1
|
Renner K, Stauffenberg F, Paulus M, Neumayer S, Winter-Köhler F, Buchtler S, Schmalenberger D, Blaas S, Mohr A, Pfeifer M, Malfertheiner MV, Loew T, Sester M, Bals R, Peterhoff D, Schmidt B, Mack M. Hyper-reactivity of CD8 + T cells and high expression of IL-3 correlates with occurrence and severity of Long-COVID. Clin Immunol 2025; 277:110502. [PMID: 40287027 DOI: 10.1016/j.clim.2025.110502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Following SARS-CoV-2 infection, some individuals develop Long-COVID-syndrome lasting for more than 3 months. We analyzed blood samples from patients with Long-COVID, controls without persistent symptoms following SARS-CoV-2-infection and non-infected donors without a history of infection. Long-COVID patients showed clear signs of T cell hyper-activation predominantly in the CD8+ T cell subset with a 4-fold higher expression of CD25 and 2-fold more effector-memory T cells. Following polyclonal T cell stimulation, we found a 2-fold stronger upregulation of CD25 and a 7-fold higher release of IL-3 in Long-COVID. Intracellular staining revealed 5-fold more IL-3-expressing CD8+ T cells in Long-COVID, while GM-CSF, IFN-γ and IL-2 were much less upregulated. These changes correlated with the severity of Long-COVID and persisted for up to 18 months after infection. Our data reveal a pronounced and long-lasting CD8+ T cell hyper-activation and hyper-reactivity in Long-COVID and speak for a trial of T cell-immunosuppression in patients with Long-COVID.
Collapse
Affiliation(s)
- Kerstin Renner
- University Hospital Regensburg, Department of Nephrology, 93042 Regensburg, Germany
| | - Franz Stauffenberg
- University Hospital Regensburg, Department of Nephrology, 93042 Regensburg, Germany
| | - Moritz Paulus
- University Hospital Regensburg, Department of Nephrology, 93042 Regensburg, Germany
| | - Sophia Neumayer
- University Hospital Regensburg, Department of Nephrology, 93042 Regensburg, Germany
| | | | - Simone Buchtler
- University Hospital Regensburg, Department of Nephrology, 93042 Regensburg, Germany
| | | | - Stefan Blaas
- Klinik Donaustauf, Pneumologie, 93093 Donaustauf, Germany
| | - Arno Mohr
- Klinik Donaustauf, Pneumologie, 93093 Donaustauf, Germany
| | | | | | - Thomas Loew
- Klinik Donaustauf, Psychosomatische Medizin und Psychotherapie, 93093 Donaustauf, Germany
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, 66421 Homburg/Saar, Germany; Center for Gender-specific Biology and Medicine (CGBM), Saarland University, 66421 Homburg, Germany
| | - Robert Bals
- Universität des Saarlandes, Klinik für Innere Medizin V, 66421 Homburg/Saar, Germany
| | - David Peterhoff
- University of Regensburg, Institute of Clinical Microbiology and Hygiene, 93053 Regensburg, Germany
| | - Barbara Schmidt
- University of Regensburg, Institute of Clinical Microbiology and Hygiene, 93053 Regensburg, Germany
| | - Matthias Mack
- University Hospital Regensburg, Department of Nephrology, 93042 Regensburg, Germany; Leibniz Institute for Immunotherapy (LIT), 93053 Regensburg, Germany.
| |
Collapse
|
2
|
Kruger A, Joffe D, Lloyd-Jones G, Khan MA, Šalamon Š, Laubscher GJ, Putrino D, Kell DB, Pretorius E. Vascular Pathogenesis in Acute and Long COVID: Current Insights and Therapeutic Outlook. Semin Thromb Hemost 2025; 51:256-271. [PMID: 39348850 PMCID: PMC11906225 DOI: 10.1055/s-0044-1790603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Long coronavirus disease 2019 (COVID-19)-a postacute consequence of severe acute respiratory syndrome coronavirus 2 infection-manifests with a broad spectrum of relapsing and remitting or persistent symptoms as well as varied levels of organ damage, which may be asymptomatic or present as acute events such as heart attacks or strokes and recurrent infections, hinting at complex underlying pathogenic mechanisms. Central to these symptoms is vascular dysfunction rooted in thrombotic endothelialitis. We review the scientific evidence that widespread endothelial dysfunction (ED) leads to chronic symptomatology. We briefly examine the molecular pathways contributing to endothelial pathology and provide a detailed analysis of how these cellular processes underpin the clinical picture. Noninvasive diagnostic techniques, such as flow-mediated dilation and peripheral arterial tonometry, are evaluated for their utility in identifying ED. We then explore mechanistic, cellular-targeted therapeutic interventions for their potential in treating ED. Overall, we emphasize the critical role of cellular health in managing Long COVID and highlight the need for early intervention to prevent long-term vascular and cellular dysfunction.
Collapse
Affiliation(s)
- Arneaux Kruger
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - David Joffe
- Respiratory and Sleep Medicine, Royal North Shore Hospital, Sydney, Australia
- World Health Network, Cambridge, Massachusetts
| | - Graham Lloyd-Jones
- Department of Radiology, Salisbury District Hospital, Salisbury NHS Foundation Trust, United Kingdom
| | - Muhammed Asad Khan
- World Health Network, Cambridge, Massachusetts
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester, United Kingdom
| | | | | | - David Putrino
- Respiratory and Sleep Medicine, Royal North Shore Hospital, Sydney, Australia
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- World Health Network, Cambridge, Massachusetts
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Baalbaki N, Slob EMA, Kazer SW, I Abdel‐Aziz M, Bogaard HJ, Golebski K, Maitland‐van der Zee AH. The Omics Landscape of Long COVID-A Comprehensive Systematic Review to Advance Biomarker, Target and Drug Discovery. Allergy 2025; 80:932-948. [PMID: 40084919 PMCID: PMC11969314 DOI: 10.1111/all.16526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/17/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
An estimated 10% of coronavirus disease (COVID-19) survivors suffer from persisting symptoms referred to as long COVID (LC), a condition for which approved treatment options are still lacking. This systematic review (PROSPERO: CRD42024499281) aimed to explore the pathophysiological mechanisms underlying LC and potential treatable traits across symptom-based phenotypes. We included studies with primary data, written in English, focusing on omics analyses of human samples from LC patients with persistent symptoms of at least 3 months. Our search in PubMed and Embase, conducted on January 8, 2024, identified 642 studies, of which 29 met the inclusion criteria after full-text assessment. The risk of bias was evaluated using the Joanna Briggs Institute appraisal tool. The synthesis of omics data, including genomics, transcriptomics, proteomics, metabolomics, and metagenomics, revealed common findings associated with fatigue, cardiovascular, pulmonary, neurological, and gastrointestinal phenotypes. Key findings included mitochondrial dysfunction, dysregulated microRNAs associated with pulmonary dysfunction, tissue impairment, blood-brain barrier disruption, coagulopathy, vascular dysfunction, microbiome disturbances, microbial-derived metabolite production and persistent inflammation. Limitations include cross-study heterogeneity and variability in sampling methods. Our review emphasizes the complexity of LC and the need for further longitudinal omics-integrated studies to advance the development of biomarkers and targeted treatments.
