1
|
Trotta MC, Esposito D, Carotenuto R, di Fraia R, Selvaggio LD, Allosso F, Russo M, Accardo G, Alfano R, D'Amico M, Pasquali D. Thyroid dysfunction in Hashimoto's thyroiditis: a pilot study on the putative role of miR-29a and TGFβ1. Endocrine 2024; 86:1090-1096. [PMID: 39023839 PMCID: PMC11554689 DOI: 10.1007/s12020-024-03965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE Hashimoto's thyroiditis (HT) is one of the most common causes of thyroid dysfunction in iodine sufficient worldwide areas, but its molecular mechanisms are not completely understood. To this regard, this study aimed to assess serum levels of miRNA-29a (miR-29a) and transforming growth factor beta 1 (TGFβ1) in HT patients with different patterns of thyroid function. METHODS A total of 29 HT patients, with a median age of 52 years (21-68) were included. Of these, 13 had normal thyroid function (Eu-HT); 8 had non-treated hypothyroidism (Hypo-HT); 8 had hypothyroidism on replacement therapy with LT4 (subst-HT). All patients had serum miR-29a assayed through qRT-PCR and serum TGFβ1 assayed by ELISA. RESULTS Serum miR-29a levels were significantly down-regulated in patients with Hypo-HT compared to Eu-HT patients (P < 0.01) and subst-HT patients (P < 0.05). A significant negative correlation was detected between serum miR-29a levels and TSH levels (r = -0.60, P < 0.01). Serum TGFβ1 levels were significantly higher in Hypo-HT than both Eu-HT (P < 0.01) and subst-HT patients (P < 0.05). A negative correlation was observed between serum miR-29a and TGFβ1 (r = -0.75, P < 0.01). CONCLUSIONS In conclusion, Hypo-HT patients had lower levels of serum miR-29a and higher levels of TGFβ1 in comparison with Eu-HT patients. Worthy of note, subst-HT patients showed restored serum miR-29a levels compared with Hypo-HT group, associated with lower serum TGFβ1. These novel findings may suggest a possible impact of replacement therapy with levothyroxine on serum miR-29a levels in HT.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Daniela Esposito
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Raffaela Carotenuto
- Department of Advanced Medical and Surgical Sciences, University of Campania, "Luigi Vanvitelli", Naples, Italy
| | - Rosa di Fraia
- Department of Advanced Medical and Surgical Sciences, University of Campania, "Luigi Vanvitelli", Naples, Italy
| | - Lucia Digitale Selvaggio
- Department of Advanced Medical and Surgical Sciences, University of Campania, "Luigi Vanvitelli", Naples, Italy
| | - Francesca Allosso
- Department of Advanced Medical and Surgical Sciences, University of Campania, "Luigi Vanvitelli", Naples, Italy
| | - Marina Russo
- PhD Course in National Interest in Public Administration and Innovation for Disability and Social Inclusion, Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- School of Pharmacology and Clinical Toxicology, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | | | - Roberto Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania, "Luigi Vanvitelli", Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Daniela Pasquali
- Department of Advanced Medical and Surgical Sciences, University of Campania, "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
2
|
Prajapati AK, Shah G. Exploring in vivo and in vitro models for heart failure with biomarker insights: a review. Egypt Heart J 2024; 76:141. [PMID: 39432214 PMCID: PMC11493927 DOI: 10.1186/s43044-024-00568-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a condition characterized by the heart's inability to meet the body's demands, resulting in various complications. Two primary types of HF exist, namely HF with preserved left ventricular ejection fraction (LVEF) and HF reduced with LVEF. The progression of HF involves compensatory mechanisms such as cardiac hypertrophy, fibrosis, and alterations in gene expression. Pressure overload and volume overload are common etiologies of HF, with pressure overload often stemming from conditions like hypertension, leading to left ventricular hypertrophy and fibrosis. In contrast, volume overload can arise from chronic valvular regurgitant disease, also inducing left ventricular hypertrophy. MAIN BODY In vitro cell culture techniques serve as vital tools in studying HF pathophysiology, allowing researchers to investigate cellular responses and potential therapeutic targets. Additionally, biomarkers, measurable biological characteristics, play a crucial role in diagnosing and predicting HF. Some notable biomarkers include adrenomedullin, B-type natriuretic peptide, copeptin, galectin-3, interleukin-6, matrix metalloproteinases (MMPs), midregional pro-atrial natriuretic peptide, myostatin, procollagen type I C-terminal propeptide, procollagen type III N-terminal propeptide and tissue inhibitors of metalloproteinases (TIMPs). These biomarkers aid in HF diagnosis, assessing its severity, and monitoring treatment response, contributing to a deeper understanding of the disease and potentially leading to improved management strategies and outcomes. CONCLUSIONS This review provides comprehensive insights into various in vivo models of HF, commonly utilized cell lines in HF research, and pivotal biomarkers with diagnostic relevance for HF. By synthesizing this information, researchers gain valuable resources to further explore HF pathogenesis, identify novel therapeutic targets, and enhance diagnostic and prognostic approaches.
Collapse
Affiliation(s)
- Anil Kumar Prajapati
- Pharmacology Department, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
- Research Scholar, Gujarat Technological University, Ahmedabad, Gujarat, 382424, India
| | - Gaurang Shah
- Pharmacology Department, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
3
|
Jin X, Zhang Y, Zhou Y, Luo Y, Han X, Gao Y, Yu H, Duan Y, Shi L, Wu Y, Li Y. Sirt1 Deficiency Promotes Age-Related AF Through Enhancing Atrial Necroptosis by Activation of RIPK1 Acetylation. Circ Arrhythm Electrophysiol 2024; 17:e012452. [PMID: 39012929 DOI: 10.1161/circep.123.012452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/16/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Aging is one of the most potent risk determinants for the onset of atrial fibrillation (AF). Sirts (sirtuins) have been implicated in the pathogenesis of cardiovascular disease, and their expression declines with aging. However, whether Sirts involved in age-related AF and its underlying mechanisms remain unknown. The present study aims to explore the role of Sirts in age-related AF and delineate the underlying molecular mechanisms. METHODS Sirt1 levels in the atria of both elderly individuals and aging rats were evaluated using quantitative real-time polymerase chain reaction and Western blot analysis. Mice were engineered to specifically knockout Sirt1 in the atria and right ventricle (Sirt1mef2c/mef2c). Various techniques, such as echocardiography, atrial electrophysiology, and protein acetylation modification omics were employed. Additionally, coimmunoprecipitation was utilized to substantiate the interaction between Sirt1 and RIPK1 (receptor-interacting protein kinase 1). RESULTS We discerned that among the diverse subtypes of sirtuin proteins, only Sirt1 expression was significantly diminished in the atria of elderly people and aged rats. The Sirt1mef2c/mef2c mice exhibited an enlarged atrial diameter and heightened vulnerability to AF. Acetylated proteomics and cell experiments identified that Sirt1 deficiency activated atrial necroptosis through increasing RIPK1 acetylation and subsequent pseudokinase MLKL (mixed lineage kinase domain-like protein) phosphorylation. Consistently, necroptotic inhibitor necrosulfonamide mitigated atrial necroptosis and diminished both the atrial diameter and AF susceptibility of Sirt1mef2c/mef2c mice. Resveratrol prevented age-related AF in rats by activating atrial Sirt1 and inhibiting necroptosis. CONCLUSIONS Our findings first demonstrated that Sirt1 exerts significant efficacy in countering age-related AF by impeding atrial necroptosis through regulation of RIPK1 acetylation, highlighting that the activation of Sirt1 or the inhibition of necroptosis could potentially serve as a therapeutic strategy for age-related AF.
Collapse
Affiliation(s)
- Xuexin Jin
- Department of Cardiology the First Affiliated Hospital of Harbin Medical University (X.J., Y. Zhang, Y. Zhou, Y. Li)
| | - Yun Zhang
- Department of Cardiology the First Affiliated Hospital of Harbin Medical University (X.J., Y. Zhang, Y. Zhou, Y. Li)
| | - Yun Zhou
- Department of Cardiology the First Affiliated Hospital of Harbin Medical University (X.J., Y. Zhang, Y. Zhou, Y. Li)
| | - Yingchun Luo
- NHC Key Laboratory of Cell Transplantation, the First Affiliated Hospital of Harbin Medical University (Y. Luo, X.H., Y.G.)
| | - Xuejie Han
- NHC Key Laboratory of Cell Transplantation, the First Affiliated Hospital of Harbin Medical University (Y. Luo, X.H., Y.G.)
| | - Yunlong Gao
- NHC Key Laboratory of Cell Transplantation, the First Affiliated Hospital of Harbin Medical University (Y. Luo, X.H., Y.G.)
| | - Hui Yu
- Key Laboratory of Cardiac Diseases & Heart Failure (H.Y., Y.D., L.S.)
| | - Yu Duan
- Key Laboratory of Cardiac Diseases & Heart Failure (H.Y., Y.D., L.S.)
| | - Ling Shi
- Key Laboratory of Cardiac Diseases & Heart Failure (H.Y., Y.D., L.S.)
| | - Yue Wu
- Department of Cardiology, the First Hospital of Xi'an Jiaotong University, Xi'an, China (Y.W.)
| | - Yue Li
- Department of Cardiology the First Affiliated Hospital of Harbin Medical University (X.J., Y. Zhang, Y. Zhou, Y. Li)
- State Key Laboratory of Frigid Zone Cardiovascular Disease (Y. Li), Harbin Medical University
- Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases (Y. Li)
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin (Y. Li)
| |
Collapse
|
4
|
Break MKB, Syed RU, Hussein W, Alqarni S, Magam SM, Nawaz M, Shaikh S, Otaibi AA, Masood N, Younes KM. Noncoding RNAs as therapeutic targets in autophagy-related diabetic cardiomyopathy. Pathol Res Pract 2024; 256:155225. [PMID: 38442448 DOI: 10.1016/j.prp.2024.155225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Diabetic cardiomyopathy, a multifaceted complication of diabetes mellitus, remains a major challenge in clinical management due to its intricate pathophysiology. Emerging evidence underscores the pivotal role of autophagy dysregulation in the progression of diabetic cardiomyopathy, providing a novel avenue for therapeutic intervention. Noncoding RNAs (ncRNAs), a diverse class of regulatory molecules, have recently emerged as promising candidates for targeted therapeutic strategies. The exploration of various classes of ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) reveal their intricate regulatory networks in modulating autophagy and influencing the pathophysiological processes associated with diabetic cardiomyopathy. The nuanced understanding of the molecular mechanisms underlying ncRNA-mediated autophagic regulation offers a rationale for the development of precise and effective therapeutic interventions. Harnessing the regulatory potential of ncRNAs presents a promising frontier for the development of targeted and personalized therapeutic strategies, aiming to ameliorate the burden of diabetic cardiomyopathy in affected individuals. As research in this field advances, the identification and validation of specific ncRNA targets hold immense potential for the translation of these findings into clinically viable interventions, ultimately improving outcomes for patients with diabetic cardiomyopathy. This review encapsulates the current understanding of the intricate interplay between autophagy and diabetic cardiomyopathy, with a focus on the potential of ncRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia.
