1
|
Wang HN, Wang Y, Zhang SY, Bai L. Emerging roles of the acid sphingomyelinase/ceramide pathway in metabolic and cardiovascular diseases: Mechanistic insights and therapeutic implications. World J Cardiol 2025; 17:102308. [DOI: 10.4330/wjc.v17.i2.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/10/2024] [Accepted: 02/08/2025] [Indexed: 02/25/2025] Open
Abstract
Metabolic diseases have emerged as a leading cause of mortality from non-communicable diseases, posing a significant global public health challenge. Although the association between ceramides (Cers) and metabolic diseases is well-established, the role of the acid sphingomyelinase (ASMase)/Cer pathway in these diseases remains underexplored. This review synthesizes recent research on the biological functions, regulatory mechanisms, and targeted therapies related to the ASMase/Cer pathway in metabolic conditions, including obesity, diabetes, non-alcoholic fatty liver disease, and cardiovascular disease. The effects of the ASMase/Cer pathway on metabolic disease-related indicators, such as glycolipid metabolism, insulin resistance, inflammation, and mitochondrial homeostasis are elucidated. Moreover, this article discusses the therapeutic strategies using ASMase/Cer inhibitors for inverse prevention and treatment of these metabolic diseases in light of the possible efficacy of blockade of the ASMase/Cer pathway in arresting the progression of metabolic diseases. These insights offered herein should provide insight into the contribution of the ASMase/Cer pathway to metabolic diseases and offer tools to develop therapeutic interventions for such pathologies and their severe complications.
Collapse
Affiliation(s)
- Hong-Ni Wang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Ye Wang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Si-Yao Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Lan Bai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| |
Collapse
|
2
|
Su W, Liu J, Wang A, Zhang H, Sun Y, Yan Z, Svensson M, Yu JG, Zhao L. Distinct lipidomic profiles but similar improvements in aerobic capacity following sprint interval training versus moderate-intensity continuous training in male adolescents. Front Physiol 2025; 16:1475391. [PMID: 39949665 PMCID: PMC11821953 DOI: 10.3389/fphys.2025.1475391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Background Exercise-induced metabolic changes, especially lipidomic changes are generally associated with improvements in cardiovascular health. Despite numerous previous studies, the differences in lipidomic profile response to different types of exercise training remain unclear. This study aimed to investigate how two different exercise intensities affect aerobic capacity and serum lipidomic profiles in healthy adolescents. Methods Twenty-four healthy untrained male adolescents (13.08 ± 0.88 years old) were recruited and randomly assigned to moderate-intensity continuous training (MICT) group or sprint interval training (SIT) group to complete a specific training on a cycle ergometer for 6 weeks. Peak oxygen uptake (VO2peak) and body composition were measured, and blood samples were collected for serum lipoproteins and lipidomic analysis. Anthropometric, VO2peak, and serum biochemical data were analyzed using two-way repeated analysis of variance, while targeted lipidomic analysis was performed by principal component analysis and paired-sample t-test. Results VO2peak significantly improved from 39.05 ± 8.17 to 47.52 ± 8.51 [F (1, 44) = 14.75, p < 0.05] for MICT and from 40.13 ± 6.37 to 48.42 ± 7.01 [F (1, 44) = 14.75, p < 0.05] for SIT. A total of 28 lipids in MICT and 5 lipids in SIT showed significant changes out of 276 identified lipids (FC > 1.5 or <1/1.5, FDR <0.05). In MICT, 21 lipids, including sphingolipid (SP) and phospholipid (PL), decreased, while 7 lipids increased. In SIT, all 5 lipids, which were free fatty acid (FFA), decreased. Conclusion Although both MICT and SIT induced similar and significant improvements in VO2peak, serum lipid adaptations to the training differed. The primary changes in serum lipidomic intermediates for both types of training were reductions; however, SIT affected FFA, while MICT predominantly influenced SPs and PLs.