Collapse
Affiliation(s)
- Nadia Baalbaki
- Department of Pulmonary MedicineAmsterdam UMCAmsterdamthe Netherlands
- Amsterdam Institute for Infection and ImmunityAmsterdamthe Netherlands
- Amsterdam Public HealthAmsterdamthe Netherlands
| | - Elise M. A. Slob
- Department of Pulmonary MedicineAmsterdam UMCAmsterdamthe Netherlands
- Department of Clinical PharmacyHaaglanden Medical CentreThe Haguethe Netherlands
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenthe Netherlands
| | - Samuel W. Kazer
- Division of Gastroenterology, Hepatology, and NutritionBoston Children's HospitalBostonMassachusettsUSA
- Department of ImmunologyBlavatnik Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Ragon Institute of MGH, MIT and HarvardCambridgeMassachusettsUSA
| | - Mahmoud I Abdel‐Aziz
- Department of Pulmonary MedicineAmsterdam UMCAmsterdamthe Netherlands
- Amsterdam Institute for Infection and ImmunityAmsterdamthe Netherlands
- Amsterdam Public HealthAmsterdamthe Netherlands
- Department of Clinical PharmacyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| | - Harm Jan Bogaard
- Department of Pulmonary MedicineAmsterdam UMCAmsterdamthe Netherlands
- Amsterdam Cardiovascular Sciences Research InstituteAmsterdam UMCAmsterdamthe Netherlands
| | - Korneliusz Golebski
- Department of Pulmonary MedicineAmsterdam UMCAmsterdamthe Netherlands
- Amsterdam Institute for Infection and ImmunityAmsterdamthe Netherlands
- Amsterdam Public HealthAmsterdamthe Netherlands
| | - Anke H. Maitland‐van der Zee
- Department of Pulmonary MedicineAmsterdam UMCAmsterdamthe Netherlands
- Amsterdam Institute for Infection and ImmunityAmsterdamthe Netherlands
- Amsterdam Public HealthAmsterdamthe Netherlands
| |
Collapse
|
4
|
Davis L, Higgs M, Snaith A, Lodge TA, Strong J, Espejo-Oltra JA, Kujawski S, Zalewski P, Pretorius E, Hoerger M, Morten KJ. Dysregulation of lipid metabolism, energy production, and oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome, Gulf War Syndrome and fibromyalgia. Front Neurosci 2025; 19:1498981. [PMID: 40129725 PMCID: PMC11931034 DOI: 10.3389/fnins.2025.1498981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), Gulf War Syndrome (GWS), and Fibromyalgia (FM) are complex, chronic illnesses with overlapping clinical features. Symptoms that are reported across these conditions include post-exertional malaise (PEM), fatigue, and pain, yet the etiology of these illnesses remains largely unknown. Diagnosis is challenging in patients with these conditions as definitive biomarkers are lacking; patients are required to meet clinical criteria and often undergo lengthy testing to exclude other conditions, a process that is often prolonged, costly, and burdensome for patients. The identification of reliable validated biomarkers could facilitate earlier and more accurate diagnosis and drive the development of targeted pharmacological therapies that might address the underlying pathophysiology of these diseases. Major driving forces for biomarker identification are the advancing fields of metabolomics and proteomics that allow for comprehensive characterization of metabolites and proteins in biological specimens. Recent technological developments in these areas enable high-throughput analysis of thousands of metabolites and proteins from a variety of biological samples and model systems, that provides a powerful approach to unraveling the metabolic phenotypes associated with these complex diseases. Emerging evidence suggests that ME/CFS, GWS, and FM are all characterized by disturbances in metabolic pathways, particularly those related to energy production, lipid metabolism, and oxidative stress. Altered levels of key metabolites in these pathways have been reported in studies highlighting potential common biochemical abnormalities. The precise mechanisms driving altered metabolic pathways in ME/CFS, GWS, and FM remain to be elucidated; however, the elevated oxidative stress observed across these illnesses may contribute to symptoms and offer a potential target for therapeutic intervention. Investigating the mechanisms, and their role in the disease process, could provide insights into disease pathogenesis and reveal novel treatment targets. As such, comprehensive metabolomic and proteomic analyses are crucial for advancing the understanding of these conditions in-order to identify both common, and unique, metabolic alterations that could serve as diagnostic markers or therapeutic targets.
