class of gene regulators, which have important roles in various pathological conditions. The aim of the present study was to identify miRNAs involved in the high glucose (HG)‑induced VSMC phenotype switch, and to investigate the underlying mechanism. miRNA sequencing and reverse transcription‑quantitative PCR results indicated that inhibition of miR‑125a expression increased the migration and proliferation of VSMCs following HG exposure, whereas the overexpression of miR‑125a abrogated this effect. Furthermore, dual‑luciferase reporter assay results identified that 3‑hydroxy‑3-methyglutaryl‑coA reductase (HMGCR), one of the key enzymes in the mevalonate signaling pathway, is a target of miR‑125a. Moreover, HMGCR knockdown, similarly to miR‑125a overexpression, suppressed HG‑induced VSMC proliferation and migration. These results were consistent with those from the miRNA target prediction programs. Using a rat model of streptozotocin‑induced diabetes mellitus, it was demonstrated that miR‑125a expression was gradually downregulated, and that the expressions of key enzymes in the mevalonate signaling pathway in the aortic media were dysregulated after several weeks. In addition, it was found that HG‑induced excessive activation of the mevalonate signaling pathway in VSMCs was suppressed following transfection with a miR‑125a mimic. Therefore, the present results suggest that decreased miR‑125a expression contributed to HG‑induced VSMC proliferation and migration via the upregulation of HMGCR expression. Thus, miR‑125a‑mediated regulation of the mevalonate signaling pathway may be associated with atherosclerosis.
Collapse
Affiliation(s)
- Dan Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Guo-Hua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ai-Chun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Feng-Qin Dong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Guo-Ping Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wei-Wei Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yan-Ning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shen-Jiang Hu
- Institute of Cardiology, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
50
|
Fan Z, Guo C, Zhang Y, Yao J, Liao L, Dong J. Hongjingtian Injection Inhibits Proliferation and Migration and Promotes Apoptosis in High Glucose-Induced Vascular Smooth Muscle Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4115-4126. [PMID: 31827318 PMCID: PMC6901383 DOI: 10.2147/dddt.s220719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/12/2019] [Indexed: 12/26/2022]
Abstract
Background Hongjingtian injection (HJT) is administered in the treatment of vascular diseases, including diabetic angiopathies (DA). However, its underlying mechanisms have not been examined systematically. Methods In this research, we explored potential mechanisms of HJT through network pharmacology. HG-stimulated A7r5 cells served as the cell model. Cell proliferation, migration and apoptosis were investigated. The effects on key targets and the AKT pathway were verified by Western blotting in experiments with the AKT inhibitor LY294002 or activator SC79. Results Network analysis predicted that HJT targeted 10 candidate targets and 15 pathways including cell proliferation, migration and apoptosis in response to DA. Functional experiments showed that HJT markedly suppressed the proliferation and migration and promoted the apoptosis of HG-induced VSMCs, which validated the prediction. Mechanistically, HJT significantly downregulated the expression of pAKT, MMP9, and PCNA, upregulated the expression of p53 and cleaved caspase-3 and increased the Bax/Bcl-2 ratio compared with the HG group. SC79, an AKT activator, partially reversed the inhibitory effects of HJT on HG-induced VSMCs, confirming the involvement of the AKT pathway. Furthermore, the presence of the AKT inhibitor LY294002 had a similar inhibitory effect as HJT. Conclusion These findings systematically evaluate the potential mechanisms of HJT for the treatment of DA. HJT suppressed the proliferation and migration and promoted the apoptosis of HG-induced VSMCs partly by inhibiting the AKT pathway. Additionally, this study may provide a quick and effective way to investigate the molecular mechanisms of traditional Chinese medicine.
Collapse
Affiliation(s)
- Zhengyuan Fan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China.,Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, People's Republic of China
| | - Congcong Guo
- Division of Endocrinology, Department of Internal Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, People's Republic of China
| | - Yuhan Zhang
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, People's Republic of China.,Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, People's Republic of China
| | - Jinming Yao
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, People's Republic of China.,Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, People's Republic of China
| | - Lin Liao
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, People's Republic of China.,Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, People's Republic of China
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|