Collapse
Affiliation(s)
- Wantang Su
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Jianming Liu
- School of Competitive Sports, Beijing Sport University, Beijing, China
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| | - Aozhe Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Haifeng Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Yaqi Sun
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Zhiyi Yan
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Michael Svensson
- Department of Community Medicine and Rehabilitation, Section of Sports Medicine, Umeå University, Umeå, Sweden
| | - Ji-Guo Yu
- Department of Community Medicine and Rehabilitation, Section of Sports Medicine, Umeå University, Umeå, Sweden
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| |
Collapse
|
3
|
Cooper ID, Kyriakidou Y, Petagine L, Edwards K, Soto-Mota A, Brookler K, Elliott BT. Ketosis Suppression and Ageing (KetoSAge) Part 2: The Effect of Suppressing Ketosis on Biomarkers Associated with Ageing, HOMA-IR, Leptin, Osteocalcin, and GLP-1, in Healthy Females. Biomedicines 2024; 12:1553. [PMID: 39062126 PMCID: PMC11274887 DOI: 10.3390/biomedicines12071553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic dysfunctions are among the best documented hallmarks of ageing. Cardiovascular disease, Alzheimer's disease, cancer, type 2 diabetes mellitus, metabolic-dysfunction-associated steatosis liver disease, and fragility fractures are diseases of hyperinsulinaemia that reduce life and healthspan. We studied the effect of suppressing ketosis in 10 lean (BMI 20.5 kg/m2 ± 1.4), metabolically healthy, pre-menopausal women (age 32.3 ± 8.9 years) maintaining nutritional ketosis (NK) for an average of 3.9 years (± 2.3) who underwent three 21-day phases: nutritional ketosis (NK; P1), suppressed ketosis (SuK; P2), and returned to NK (P3). Ketosis suppression significantly increased insulin, 1.83-fold (p = 0.0006); glucose, 1.17-fold (p = 0.0088); homeostasis model assessment for insulin resistance (HOMA-IR), 2.13-fold (p = 0.0008); leptin, 3.35-fold (p = 0.0010); total osteocalcin, 1.63-fold (p = 0.0138); and uncarboxylated osteocalcin, 1.98-fold (p = 0.0417) and significantly decreased beta-hydroxybutyrate, 13.50-fold (p = 0.0012) and glucagon-like peptide-1 (GLP-1), 2.40-fold (p = 0.0209). Sustained NK showed no adverse health effects and may mitigate hyperinsulinemia. All biomarkers returned to basal P1 levels after removing the intervention for SuK, indicating that metabolic flexibility was maintained with long-term euketonaemia.
Collapse
Affiliation(s)
- Isabella D. Cooper
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (B.T.E.)
| | - Yvoni Kyriakidou
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (B.T.E.)
| | - Lucy Petagine
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (B.T.E.)
| | - Kurtis Edwards
- Cancer Biomarkers and Mechanisms Group, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK;
| | - Adrian Soto-Mota
- Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City 14080, Mexico;
- School of Medicine, Tecnologico de Monterrey, Mexico City 14380, Mexico
| | - Kenneth Brookler
- Retired former Research Collaborator, Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Bradley T. Elliott
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (B.T.E.)
| |
Collapse
|
4
|
Puig N, Rives J, Gil-Millan P, Miñambres I, Ginel A, Tauron M, Bonaterra-Pastra A, Hernández-Guillamon M, Pérez A, Sánchez-Quesada JL, Benitez S. Apolipoprotein J protects cardiomyocytes from lipid-mediated inflammation and cytotoxicity induced by the epicardial adipose tissue of diabetic patients. Biomed Pharmacother 2024; 175:116779. [PMID: 38776681 DOI: 10.1016/j.biopha.2024.116779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic patients present increased volume and functional alterations in epicardial adipose tissue (EAT). We aimed to analyze EAT from type 2 diabetic patients and the inflammatory and cytotoxic effects induced on cardiomyocytes. Furthermore, we analyzed the cardioprotective role of apolipoprotein J (apoJ). EAT explants were obtained from nondiabetic patients (ND), diabetic patients without coronary disease (DM), and DM patients with coronary disease (DM-C) after heart surgery. Morphological characteristics and gene expression were evaluated. Explants were cultured for 24 h and the content of nonesterified fatty acids (NEFA) and sphingolipid species in secretomes was evaluated by lipidomic analysis. Afterwards, secretomes were added to AC16 human cardiomyocytes for 24 h in the presence or absence of cardioprotective molecules (apoJ and HDL). Cytokine release and apoptosis/necrosis were assessed by ELISA and flow cytometry. The EAT from the diabetic samples showed altered expression of genes related to lipid accumulation, insulin resistance, and inflammation. The secretomes from the DM samples presented an increased ratio of pro/antiatherogenic ceramide (Cer) species, while those from DM-C contained the highest concentration of saturated NEFA. DM and DM-C secretomes promoted inflammation and cytotoxicity on AC16 cardiomyocytes. Exogenous Cer16:0, Cer24:1, and palmitic acid reproduced deleterious effects in AC16 cells. These effects were attenuated by exogenous apoJ. Diabetic secretomes promoted inflammation and cytotoxicity in cardiomyocytes. This effect was exacerbated in the secretomes of the DM-C samples. The increased content of specific NEFA and ceramide species seems to play a key role in inducing such deleterious effects, which are attenuated by apoJ.
Collapse
Affiliation(s)
- Núria Puig
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - José Rives
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Pedro Gil-Millan
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, and IR-Sant Pau, Barcelona, Spain
| | - Inka Miñambres
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, and IR-Sant Pau, Barcelona, Spain
| | - Antonino Ginel
- Cardiology Department, Hospital de la Santa Creu i Sant Pau, and IR-Sant Pau, Barcelona, Spain
| | - Manel Tauron
- Cardiology Department, Hospital de la Santa Creu i Sant Pau, and IR-Sant Pau, Barcelona, Spain
| | - Anna Bonaterra-Pastra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Pérez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - José Luís Sánchez-Quesada
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain.
| | - Sonia Benitez
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain.