Collapse
Affiliation(s)
- Leah Davis
- The Nuffield Department of Women's and Reproductive Health, The Women Centre, The John Radcliffe Hospital, The University of Oxford, Oxford, United Kingdom
| | - Maisy Higgs
- The Nuffield Department of Women's and Reproductive Health, The Women Centre, The John Radcliffe Hospital, The University of Oxford, Oxford, United Kingdom
| | - Ailsa Snaith
- Veterans and Families Institute for Military Social Research, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Tiffany A. Lodge
- The Nuffield Department of Women's and Reproductive Health, The Women Centre, The John Radcliffe Hospital, The University of Oxford, Oxford, United Kingdom
| | - James Strong
- The Nuffield Department of Women's and Reproductive Health, The Women Centre, The John Radcliffe Hospital, The University of Oxford, Oxford, United Kingdom
| | - Jose A. Espejo-Oltra
- Department of Pathology, Catholic University of Valencia Saint Vincent Martyr, Valencia, Spain
| | - Sławomir Kujawski
- Department of Exercise Physiology and Functional Anatomy, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Paweł Zalewski
- Department of Exercise Physiology and Functional Anatomy, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland, Nicolaus Copernicus University in Torun, Torun, Poland
- Department of Experimental and Clinical Physiology, Warsaw Medical University, Warszawa, Poland
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael Hoerger
- Departments of Psychology, Psychiatry, and Medicine, Tulane Cancer Center, Tulane University, New Orleans, LA, United States
| | - Karl J. Morten
- The Nuffield Department of Women's and Reproductive Health, The Women Centre, The John Radcliffe Hospital, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Kell DB, Pretorius E. The Proteome Content of Blood Clots Observed Under Different Conditions: Successful Role in Predicting Clot Amyloid(ogenicity). Molecules 2025; 30:668. [PMID: 39942772 PMCID: PMC11820299 DOI: 10.3390/molecules30030668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
A recent analysis compared the proteome of (i) blood clots seen in two diseases-sepsis and long COVID-when blood was known to have clotted into an amyloid microclot form (as judged by staining with the fluorogenic amyloid stain thioflavin T) with (ii) that of those non-amyloid clots considered to have formed normally. Such fibrinaloid microclots are also relatively resistant to fibrinolysis. The proteins that the amyloid microclots contained differed markedly both from the soluble proteome of typical plasma and that of normal clots, and also between the diseases studied (an acute syndrome in the form of sepsis in an ITU and a chronic disease represented by Long COVID). Many proteins in the amyloid microclots were low in concentration in plasma and were effectively accumulated into the fibres, whereas many other abundant plasma proteins were excluded. The proteins found in the microclots associated with the diseases also tended to be themselves amyloidogenic. We here ask effectively the inverse question. This is: can the clot proteome tell us whether the clots associated with a particular disease contained proteins that are observed uniquely (or are highly over-represented) in known amyloid clots relative to normal clots, and thus were in fact amyloid in nature? The answer is in the affirmative in a variety of major coagulopathies, viz., venous thromboembolism, pulmonary embolism, deep vein thrombosis, various cardiac issues, and ischaemic stroke. Galectin-3-binding protein and thrombospondin-1 seem to be especially widely associated with amyloid-type clots, and the latter has indeed been shown to be incorporated into growing fibrin fibres. These may consequently provide useful biomarkers with a mechanistic basis.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Søltofts Plads 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
6
|
Bellone S, Siegel ER, Santin AD. N-acetylcysteine (NAC) supplementation improves dyspnea and may normalize von Willebrand plasma levels in gynecologic patients with Post-Acute-COVID-Sequela (PASC)/Long COVID. Gynecol Oncol Rep 2025; 57:101682. [PMID: 39944180 PMCID: PMC11814706 DOI: 10.1016/j.gore.2025.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 03/16/2025] Open
Abstract
Objectives A subset of COVID-infected cancer patients may develop post-acute sequelae of COVID-19 (PASC), also known as Long COVID (LC). While LC is considered multifactorial in its pathogenesis, growing evidence suggests that persistent microvascular inflammation (ie, spike-induced endotheliosis) causing chronically elevated levels of clotting factors including von Willebrand factor (vWF), clumping/clotting of red blood cells and platelets, and thrombotic complications may be at the root of PASC/LC symptoms. N-Acetylcysteine (NAC), a precursor of glutathione, is an inexpensive FDA-approved drug/supplement endowed with mucolytic, antioxidant, anti-inflammatory and thrombolytic properties. Multiple reports have recently demonstrated the potential clinical activity of NAC in COVID-19 patients. We retrospectively evaluated responses to NAC supplementation in a total of 9 PASC/LC patients, 3 of which reporting regular use of NAC, followed in our Gynecologic Oncology clinic. Methods Gynecologic patients using NAC supplement (3 patients) vs controls (6 patients) with persistent LC/PASC symptoms and with elevated plasmatic vWF levels were identified in our Gynecologic Oncology clinic database and evaluated for improvement/normalization in LC/PASC symptoms and vWF levels. Results Subjective improvement in shortness of breath, brain fog and fatigue with normalization of vWF levels were noted in 3 out of 3 PASC/LC patients using oral NAC (600-1200 mg BID) vs none of the randomly selected cancer control patients with PASC/LC (Fisher's exact P = 0.0119). Conclusions These preliminary results suggest that NAC may represent an inexpensive, safe and potentially effective supplement to improve many PASC/LC-related symptoms. Prospective randomized studies with NAC in PASC/LC patients are needed to confirm these findings.
Collapse
Affiliation(s)
- Stefania Bellone
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Eric R. Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alessandro D. Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
7
|
Bidhendi-Yarandi R, Biglarian A, Karlstad JL, Moe CF, Bakhshi E, Khodaei-Ardakani MR, Behboudi-Gandevani S. Prevalence of depression, anxiety, stress, and suicide tendency among individual with long-COVID and determinants: A systematic review and meta-analysis. PLoS One 2025; 20:e0312351. [PMID: 39874315 PMCID: PMC11774403 DOI: 10.1371/journal.pone.0312351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/04/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND While mental health alterations during active COVID-19 infection have been documented, the prevalence of long-term mental health consequences remains unclear. This study aimed to determine the prevalence of mental health symptoms-depression, anxiety, stress, and suicidal tendencies-and to identify their trends and associated risk factors in individuals with long-COVID. METHODS We conducted a systematic literature search of databases including PubMed, EMBASE, Scopus, CINAHL, Cochrane Library, Web of Science, and PsycINFO up to August 2024, targeting observational studies published in English. Study quality was assessed using structured standard tools. The primary outcome was the pooled prevalence of depression, anxiety, stress, and suicidal tendencies in individuals with long-COVID. Secondary outcomes included trends in these mental health problems over time and identification of associated determinants. RESULTS A total of 94 eligible studies were included in the analysis. The pooled prevalence estimates, regardless of follow up times duration, were as follows: depression, 25% (95%CI:22-28%; PI:1-59%); anxiety (adjusted via trim and fill method), 23%(95%CI:21-25%;PI:2-35%); composite outcomes of depression and/or anxiety, 25% (95%CI:23-27%;PI:2-51%); stress, 26%(95%CI:13-39%;PI:1-69%); and suicidality, 19%(95%CI:15-22%;PI:13-25%). The results of meta-regression analyses revealed a statistically significant trend showing a gradual decrease in the prevalence of the composite outcome of anxiety and/or depression over time (RD = -0.004,P = 0.022). Meta-regression results indicated that being female and younger age were significantly associated with a higher prevalence of mental health symptoms. Study design and study setting did not contribute to heterogeneity. CONCLUSION One-fourth of individual with long-COVID experience mental health symptoms, including depression, anxiety, and stress, which remain prevalent even two years post-infection despite a slight decreasing trend. Factors such as female gender and younger age were linked to higher rates of anxiety and depression. These findings indicate the need for ongoing mental health screening and early interventions to mitigate long-term psychological distress in long-COVID patients.