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia.
| | - Weiam Hussein
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, Aden University, Aden 6075, Yemen
| | - Saad Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Sami M Magam
- Basic Science Department, Preparatory Year, University of Hail, Hail City 1560, Kingdom of Saudi Arabia; Department of Marine Chemistry and Pollution, Faculty of Marine Science and Environment, Hodeidah University, Hodeidah City, Yemen
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sameer Shaikh
- Division of Oral Diagnosis and Oral Medicine, Department of OMFS and Diagnostic Sciences, College of Dentistry, University of Hail, Ha'il, Saudi Arabia
| | - Ahmed Al Otaibi
- Chemistry Department, Faculty of Science, University of Ha'il, P.O. Box 2440, Ha'il 81451, Saudi Arabia
| | - Najat Masood
- Chemistry Department, Faculty of Science, University of Ha'il, P.O. Box 2440, Ha'il 81451, Saudi Arabia
| | - Kareem M Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia; Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
5
|
Mathur P, Saxena S, Saxena B, Rani V. MicroRNAs Targeting Critical Molecular Pathways in Diabetic Cardiomyopathy Emerging Valuable for Therapy. Cardiovasc Hematol Agents Med Chem 2024; 22:298-307. [PMID: 38265401 DOI: 10.2174/0118715257265947231129074526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 01/25/2024]
Abstract
MicroRNAs have emerged as an important regulator of post-transcriptional gene expression studied extensively in many cancers, fetal development, and cardiovascular diseases. Their endogenous nature and easy manipulation have made them potential diagnostic and therapeutic molecules. Diseases with complex pathophysiology such as Diabetic Cardiomyopathy display symptoms at a late stage when the risk of heart failure has become very high. Therefore, the utilization of microRNAs as a tool to study pathophysiology and device-sustainable treatments for DCM could be considered. The present review focuses on the mechanistic insights of diabetic cardiomyopathy and the potential role of microRNAs.
Collapse
Affiliation(s)
- Priyanka Mathur
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| | - Sharad Saxena
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| | - Bhawna Saxena
- Department of Computer Science & Engineering and Information Technology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201307, Uttar Pradesh, India
| | - Vibha Rani
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| |
Collapse
|
6
|
Wang X, Geng L, Wu M, Xu W, Cheng J, Li Z, Tao L, Zhang Y. Molecular mechanisms of cardiotoxicity induced by acetamide and its chiral isomers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166349. [PMID: 37598958 DOI: 10.1016/j.scitotenv.2023.166349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Acetamide (ACT) is used in a racemic form, and the considerable residues of this compound in the environment raise potential safety concerns for human health. We investigated the toxicity of ACT and its chiral isomers on human cardiomyocyte (AC16) cell line and zebrafish embryonic heart, and found that (+)-S-ACT was the main component causing cardiac toxicity. Our findings indicate that the IC50 of (±)-Rac-ACT on AC16 cells was 20.19 μg/mL. (-)-R-ACT, (±)-Rac-ACT, and (+)-S-ACT caused DNA damage and apoptosis in AC16 cells at this concentration. The underlying molecular mechanism may involve the induction of reactive oxygen species (ROS). The accumulation of ROS results in a decline in mitochondrial membrane potential (MMP) and prompts the release of cytochrome c (cyt c) from the mitochondria. This cascade of events ultimately activates the caspase-3 and caspase-9 signaling pathways, resulting in apoptosis. Furthermore, in vivo observations in zebrafish hearts demonstrated caspase-3 activation and the presence of the DNA damage marker (γH2AX), indicating that (+)-S-ACT is more toxic to cardiomyocytes than (-)-R-ACT and (±)-Rac-ACT. These findings suggest that (+)-S-ACT may be the primary component responsible for the toxicity of (±)-Rac-ACT in AC16 cells. Overall, these findings raise public awareness regarding the risks associated with chiral isomeric pesticides and provide a scientific foundation for their appropriate use.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Li Geng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mengqi Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
7
|
Tokarek J, Budny E, Saar M, Stańczak K, Wojtanowska E, Młynarska E, Rysz J, Franczyk B. Molecular Processes Involved in the Shared Pathways between Cardiovascular Diseases and Diabetes. Biomedicines 2023; 11:2611. [PMID: 37892985 PMCID: PMC10604380 DOI: 10.3390/biomedicines11102611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiovascular diseases and diabetes mellitus are currently among the diseases with the highest morbidity and mortality. The pathogenesis and development of these diseases remain strongly connected, along with inflammation playing a major role. Therefore, the treatment possibilities showing a positive impact on both of these diseases could be especially beneficial for patients. SGLT-2 inhibitors and GLP-1 receptor agonists present this dual effect. Moreover, the hostile composition of the gut microbiota could influence the progression of these conditions. In this review, the authors present the latest knowledge on and innovations in diabetes mellitus and CVD-with the focus on the molecular mechanisms and the role of the microbiota.
Collapse
Affiliation(s)
- Julita Tokarek
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (K.S.); (E.W.)
| | - Emilian Budny
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (K.S.); (E.W.)
| | - Maciej Saar
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (K.S.); (E.W.)
| | - Kamila Stańczak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (K.S.); (E.W.)
| | - Ewa Wojtanowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (K.S.); (E.W.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (K.S.); (E.W.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (K.S.); (E.W.)
| |
Collapse
|
8
|
Yan M, Liu S, Zeng W, Guo Q, Mei Y, Shao X, Su L, Liu Z, Zhang Y, Wang L, Diao H, Rong X, Guo J. The Chinese herbal medicine Fufang Zhenzhu Tiaozhi ameliorates diabetic cardiomyopathy by regulating cardiac abnormal lipid metabolism and mitochondrial dynamics in diabetic mice. Biomed Pharmacother 2023; 164:114919. [PMID: 37302318 DOI: 10.1016/j.biopha.2023.114919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is an important complication leading to the death of patients with diabetes, but there is no effective strategy for clinical treatments. Fufang Zhenzhu Tiaozhi (FTZ) is a patent medicine that is a traditional Chinese medicine compound preparation with comprehensive effects for the prevention and treatment of glycolipid metabolic diseases under the guidance of "modulating liver, starting pivot and cleaning turbidity". FTZ was proposed by Professor Guo Jiao and is used for the clinical treatment of hyperlipidemia. This study was designed to explore the regulatory mechanisms of FTZ on heart lipid metabolism dysfunction and mitochondrial dynamics disorder in mice with DCM, and it provides a theoretical basis for the myocardial protective effect of FTZ in diabetes. In this study, we demonstrated that FTZ protected heart function in DCM mice and downregulated the overexpression of free fatty acids (FFAs) uptake-related proteins cluster of differentiation 36 (CD36), fatty acid binding protein 3 (FABP3) and carnitine palmitoyl transferase 1 (CPT1). Moreover, FTZ treatment showed a regulatory effect on mitochondrial dynamics by inhibiting mitochondrial fission and promoting mitochondrial fusion. We also identified in vitro that FTZ could restore lipid metabolism-related proteins, mitochondrial dynamics-related proteins and mitochondrial energy metabolism in PA-treated cardiomyocytes. Our study indicated that FTZ improves the cardiac function of diabetic mice by attenuating the increase in fasting blood glucose levels, inhibiting the decrease in body weight, alleviating disordered lipid metabolism, and restoring mitochondrial dynamics and myocardial apoptosis in diabetic mouse hearts.
Collapse
Affiliation(s)
- Meiling Yan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Suping Liu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Wenru Zeng
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Qiaoling Guo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yu Mei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Xiaoqi Shao
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Liyan Su
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Zhou Liu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yue Zhang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Lexun Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Hongtao Diao
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Xianglu Rong
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Jiao Guo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China.
| |
Collapse
|
9
|
Ghosh N, Chacko L, Bhattacharya H, Vallamkondu J, Nag S, Dey A, Karmakar T, Reddy PH, Kandimalla R, Dewanjee S. Exploring the Complex Relationship between Diabetes and Cardiovascular Complications: Understanding Diabetic Cardiomyopathy and Promising Therapies. Biomedicines 2023; 11:biomedicines11041126. [PMID: 37189744 DOI: 10.3390/biomedicines11041126] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Diabetes mellitus (DM) and cardiovascular complications are two unmet medical emergencies that can occur together. The rising incidence of heart failure in diabetic populations, in addition to apparent coronary heart disease, ischemia, and hypertension-related complications, has created a more challenging situation. Diabetes, as a predominant cardio-renal metabolic syndrome, is related to severe vascular risk factors, and it underlies various complex pathophysiological pathways at the metabolic and molecular level that progress and converge toward the development of diabetic cardiomyopathy (DCM). DCM involves several downstream cascades that cause structural and functional alterations of the diabetic heart, such as diastolic dysfunction progressing into systolic dysfunction, cardiomyocyte hypertrophy, myocardial fibrosis, and subsequent heart failure over time. The effects of glucagon-like peptide-1 (GLP-1) analogues and sodium-glucose cotransporter-2 (SGLT-2) inhibitors on cardiovascular (CV) outcomes in diabetes have shown promising results, including improved contractile bioenergetics and significant cardiovascular benefits. The purpose of this article is to highlight the various pathophysiological, metabolic, and molecular pathways that contribute to the development of DCM and its significant effects on cardiac morphology and functioning. Additionally, this article will discuss the potential therapies that may be available in the future.
Collapse
Affiliation(s)
- Nilanjan Ghosh
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, Rockville, MD 20850-3173, USA
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | | | - Sagnik Nag
- Department of Biotechnology, Vellore Institute of Technology (VIT), School of Biosciences & Technology, Tiruvalam Road, Vellore 632014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Tanushree Karmakar
- Dr. B C Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, India
| | | | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
10
|
Ning S, Zhang S, Guo Z. MicroRNA-494 regulates high glucose-induced cardiomyocyte apoptosis and autophagy by PI3K/AKT/mTOR signalling pathway. ESC Heart Fail 2023; 10:1401-1411. [PMID: 36772911 PMCID: PMC10053280 DOI: 10.1002/ehf2.14311] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/08/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
AIMS Diabetic cardiomyopathy (DCM) is one of the major cardiovascular complications of diabetes. However, the mechanism of DCM is not fully understood. Studies have confirmed that certain microRNAs (miRNAs/miRs) are key regulators of DCM. The aim of this study was to investigate the role and mechanism of microRNA (miR)-494 in cardiomyocyte apoptosis and autophagy induced by high glucose (HG). METHODS AND RESULTS By establishing a rat DCM model and an HG-treated H9c2 cells injury model, cardiac function was detected by echocardiography, myocardial tissue was stained by immunohistochemistry, and Cell Counting Kit-8 assay and lactate dehydrogenase assay were used to detect the cardiomyocyte injury. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labelling staining, and western blotting was used to detect death and autophagy. The results showed that the expression level of miR-494 was higher in the myocardial tissue of DCM rats and the myocardial cells of H9c2 treated with HG. Compared with the corresponding negative control groups, miR-494 mimics enhanced HG-induced apoptosis and autophagy, whereas miR-494 inhibitors showed the opposite effect, corresponding PI3K, AKT, and mTOR phosphorylation level has changed. CONCLUSIONS These findings identify that miR-494 could regulate cell apoptosis and autophagy through PI3K/AKT/mTOR signalling pathway, participating in the regulation of cardiomyocyte cell damage after HG. These findings provide new insights for the further study of the molecular mechanism and treatment of DCM.