| |
Collapse
|
5
|
Zhang J, Wang L, Jiang M. Diagnostic value of sphingolipid metabolism-related genes CD37 and CXCL9 in nonalcoholic fatty liver disease. Medicine (Baltimore) 2024; 103:e37185. [PMID: 38394483 PMCID: PMC11309649 DOI: 10.1097/md.0000000000037185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
The development of nonalcoholic fatty liver disease (NAFLD) has been reported to be caused by sphingolipid family inducing insulin resistance, mitochondrial dysfunction, and inflammation, which can be regulated by multiple sphingolipid metabolic pathways. This study aimed to explore the molecular mechanism of crucial sphingolipid metabolism related genes (SMRGs) in NAFLD. Firstly, the datasets (GSE48452, GSE126848, and GSE63067) from the Gene Expression Omnibus database and sphingolipid metabolism genes (SMGs) from previous research were collected for this study. The differentially expressed genes (DEGs) between different NAFLD and controls were acquired through "limma," and the SMRGs were authenticated via weighted gene co-expression network analysis (WGCNA). After overlapping the DEGs and SMRGs, the causality between the intersection genes (DE-SMRGs) and NAFLD was explored to sort out the candidate biomarkers by Mendelian randomization (MR) study. The receiver operating characteristic (ROC) curves of candidate biomarkers in GSE48452 and GSE126848 were yielded to determine the biomarkers, followed by the nomogram construction and enrichment analysis. Finally, the immune infiltration analysis, the prediction of transcription factors (TFs) and drugs targeting biomarkers were put into effect. A total of 23 DE-SMRGs were acquired based on the differential analysis and weighted gene co-expression network analysis (WGCNA), of which 3 DE-SMRGs (CD37, CXCL9 and IL7R) were picked out for follow-up analysis through univariate and multivariate MR analysis. The values of area under ROC curve of CD37 and CXCL9 were >0.7 in GSE48452 and GSE126848, thereby being regarded as biomarkers, which were mainly enriched in amino acid metabolism. With respect to the Spearman analysis between immune cells and biomarkers, CD37 and CXCL9 were significantly positively associated with M1 macrophages (P < .001), whose proportion was observably higher in NAFLD patients compared with controls. At last, TFs (ZNF460 and ZNF384) of CD37 and CXCL9 and a total of 79 chemical drugs targeting CD37 and CXCL9 were predicted. This study mined the pivotal SMRGs, CD37 and CXCL9, and systematically explored the mechanism of action of both biomarkers based on the public databases, which could tender a fresh reference for the clinical diagnosis and therapy of NAFLD.
Collapse
Affiliation(s)
- Jiayi Zhang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lingfang Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Meixiu Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Carr ST, Saito ER, Walton CM, Saito JY, Hanegan CM, Warren CE, Trumbull AM, Bikman BT. Ceramides Mediate Insulin-Induced Impairments in Cerebral Mitochondrial Bioenergetics in ApoE4 Mice. Int J Mol Sci 2023; 24:16635. [PMID: 38068958 PMCID: PMC10706658 DOI: 10.3390/ijms242316635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disease worldwide. A large body of work implicates insulin resistance in the development and progression of AD. Moreover, impairment in mitochondrial function, a common symptom of insulin resistance, now represents a fundamental aspect of AD pathobiology. Ceramides are a class of bioactive sphingolipids that have been hypothesized to drive insulin resistance. Here, we describe preliminary work that tests the hypothesis that hyperinsulinemia pathologically alters cerebral mitochondrial function in AD mice via accrual of the ceramides. Homozygous male and female ApoE4 mice, an oft-used model of AD research, were given chronic injections of PBS (control), insulin, myriocin (an inhibitor of ceramide biosynthesis), or insulin and myriocin over four weeks. Cerebral ceramide content was assessed using liquid chromatography-mass spectrometry. Mitochondrial oxygen consumption rates were measured with high-resolution respirometry, and H2O2 emissions were quantified via biochemical assays on brain tissue from the cerebral cortex. Significant increases in brain ceramides and impairments in brain oxygen consumption were observed in the insulin-treated group. These hyperinsulinemia-induced impairments in mitochondrial function were reversed with the administration of myriocin. Altogether, these data demonstrate a causative role for insulin in promoting brain ceramide accrual and subsequent mitochondrial impairments that may be involved in AD expression and progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Benjamin T. Bikman
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA; (S.T.C.); (E.R.S.); (C.M.W.); (A.M.T.)