Collapse
Affiliation(s)
- Razieh Bidhendi-Yarandi
- Psychosis Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Department of Biostatistics and Epidemiology, School of Social Health, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Akbar Biglarian
- Department of Biostatistics and Epidemiology, School of Social Health, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Social Determinants of Health Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | | | - Enayatollah Bakhshi
- Department of Biostatistics and Epidemiology, School of Social Health, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | | |
Collapse
|
8
|
Del Carpio-Orantes L. The COVID-19 thrombus: distinguishing pathological, mechanistic, and phenotypic features and management. J Thromb Thrombolysis 2025; 58:161. [PMID: 39496847 DOI: 10.1007/s11239-024-03056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2024] [Indexed: 11/06/2024]
|
9
|
Brambilla M, Fumoso F, Conti M, Becchetti A, Bozzi S, Mencarini T, Agostoni P, Mancini ME, Cosentino N, Bonomi A, Nallio K, Galotta A, Pengo M, Tortorici E, Bosco M, Cernigliaro F, Pinna C, Andreini D, Camera M. Low-Grade Inflammation in Long COVID Syndrome Sustains a Persistent Platelet Activation Associated With Lung Impairment. JACC Basic Transl Sci 2025; 10:20-39. [PMID: 39958473 PMCID: PMC11830264 DOI: 10.1016/j.jacbts.2024.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 02/18/2025]
Abstract
In the present study, we provide evidence on the potential mechanisms involved in the residual pulmonary impairment described in long COVID syndrome. Data highlight that lung damage is significantly associated with a proinflammatory platelet phenotype, characterized mainly by the formation of platelet-leukocyte aggregates. In ex vivo experiments, long COVID plasma reproduces the platelet activation observed in vivo and highlights low-grade inflammation as a potential underpinning mechanism, exploiting a synergistic activity between C-reactive protein and subthreshold concentrations of interleukin-6. The platelet-activated phenotype is blunted by anti-inflammatory and antiplatelet drugs, suggesting a potential therapeutic option in this clinical setting.
Collapse
Affiliation(s)
| | | | - Maria Conti
- Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | - Silvia Bozzi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Tatiana Mencarini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Medicine, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | - Chistian Pinna
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Daniele Andreini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
- Division of University Cardiology, IRCCS Ospedale Galeazzi Sant’Ambrogio, Milan, Italy
| | - Marina Camera
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
10
|
Gonzalez-Ochoa AJ, Szolnoky G, Hernandez-Ibarra AG, Fareed J. Treatment with Sulodexide Downregulates Biomarkers for Endothelial Dysfunction in Convalescent COVID-19 Patients. Clin Appl Thromb Hemost 2025; 31:10760296241297647. [PMID: 39763448 PMCID: PMC11705351 DOI: 10.1177/10760296241297647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Persistent elevation of biomarkers associated with endothelial dysfunction in convalescent COVID-19 patients has been linked to an increased risk of long-term cardiovascular complications, including long COVID syndrome. Sulodexide, known for its vascular endothelial affinity, has demonstrated pleiotropic protective properties. This study aims to evaluate the impact of sulodexide on serum levels of endothelial dysfunction biomarkers in patients during the convalescent phase of COVID-19. METHODS We conducted a double-blind, single-center, randomized, placebo-controlled trial in Mexico, comparing sulodexide (250 LRU orally, twice daily) with placebo over 8 weeks in adult patients during early COVID-19 convalescence. Differences in serum biomarkers between the groups were analyzed using repeated measures and post hoc tests, with Thrombomodulin (TM) as the primary endpoint. RESULTS Among 206 analyzed patients (103 in each group), at week 8, the sulodexide group exhibited significantly lower mean levels of Thrombomodulin (TM) (25.2 ± 7.9 ng/mL vs 29.9 ± 14.7 ng/mL, P = .03), von Willebrand Factor (vWF) (232 ± 131 U/dL vs 266 ± 122 U/dL, P = .02) and Interleukin-6 (IL-6) (12.5 ± 13.2 pg/mL vs 16.2 ± 16.5 pg/mL, P = .03) compared to the placebo group. D-dimer and C reactive protein (CRP) in the sulodexide group were also lowered. No significant differences were observed for P-selectin, fibrinogen, VCAM-1, or ICAM-1 levels. CONCLUSIONS Patients in the convalescent phase of COVID-19 who received sulodexide for eight weeks showed a reduction in TM, vWF, D-dimer, CRP, and IL-6 serum levels compared to placebo. These findings suggest a potential protective effect of sulodexide against thromboinflammation and endothelial damage.
Collapse
Affiliation(s)
- Alejandro J Gonzalez-Ochoa
- Vascular Surgery Department, Centro Médico del Noroeste, San Luis Rio Colorado, Sonora, México
- Vascular and Endovascular Surgery department, CLINEDEM, San Luis Rio Colorado, Sonora, México
| | - Gyozo Szolnoky
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | | | - Jawed Fareed
- Hemostasis and Thrombosis Research Laboratories, Loyola University Medical Center, Maywood, Illinois, USA
| |
Collapse
|
11
|
Cáceres E, Divani AA, Viñan-Garces AE, Olivella-Gomez J, Quintero-Altare A, Pérez S, Reyes LF, Sasso N, Biller J. Tackling persistent neurological symptoms in patients following acute COVID-19 infection: an update of the literature. Expert Rev Neurother 2025; 25:67-83. [PMID: 39715694 DOI: 10.1080/14737175.2024.2440543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION The COVID-19 pandemic has taught myriad lessons and left several questions we are yet to comprehend. Initially, the scientific community was concerned with the management of acute disease and immunization. Once the peak of the pandemic receded, it became clear that a proportion of patients were far from fully recovered. Researchers started to recognize those persisting symptoms as a new entity termed 'Long COVID,' where neurological symptoms are evident and have a major impact on quality of life. AREAS COVERED The main purpose of this narrative review is to analyze and synthesize the current literature regarding Long COVID, its relation to the nervous system, and to explore the evidence on treatments for persistent neurological symptoms. The most common reported and observed neurologic manifestations include fatigue, cognitive impairment, pain, polyneuropathy, and neuropsychiatric disorders. A variety of pharmacologic and non-pharmacologic therapies have been evaluated and yielded mixed results. Many of them focused on immunomodulation and none currently have U.S. FDA approval. EXPERT OPINION Challenges remain in terms of clinical characterization and prognosis of Long COVID, besides understanding its pathophysiology. Standardization of biomarkers and diagnostic criteria will allow the use of common nomenclature and data elements in the design of future clinical studies.