Collapse
Affiliation(s)
- Shuwei Ning
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou No. 7 People's Hospital, No. 17 Jingnan 5th Road, Zhengzhou, Henan, 450016, China
| | - Siqi Zhang
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou No. 7 People's Hospital, No. 17 Jingnan 5th Road, Zhengzhou, Henan, 450016, China
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou No. 7 People's Hospital, No. 17 Jingnan 5th Road, Zhengzhou, Henan, 450016, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
11
|
Vilella R, Izzo S, Naponelli V, Savi M, Bocchi L, Dallabona C, Gerra MC, Stilli D, Bettuzzi S. In Vivo Treatment with a Standardized Green Tea Extract Restores Cardiomyocyte Contractility in Diabetic Rats by Improving Mitochondrial Function through SIRT1 Activation. Pharmaceuticals (Basel) 2022; 15:1337. [PMID: 36355510 PMCID: PMC9692907 DOI: 10.3390/ph15111337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Background. Green tea catechins are known to promote mitochondrial function, and to modulate gene expression and signalling pathways that are altered in the diabetic heart. We thus evaluated the effectiveness of the in vivo administration of a standardized green tea extract (GTE) in restoring cardiac performance, in a rat model of early streptozotocin-induced diabetes, with a focus on the underlying mechanisms. Methods. Twenty-five male adult Wistar rats were studied: the control (n = 9), untreated diabetic animals (n = 7) and diabetic rats subjected to daily GTE administration for 28 days (n = 9). Isolated ventricular cardiomyocytes were used for ex vivo measurements of cell mechanics and calcium transients, and molecular assays, including the analysis of functional protein and specific miRNA expression. Results. GTE treatment induced an almost complete recovery of cardiomyocyte contractility that was markedly impaired in the diabetic cells, by preserving mitochondrial function and energy availability, and modulating the expression of the sarcoplasmic reticulum calcium ATPase and phospholamban. Increased Sirtuin 1 (SIRT1) expression and activity substantially contributed to the observed cardioprotective effects. Conclusions. The data supported the hypothesis that green tea dietary polyphenols, by targeting SIRT1, can constitute an adjuvant strategy for counteracting the initial damage of the diabetic heart, before the occurrence of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Rocchina Vilella
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Simona Izzo
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Maria Carla Gerra
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Saverio Bettuzzi
- Adamas Biotech, 73024 Maglie, Italy
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy
| |
Collapse
|
12
|
Wang H, Wang L, Hu F, Wang P, Xie Y, Li F, Guo B. Neuregulin-4 attenuates diabetic cardiomyopathy by regulating autophagy via the AMPK/mTOR signalling pathway. Cardiovasc Diabetol 2022; 21:205. [PMID: 36221104 PMCID: PMC9554973 DOI: 10.1186/s12933-022-01643-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background Diabetic cardiomyopathy is characterized by left ventricle dysfunction, cardiomyocyte apoptosis, and interstitial fibrosis and is a serious complication of diabetes mellitus (DM). Autophagy is a mechanism that is essential for maintaining normal heart morphology and function, and its dysregulation can produce pathological effects on diabetic hearts. Neuregulin-4 (Nrg4) is an adipokine that exerts protective effects against metabolic disorders and insulin resistance. The aim of this study was to explore whether Nrg4 could ameliorate DM-induced myocardial injury by regulating autophagy. Methods Four weeks after the establishment of a model of type 1 diabetes in mice, the mice received Nrg4 treatment (with or without an autophagy inhibitor) for another 4 weeks. The cardiac functions, histological structures and cardiomyocyte apoptosis were investigated. Autophagy-related protein levels along with related signalling pathways that regulate autophagy were evaluated. In addition, the effects of Nrg4 on autophagy were also determined in cultured primary cardiomyocytes. Results Nrg4 alleviated myocardial injury both in vivo and in vitro. The autophagy level was decreased in type 1 diabetic mice, and Nrg4 intervention reactivated autophagy. Furthermore, Nrg4 intervention was found to activate autophagy via the AMPK/mTOR signalling pathway. Moreover, when autophagy was suppressed or the AMPK/mTOR pathway was inhibited, the beneficial effects of Nrg4 were diminished. Conclusion Nrg4 intervention attenuated diabetic cardiomyopathy by promoting autophagy in type 1 diabetic mice. Additionally, Nrg4 induced autophagy via the AMPK/mTOR signalling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01643-0.
Collapse
Affiliation(s)
- Hongchao Wang
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang, 050000, China
| | - Lijie Wang
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang, 050000, China
| | - Fuli Hu
- Department of Cardiology, Shijiazhuang Great Wall Hospital of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050000, China
| | - Pengfei Wang
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang, 050000, China
| | - Yanan Xie
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang, 050000, China
| | - Fang Li
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang, 050000, China
| | - Bingyan Guo
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang, 050000, China. .,Hebei Key Laboratory of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
13
|
Abdel Rhman M, Owira P. The role of microRNAs in the pathophysiology, diagnosis, and treatment of diabetic cardiomyopathy. J Pharm Pharmacol 2022; 74:1663-1676. [PMID: 36130185 DOI: 10.1093/jpp/rgac066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Diabetic cardiomyopathy (DCM) is an end-point macrovascular complication associated with increased morbidity and mortality in 12% of diabetic patients. MicroRNAs (miRNAs) are small noncoding RNAs that can act as cardioprotective or cardiotoxic agents in DCM. METHODS We used PubMed as a search engine to collect and analyse data in published articles on the role of miRNAs on the pathophysiology, diagnosis and treatment of DCM. RESULTS MiRNAs play an essential role in the pathophysiology, diagnosis and treatment of DCM due to their distinct gene expression patterns in diabetic patients compared to healthy individuals. Advances in gene therapy have led to the discovery of potential circulating miRNAs, which can be used as biomarkers for DCM diagnosis and prognosis. Furthermore, targeted miRNA therapies in preclinical and clinical studies, such as using miRNA mimics and anti-miRNAs, have yielded promising results. Application of miRNA mimics and anti-miRNAs via different nanodrug delivery systems alleviate hypertrophy, fibrosis, oxidative stress and apoptosis of cardiomyocytes. CONCLUSION MiRNAs serve as attractive potential targets for DCM diagnosis, prognosis and treatment due to their distinctive expression profile in DCM development.
Collapse
Affiliation(s)
- Mahasin Abdel Rhman
- Department of Pharmacology, Discipline of Pharmaceutical Sciences, Molecular and Clinical Pharmacology Research Laboratory, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Peter Owira
- Department of Pharmacology, Discipline of Pharmaceutical Sciences, Molecular and Clinical Pharmacology Research Laboratory, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| |
Collapse
|
14
|
Ghosh N, Fenton S, van Hout I, Jones GT, Coffey S, Williams MJ, Sugunesegran R, Parry D, Davis P, Schwenke DO, Chatterjee A, Katare R. Therapeutic knockdown of miR-320 improves deteriorated cardiac function in a pre-clinical model of non-ischemic diabetic heart disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:330-342. [PMID: 35950211 PMCID: PMC9356207 DOI: 10.1016/j.omtn.2022.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
Non-ischemic diabetic heart disease (NiDHD) is characterized by diastolic dysfunction and decreased or preserved systolic function, eventually resulting in heart failure. Accelerated apoptotic cell death because of alteration of molecular signaling pathways due to dysregulation in microRNAs (miRNAs) plays a significant role in the development of NiDHD. Here, we aimed to determine the pathological role of cardiomyocyte-enriched pro-apoptotic miR-320 in the development of NiDHD. We identified a marked upregulation of miR-320 that was associated with downregulation of its target protein insulin growth factor-1 (IGF-1) in human right atrial appendage tissue in the late stages of cardiomyopathy in type 2 diabetic db/db mice and high-glucose-cultured human ventricular cardiomyocytes (AC-16 cells). In vitro knockdown of miR-320 in high-glucose-exposed AC-16 cells using locked nucleic acid (LNA) anti-miR-320 markedly reduced high-glucose-induced apoptosis by restoring IGF-1 and Bcl-2. Finally, in vivo knockdown of miR-320 in 24-week-old type 2 diabetic db/db mice reduced cardiomyocyte apoptosis and interstitial fibrosis while restoring vascular density. This resulted in partial recovery of the impaired diastolic and systolic function. Our study provides evidence that miR-320 is a late-responding miRNA that aggravates apoptosis and cardiac dysfunction in the diabetic heart, and that therapeutic knockdown of miR-320 is beneficial in partially restoring the deteriorated cardiac function.
Collapse
Affiliation(s)
- Nilanjan Ghosh
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sonya Fenton
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Isabelle van Hout
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Gregory T. Jones
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Sean Coffey
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | | | | | - Dominic Parry
- Department of Cardiothoracic Surgery, University of Otago, Dunedin, New Zealand
| | - Philip Davis
- Department of Cardiothoracic Surgery, University of Otago, Dunedin, New Zealand
| | - Daryl O. Schwenke
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anirudha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Honorary Professor, UPES University, Dehradun, India
| | - Rajesh Katare
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Malakoti F, Mohammadi E, Akbari Oryani M, Shanebandi D, Yousefi B, Salehi A, Asemi Z. Polyphenols target miRNAs as a therapeutic strategy for diabetic complications. Crit Rev Food Sci Nutr 2022; 64:1865-1881. [PMID: 36069329 DOI: 10.1080/10408398.2022.2119364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
MiRNAs are a large group of non-coding RNAs which participate in different cellular pathways like inflammation and oxidation through transcriptional, post-transcriptional, and epigenetic regulation. In the post-transcriptional regulation, miRNA interacts with the 3'-UTR of mRNAs and prevents their translation. This prevention or dysregulation can be a cause of pathological conditions like diabetic complications. A huge number of studies have revealed the association between miRNAs and diabetic complications, including diabetic nephropathy, cardiomyopathy, neuropathy, retinopathy, and delayed wound healing. To address this issue, recent studies have focused on the use of polyphenols as selective and safe drugs in the treatment of diabetes complications. In this article, we will review the involvement of miRNAs in diabetic complications' occurrence or development. Finally, we will review the latest findings on targeting miRNAs by polyphenols like curcumin, resveratrol, and quercetin for diabetic complications therapy.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Mohammadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Darioush Shanebandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Salehi
- Faculty of Pharmacy, Islamic Azad University of Tehran Branch, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
16
|
Lei S, Feng Y, Huang P, Chen B, Bao K, Wu Q, Zhang H, Huang X. Ophiopogonin D'-induced mitophagy and mitochondrial damage are associated with dysregulation of the PINK1/Parkin signaling pathway in AC16 cells. Toxicology 2022; 477:153275. [PMID: 35905946 DOI: 10.1016/j.tox.2022.153275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Shenmai injection (SMI) is a patented traditional Chinese medicine that is extracted from Panax ginseng and Ophiopogon japonicus and is commonly used to treat cardiovascular diseases and tumors. The O. japonicus extract Ophiopogonin D' (OPD') is highly cardiotoxic. Mitochondria are central to OPD'-induced cardiotoxicity, although the precise mechanisms remain unclear. Excessive mitophagy activation and mitochondrial dysfunction lead to apoptosis, and the PTEN-induced kinase 1(PINK1)/Parkin pathway is critical in regulating mitophagy and mitochondrial function. We investigated the role of the PINK1/Parkin pathway in OPD'-induced mitochondrial damage and cardiotoxicity in AC16 cells. Concentrations of 2μM OPD' and above inhibited cardiomyocyte viability and increased lactate dehydrogenase (LDH) release in a concentration- and time-dependent manner. OPD' was toxic to cells and mitochondria and increased the rate of apoptosis, triggering pyknosis, decreasing mitochondrial membrane potential (MMP), and decreasing the protein expression of the biogenesis regulator peroxisome proliferator-activated receptor γ coactivator-1 alpha (PGC-1α). The increased ratio of microtubule-associated proteins 1A/1B light chain 3B (LC3-II/LC3-I) in mitochondria indicated that OPD' induced mitophagy. OPD' significantly induced oxidative stress and apoptosis, including increased reactive oxygen species (ROS) generation and decreased nuclear factor erythroid-2 related factor 2 (Nrf2), heme oxygenase-1(HO-1), and B-cell lymphoma 2 (Bcl-2) protein expression. OPD' activated the PINK1/Parkin pathway and promoted PINK1/Parkin translocation to mitochondria. Inhibiting mitophagy attenuated OPD'-induced PINK1/Parkin pathway activation and preserved mitochondrial biogenesis, consequently mitigating OPD'-induced mitochondrial dysfunction and apoptosis. These findings suggest that OPD'-induced cardiomyocyte mitophagy and mitochondrial damage are at least partially mediated by dysregulation of the PINK1/Parkin pathway.