| |
Collapse
|
7
|
Glycosphingolipids in Diabetes, Oxidative Stress, and Cardiovascular Disease: Prevention in Experimental Animal Models. Int J Mol Sci 2022; 23:ijms232315442. [PMID: 36499769 PMCID: PMC9735750 DOI: 10.3390/ijms232315442] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes contributes to about 30% morbidity and mortality world-wide and has tidal wave increases in several countries in Asia. Diabetes is a multi-factorial disease compounded by inflammation, dyslipidemia, atherosclerosis, and is sometimes accompanied with gains in body weight. Sphingolipid pathways that interplay in the enhancement of the pathology of this disease may be potential therapeutic targets. Thus, the application of advanced sphingolipidomics may help predict the progression of this disease and therapeutic outcomes in man. Pre-clinical studies using various experimental animal models of diabetes provide valuable information on the role of sphingolipid signaling networks in diabetes and the efficacy of drugs to determine the translatability of innovative discoveries to man. In this review, we discuss three major concepts regarding sphingolipids and diabetes. First, we discuss a possible involvement of a monosialodihexosylceramide (GM3) in insulin-insulin receptor interactions. Second, a potential role for ceramide (Cer) and lactosylceramide (LacCer) in apoptosis and mitochondrial dysfunction is proposed. Third, a larger role of LacCer in antioxidant status and inflammation is discussed. We also discuss how inhibitors of glycosphingolipid synthesis can ameliorate diabetes in experimental animal models.
Collapse
|
8
|
Gibbs JL, Dallon BW, Lewis JB, Walton CM, Arroyo JA, Reynolds PR, Bikman BT. Diesel Exhaust Particle Exposure Compromises Alveolar Macrophage Mitochondrial Bioenergetics. Int J Mol Sci 2019; 20:ijms20225598. [PMID: 31717476 PMCID: PMC6888061 DOI: 10.3390/ijms20225598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
Diesel exhaust particles (DEPs) are known pathogenic pollutants that constitute a significant quantity of air pollution. Given the ubiquitous presence of macrophages throughout the body, including the lungs, as well as their critical role in tissue and organismal metabolic function, we sought to determine the effect of DEP exposure on macrophage mitochondrial function. Following daily DEP exposure in mice, pulmonary macrophages were isolated for mitochondrial analyses, revealing reduced respiration rates and dramatically elevated H2O2 levels. Serum ceramides and inflammatory cytokines were increased. To determine the degree to which the changes in mitochondrial function in macrophages were not dependent on any cross-cell communication, primary pulmonary murine macrophages were used to replicate the DEP exposure in a cell culture model. We observed similar changes as seen in pulmonary macrophages, namely diminished mitochondrial respiration, but increased H2O2 production. Interestingly, when treated with myriocin to inhibit ceramide biosynthesis, these DEP-induced mitochondrial changes were mitigated. Altogether, these data suggest that DEP exposure may compromise macrophage mitochondrial and whole-body function via pathologic alterations in macrophage ceramide metabolism.
Collapse
Affiliation(s)
- Jonathan L. Gibbs
- Metabolism Research Lab, Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Blake W. Dallon
- Metabolism Research Lab, Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Joshua B. Lewis
- Lung and Placental Research Lab, Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Chase M. Walton
- Metabolism Research Lab, Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Juan A. Arroyo
- Lung and Placental Research Lab, Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Paul R. Reynolds
- Lung and Placental Research Lab, Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Benjamin T. Bikman
- Metabolism Research Lab, Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
- Correspondence:
| |
Collapse
|
9
|
Mejia JF, Hirschi KM, Tsai KYF, Long MG, Tullis BC, Bitter EEK, Bikman BT, Reynolds PR, Arroyo JA. Differential placental ceramide levels during gestational diabetes mellitus (GDM). Reprod Biol Endocrinol 2019; 17:81. [PMID: 31647034 PMCID: PMC6813062 DOI: 10.1186/s12958-019-0523-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is associated with important factors that influence fetal development. Sphingolipids are known to be associated with the development of diabetes. Our objective was to examine ceramide, a key sphingolipid, hyperosmolarity, and apoptosis in placentas from GDM patients treated with insulin or diet. METHODS Ceramide levels were assessed in placental tissues using immunohistochemistry. Immunoblot was performed to quantify serine palmitoyltransferase (SPT), the rate-limiting enzyme in ceramide biosynthesis, NFAT5, SMIT, AR, caspase 3 and the X-linked inhibitor of apoptosis. Trophoblast cells were treated with insulin or ceramide and assessments for mitochondrial respiration, caspase 3 and XIAP were also performed. RESULTS Immunohistochemistry showed increased ceramides in the placental villous trophoblasts of the insulin-treated GDM patients. Nuclear SPT was upregulated only in the insulin-treated GDM placenta when compared to controls. Nuclear NFAT5 was also increased in the GDM placenta. Active caspase 3 was elevated in placentas from both insulin- and diet-treated GDM patients. Mitochondrial respiration was decreased in trophoblasts treated with ceramide. Active caspase was not changed while XIAP protein was increased in trophoblasts treated with ceramide. CONCLUSIONS Our findings confirm the presence of ceramide in the human placenta of control and GDM patients. Furthermore, we conclude that ceramide is increased in the placental trophoblast during insulin treatment and that its upregulation correlates with elevated NFAT5, SMIT, increased apoptosis and decreased trophoblast mitochondrial respiration.