Collapse
Affiliation(s)
- Eder Cáceres
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- School of Engineering, Universidad de La Sabana, Chía, Colombia
- Department of Critical Care, Clínica Universidad de La Sabana, Chía, Colombia
| | - Afshin A Divani
- Department of Neurology, The University of New Mexico, Albuquerque, NM, USA
| | | | - Juan Olivella-Gomez
- Department of Critical Care, Clínica Universidad de La Sabana, Chía, Colombia
| | | | - Sebastián Pérez
- Department of Critical Care, Clínica Universidad de La Sabana, Chía, Colombia
| | - Luis F Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Nicholas Sasso
- Department of Neurology, Loyola University Stritch School of Medicine, Loyola University Health System, Maywood, IL, USA
| | - Jose Biller
- Department of Neurology, Loyola University Stritch School of Medicine, Loyola University Health System, Maywood, IL, USA
| |
Collapse
|
12
|
Dieter RS, Kempaiah P, Dieter EG, Alcazar A, Tafur A, Gerotziafas G, Gonzalez Ochoa A, Abdesselem S, Biller J, Kipshidze N, Vandreden P, Guerrini M, Dieter RA, Durvasula R, Singh M, Fareed J. Cardiovascular Symposium on Perspectives in Long COVID. Clin Appl Thromb Hemost 2025; 31:10760296251319963. [PMID: 39943820 PMCID: PMC11822813 DOI: 10.1177/10760296251319963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Significant progress has been made in treating Coronavirus disease (COVID) - an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). An ominous turn in the pandemic is the evolving public health crisis emanating from persistent SARS-CoV-2 infection and its associated long-term impact. Long COVID or post-COVID syndrome describes protean symptoms that persist at least 3 months after the onset of acute illness and last for at least 2 months in individuals with a history of confirmed SARS-CoV-2 infection. Long COVID has become a public health concern. Millions of infected individuals are now facing chronic multi-organ failures, including neuropsychiatric, cardiovascular, pulmonary, and kidney complications. In general, the cause of long COVID syndrome is unclear but factors such as prolonged activation of immune responses, and viral persistence triggering transcription dysregulation of genes associated with normal thrombotic disease may play a role in cardiovascular complications. Although inflammatory biomarkers are reported in other disorders, it remains unclear whether similar biomarkers are associated with cardiovascular manifestations following COVID. Medications such as sulodexide directed at glycocalyx and coagulation have demonstrated benefits for long COVID in smaller studies. Here, we describe the outcomes of the symposium on the underlying cardiovascular mechanisms of the long COVID.
Collapse
Affiliation(s)
- Robert S. Dieter
- Loyola University Stritch School of Medicine, Maywood, USA
- VA Hines, IL, USA
| | - Prakasha Kempaiah
- Loyola University Stritch School of Medicine, Maywood, USA
- Loyola University Chicago, Maywood, IL, USA
| | | | | | - Alfonso Tafur
- Endeavor Health, University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Grigoris Gerotziafas
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team “Cancer, Vessels, Biology and Therapeutics” (CaVITE), Group “Cancer – Angiogenesis – Thrombosis”, University Institute of Cancerology (UIC), Saint Antoine University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- Thrombosis and Haemostasis Center, Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - Jose Biller
- Loyola University Stritch School of Medicine, Maywood, USA
| | | | - Patrick Vandreden
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team “Cancer, Vessels, Biology and Therapeutics” (CaVITE), Group “Cancer – Angiogenesis – Thrombosis”, University Institute of Cancerology (UIC), Saint Antoine University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- Department of Clinical Research, Diagnostica Stago, Gennevilliers, France
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G-Ronzoni – NMR Center, Milano, Italy
| | | | | | - Meharvan Singh
- Loyola University Stritch School of Medicine, Maywood, USA
- Loyola University Chicago, Maywood, IL, USA
| | - Jawed Fareed
- Loyola University Stritch School of Medicine, Maywood, USA
- Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
13
|
Charlton BT, Goulding RP, Jaspers RT, Appelman B, van Vugt M, Wüst RCI. Skeletal muscle adaptations and post-exertional malaise in long COVID. Trends Endocrinol Metab 2024:S1043-2760(24)00298-4. [PMID: 39694730 DOI: 10.1016/j.tem.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/18/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024]
Abstract
When acute SARS-CoV-2 infections cause symptoms that persist longer than 3 months, this condition is termed long COVID. Symptoms experienced by patients often include myalgia, fatigue, brain fog, cognitive impairments, and post-exertional malaise (PEM), which is the worsening of symptoms following mental or physical exertion. There is little consensus on the pathophysiology of exercise-induced PEM and skeletal-muscle-related symptoms. In this opinion article we highlight intrinsic mitochondrial dysfunction, endothelial abnormalities, and a muscle fiber type shift towards a more glycolytic phenotype as main contributors to the reduced exercise capacity in long COVID. The mechanistic trigger for physical exercise to induce PEM is unknown, but rapid skeletal muscle tissue damage and intramuscular infiltration of immune cells contribute to PEM-related symptoms.