Collapse
Affiliation(s)
- Sisi Lei
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Yuchao Feng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Peiying Huang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, 510120, China
| | - BoJun Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Kun Bao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Qihua Wu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Haobo Zhang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Xiaoyan Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
17
|
Qar J, Al-Trad B, khmaiseh A, Muhaidat R, Omari S, Al-Omari G, Al Zoubi M. The Effect of Eugenol Treatment on Diabetic Cardiomyopathy in Streptozotocin-Induced Diabetic Rats. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2022; 15:623-633. [DOI: 10.13005/bpj/2401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Cardiovascular diseases account for most of the morbidity and mortality associated with diabetes. Diabetic cardiomyopathy (DCM) is associated with heart failure in diabetic patients without relation to other cardiovascular diseases such as hypertension or coronary artery disorders. Eugenol is a phenolic compound extracted from the clove tree and exhibits effective mitigation of hyperglycemic conditions in diabetic animals. Thus, in the current study, we aimed to explore the effect of eugenol treatment on rats with DCM. The experimental animals included 30 Sprague Dawley male rats which are divided into three experimental groups (10 rats each) as the following: the non-diabetic control group (ND), diabetic group (D), and a treated-diabetic group (20mg/kg/day of eugenol) (D+E). Diabetes was induced by streptozotocin (STZ) injection (60 mg/ kg). After 6 weeks, blood samples and left ventricles were collected for analysis. Serum glucose levels, heart weight/body weight ratio, and the myocardial mRNA expression of transforming growth factor β1 (TGF-β1), tumor necrosis factor-α (TNF-α), caspase 3 (casp3), vascular endothelial growth factor-A (VEGF-A), and collagen IV were evaluated. Furthermore, the myocardial superoxide dismutase (SOD) activity was measured. Diabetic rats showed a significant appearance of hyperglycemia and increased expression of myocardial TNF-α, TGF-β1, caspase 3, and VEGF-A compared to the control group (P < 0.05), and a tendency to increase collagen IV (P < 0.1). On the other hand, the eugenol treatment mitigates diabetic-associated hyperglycemia and the increased mRNA expression levels of myocardial TGF-β1, VEGF-A, caspase 3, and TNF-α (P < 0.05). In addition, the overexpression of collagen IV was inhibited, and the myocardial SOD activity was improved in the diabetic rats treated with eugenol. The study provided evidence that eugenol may have a potential therapeutic effect in the experimental models of DCM by reducing the expression of pro-inflammatory, pro-fibrotic, angiogenic, and pro-apoptotic factors (TNF-α, TGF-β, collagen IV, VEGF-A, and caspase 3 respectively). It is recommended for further studies investigate the exact molecular processes by which eugenol may ameliorate the DCM phenotype.
Collapse
Affiliation(s)
- Janti Qar
- 1Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 211-63, Jordan
| | - Bahaa Al-Trad
- 1Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 211-63, Jordan
| | - Alaa khmaiseh
- 1Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 211-63, Jordan
| | | | - Sahar Omari
- 1Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 211-63, Jordan
| | - Ghada Al-Omari
- 1Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 211-63, Jordan
| | - Mazhar Al Zoubi
- 2Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| |
Collapse
|
18
|
Geng X, Li Z, Yang Y. Emerging Role of Epitranscriptomics in Diabetes Mellitus and Its Complications. Front Endocrinol (Lausanne) 2022; 13:907060. [PMID: 35692393 PMCID: PMC9184717 DOI: 10.3389/fendo.2022.907060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 01/13/2023] Open
Abstract
Diabetes mellitus (DM) and its related complications are among the leading causes of disability and mortality worldwide. Substantial studies have explored epigenetic regulation that is involved in the modifications of DNA and proteins, but RNA modifications in diabetes are still poorly investigated. In recent years, posttranscriptional epigenetic modification of RNA (the so-called 'epitranscriptome') has emerged as an interesting field of research. Numerous modifications, mainly N6 -methyladenosine (m6A), have been identified in nearly all types of RNAs and have been demonstrated to have an indispensable effect in a variety of human diseases, such as cancer, obesity, and diabetes. Therefore, it is particularly important to understand the molecular basis of RNA modifications, which might provide a new perspective for the pathogenesis of diabetes mellitus and the discovery of new therapeutic targets. In this review, we aim to summarize the recent progress in the epitranscriptomics involved in diabetes and diabetes-related complications. We hope to provide some insights for enriching the understanding of the epitranscriptomic regulatory mechanisms of this disease as well as the development of novel therapeutic targets for future clinical benefit.
Collapse
Affiliation(s)
- Xinqian Geng
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People’s Hospital of Yunnan Province, Kunming, China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Yang
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
19
|
Avagimyan A. THE PATHOPHYSIOLOGICAL BASIS OF DIABETIC CARDIOMYOPATHY DEVELOPMENT. Curr Probl Cardiol 2022; 47:101156. [DOI: 10.1016/j.cpcardiol.2022.101156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/16/2022] [Indexed: 01/02/2023]
|
20
|
Qu XF, Zhai BZ, Hu WL, Lou MH, Chen YH, Liu YF, Chen JG, Mei S, You ZQ, Liu Z, Zhang LJ, Zhang YH, Wang Y. Pyrroloquinoline quinone ameliorates diabetic cardiomyopathy by inhibiting the pyroptosis signaling pathway in C57BL/6 mice and AC16 cells. Eur J Nutr 2022; 61:1823-1836. [PMID: 34997266 PMCID: PMC9106599 DOI: 10.1007/s00394-021-02768-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022]
Abstract
Purpose Diabetic cardiomyopathy (DCM), a common complication of diabetes mellitus and is characterized by myocardial hypertrophy and myocardial fibrosis. Pyrroloquinoline quinone (PQQ), a natural nutrient, exerts strong protection against various myocardial diseases. Pyroptosis, a type of inflammation-related programmed cell death, is vital to the development of DCM. However, the protective effects of PQQ against DCM and the associated mechanisms are not clear. This study aimed to investigate whether PQQ protected against DCM and to determine the underlying molecular mechanism. Methods Diabetes was induced in mice by intraperitoneal injection of streptozotocin, after which the mice were administered PQQ orally (10, 20, or 40 mg/kg body weight/day) for 12 weeks. AC16 human myocardial cells were divided into the following groups and treated accordingly: control (5.5 mmol/L glucose), high glucose (35 mmol/L glucose), and HG + PQQ groups (1 and 10 nmol/L PQQ). Cells were treated for 24 h. Results PQQ reduced myocardial hypertrophy and the area of myocardial fibrosis, which was accompanied by an increase in antioxidant function and a decrease in inflammatory cytokine levels. Moreover, myocardial hypertrophy—(ANP and BNP), myocardial fibrosis—(collagen I and TGF-β1), and pyroptosis-related protein levels decreased in the PQQ treatment groups. Furthermore, PQQ abolished mitochondrial dysfunction and the activation of NF-κB/IκB, and decreased NLRP3 inflammation-mediated pyroptosis in AC16 cells under high-glucose conditions. Conclusion PQQ improved DCM in diabetic mice by inhibiting NF-κB/NLRP3 inflammasome-mediated cell pyroptosis. Long-term dietary supplementation with PQQ may be greatly beneficial for the treatment of DCM. Graphical abstract Diagram of the underlying mechanism of the effects of PQQ on DCM. PQQ inhibits ROS generation and NF-κB activation, which stimulates activation of the NLRP3 inflammasome and regulates the expression of caspase-1, IL-1β, and IL-18. The up-regulated inflammatory cytokines trigger myocardial hypertrophy and cardiac fibrosis and promote the pathological process of DCM. ![]()
Collapse
Affiliation(s)
- Xue-Feng Qu
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Bing-Zhong Zhai
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Wen-Li Hu
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Min-Han Lou
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Yi-Hao Chen
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Yi-Feng Liu
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Jian-Guo Chen
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Song Mei
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Zhen-Qiang You
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Zhen Liu
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Li-Jing Zhang
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, 310013, Zhejiang, People's Republic of China
| | - Yong-Hui Zhang
- Department of Basic Medical Science, Chongqing Three Gorges Medical College, Tianxing Road 366th, Chongqing, 404120, People's Republic of China.
| | - Yin Wang
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, 310013, Zhejiang, People's Republic of China.
| |
Collapse
|
21
|
Astragaloside IV protects diabetic cardiomyopathy against inflammation and apoptosis via regulating TLR4/MyD88/NF-κB signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Prakoso D, Tate M, Blasio M, Ritchie R. Adeno-associated viral (AAV) vector-mediated therapeutics for diabetic cardiomyopathy - current and future perspectives. Clin Sci (Lond) 2021; 135:1369-1387. [PMID: 34076247 PMCID: PMC8187922 DOI: 10.1042/cs20210052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Diabetes increases the prevalence of heart failure by 6-8-fold, independent of other comorbidities such as hypertension and coronary artery disease, a phenomenon termed diabetic cardiomyopathy. Several key signalling pathways have been identified that drive the pathological changes associated with diabetes-induced heart failure. This has led to the development of multiple pharmacological agents that are currently available for clinical use. While fairly effective at delaying disease progression, these treatments do not reverse the cardiac damage associated with diabetes. One potential alternative avenue for targeting diabetes-induced heart failure is the use of adeno-associated viral vector (AAV) gene therapy, which has shown great versatility in a multitude of disease settings. AAV gene therapy has the potential to target specific cells or tissues, has a low host immune response and has the possibility to represent a lifelong cure, not possible with current conventional pharmacotherapies. In this review, we will assess the therapeutic potential of AAV gene therapy as a treatment for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Darnel Prakoso
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
| | - Mitchel Tate
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
- Diabetes, Monash University, Clayton, Victoria 3800, Australia
| | - Miles J. De Blasio
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
- Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Rebecca H. Ritchie
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
- Diabetes, Monash University, Clayton, Victoria 3800, Australia
- Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
23
|
Upregulation of microRNA-532 enhances cardiomyocyte apoptosis in the diabetic heart. Apoptosis 2021; 25:388-399. [PMID: 32418060 DOI: 10.1007/s10495-020-01609-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes has a strong association with the development of cardiovascular disease, which is grouped as diabetic heart disease (DHD). DHD is associated with the progressive loss of cardiovascular cells through the alteration of molecular signalling pathways associated with cell death. In this study, we sought to determine whether diabetes induces dysregulation of miR-532 and if this is associated with accentuated apoptosis. RT-PCR analysis showed a significant increase in miR-532 expression in the right atrial appendage tissue of type 2 diabetic patients undergoing coronary artery bypass graft surgery. This was associated with marked downregulation of its anti-apoptotic target protein apoptosis repressor with caspase recruitment domain (ARC) and increased TUNEL positive cardiomyocytes. Further analysis showed a positive correlation between apoptosis and miR-532 levels. Time-course experiments in a mouse model of type 2 diabetes showed that diabetes-induced activation of miR-532 occurs in the later stage of the disease. Importantly, the upregulation of miR-532 preceded the activation of pro-apoptotic caspase-3/7 activity. Finally, inhibition of miR-532 activity in high glucose cultured human cardiomyocytes prevented the downregulation of ARC and attenuated apoptotic cell death. Diabetes induced activation of miR-532 plays a critical role in accelerating cardiomyocytes apoptosis. Therefore, miR-532 may serve as a promising therapeutic agent to overcome the diabetes-induced loss of cardiomyocytes.