Collapse
Affiliation(s)
- Juan F Mejia
- Department of Physiology and Developmental Biology, Lung and Placenta Research Laboratory, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Kelsey M Hirschi
- Department of Physiology and Developmental Biology, Lung and Placenta Research Laboratory, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Kary Y F Tsai
- Department of Physiology and Developmental Biology, Lung and Placenta Research Laboratory, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Matthew G Long
- Department of Physiology and Developmental Biology, Lung and Placenta Research Laboratory, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Benton C Tullis
- Department of Physiology and Developmental Biology, Lung and Placenta Research Laboratory, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Eliza E K Bitter
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Benjamin T Bikman
- Department of Physiology and Developmental Biology, Metabolism Research Laboratory, Brigham Young University, Provo, UT, USA
| | - Paul R Reynolds
- Department of Physiology and Developmental Biology, Lung and Placenta Research Laboratory, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Juan A Arroyo
- Department of Physiology and Developmental Biology, Lung and Placenta Research Laboratory, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA.
| |
Collapse
|
10
|
Bonezzi F, Piccoli M, Dei Cas M, Paroni R, Mingione A, Monasky MM, Caretti A, Riganti C, Ghidoni R, Pappone C, Anastasia L, Signorelli P. Sphingolipid Synthesis Inhibition by Myriocin Administration Enhances Lipid Consumption and Ameliorates Lipid Response to Myocardial Ischemia Reperfusion Injury. Front Physiol 2019; 10:986. [PMID: 31447688 PMCID: PMC6696899 DOI: 10.3389/fphys.2019.00986] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Myocardial infarct requires prompt thrombolytic therapy or primary percutaneous coronary intervention to limit the extent of necrosis, but reperfusion creates additional damage. Along with reperfusion, a maladaptive remodeling phase might occur and it is often associated with inflammation, oxidative stress, as well as a reduced ability to recover metabolism homeostasis. Infarcted individuals can exhibit reduced lipid turnover and their accumulation in cardiomyocytes, which is linked to a deregulation of peroxisome proliferator activated receptors (PPARs), controlling fatty acids metabolism, energy production, and the anti-inflammatory response. We previously demonstrated that Myriocin can be effectively used as post-conditioning therapeutic to limit ischemia/reperfusion-induced inflammation, oxidative stress, and infarct size, in a murine model. In this follow-up study, we demonstrate that Myriocin has a critical regulatory role in cardiac remodeling and energy production, by up-regulating the transcriptional factor EB, PPARs nuclear receptors and genes involved in fatty acids metabolism, such as VLDL receptor, Fatp1, CD36, Fabp3, Cpts, and mitochondrial FA dehydrogenases. The overall effects are represented by an increased β–oxidation, together with an improved electron transport chain and energy production. The potent immunomodulatory and metabolism regulatory effects of Myriocin elicit the molecule as a promising pharmacological tool for post-conditioning therapy of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Fabiola Bonezzi
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Piccoli
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Michele Dei Cas
- Clinical Biochemistry and Mass Spectrometry Laboratory, Health Sciences Department, University of Milan, Milan, Italy
| | - Rita Paroni
- Clinical Biochemistry and Mass Spectrometry Laboratory, Health Sciences Department, University of Milan, Milan, Italy
| | - Alessandra Mingione
- Biochemistry and Molecular Biology Laboratory, Health Sciences Department, University of Milan, Milan, Italy
| | | | - Anna Caretti
- Biochemistry and Molecular Biology Laboratory, Health Sciences Department, University of Milan, Milan, Italy
| | - Chiara Riganti
- Cell Biochemistry Laboratory, Oncology Department, and Interdepartmental Research Center for Molecular Biotechnology, University of Turin, Turin, Italy
| | - Riccardo Ghidoni
- Biochemistry and Molecular Biology Laboratory, Health Sciences Department, University of Milan, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Luigi Anastasia
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Paola Signorelli
- Biochemistry and Molecular Biology Laboratory, Health Sciences Department, University of Milan, Milan, Italy
| |
Collapse
|
11
|
Ross MM, Piorczynski TB, Harvey J, Burnham TS, Francis M, Larsen MW, Roe K, Hansen JM, Stark MR. Ceramide: a novel inducer for neural tube defects. Dev Dyn 2019; 248:979-996. [PMID: 31390103 DOI: 10.1002/dvdy.93] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/02/2019] [Accepted: 07/21/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circulating plasma ceramides, a class of bioactive sphingolipids, are elevated in metabolic disorders, including obesity. Infants of women with these disorders are at 2- to 3-fold greater risk for developing a neural tube defect (NTD). This study aimed to test the effects of embryonic exposure to C2-ceramides (C2) during neural tube closure. Preliminary data shows an increase in NTDs in chick embryos after C2 exposure, and addresses potential mechanisms. RESULTS Cell and embryo models were used to examine redox shifts after ceramide exposure. While undifferentiated P19 cells were resistant to ceramide exposure, neuronally differentiated P19 cells exhibited an oxidizing shift. Consistent with these observations, GSH E h curves revealed a shift to a more oxidized state in C2 treated embryos without increasing apoptosis or changing Pax3 expression, however cell proliferation was lower. Neural tube defects were observed in 45% of chick embryos exposed to C2, compared to 12% in control embryos. CONCLUSIONS C2 exposure during critical developmental stages increased the frequency of NTDs in the avian model. Increased ROS generation in cell culture, along with the more oxidative GSH E h profiles of C2 exposed cells and embryos, support a model wherein ceramide affects neural tube closure via altered tissue redox environments.