Collapse
Affiliation(s)
- Braeden T Charlton
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands; Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands
| | - Richie P Goulding
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands; Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands
| | - Richard T Jaspers
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands; Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands
| | - Brent Appelman
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Michèle van Vugt
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Division of Infectious Diseases, Tropical Medicine, Department of Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Rob C I Wüst
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands; Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Magoon R, Mahajan S. Neuroinflammation in COVID-19: Fibrinogen (fibrin), a potential culprit! Med J Armed Forces India 2024; 80:S407-S408. [PMID: 39734898 PMCID: PMC11670567 DOI: 10.1016/j.mjafi.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/16/2023] [Indexed: 12/31/2024] Open
Affiliation(s)
- Rohan Magoon
- Assistant Professor (Anaesthesia), Atal Bihari Vajpayee Institute of Medical Sciences (ABVIMS) & Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Shalvi Mahajan
- Assistant Professor (Anaesthesia & Intensive Care), PGIMER, Chandigarh, India
| |
Collapse
|
15
|
Chakraborty C, Bhattacharya M, Alshammari A, Albekairi NA, Lee SS. Mapping the Potential Genes and Associated Pathways Involved in Long COVID-Associated Brain Fog Using Integrative Bioinformatics and Systems Biology Strategy. Mol Biotechnol 2024:10.1007/s12033-024-01324-1. [PMID: 39604720 DOI: 10.1007/s12033-024-01324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
One of the recent emerging global health issues is long COVID. Among long COVID patients, long COVID-associated brain fog is an important area. We noted an immense gap in understanding the genes and associated pathways involved in long COVID-associated brain fog. Therefore, the study has been selected to understand the genes and pathways involved in patients with long COVID-associated brain fog. A GEO dataset, which was developed through the RNA-seq, was used for the analysis. The dataset encompasses 22 human samples of PBMC. The dataset (human samples of PBMC) was grouped into four cohorts for this study: healthy cohort, COVID convalescent, long COVID, and long COVID brain fog. Therefore, the selection criteria for the 22 PBMC samples were based on the individual infection type (COVID convalescent, long COVID, and long COVID brain fog) and the healthy cohort. Using DEG profile evaluation, we revealed 250 top-ranked DEGs with P values, Padj, baseMean, etc. From the top-ranked DEGs, we listed 24 significant DEGs and some significant DEGs are SMAD3 (P value = 6.34e-07), PF4 (P value = 1.88e-05), TNFAIP3 (P value = 3.70e-06), CXCL5 (P value = 1.22e-08), etc. Among the top-ranked DEGs, we found some genes linked with different biological functions, such as inflammatory cytokine secretion, inflammation, microclot formation, and BBB disruption. From our investigation, we found some genes that are associated with this condition, namely PF4, SMAD3, CXCL5, TNFAIP3, etc. From the literature survey and functional pathway enrichment analysis, we noted the function of the genes such as PF4, SMAD3, and CXCL5. We found that PF4 assists in clot formation, and SMAD3 is associated with neuroinflammation. Similarly, CXCL5 is an inflammatory marker associated with neuroinflammation and BBB damage. At the same time, the study with functional pathway enrichment analysis reflects that DEGs of long COVID-related brain fog might be associated with several biological pathways and processes, cell signatures, and gene-disease associations. It reflects that the disease is a highly complex one. Our study will provide an understanding of the genes and associated pathways in long COVID-related brain fog, which will assist in the next-generation biomarker discovery and therapeutics for these patients.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha, 756020, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, 11451, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, 11451, Riyadh, Saudi Arabia
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-Si, Gangwon-Do, 24252, Republic of Korea
| |
Collapse
|
16
|
Krüger AL, Haiduk B, Grau M. Identifying Factors That Might Affect Outcomes of Exercise-Based Therapies in Long-COVID. Diseases 2024; 12:293. [PMID: 39589967 PMCID: PMC11593325 DOI: 10.3390/diseases12110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Long-COVID, which might develop after a SARS-CoV-2 infection, is a rather new disease without standardized treatment strategies. A large number of approaches that integrate physical activity have been described in the literature, and this systematic review aims to examine changes in symptom severity, physical fitness, respiratory symptoms and quality of life during training and identify factors that might influence the respective outcomes. METHODS A literature search was conducted using the databases Pubmed, PEDro, BioMed Central, EBSCOhost, ProQuest and the ZBSport from 13 February 2024 to 27 February 2024, and 39 studies fulfilled the search criteria. RESULTS The analyzed study designs varied regarding the type of intervention (isolated vs. multidisciplinary), duration and intensity of training sessions and overall length of the program. Individualized holistic concepts of physical activity paralleled by additional approaches demonstrated high effectiveness. However, many of the participants continue to suffer from Long-COVID after the intervention. CONCLUSIONS Long-COVID treatment should be individualized, multifactorial and not limited in time and should consider each patient's pre-existing conditions and individual course of the disease to provide the best possible support and care.
Collapse
Affiliation(s)
- Anna-Lena Krüger
- Institute of Cardiovascular Research and Sports Medicine, Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany
- S.P.O.R.T. Institut, Institute of Applied Sports Sciences, Lindlarer Strasse 95, 51491 Overath, Germany
| | - Björn Haiduk
- S.P.O.R.T. Institut, Institute of Applied Sports Sciences, Lindlarer Strasse 95, 51491 Overath, Germany
| | - Marijke Grau
- Institute of Cardiovascular Research and Sports Medicine, Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany
| |
Collapse
|
17
|
Almulla AF, Thipakorn Y, Zhou B, Vojdani A, Maes M. Immune activation and immune-associated neurotoxicity in Long-COVID: A systematic review and meta-analysis of 103 studies comprising 58 cytokines/chemokines/growth factors. Brain Behav Immun 2024; 122:75-94. [PMID: 39127088 DOI: 10.1016/j.bbi.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Multiple studies have shown that Long COVID (LC) disease is associated with heightened immune activation, as evidenced by elevated levels of inflammatory mediators. However, there is no comprehensive meta-analysis focusing on activation of the immune inflammatory response system (IRS) and the compensatory immunoregulatory system (CIRS) along with other immune phenotypes in LC patients. OBJECTIVES This meta-analysis is designed to explore the IRS and CIRS profiles in LC patients, the individual cytokines, chemokines, growth factors, along with C-reactive protein (CRP) and immune-associated neurotoxicity. METHODS To gather relevant studies for our research, we conducted a thorough search using databases such as PubMed, Google Scholar, and SciFinder, covering all available literature up to July 5th, 2024. RESULTS The current meta-analysis encompassed 103 studies that examined multiple immune profiles, C-reactive protein, and 58 cytokines/chemokines/growth factors in 5502 LC patients versus 5962 normal controls (NC). LC patients showed significant increases in IRS/CIRS ratio (standardized mean difference (SMD: 0.156, confidence interval (CI): 0.062;0.250), IRS (SMD: 0.338, CI: 0.236;0.440), M1 macrophage (SMD: 0.371, CI: 0.263;0.480), T helper (Th)1 (SMD: 0.316, CI: 0.185;0.446), Th17 (SMD: 0.439, CI: 0.302;0.577) and immune-associated neurotoxicity (SMD: 0.384, CI: 0.271;0.497). In addition, CRP and 21 different cytokines displayed significantly elevated levels in LC patients compared to NC. CONCLUSION LC disease is characterized by IRS activation and increased immune-associated neurotoxicity.