Collapse
|
24
|
Aljabali AAA, Al-Trad B, Gazo LA, Alomari G, Al Zoubi M, Alshaer W, Al-Batayneh K, Kanan B, Pal K, Tambuwala MM. Gold Nanoparticles Ameliorate Diabetic Cardiomyopathy in Streptozotocin-Induced Diabetic Rats. J Mol Struct 2021; 1231:130009. [DOI: 10.1016/j.molstruc.2021.130009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Li X, Meng C, Han F, Yang J, Wang J, Zhu Y, Cui X, Zuo M, Xu J, Chang B. Vildagliptin Attenuates Myocardial Dysfunction and Restores Autophagy via miR-21/SPRY1/ERK in Diabetic Mice Heart. Front Pharmacol 2021; 12:634365. [PMID: 33815116 PMCID: PMC8013777 DOI: 10.3389/fphar.2021.634365] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/05/2021] [Indexed: 12/27/2022] Open
Abstract
Aim: Vildagliptin (vild) improves diastolic dysfunction and is associated with a lower relative risk of major adverse cardiovascular events in younger patients. The present study aimed to evaluate whether vild prevents the development of diabetic cardiomyopathy in type 2 diabetic mice and identify its underlying mechanisms. Methods: Type 2 diabetic mouse model was generated using wild-type (WT) (C57BL/6J) and miR-21 knockout mice by treatment with HFD/STZ. Cardiomyocyte-specific miR-21 overexpression was achieved using adeno-associated virus 9. Echocardiography was used to evaluate cardiac function in mice. Morphology, autophagy, and proteins levels in related pathway were analyzed. qRT-PCR was used to detect miR-21. Rat cardiac myoblast cell line (H9c2) cells were transfected with miR-21 mimics and inhibitor to explore the related mechanisms of miR-21 in diabetic cardiomyopathy. Results: Vild restored autophagy and alleviated fibrosis, thereby enhancing cardiac function in DM mice. In addition, miR-21 levels were increased under high glucose conditions. miR-21 knockout DM mice with miR-21 knockout had reduced cardiac hypertrophy and cardiac dysfunction compared to WT DM mice. Overexpression of miR-21 aggravated fibrosis, reduced autophagy, and attenuated the protective effect of vild on cardiac function. In high-glucose-treated H9c2 cells, the downstream effectors of sprouty homolog 1 (SPRY1) including extracellular signal-regulated kinases (ERK) and mammalian target of rapamycin showed significant changes following transfection with miR-21 mimics or inhibitor. Conclusion: The results of our study indicate that vild prevents DCM by restoring autophagy through the miR-21/SPRY1/ERK/mTOR pathway. Therefore, miR-21 is a target in the development of DCM, and vild demonstrates significant potential for clinical application in prevention of DCM.
Collapse
Affiliation(s)
- Xiaochen Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Cheng Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Fei Han
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Juhong Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jingyu Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yanjuan Zhu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiao Cui
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Minxia Zuo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jie Xu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Baocheng Chang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
26
|
A Novel ALDH2 Activator AD-9308 Improves Diastolic and Systolic Myocardial Functions in Streptozotocin-Induced Diabetic Mice. Antioxidants (Basel) 2021; 10:antiox10030450. [PMID: 33805825 PMCID: PMC7998151 DOI: 10.3390/antiox10030450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus has reached epidemic proportion worldwide. One of the diabetic complications is cardiomyopathy, characterized by early left ventricular (LV) diastolic dysfunction, followed by development of systolic dysfunction and ventricular dilation at a late stage. The pathogenesis is multifactorial, and there is no effective treatment yet. In recent years, 4-hydroxy-2-nonenal (4-HNE), a toxic aldehyde generated from lipid peroxidation, is implicated in the pathogenesis of cardiovascular diseases. Its high bioreactivity toward proteins results in cellular damage. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is the major enzyme that detoxifies 4-HNE. The development of small-molecule ALDH2 activator provides an opportunity for treating diabetic cardiomyopathy. This study found that AD-9308, a water-soluble andhighly selective ALDH2 activator, can improve LV diastolic and systolic functions, and wall remodeling in streptozotocin-induced diabetic mice. AD-9308 treatment dose-dependently lowered serum 4-HNE levels and 4-HNE protein adducts in cardiac tissue from diabetic mice, accompanied with ameliorated myocardial fibrosis, inflammation, and apoptosis. Improvements of mitochondrial functions, sarco/endoplasmic reticulumcalcium handling and autophagy regulation were also observed in diabetic mice with AD-9308 treatment. In conclusion, ADLH2 activation effectively ameliorated diabetic cardiomyopathy, which may be mediated through detoxification of 4-HNE. Our findings highlighted the therapeutic potential of ALDH2 activation for treating diabetic cardiomyopathy.
Collapse
|
27
|
Horita M, Farquharson C, Stephen LA. The role of miR-29 family in disease. J Cell Biochem 2021; 122:696-715. [PMID: 33529442 PMCID: PMC8603934 DOI: 10.1002/jcb.29896] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding RNAs that can bind to the target sites in the 3’‐untranslated region of messenger RNA to regulate posttranscriptional gene expression. Increasing evidence has identified the miR‐29 family, consisting of miR‐29a, miR‐29b‐1, miR‐29b‐2, and miR‐29c, as key regulators of a number of biological processes. Moreover, their abnormal expression contributes to the etiology of numerous diseases. In the current review, we aimed to summarize the differential expression patterns and functional roles of the miR‐29 family in the etiology of diseases including osteoarthritis, osteoporosis, cardiorenal, and immune disease. Furthermore, we highlight the therapeutic potential of targeting members of miR‐29 family in these diseases. We present miR‐29s as promoters of osteoblast differentiation and apoptosis but suppressors of chondrogenic and osteoclast differentiation, fibrosis, and T cell differentiation, with clear avenues for therapeutic manipulation. Further research will be crucial to identify the precise mechanism of miR‐29 family in these diseases and their full potential in therapeutics.
Collapse
Affiliation(s)
- Masahiro Horita
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| | - Louise A Stephen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| |
Collapse
|
28
|
Chen HF, Chang YH, Lo HJ, Isfandiari MA, Martini S, Hou WH, Li CY. Incidence of idiopathic cardiomyopathy in patients with type 2 diabetes in Taiwan: age, sex, and urbanization status-stratified analysis. Cardiovasc Diabetol 2020; 19:177. [PMID: 33054769 PMCID: PMC7558694 DOI: 10.1186/s12933-020-01144-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/27/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The epidemiology of diabetes and idiopathic cardiomyopathy have limited data. We investigated the overall and the age-, sex-, and urbanization-specific incidence and relative hazard of idiopathic cardiomyopathy in association with type 2 diabetes and various anti-diabetic medications used in Taiwan. METHODS A total of 474,268 patients with type 2 diabetes were identified from ambulatory care and inpatient claims in 2007-2009 from Taiwan's National Health Insurance (NHI) database. We randomly selected 474,266 age-, sex-, and diagnosis date-matched controls from the registry of NHI beneficiaries. All study subjects were linked to ambulatory care and inpatient claims (up to the end of 2016) to identify the possible diagnosis of idiopathic cardiomyopathy. The person-year approach with Poisson assumption was used to estimate the incidence, and Cox proportional hazard regression model with Fine and Gray's method was used to estimate the relative hazards of idiopathic cardiomyopathy in relation to type 2 diabetes. RESULTS The overall incidence of idiopathic cardiomyopathy for men and women patients, respectively, was 3.83 and 2.94 per 10,000 person-years, which were higher than the corresponding men and women controls (2.00 and 1.34 per 10,000 person-years). Compared with the control group, patients with type 2 diabetes were significantly associated with an increased hazard of idiopathic cardiomyopathy (adjusted hazard ratio [aHR]: 1.60, 95% confidence interval [CI]: 1.45-1.77] in all age and sex stratifications except in those men aged > 64 years. Patients with type 2 diabetes aged < 45 years confronted the greatest increase in the hazard of idiopathic cardiomyopathy, with an aHR of 3.35 (95% CI 2.21-5.06) and 3.48 (95% CI 1.60-7.56) for men and women, respectively. The usage of some anti-diabetic medications revealed lower risks of idiopathic cardiomyopathy. CONCLUSIONS In Taiwan, diabetes increased the risk of idiopathic cardiomyopathy in both sexes and in all age groups, except in men aged > 64 years. Younger patients were vulnerable to have higher HRs of idiopathic cardiomyopathy. Some anti-diabetic medications may reduce the risks of cardiomyopathy.
Collapse
Affiliation(s)
- Hua-Fen Chen
- Department of Endocrinology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine and Department of Public Health, College of Medicine, Fujen Catholic University, New Taipei City, Taiwan
| | - Ya-Hui Chang
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsien-Jung Lo
- Department of Cardiology, Cardiovascular Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | | | - Santi Martini
- Department of Epidemiology, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Wen-Hsuan Hou
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
- Master Program in Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Yi Li
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Epidemiology, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia.
- Department of Public Health, College of Public Health, China Medical University, Taichung City, Taiwan.
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung City, Taiwan.
| |
Collapse
|
29
|
Ni T, Lin N, Lu W, Sun Z, Lin H, Chi J, Guo H. Dihydromyricetin Prevents Diabetic Cardiomyopathy via miR-34a Suppression by Activating Autophagy. Cardiovasc Drugs Ther 2020; 34:291-301. [PMID: 32212062 DOI: 10.1007/s10557-020-06968-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The pro-aging miRNA, miR-34a, is hyperactivated in the cardiac myocardial tissues of patients and mice with diabetes, leading to diabetic cardiomyopathy (DCM). Increasing evidence suggests that dihydromyricetin (DHM) can be used to effectively treat cardiomyopathy. In this study, we investigated whether DHM affects the expression of miR-34a in DCM. METHODS The expression of miR-34a in high-glucose-induced cardiomyocytes and in the heart tissue of diabetic mice was determined by microRNA isolation and quantitative reverse transcription-polymerase chain reaction. Lipofectamine 3000 was used to transfect cardiomyocytes with miR-34a inhibitor, miR-34a mimics, and miR-control. These agents were intravenously injected into the tail vein of streptozotocin-induced diabetic mice. Autophagy and apoptosis were assessed in high-glucose-induced cardiomyocytes and cardiac tissue in diabetic mice by western blotting, immunofluorescence, Masson staining, hematoxylin and eosin staining (H&E), and electron microscopy. RESULTS DHM clearly ameliorated the cardiac dysfunction in the diabetic mice. The expression of miR-34a was up-regulated in high-glucose-induced cardiomyocytes and in the hearts of diabetic mice, thus impairing autophagy. Treatment with DHM decreased the expression of miR-34a and rescued the impairment of autophagy in high-glucose-induced cardiomyocytes and in the heart tissue of diabetic mice, while the miR-34a mimic offset the effect of DHM with respect to the development of DCM by inhibiting autophagy. CONCLUSIONS By decreasing the expression of miR-34a, DHM restores impaired autophagy, and thus ameliorates DCM. Therefore, DHM may potentially be used in the treatment of DCM.
Collapse
Affiliation(s)
- Tingjuan Ni
- Zhejiang University, Hangzhou, Zhejiang, China
| | - Na Lin
- Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenqiang Lu
- Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenzhu Sun
- Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Lin
- Zhejiang University, Hangzhou, Zhejiang, China
| | - Jufang Chi
- Medical Research Center, Shaoxing People's Hospital Shaoxing Hospital, Zhejiang University School of Medicine, No. 568 Zhongxing North Road, Shaoxing, Zhejiang, China.
| | - Hangyuan Guo
- Medical Research Center, Shaoxing People's Hospital Shaoxing Hospital, Zhejiang University School of Medicine, No. 568 Zhongxing North Road, Shaoxing, Zhejiang, China.
| |
Collapse
|
30
|
Aghaei Zarch SM, Dehghan Tezerjani M, Talebi M, Vahidi Mehrjardi MY. Molecular biomarkers in diabetes mellitus (DM). Med J Islam Repub Iran 2020; 34:28. [PMID: 32617267 PMCID: PMC7320976 DOI: 10.34171/mjiri.34.28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Diabetes mellitus (DM) is a growing epidemic metabolic syndrome, which affects near 5.6% of the world's population. Almost 12% of health expenditure is dedicated to this disorder. Discovering and developing biomarkers as a practical guideline with high specificity and sensitivity for the diagnosis, prognosis, and clinical management of DM is one of the subjects of great interest among DM researchers due to the long-lasting asymptomatic clinical manifestation of DM. In this study, we described a recently identified molecular biomarker involved in DM. Methods: This review study was done at the Diabetes Research Center affiliated to Shahid Sadoughi University of Medical Sciences. PubMed, Scopus, Google Scholar, and Web of Science were searched using the following keywords: "diabetes mellitus", "biomarker", "microRNA", "diagnostic tool" and "clinical manifestation." Results: A total of 107 studies were finally included in this review. After evaluating numerous articles, including original, metaanalysis, and review studies, we focused on molecular biomarkers involved in DM diagnosis and management. Conclusion: Increasing interest in biomarkers associated with DM goes back to its role in decreasing diabetes-related morbidity and mortality. This review focused on major molecular biomarkers such as proteomic and microRNA (miRNAs) as novel and interesting DM biomarkers that can help achieve timely diagnosis of DM.