Collapse
Affiliation(s)
- Micah M Ross
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Ted B Piorczynski
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Jamison Harvey
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Tyson S Burnham
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Morgan Francis
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Madison W Larsen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Kyle Roe
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Michael R Stark
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| |
Collapse
|
12
|
Abstract
Studies of bioactive lipids in general and sphingolipids in particular have intensified over the past several years, revealing an unprecedented and unanticipated complexity of the lipidome and its many functions, which rivals, if not exceeds, that of the genome or proteome. These results highlight critical roles for bioactive sphingolipids in most, if not all, major cell biological responses, including all major cell signalling pathways, and they link sphingolipid metabolism to key human diseases. Nevertheless, the fairly nascent field of bioactive sphingolipids still faces challenges in its biochemical and molecular underpinnings, including defining the molecular mechanisms of pathway and enzyme regulation, the study of lipid-protein interactions and the development of cellular probes, suitable biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, New York 11794, USA
| | - Lina M Obeid
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, New York 11794, USA
- Northport Veterans Affairs Medical Center, Northport, New York 11768, USA
| |
Collapse
|
13
|
Insulin selectively reduces mitochondrial uncoupling in brown adipose tissue in mice. Biochem J 2018; 475:561-569. [PMID: 29170160 DOI: 10.1042/bcj20170736] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022]
Abstract
The purpose of the present study was to determine the effects of prolonged hyperinsulinemia on mitochondrial respiration and uncoupling in distinct adipose tissue depots. Sixteen-week-old male mice were injected daily with placebo or insulin to induce an artificial hyperinsulinemia for 28 days. Following the treatment period, mitochondrial respiration and degree of uncoupling were determined in permeabilized perirenal, inguinal, and interscapular adipose tissue. White adipose tissue (WAT) mitochondria (inguinal and perirenal) respire at substantially lower rates compared with brown adipose tissue (BAT). Insulin treatment resulted in a significant reduction in mitochondrial respiration in inguinal WAT (iWAT) and interscapular BAT (iBAT), but not in perirenal WAT (pWAT). Furthermore, these changes were accompanied by an insulin-induced reduction in UCP-1 (uncoupling protein 1) and PGC-1α in iWAT and iBAT only, but not in pWAT or skeletal muscle. Compared with adipose tissue mitochondria in placebo conditions, adipose tissue from hyperinsulinemic mice manifested a site-specific reduction in mitochondrial respiration probably as a result of reduced uncoupling. These results may help explain weight gain so commonly seen with insulin treatment in type 2 diabetes mellitus.
Collapse
|
14
|
Law BA, Hancock WD, Cowart LA. Getting to the heart of the sphingolipid riddle. CURRENT OPINION IN PHYSIOLOGY 2018; 1:111-122. [PMID: 33195889 PMCID: PMC7665081 DOI: 10.1016/j.cophys.2017.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Obesity, Type 2 Diabetes, and Metabolic Syndrome induce dyslipidemia resulting in inundation of peripheral organs with fatty acids. These not only serve as substrates for energy production, but also contribute to aberrant production of bioactive lipids. Moreover, lipid metabolism is affected in many cardiac disorders including heart failure, ischemia reperfusion injury, and others. While lipids serve crucial homeostatic roles, perturbing biosynthesis of lipid mediators leads to aberrant cell signaling, which contributes to maladaptive cardiovascular programs. Bioactive sphingolipids, in particular, have been implicated in pathophysiology in the heart and vasculature by a variety of studies in cells, animal models, and humans. Because of the burgeoning interest in sphingolipid-driven biology in the cardiovascular system, it is necessary to discuss the experimental considerations for studying sphingolipid metabolism and signaling, emphasizing the caveats to some widely available experimental tools and approaches. Additionally, there is a growing appreciation for the diversity of ceramide structures generated via specific enzymes and bearing disparate cellular functions. While targeting these individual species and enzymes constitutes a major advance, studies show that sphingolipid synthesis readily adapts to compensate for experimental targeting of any individual pathway, thereby convoluting data interpretation. Furthermore, though some molecular mechanisms of sphingolipid action are known, signaling pathways impacted by sphingolipids remain incompletely understood. In this review, we discuss these issues and highlight recent studies as well as future directions that may extend our understanding of the metabolism and signaling actions of these enigmatic lipids in the cardiovascular context.