Collapse
Affiliation(s)
- Abbas F Almulla
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yanin Thipakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA 90035, USA; Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA
| | - Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Fitness and Biopsychological Technology Research Unit, Faculty of Medicine. Chulalongkorn University, Bangkok 10330, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria; Strategic Research and Innovation Program for the Development of MU - PLOVDIV-(SRIPD-MUP), European Union - NextGenerationEU; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea.
| |
Collapse
|
18
|
Kell DB, Pretorius E. Proteomic Evidence for Amyloidogenic Cross-Seeding in Fibrinaloid Microclots. Int J Mol Sci 2024; 25:10809. [PMID: 39409138 PMCID: PMC11476703 DOI: 10.3390/ijms251910809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
In classical amyloidoses, amyloid fibres form through the nucleation and accretion of protein monomers, with protofibrils and fibrils exhibiting a cross-β motif of parallel or antiparallel β-sheets oriented perpendicular to the fibre direction. These protofibrils and fibrils can intertwine to form mature amyloid fibres. Similar phenomena can occur in blood from individuals with circulating inflammatory molecules (and also some originating from viruses and bacteria). Such pathological clotting can result in an anomalous amyloid form termed fibrinaloid microclots. Previous proteomic analyses of these microclots have shown the presence of non-fibrin(ogen) proteins, suggesting a more complex mechanism than simple entrapment. We thus provide evidence against such a simple entrapment model, noting that clot pores are too large and centrifugation would have removed weakly bound proteins. Instead, we explore whether co-aggregation into amyloid fibres may involve axial (multiple proteins within the same fibril), lateral (single-protein fibrils contributing to a fibre), or both types of integration. Our analysis of proteomic data from fibrinaloid microclots in different diseases shows no significant quantitative overlap with the normal plasma proteome and no correlation between plasma protein abundance and their presence in fibrinaloid microclots. Notably, abundant plasma proteins like α-2-macroglobulin, fibronectin, and transthyretin are absent from microclots, while less abundant proteins such as adiponectin, periostin, and von Willebrand factor are well represented. Using bioinformatic tools, including AmyloGram and AnuPP, we found that proteins entrapped in fibrinaloid microclots exhibit high amyloidogenic tendencies, suggesting their integration as cross-β elements into amyloid structures. This integration likely contributes to the microclots' resistance to proteolysis. Our findings underscore the role of cross-seeding in fibrinaloid microclot formation and highlight the need for further investigation into their structural properties and implications in thrombotic and amyloid diseases. These insights provide a foundation for developing novel diagnostic and therapeutic strategies targeting amyloidogenic cross-seeding in blood clotting disorders.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Søltofts Plads 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
19
|
Fox T, Hunt B, Carson A, Scandrett K, Smith GD, Garner P, Kuehn R. Reported particles are not blood clots, so anticoagulant drugs are not a plausible treatment. Res Pract Thromb Haemost 2024; 8:102598. [PMID: 39582808 PMCID: PMC11585754 DOI: 10.1016/j.rpth.2024.102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 11/26/2024] Open
Affiliation(s)
- Tilly Fox
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Alan Carson
- Department of Neuropsychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Katie Scandrett
- Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - George Davey Smith
- Medical Research Council Integrative Epidemiological Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Paul Garner
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Rebecca Kuehn
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
20
|
Krishna B, Metaxaki M, Sithole N, Landín P, Martín P, Salinas-Botrán A. Cardiovascular disease and covid-19: A systematic review. IJC HEART & VASCULATURE 2024; 54:101482. [PMID: 39189008 PMCID: PMC11345335 DOI: 10.1016/j.ijcha.2024.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
Background Cardiovascular complications of COVID-19 are numerous and aspects of this phenomenon are not well known. The main objective of this manuscript is a systematic review of the acute and chronic cardiovascular complications secondary to COVID-19. Methods A systematic review of the literature through Medline via PubMed was conducted (2020-2024). Results There is a plethora of effects of COVID-19 on the heart in the acute setting. Here we discuss pathophysiology, myocardial infarctions, heart failure, Takotsubo Cardiomyopathy, myocardial injury, myocarditis and arrhythmias that are caused by COVID-19. Additionally, these cardiovascular injuries can linger and may be an underlying cause of some Long COVID symptoms. Conclusions Cardiovascular complications of COVID-19 are numerous and life-threatening. Long COVID can affect cardiovascular health. Microclotting induced by SARS-CoV-2 infection could be a therapeutic target for some aspects of Long Covid.
Collapse
Affiliation(s)
- B.A. Krishna
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - M. Metaxaki
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - N. Sithole
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Infectious Diseases, Cambridge University, Cambridge, United Kingdom
| | - P. Landín
- Department of Cardiology, Hospital Clínico San Carlos, Madrid, Spain
| | - P. Martín
- Department of Respiratory Medicine, Hospital Clínico San Carlos, Madrid, Spain
| | - A. Salinas-Botrán
- Department of Infectious Diseases, Hospital Clínico San Carlos, Madrid, Spain
- Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
21
|
Dehhaghi M, Heydari M, Panahi HKS, Lewin SR, Heng B, Brew BJ, Guillemin GJ. The roles of the kynurenine pathway in COVID-19 neuropathogenesis. Infection 2024; 52:2043-2059. [PMID: 38802702 PMCID: PMC11499433 DOI: 10.1007/s15010-024-02293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the highly contagious respiratory disease Corona Virus Disease 2019 (COVID-19) that may lead to various neurological and psychological disorders that can be acute, lasting days to weeks or months and possibly longer. The latter is known as long-COVID or more recently post-acute sequelae of COVID (PASC). During acute COVID-19 infection, a strong inflammatory response, known as the cytokine storm, occurs in some patients. The levels of interferon-γ (IFN-γ), interferon-β (IFN-β), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) are particularly increased. These cytokines are known to activate the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), catalysing the first step of tryptophan (Trp) catabolism through the kynurenine pathway (KP) leading to the production of several neurotoxic and immunosuppressive metabolites. There is already data showing elevation in KP metabolites both acutely and in PASC, especially regarding cognitive impairment. Thus, it is likely that KP involvement is significant in SARS-CoV-2 pathogenesis especially neurologically.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mostafa Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Hamed Kazemi Shariat Panahi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Bruce J Brew
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia.
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia.
- Departments of Neurology and Immunology, St. Vincent's Hospital, Sydney, NSW, Australia.
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia.
| | - Gilles J Guillemin
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor University, Bogor, Indonesia
| |
Collapse
|
22
|
Guo M, Shang S, Li M, Cai G, Li P, Chen X, Li Q. Understanding autoimmune response after SARS-CoV-2 infection and the pathogenesis/mechanisms of long COVID. MEDICAL REVIEW (2021) 2024; 4:367-383. [PMID: 39444797 PMCID: PMC11495526 DOI: 10.1515/mr-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/04/2024] [Indexed: 10/25/2024]
Abstract
COVID-19 posed a major challenge to the healthcare system and resources worldwide. The popularization of vaccines and the adoption of numerous prevention and control measures enabled the gradual end of the COVID-19 pandemic. However, successive occurrence of autoimmune diseases in patients with COVID-19 cannot be overlooked. Long COVID has been the major focus of research due to the long duration of different symptoms and the variety of systems involved. Autoimmunity may play a crucial role in the pathogenesis of long COVID. Here, we reviewed several autoimmune disorders occurring after COVID-19 infection and the pathogenesis of long COVID.