Collapse
Affiliation(s)
| | - Masoud Dehghan Tezerjani
- Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehrdad Talebi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
31
|
Resveratrol and Diabetic Cardiomyopathy: Focusing on the Protective Signaling Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7051845. [PMID: 32256959 PMCID: PMC7094200 DOI: 10.1155/2020/7051845] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/01/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a common cardiovascular complication of diabetic mellitus that is characterized by diastolic disorder in the early stage and clinical heart failure in the later stage. Presently, DCM is considered one of the major causes of death in diabetic patients. Resveratrol (RSV), a naturally occurring stilbene, is widely reported as a cardioprotective substance in many heart diseases. Thus far, the specific roles of RSV in DCM prevention and treatment have attracted great attention. Here, we discuss the roles of RSV in DCM by focusing its downstream targets from both in vivo and in vitro studies. Among such targets, Sirtuins 1/3 and AMP-activated kinase have been identified as key mediators that induce cardioprotection during hyperglycemia. In addition, many other signaling molecules (e.g., forkhead box-O3a and extracellular regulated protein kinases) are also regulated in the presence of RSV and exert beneficial effects such as opposing oxidative stress, inflammation, and apoptosis in cardiomyocytes exposed to high-glucose conditions. The beneficial potential of an RSV/stem cell cotherapy is also reviewed as a promising therapeutic strategy for preventing the development of DCM.
Collapse
|
32
|
High-mobility group AT-hook 1 promotes cardiac dysfunction in diabetic cardiomyopathy via autophagy inhibition. Cell Death Dis 2020; 11:160. [PMID: 32123163 PMCID: PMC7052237 DOI: 10.1038/s41419-020-2316-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
High-mobility group AT-hook1 (HMGA1, formerly HMG-I/Y), an architectural transcription factor, participates in a number of biological processes. However, its effect on cardiac remodeling (refer to cardiac inflammation, apoptosis and dysfunction) in diabetic cardiomyopathy remains largely indistinct. In this study, we found that HMGA1 was upregulated in diabetic mouse hearts and high-glucose-stimulated cardiomyocytes. Overexpression of HMGA1 accelerated high-glucose-induced cardiomyocyte inflammation and apoptosis, while HMGA1 knockdown relieved inflammation and apoptosis in cardiomyocytes in response to high glucose. Overexpression of HMGA1 in mice heart by adeno-associated virus 9 (AAV9) delivery system deteriorated the inflammatory response, increased apoptosis and accelerated cardiac dysfunction in streptozotocin-induced diabetic mouse model. Knockdown of HMGA1 by AAV9-shHMGA1 in vivo ameliorated cardiac remodeling in diabetic mice. Mechanistically, we found that HMGA1 inhibited the formation rather than the degradation of autophagy by regulating P27/CDK2/mTOR signaling. CDK2 knockdown or P27 overexpression blurred HMGA1 overexpression-induced deteriorating effects in vitro. P27 overexpression in mice heart counteracted HMGA1 overexpression-induced increased cardiac remodeling in diabetic mice. The luciferase reporter experiment confirmed that the regulatory effect of HMGA1 on P27 was mediated by miR-222. In addition, a miR-222 antagomir counteracted HMGA1 overexpression-induced deteriorating effects in vitro. Taken together, our data indicate that HMGA1 aggravates diabetic cardiomyopathy by directly regulating miR-222 promoter activity, which inhibits P27/mTOR-induced autophagy.
Collapse
|
33
|
Witkowski M, Witkowski M, Saffarzadeh M, Friebel J, Tabaraie T, Ta Bao L, Chakraborty A, Dörner A, Stratmann B, Tschoepe D, Winter SJ, Krueger A, Ruf W, Landmesser U, Rauch U. Vascular miR-181b controls tissue factor-dependent thrombogenicity and inflammation in type 2 diabetes. Cardiovasc Diabetol 2020; 19:20. [PMID: 32066445 PMCID: PMC7027062 DOI: 10.1186/s12933-020-0993-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetes mellitus is characterized by chronic vascular inflammation leading to pathological expression of the thrombogenic full length (fl) tissue factor (TF) and its isoform alternatively-spliced (as) TF. Blood-borne TF promotes factor (F) Xa generation resulting in a pro-thrombotic state and cardiovascular complications. MicroRNA (miR)s impact gene expression on the post-transcriptional level and contribute to vascular homeostasis. Their distinct role in the control of the diabetes-related procoagulant state remains poorly understood. METHODS In a cohort of patients with poorly controlled type 2 diabetes (n = 46) plasma levels of miR-181b were correlated with TF pathway activity and markers for vascular inflammation. In vitro, human microvascular endothelial cells (HMEC)-1 and human monocytes (THP-1) were transfected with miR-181b or anti-miR-181b and exposed to tumor necrosis factor (TNF) α or lipopolysaccharides (LPS). Expression of TF isoforms, vascular adhesion molecule (VCAM) 1 and nuclear factor (NF) κB nuclear translocation was assessed. Moreover, aortas, spleen, plasma, and bone marrow-derived macrophage (BMDM)s of mice carrying a deletion of the first miR-181b locus were analyzed with respect to TF expression and activity. RESULTS In patients with type 2 diabetes, plasma miR-181b negatively correlated with the procoagulant state as evidenced by TF protein, TF activity, D-dimer levels as well as markers for vascular inflammation. In HMEC-1, miR-181b abrogated TNFα-induced expression of flTF, asTF, and VCAM1. These results were validated using the anti-miR-181b. Mechanistically, we confirmed a miR-181b-mediated inhibition of importin-α3 (KPNA4) leading to reduced nuclear translocation of the TF transcription factor NFκB. In THP-1, miR-181b reduced both TF isoforms and FXa generation in response to LPS due to targeting phosphatase and tensin homolog (PTEN), a principal inducer for TF in monocytes. Moreover, in miR-181-/- animals, we found that reduced levels of miR-181b were accompanied by increased TF, VCAM1, and KPNA4 expression in aortic tissue as well as increased TF and PTEN expression in spleen. Finally, BMDMs of miR-181-/- mice showed increased TF expression and FXa generation upon stimulation with LPS. CONCLUSIONS miR-181b epigenetically controls the procoagulant state in diabetes. Reduced miR-181b levels contribute to increased thrombogenicity and may help to identify individuals at particular risk for thrombosis.
Collapse
Affiliation(s)
- Marco Witkowski
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Mario Witkowski
- Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany
| | - Mona Saffarzadeh
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Julian Friebel
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Termeh Tabaraie
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Loc Ta Bao
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Aritra Chakraborty
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Andrea Dörner
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Bernd Stratmann
- Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Diethelm Tschoepe
- Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Samantha J Winter
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ulf Landmesser
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Ursula Rauch
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany.
| |
Collapse
|
34
|
Affiliation(s)
- Jin Hwa Kim
- Department of Endocrinology and Metabolism, Chosun University Hospital, Chosun University College of Medicine, Gwangju, Korea.
| |
Collapse
|
35
|
Hypomagnesemia is associated with new-onset diabetes mellitus following heart transplantation. Cardiovasc Diabetol 2019; 18:132. [PMID: 31604444 PMCID: PMC6787962 DOI: 10.1186/s12933-019-0939-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a major cause of morbidity and mortality following heart transplantation (HT), with 21% and 35% of survivors being affected within 1 and 5 years following HT, respectively. Magnesium deficiency is common among HT patients treated with calcineurin inhibitors and is a known risk factor for DM in non-HT patients. We therefore investigated the association between serum Mg (s-Mg) levels and new-onset diabetes after transplantation (NODAT). METHODS Between 2002 and 2017, 102 non-DM HT patients were assessed. In accordance with the mean value of all s-Mg levels recorded during the first year post-HT, patients were divided into high s-Mg (≥ 1.8 mg/dL) and low s-Mg (< 1.8 mg/dL) groups. The endpoint was NODAT, defined according to the diagnostic criteria of the American Diabetes Association. RESULTS Baseline clinical and demographic characteristics for the high (n = 45) and low s-Mg (n = 57) groups were similar. Kaplan-Meier survival analysis showed that 15-year freedom from NODAT was significantly higher among patients with high vs low s-Mg (85% vs 46% log-rank test, p < 0.001). Consistently, multivariate analysis adjusted for age, gender, immunosuppression therapies, BMI and mean creatinine values in the first year post-HT, showed that low s-Mg was independently associated with a significant > 8-fold increased risk for NODAT (95% CI 2.15-32.63, p = 0.003). Stroke rate was significantly higher in patients with low s-Mg levels vs high s-Mg (14% vs 0, p = 0.025), as well as long term mortality (HR 2.6, 95% CI 1.02-6.77, p = 0.05). CONCLUSIONS Low s-Mg level post-HT is an independent risk factor for NODAT in HT patients. The implications of interventions, focusing on preventing or correcting low s-Mg, for the risk of NODAT and for clinical outcomes should be evaluated.