Collapse
Affiliation(s)
- Britany A Law
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
- Present Address: Department of Medicine-Cardiology, Duke University, Durham NC
| | - William D Hancock
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson Veteran's Affairs Medical Center, Charleston, SC
| |
Collapse
|
15
|
Acylation of Superoxide Dismutase 1 (SOD1) at K122 Governs SOD1-Mediated Inhibition of Mitochondrial Respiration. Mol Cell Biol 2017; 37:MCB.00354-17. [PMID: 28739857 DOI: 10.1128/mcb.00354-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/11/2017] [Indexed: 12/24/2022] Open
Abstract
In this study, we employed proteomics to identify mechanisms of posttranslational regulation on cell survival signaling proteins. We focused on Cu-Zn superoxide dismutase (SOD1), which protects cells from oxidative stress. We found that acylation of K122 on SOD1, while not impacting SOD1 catalytic activity, suppressed the ability of SOD1 to inhibit mitochondrial metabolism at respiratory complex I. We found that deacylase depletion increased K122 acylation on SOD1, which blocked the suppression of respiration in a K122-dependent manner. In addition, we found that acyl-mimicking mutations at K122 decreased SOD1 accumulation in mitochondria, initially hinting that SOD1 may inhibit respiration directly within the intermembrane space (IMS). However, surprisingly, we found that forcing the K122 acyl mutants into the mitochondria with an IMS-targeting tag did not recover their ability to suppress respiration. Moreover, we found that suppressing or boosting respiration levels toggled SOD1 in or out of the mitochondria, respectively. These findings place SOD1-mediated inhibition of respiration upstream of its mitochondrial localization. Lastly, deletion-rescue experiments show that a respiration-defective mutant of SOD1 is also impaired in its ability to rescue cells from toxicity caused by SOD1 deletion. Together, these data suggest a previously unknown interplay between SOD1 acylation, metabolic regulation, and SOD1-mediated cell survival.
Collapse
|
16
|
Lucas E, Vila-Bedmar R, Arcones AC, Cruces-Sande M, Cachofeiro V, Mayor F, Murga C. Obesity-induced cardiac lipid accumulation in adult mice is modulated by G protein-coupled receptor kinase 2 levels. Cardiovasc Diabetol 2016; 15:155. [PMID: 27832814 PMCID: PMC5105284 DOI: 10.1186/s12933-016-0474-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/02/2016] [Indexed: 01/08/2023] Open
Abstract
Background The leading cause of death among the obese population is heart failure and stroke prompted by structural and functional changes in the heart. The molecular mechanisms that underlie obesity-related cardiac remodeling are complex, and include hemodynamic and metabolic alterations that ultimately affect the functionality of the myocardium. G protein-coupled receptor kinase 2 (GRK2) is an ubiquitous kinase able to desensitize the active form of several G protein-coupled receptors (GPCR) and is known to play an important role in cardiac GPCR modulation. GRK2 has also been recently identified as a negative modulator of insulin signaling and systemic insulin resistance. Methods We investigated the effects elicited by GRK2 downregulation in obesity-related cardiac remodeling. For this aim, we used 9 month-old wild type (WT) and GRK2+/− mice, which display circa 50% lower levels of this kinase, fed with either a standard or a high fat diet (HFD) for 30 weeks. In these mice we studied different parameters related to cardiac growth and lipid accumulation. Results We find that GRK2+/− mice are protected from obesity-promoted cardiac and cardiomyocyte hypertrophy and fibrosis. Moreover, the marked intracellular lipid accumulation caused by a HFD in the heart is not observed in these mice. Interestingly, HFD significantly increases cardiac GRK2 levels in WT but not in GRK2+/− mice, suggesting that the beneficial phenotype observed in hemizygous animals correlates with the maintenance of GRK2 levels below a pathological threshold. Low GRK2 protein levels are able to keep the PKA/CREB pathway active and to prevent HFD-induced downregulation of key fatty acid metabolism modulators such as Peroxisome proliferator-activated receptor gamma co-activators (PGC1), thus preserving the expression of cardioprotective proteins such as mitochondrial fusion markers mitofusin MFN1 and OPA1. Conclusions Our data further define the cellular processes and molecular mechanisms by which GRK2 down-regulation is cardioprotective during diet-induced obesity, reinforcing the protective effect of maintaining low levels of GRK2 under nutritional stress, and showing a role for this kinase in obesity-induced cardiac remodeling and steatosis. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0474-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisa Lucas
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), C/Nicolas Cabrera 1, 28049, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Rocio Vila-Bedmar
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), C/Nicolas Cabrera 1, 28049, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Alba C Arcones
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), C/Nicolas Cabrera 1, 28049, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Marta Cruces-Sande
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), C/Nicolas Cabrera 1, 28049, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), C/Nicolas Cabrera 1, 28049, Madrid, Spain. .,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
| | - Cristina Murga
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), C/Nicolas Cabrera 1, 28049, Madrid, Spain. .,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
| |
Collapse
|
17
|
Qiu CR, Fu Q, Sui J, Zhang Q, Wei P, Wu Y, Zhu K, Lu Y, Wan P. Analysis of Serum Endothelial Cell-Specific Molecule 1 (Endocan) Level in Type 2 Diabetes Mellitus With Acute ST-Segment Elevation Myocardial Infarction and its Correlation. Angiology 2016; 68:74-78. [PMID: 26927690 DOI: 10.1177/0003319716634581] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endothelial cell-specific molecule 1 (ESM-1; endocan) is expressed by endothelial cells, and it can be overexpressed in diabetic patients. However, little is known concerning diabetic patients with acute ST-segment elevation myocardial infarction (STEMI). Therefore, we assessed serum ESM-1 level in patients having type 2 diabetes mellitus (T2DM) STEMI; 72 patients with DM (38 with and 34 without vascular disease) and 33 individuals as a control group were included. There was a significant difference in serum ESM-1 level between the T2DM group and the control group ( P = .03). There was also a significant difference in serum ESM-1 level between the T2DM with STEMI group and newly diagnosed T2DM group without vascular disease ( P = .01). In patients with T2DM, serum ESM-1 levels correlated positively with high-sensitivity C-reactive protein levels and the neutrophil to lymphocyte ratio ( r = .321, P = .006 and r = .320, P = .006). Our findings suggest that serum ESM-1 level may be a novel endothelial dysfunction biomarker and it may be related to vascular disease in T2DM.
Collapse
Affiliation(s)
- Chong-Rong Qiu
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, People Republic of China
| | - Qiang Fu
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, People Republic of China
- Xuzhou Institute of Cardiovascular Disease, Xuzhou City, Jiangsu Province, People Republic of China
| | - Jian Sui
- Medical College of Jiangsu University, Zhenjiang, People Republic of China
| | - Qian Zhang
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, People Republic of China
| | - Peng Wei
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, People Republic of China
| | - Yan Wu
- Medical College of Jiangsu University, Zhenjiang, People Republic of China
| | - Ke Zhu
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, People Republic of China
| | - Yi Lu
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, People Republic of China
| | - Peng Wan
- Medical College of Jiangsu University, Zhenjiang, People Republic of China
| |
Collapse
|
18
|
Reynolds MS, Hancock CR, Ray JD, Kener KB, Draney C, Garland K, Hardman J, Bikman BT, Tessem JS. β-Cell deletion of Nr4a1 and Nr4a3 nuclear receptors impedes mitochondrial respiration and insulin secretion. Am J Physiol Endocrinol Metab 2016; 311:E186-201. [PMID: 27221116 DOI: 10.1152/ajpendo.00022.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/17/2016] [Indexed: 01/09/2023]
Abstract
β-Cell insulin secretion is dependent on proper mitochondrial function. Various studies have clearly shown that the Nr4a family of orphan nuclear receptors is essential for fuel utilization and mitochondrial function in liver, muscle, and adipose. Previously, we have demonstrated that overexpression of Nr4a1 or Nr4a3 is sufficient to induce proliferation of pancreatic β-cells. In this study, we examined whether Nr4a expression impacts pancreatic β-cell mitochondrial function. Here, we show that β-cell mitochondrial respiration is dependent on the nuclear receptors Nr4a1 and Nr4a3. Mitochondrial respiration in permeabilized cells was significantly decreased in β-cells lacking Nr4a1 or Nr4a3. Furthermore, respiration rates of intact cells deficient for Nr4a1 or Nr4a3 in the presence of 16 mM glucose resulted in decreased glucose mediated oxygen consumption. Consistent with this reduction in respiration, a significant decrease in glucose-stimulated insulin secretion rates is observed with deletion of Nr4a1 or Nr4a3. Interestingly, the changes in respiration and insulin secretion occur without a reduction in mitochondrial content, suggesting decreased mitochondrial function. We establish that knockdown of Nr4a1 and Nr4a3 results in decreased expression of the mitochondrial dehydrogenase subunits Idh3g and Sdhb. We demonstrate that loss of Nr4a1 and Nr4a3 impedes production of ATP and ultimately inhibits glucose-stimulated insulin secretion. These data demonstrate for the first time that the orphan nuclear receptors Nr4a1 and Nr4a3 are critical for β-cell mitochondrial function and insulin secretion.
Collapse
Affiliation(s)
- Merrick S Reynolds
- Nutrition, Dietetics, and Food Science Department, College of Life Sciences, Brigham Young University, Provo, Utah; and
| | - Chad R Hancock
- Nutrition, Dietetics, and Food Science Department, College of Life Sciences, Brigham Young University, Provo, Utah; and
| | - Jason D Ray
- Nutrition, Dietetics, and Food Science Department, College of Life Sciences, Brigham Young University, Provo, Utah; and
| | - Kyle B Kener
- Nutrition, Dietetics, and Food Science Department, College of Life Sciences, Brigham Young University, Provo, Utah; and
| | - Carrie Draney
- Nutrition, Dietetics, and Food Science Department, College of Life Sciences, Brigham Young University, Provo, Utah; and
| | - Kevin Garland
- Nutrition, Dietetics, and Food Science Department, College of Life Sciences, Brigham Young University, Provo, Utah; and
| | - Jeremy Hardman
- Nutrition, Dietetics, and Food Science Department, College of Life Sciences, Brigham Young University, Provo, Utah; and
| | - Benjamin T Bikman
- Physiology and Developmental Biology Department, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Jeffery S Tessem
- Nutrition, Dietetics, and Food Science Department, College of Life Sciences, Brigham Young University, Provo, Utah; and
| |
Collapse
|