Collapse
|
36
|
Zheng Z, Ma T, Guo H, Kim KS, Kim KT, Bi L, Zhang Z, Cai L. 4-O-methylhonokiol protects against diabetic cardiomyopathy in type 2 diabetic mice by activation of AMPK-mediated cardiac lipid metabolism improvement. J Cell Mol Med 2019; 23:5771-5781. [PMID: 31199069 PMCID: PMC6653553 DOI: 10.1111/jcmm.14493] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/17/2019] [Accepted: 05/26/2019] [Indexed: 01/07/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by increased left ventricular mass and wall thickness, decreased systolic function, reduced ejection fraction (EF) and ultimately heart failure. The 4-O-methylhonokiol (MH) has been isolated mainly from the bark of the root and stem of Magnolia species. In this study, we aimed to elucidate whether MH can effectively prevent DCM in type 2 diabetic (T2D) mice and, if so, whether the protective response of MH is associated with its activation of AMPK-mediated inhibition of lipid accumulation and inflammation. A total number of 40 mice were divided into four groups: Ctrl, Ctrl + MH, T2D, T2D + MH. Five mice from each group were sacrificed after 3-month MH treatment. The remaining animals in each group were kept for additional 3 months without further MH treatment. In T2D mice, the typical DCM symptoms were induced as expected, reflected by decreased ejection fraction and lipotoxic effects inducing lipid accumulation, oxidative stress, inflammatory reactions, and final fibrosis. However, these typical DCM changes were significantly prevented by the MH treatment immediately or 3 months after the 3-month MH treatment, suggesting MH-induced cardiac protection from T2D had a memory effect. Mechanistically, MH cardiac protection from DCM may be associated with its lipid metabolism improvement by the activation of AMPK/CPT1-mediated fatty acid oxidation. In addition, the MH treatment of DCM mice significantly improved their insulin resistance levels by activation of GSK-3β. These results indicate that the treatment of T2D with MH effectively prevents DCM probably via AMPK-dependent improvement of the lipid metabolism.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Animals
- Biphenyl Compounds/pharmacology
- Biphenyl Compounds/therapeutic use
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/physiopathology
- Diabetic Cardiomyopathies/complications
- Diabetic Cardiomyopathies/drug therapy
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/prevention & control
- Fibrosis
- Inflammation/blood
- Inflammation/pathology
- Inflammation/physiopathology
- Lignans/pharmacology
- Lignans/therapeutic use
- Lipid Metabolism
- Male
- Mice, Inbred C57BL
- Models, Biological
- Oxidative Stress/drug effects
Collapse
Affiliation(s)
- Zongyu Zheng
- Departments of Urology and CardiologyThe First Hospital of Jilin UniversityChangchunChina
- Department of PediatricsPediatric Research Institute, University of LouisvilleLouisvilleKentucky
| | - Tianjiao Ma
- Department of PediatricsPediatric Research Institute, University of LouisvilleLouisvilleKentucky
- Department of Rheumatology and ImmunologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Hua Guo
- Department of PediatricsPediatric Research Institute, University of LouisvilleLouisvilleKentucky
- Department of Immunology, Zhejiang Key Laboratory of PathophysiologyMedical School of Ningbo UniversityNingboChina
| | | | | | - Liqi Bi
- Department of Rheumatology and ImmunologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Zhiguo Zhang
- Departments of Urology and CardiologyThe First Hospital of Jilin UniversityChangchunChina
| | - Lu Cai
- Department of PediatricsPediatric Research Institute, University of LouisvilleLouisvilleKentucky
- Department of Radiation Oncology, Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKentucky
| |
Collapse
|
37
|
Yang X, Li X, Lin Q, Xu Q. Up-regulation of microRNA-203 inhibits myocardial fibrosis and oxidative stress in mice with diabetic cardiomyopathy through the inhibition of PI3K/Akt signaling pathway via PIK3CA. Gene 2019; 715:143995. [PMID: 31336140 DOI: 10.1016/j.gene.2019.143995] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Diabetic cardiomyopathy (DCM) refers to the myocardial dysfunction in the absence of coronary artery disease and hypertension. Recently, the role of microRNAs (miRs) in gene expression regulation has attracted much more attention. Studies have shown that the PI3K/Akt signaling pathway is involved in the growth, metabolism and apoptosis of myocardial cells. Therefore, this study aimed to explore the regulatory role of miR-203 in myocardial fibrosis in mice with DCM via involvement of the PI3K/Akt signaling pathway. Firstly, mouse model of diabetes mellitus (DM) was established and injected with agomir, antagomir or IGF-1 (PI3K/Akt signaling pathway activator) for investigating the role of miR-203 in PIK3CA and the PI3K/Akt signaling pathway. PIK3CA was identified as a target gene of miR-203, and overexpressed miR-203 inhibited the activation of PI3K/Akt signaling pathway. The obtained results indicated that up-regulation of miR-203 reduced myocardial hypertrophy, myocardial fibrosis, myocardial apoptosis, and levels of PIK3CA, PI3K, Akt, CoI I, CoI III, ANP, MDA and ROS in the myocardial tissues, by which DM-induced cardiac dysfunction and pathological changes could be ameliorated. Collectively, our present study highlighted that overexpression of miR-203 may function as a cardioprotective regulator in DCM by targeting PIK3CA via inactivation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xubin Yang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China.
| | - Xiaoshan Li
- Department of Ultrasonography, Guangzhou YueXiu District Hospital of Traditional Chinese Medicine, Guangzhou 510030, PR China
| | - Qiongyan Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Quanfu Xu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, PR China
| |
Collapse
|
38
|
Sun L, Yu M, Zhou T, Zhang S, He G, Wang G, Gang X. Current advances in the study of diabetic cardiomyopathy: From clinicopathological features to molecular therapeutics (Review). Mol Med Rep 2019; 20:2051-2062. [PMID: 31322242 DOI: 10.3892/mmr.2019.10473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/29/2019] [Indexed: 11/06/2022] Open
Abstract
The incidence of diabetes mellitus has become a major public health concern due to lifestyle alterations. Moreover, the complications associated with diabetes mellitus deeply influence the quality of life of patients. Diabetic cardiomyopathy (DC) is a type of diabetes mellitus complication characterized by functional and structural damage in the myocardium but not accompanied by coronary arterial disease. Currently, diagnosing and preventing DC is still a challenge for physicians due to its atypical symptoms. For this reason, it is necessary to summarize the current knowledge on DC, especially in regards to the underlying molecular mechanisms toward the goal of developing useful diagnostic approaches and effective drugs based on these mechanisms. There exist several review articles which have focused on these points, but there still remains a lot to learn from published studies. In this review, the features, diagnosis and molecular mechanisms of DC are reviewed. Furthermore, potential therapeutic and prophylactic drugs are discussed.
Collapse
Affiliation(s)
- Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ming Yu
- Department of Cardiology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Siwen Zhang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guangyu He
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
39
|
Molecular Dysfunction and Phenotypic Derangement in Diabetic Cardiomyopathy. Int J Mol Sci 2019; 20:ijms20133264. [PMID: 31269778 PMCID: PMC6651260 DOI: 10.3390/ijms20133264] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 12/26/2022] Open
Abstract
The high incidence and poor prognosis of heart failure (HF) patients affected with diabetes (DM) is in part related to a specific cardiac remodeling currently recognized as diabetic cardiomyopathy (DCM). This cardiac frame occurs regardless of the presence of coronary artery diseases (CAD) and it can account for 15–20% of the total diabetic population. The pathogenesis of DCM remains controversial, and several molecular and cellular alterations including myocardial hypertrophy, interstitial fibrosis, oxidative stress and vascular inflammation, have been postulated. The main cardio-vascular alterations associated with hyperglycemia comprise endothelial dysfunction, adverse effects of circulating free fatty acids (FFA) and increased systemic inflammation. High glucose concentrations lead to a loss of mitochondrial networks, increased reactive oxygen species (ROS), endothelial nitric oxide synthase (eNOS) activation and a reduction in cGMP production related to protein kinase G (PKG) activity. Current mechanisms enhance the collagen deposition with subsequent increased myocardial stiffness. Several concerns regarding the exact role of DCM in HF development such as having an appearance as either dilated or as a concentric phenotype and whether diabetes could be considered a causal factor or a comorbidity in HF, remain to be clarified. In this review, we sought to explain the different DCM subtypes and the underlying pathophysiological mechanisms. Therefore, the traditional and new molecular and signal alterations and their relationship with macroscopic structural abnormalities are described.
Collapse
|
40
|
MiR-451 antagonist protects against cardiac fibrosis in streptozotocin-induced diabetic mouse heart. Life Sci 2019; 224:12-22. [DOI: 10.1016/j.lfs.2019.02.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 01/30/2023]
|
41
|
Rawal S, Nagesh PT, Coffey S, Van Hout I, Galvin IF, Bunton RW, Davis P, Williams MJA, Katare R. Early dysregulation of cardiac-specific microRNA-208a is linked to maladaptive cardiac remodelling in diabetic myocardium. Cardiovasc Diabetol 2019; 18:13. [PMID: 30696455 PMCID: PMC6352455 DOI: 10.1186/s12933-019-0814-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/14/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The diabetic heart undergoes remodelling contributing to an increased incidence of heart failure in individuals with diabetes at a later stage. The molecular regulators that drive this process in the diabetic heart are still unknown. METHODS Real-time (RT) PCR analysis was performed to determine the expression of cardiac specific microRNA-208a in right atrial appendage (RAA) and left ventricular (LV) biopsy tissues collected from diabetic and non-diabetic patients undergoing coronary artery bypass graft surgery. To determine the time-dependent changes, cardiac tissue were collected from type 2 diabetic mice at different age groups. A western blotting analysis was conducted to determine the expression of contractile proteins α- and β-myosin heavy chain (MHC) and thyroid hormone receptor-α (TR-α), the negative regulator of β-MHC. To determine the beneficial effects of therapeutic modulation of miR-208a, high glucose treated adult mouse HL-1 cardiomyocytes were transfected with anti-miR-208a. RESULTS RT-PCR analysis showed marked upregulation of miR-208a from early stages of diabetes in type 2 diabetic mouse heart, which was associated with a marked increase in the expression of pro-hypertrophic β-MHC and downregulation of TR-α. Interestingly, upregulation of miR-208a preceded the switch of α-/β-MHC isoforms and the development of diastolic and systolic dysfunction. We also observed significant upregulation of miR-208a and modulation of miR-208a associated proteins in the type 2 human diabetic heart. Therapeutic inhibition of miR-208a activity in high glucose treated HL-1 cardiomyocytes prevented the activation of β-MHC and hence the hypertrophic response. CONCLUSION Our results provide the first evidence that early modulation of miR-208a in the diabetic heart induces alterations in the downstream signaling pathway leading to cardiac remodelling and that therapeutic inhibition of miR-208a may be beneficial in preventing diabetes-induced adverse remodelling of the heart.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Cell Line
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/physiopathology
- Disease Models, Animal
- Female
- Gene Expression Regulation
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Humans
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Myocytes, Cardiac/metabolism
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Signal Transduction
- Time Factors
- Ventricular Function, Left
- Ventricular Myosins/genetics
- Ventricular Myosins/metabolism
- Ventricular Remodeling
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Physiology-HeartOtago, Otago School of Medical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010 New Zealand
- Present Address: New York University, New York, USA
| | - Prashanth Thevakar Nagesh
- Department of Microbiology & Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
- Present Address: New York University, New York, USA
| | - Sean Coffey
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Isabelle Van Hout
- Department of Physiology-HeartOtago, Otago School of Medical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010 New Zealand
| | - Ivor F. Galvin
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Richard W. Bunton
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Philip Davis
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael J. A. Williams
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology-HeartOtago, Otago School of Medical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010 New Zealand
| |
Collapse
|
42
|
He J, Mu M, Luo Y, Wang H, Ma H, Guo S, Fang Q, Qian Z, Lu H, Song C. MicroRNA-20b promotes proliferation of H22 hepatocellular carcinoma cells by targeting PTEN. Oncol Lett 2019; 17:2931-2936. [PMID: 30854070 DOI: 10.3892/ol.2019.9925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are small, noncoding RNA molecules that are closely associated with the occurrence and development of tumors. miR-20b is overexpressed in hepatocellular carcinoma cell lines and tissues. However, it is not clear whether miR-20b can promote the proliferation of hepatocellular carcinoma cells. In the present study, the proliferation of H22 mouse hepatocellular carcinoma cells was detected using the Cell Counting Kit-8 assay. MiRanda software was used to predict the binding sites of miR-20b to the 3'-untranslated region (3'-UTR) of phosphatase and tensin homolog (PTEN). The 3'-UTR sequence of the PTEN gene was amplified using the polymerase chain reaction in H22 cells. The recombinant plasmid or empty plasmid was co-transfected with miR-20b mimics or miR-20b scramble into HeLa cells, and luciferase activity was assessed by Dual-Luciferase® Reporter Assay System 24 h post-transfection. In the present study, miR-20b knockdown significantly inhibited the proliferation of H22 mouse hepatocellular carcinoma cells. In addition, miR-20b inhibition upregulated the expression of PTEN, and it was revealed that miR-20b may directly target the 3'-untranslated region of the PTEN gene. Downregulation of PTEN partially reversed the anti-proliferative effect of miR-20b on H22 cells. In conclusion, miR-20b may promote H22 cell proliferation by targeting PTEN, providing a rationale for further study investigating novel therapeutic strategies for liver cancer.
Collapse
Affiliation(s)
- Jing He
- Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Mimi Mu
- Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yulan Luo
- Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Helong Wang
- Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hua Ma
- Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Shujun Guo
- Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Qiang Fang
- Department of Microbiology and Parasitology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Zhongqing Qian
- Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hezuo Lu
- Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui 233030, P.R. China.,Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Chuanwang Song
- Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
43
|
Yin Z, Zhao Y, He M, Li H, Fan J, Nie X, Yan M, Chen C, Wang DW. MiR-30c/PGC-1β protects against diabetic cardiomyopathy via PPARα. Cardiovasc Diabetol 2019; 18:7. [PMID: 30635067 PMCID: PMC6329097 DOI: 10.1186/s12933-019-0811-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/03/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Metabolic abnormalities have been implicated as a causal event in diabetic cardiomyopathy (DCM). However, the mechanisms underlying cardiac metabolic disorder in DCM were not fully understood. RESULTS Db/db mice, palmitate treated H9c2 cells and primary neonatal rat cardiomyocytes were employed in the current study. Microarray data analysis revealed that PGC-1β may play an important role in DCM. Downregulation of PGC-1β relieved palmitate induced cardiac metabolism shift to fatty acids use and relevant lipotoxicity in vitro. Bioinformatics coupled with biochemical validation was used to confirm that PGC-1β was one of the direct targets of miR-30c. Remarkably, overexpression of miR-30c by rAAV system improved glucose utilization, reduced excessive reactive oxygen species production and myocardial lipid accumulation, and subsequently attenuated cardiomyocyte apoptosis and cardiac dysfunction in db/db mice. Similar effects were also observed in cultured cells. More importantly, miR-30c overexpression as well as PGC-1β knockdown reduced the transcriptional activity of PPARα, and the effects of miR-30c on PPARα was almost abated by PGC-1β knockdown. CONCLUSIONS Our data demonstrated a protective role of miR-30c in cardiac metabolism in diabetes via targeting PGC-1β, and suggested that modulation of PGC-1β by miR-30c may provide a therapeutic approach for DCM.
Collapse
Affiliation(s)
- Zhongwei Yin
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yanru Zhao
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Mengying He
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Huaping Li
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jiahui Fan
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiang Nie
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Mengwen Yan
- Department of Cardiology, China-Japan Friendship Hospital, No. 2 Yinghua Dongjie, Beijing, 100029 China
| | - Chen Chen
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Dao Wen Wang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
44
|
Li N, Wu H, Geng R, Tang Q. Identification of Core Gene Biomarkers in Patients with Diabetic Cardiomyopathy. DISEASE MARKERS 2018; 2018:6025061. [PMID: 30662576 PMCID: PMC6313979 DOI: 10.1155/2018/6025061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a disorder of the myocardium in diabetic patients, which is one of the critical complications of diabetes giving rise to an increased mortality. However, the underlying mechanisms of DCM remain incompletely understood presently. This study was designed to screen the potential molecules and pathways implicated with DCM. GSE26887 involving 5 control individuals and 7 DCM patients was selected from the GEO database to identify the differentially expressed genes (DEGs). DAVID was applied to perform gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A protein-protein interaction (PPI) network was also constructed to visualize the interactions among these DEGs. To further validate significant genes and pathways, quantitative real-time PCR (qPCR) and Western blot were performed. A total of 236 DEGs were captured, including 134 upregulated and 102 downregulated genes. GO, KEGG, and the PPI network disclosed that inflammation, immune disorders, metabolic disturbance, and mitochondrial dysfunction were significantly enriched in the development of DCM. Notably, IL6 was an upregulated hub gene with the highest connectivity degree, suggesting that it may interact with a great many molecules and pathways. Meanwhile, SOCS3 was also one of the top 15 hub genes in the PPI network. Herein, we detected the protein level of STAT3 and SOCS3 in a mouse model with DCM. Western blot results showed that the protein level of SOCS3 was significantly lower while phosphorylated-STAT3 (P-STAT3) was activated in mice with DCM. In vitro results also uncovered the similar alterations of SOCS3 and P-STAT3 in cardiomyocytes and cardiac fibroblasts induced by high glucose (HG). However, overexpression of SOCS3 could significantly reverse HG-induced cardiomyocyte hypertrophy and collagen synthesis of cardiac fibroblasts. Taken together, our analysis unveiled potential biomarkers and molecular mechanisms in DCM, which could be helpful to the diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Ning Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Haiming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Rongxin Geng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
45
|
Liu Y, Zheng W, Pan Y, Hu J. Low expression of miR-186-5p regulates cell apoptosis by targeting toll-like receptor 3 in high glucose-induced cardiomyocytes. J Cell Biochem 2018; 120:9532-9538. [PMID: 30506923 DOI: 10.1002/jcb.28229] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022]
Abstract
To investigate the effect and mechanism of microRNA-186-5p (miR-186-5p) on the apoptosis in high glucose (HG)-treated cardiomyocytes. Diabetic cardiomyopathy model was established in cardiomyocytes by stimulating with HG. The expressions of miR-186-5p and toll-like receptor 3 (TLR3) were detected by quantitative polymerase chain reaction or Western blot analysis, respectively. Apoptosis was detected in HG-treated cardiomyocytes by flow cytometry and Western blot analysis. The interaction between miR-186-5p and TLR3 was explored by bioinformatics analysis and luciferase activity assay. Results showed that miR-186-5p expression was downregulated in HG-treated cardiomyocytes and its overexpression reversed HG-induced apoptosis and cleaved caspase-3 protein expression. Moreover, TLR3 was indicated as a target of miR-186-5p and regulated by miR-186-5p. Knockdown of TLR3 suppressed HG-induced apoptosis and cleaved caspase-3 protein expression. Besides, restoration of TLR3 ablated the effect of miR-186-5p on cell apoptosis. Collectively, miR-186-5p attenuated HG-induced apoptosis by regulating TLR3 in cardiomyocytes, providing novel biomarker for treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ye Liu
- Electrocardial Center of the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wei Zheng
- Electrocardial Center of the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yue Pan
- Electrocardial Center of the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jing Hu
- Electrocardial Center of the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
46
|
Ma C, Luo H, Liu B, Li F, Tschöpe C, Fa X. Long noncoding RNAs: A new player in the prevention and treatment of diabetic cardiomyopathy? Diabetes Metab Res Rev 2018; 34:e3056. [PMID: 30160026 DOI: 10.1002/dmrr.3056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/12/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
Diabetic cardiomyopathy (DCM) can cause extensive necrosis of the heart muscle by metabolic disorders and microangiopathy, with subclinical cardiac dysfunction, and eventually progress to heart failure, arrhythmia, and cardiogenic shock; severe patients may even die suddenly. Long noncoding RNAs (lncRNAs) are a class of nonprotein-coding RNAs longer than 200 nucleotides. They have critical roles in various biological processes, including gene expression regulation, genomic imprinting, nuclear-cytoplasmic trafficking, RNA splicing, and translational control. Recent studies indicated that lncRNAs extensively participate in the development of diverse cardiac diseases, such as cardiac ischaemia, hypertrophy, and heart failure. Little is known about lncRNA in DCM. In this review, we summarize the current literature on lncRNAs in DCM studies, aiming to provide new methods for DCM's future prevention and treatment strategies.
Collapse
Affiliation(s)
- Chao Ma
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Cardiology, Campus Virchow, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Huan Luo
- Department of Ophthalmology, Campus Virchow, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bing Liu
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Department of Thoracic Surgery, Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Tschöpe
- Department of Cardiology, Campus Virchow, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Xianen Fa
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
47
|
Nandi SS, Shahshahan HR, Shang Q, Kutty S, Boska M, Mishra PK. MiR-133a Mimic Alleviates T1DM-Induced Systolic Dysfunction in Akita: An MRI-Based Study. Front Physiol 2018; 9:1275. [PMID: 30364155 PMCID: PMC6192327 DOI: 10.3389/fphys.2018.01275] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetic cardiomyopathy is a leading cause of heart failure. Developing a novel therapeutic strategy for diabetic cardiomyopathy and characterizing animal models used for diabetes mellitus (DM) are important. Insulin 2 mutant (Ins2+/-) Akita is a spontaneous, genetic, mouse model for T1DM, which is relevant to humans. There are contrasting reports on systolic dysfunction and pathological remodeling (hypertrophy and fibrosis) in Akita heart. Here, we used magnetic resonance imaging (MRI) approach, a gold standard reference for evaluating cardiac function, to measure ejection fraction (indicator of systolic dysfunction) in Akita. Moreover, we performed Wheat Germ Agglutinin (WGA) and hematoxylin and Eosin stainings to determine cardiac hypertrophy, and Masson's Trichrome and picrosirius red stainings to determine cardiac fibrosis in Akita. MiR-133a, an anti-hypertrophy and anti-fibrosis miRNA, is downregulated in Akita heart. We determined if miR-133a mimic treatment could mitigate systolic dysfunction and remodeling in Akita heart. Our MRI results revealed decreased ejection fraction in Akita as compared to WT and increased ejection fraction in miR-133a mimic-treated Akita. We also found that miR-133a mimic treatment mitigates T1DM-induced cardiac hypertrophy and fibrosis in Akita. We conclude that Akita shows cardiac hypertrophy, fibrosis and systolic dysfunction and miR-133a mimic treatment to Akita could ameliorate them.
Collapse
Affiliation(s)
- Shyam Sundar Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hamid Reza Shahshahan
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Quanliang Shang
- Department of Pediatric Cardiology, Children's Hospital, Omaha, NE, United States
| | - Shelby Kutty
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pediatric Cardiology, Children's Hospital, Omaha, NE, United States
| | - Michael Boska
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Paras Kumar Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
48
|
Sarkar A, Shukla SK, Alqatawni A, Kumar A, Addya S, Tsygankov AY, Rafiq K. The Role of Allograft Inflammatory Factor-1 in the Effects of Experimental Diabetes on B Cell Functions in the Heart. Front Cardiovasc Med 2018; 5:126. [PMID: 30258845 PMCID: PMC6145033 DOI: 10.3389/fcvm.2018.00126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/21/2018] [Indexed: 01/18/2023] Open
Abstract
Diabetes mellitus (DM) often causes chronic inflammation, hypertrophy, apoptosis and fibrosis in the heart and subsequently leads to myocardial remodeling, deteriorated cardiac function and heart failure. However, the etiology of the cardiac disease is unknown. Therefore, we assessed the gene expression in the left ventricle of diabetic and non-diabetic mice using Affymetrix microarray analysis. Allograft inflammatory factor-1 (AIF-1), one of the top downregulated B cell inflammatory genes, is associated with B cell functions in inflammatory responses. Real-time reverse transcriptase-polymerase chain reaction confirmed the Affymetrix data. The expression of CD19 and AIF-1 were downregulated in diabetic hearts as compared to control hearts. Using in vitro migration assay, we showed for the first time that AIF-1 is responsible for B cell migration as B cells migrated to GFP-AIF-1-transfected H9C2 cells compared to empty vector-transfected cells. Interestingly, overexpression of AIF-1 in diabetic mice prevented streptozotocin-induced cardiac dysfunction, inflammation and promoted B cell homing into the heart. Our results suggest that AIF-1 downregulation inhibited B cell homing into diabetic hearts, thus promoting inflammation that leads to the development of diabetic cardiomyopathy, and that overexpression of AIF-1 could be a novel treatment for this condition.
Collapse
Affiliation(s)
- Amrita Sarkar
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sanket K Shukla
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Aseel Alqatawni
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Anil Kumar
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sankar Addya
- Kimmel Cancer Centre, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexander Y Tsygankov
- Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Khadija Rafiq
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
49
|
Emerging roles of non-coding RNAs in the pathogenesis, diagnosis and prognosis of osteosarcoma. Invest New Drugs 2018; 36:1116-1132. [DOI: 10.1007/s10637-018-0624-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
|