Collapse
Affiliation(s)
- Ming Guo
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Shunlai Shang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Mengfei Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
- Haihe Laboratory of CellEcosystem, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| |
Collapse
|
23
|
Zhang X, Wen R, Chen H, Liu J, Wu Y, Xu M, Wang R, Zeng X. COVID-19 and diabetes research: Where are we now and what does the future hold? A bibliometric visualization analysis. Heliyon 2024; 10:e37615. [PMID: 39315181 PMCID: PMC11417241 DOI: 10.1016/j.heliyon.2024.e37615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Background & objective The extensive spread of Coronavirus disease 2019 (COVID-19) worldwide has caused a dramatic negative impact on many individuals' health. This study aims to systematically and comprehensively analyze the current status and possible future directions of diabetes mellitus (DM) and COVID-19 research. Methods We obtained publications about COVID-19 and DM from the Web of Science Core Collection (WoSCC) using the search terms "COVID-19″ and similar terms combined with "DM" and similar terms, with a date range of January 2020 to May 2024. And we used CiteSpace V 6.3.R2 to perform the bibliometric visualization analysis. Results The search enrolled 6266 publications. The USA is a country with the most publications; Harvard University was the most productive institution in this field. The highest-ranked journal was the PLOS ONE, and the most cited journal was Lancet. The 20 most cited journals have all been cited 28754 times, accounting for 28 % of the total cites; the range of those journals was 790-3197. Publications on COVID-19 and DM research exhibited a distinct trajectory, shifting from an initial emphasis on understanding the impact of diabetes on COVID-19 infection and its associated pathophysiological mechanisms to a focus on analyzing the differential responses of diverse patient populations. Subsequently, research has progressed to examine the effects of medications and vaccines, as well as the long-term consequences of COVID-19 in diabetic individuals. Throughout this research endeavor, the exploration of diverse therapeutic interventions, their efficacy, and ultimate outcomes have consistently remained a paramount focus. And " metabolic syndrome," " long COVID," and " gestational diabetes" are still likely to be the hotspots and frontiers of research in the future. Conclusions This bibliometric analysis related to DM in COVID-19 illuminates the current research situation and developmental trends, supporting researchers in the exploration of prospective directions for research.
Collapse
Affiliation(s)
- Xunlan Zhang
- Zunyi Medical University, No.6 Xuefu West Road, Xinpu District, 563000, Zunyi City, China
- Department of Medical Imaging, Guizhou Provincial People Hospital, No.83, East Zhongshan Road, Nanming District, 550002, Guiyang City, China
| | - Ru Wen
- Department of Medical Imaging, Guizhou Provincial People Hospital, No.83, East Zhongshan Road, Nanming District, 550002, Guiyang City, China
| | - Hengzhi Chen
- Zunyi Medical University, No.6 Xuefu West Road, Xinpu District, 563000, Zunyi City, China
- Department of Medical Imaging, Guizhou Provincial People Hospital, No.83, East Zhongshan Road, Nanming District, 550002, Guiyang City, China
| | - Jian Liu
- Department of Medical Imaging, Guizhou Provincial People Hospital, No.83, East Zhongshan Road, Nanming District, 550002, Guiyang City, China
| | - Yu Wu
- Department of Medical Imaging, Guizhou Provincial People Hospital, No.83, East Zhongshan Road, Nanming District, 550002, Guiyang City, China
| | - Min Xu
- Department of Medical Imaging, Guizhou Provincial People Hospital, No.83, East Zhongshan Road, Nanming District, 550002, Guiyang City, China
| | - Rongpin Wang
- Department of Medical Imaging, Guizhou Provincial People Hospital, No.83, East Zhongshan Road, Nanming District, 550002, Guiyang City, China
| | - Xianchun Zeng
- Department of Medical Imaging, Guizhou Provincial People Hospital, No.83, East Zhongshan Road, Nanming District, 550002, Guiyang City, China
| |
Collapse
|
24
|
Danielle RCS, Débora DM, Alessandra NLP, Alexia SSZ, Débora MCR, Elizabel NV, Felipe AM, Giulia MG, Henrique PR, Karen RMB, Layane SB, Leandro AB, Livia CM, Raquel SRT, Lorena SCA, Lyvia NRA, Mariana TR, Matheus CC, Vinícius DPV, Yasmin MG, Iúri DL. Correlating COVID-19 severity with biomarker profiles and patient prognosis. Sci Rep 2024; 14:22353. [PMID: 39333538 PMCID: PMC11436624 DOI: 10.1038/s41598-024-71951-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024] Open
Abstract
COVID-19's long-lasting and complex impacts have become a global concern, with diverse clinical outcomes. This study evaluated 226 participants to understand the clinical spectrum of COVID-19/Long COVID (LC), exploring how disease severity correlates with sociodemographic factors and biomarkers. Determinants related to COVID-19 severity included age (P < 0.001), lower education (P < 0.001), ethnicity (P = 0.003), overweight (P < 0.001), MTHFR gene rs1801133 (P = 0.035), cardiovascular diseases (P = 0.002), diabetes mellitus (DM) (P = 0.006), Factor VIII (FVIII) (P = 0.046), von Willebrand factor (VWF) (P = 0.002), and dimer D (DD) (P < 0.001). Six months later, in a portion of the monitored participants, a significant reduction in FVIII (P < 0.001), VWF (P = 0.002), and DD (P < 0.001) levels was observed, with only DD returning to normal values. Different systemic sequelae were identified, with higher incidences of joint pain and myalgia in participants with a clinical history of DM, chronic lung disease (CLD) and sustained high interleukin 6 values in the convalescent phase. CLD, COVID-19 severity and high DD levels increased the risk of developing dyspnea and palpitations. Women were more likely to develop lower limb phlebitis long-term, while sustained elevated FVIII in the convalescent phase was associated with an increased risk of swelling. Regular physical activity had a protective effect against swelling. This study highlights factors contributing to COVID-19 severity/LC, emphasizing endothelial cell activation as a potential mechanism.
Collapse
Affiliation(s)
- R C S Danielle
- Department of Biological Sciences, Federal University of Espírito Santo, Vitória, 29075-910, Brazil
- Haemostasis Laboratory, Hemotherapy and Hematology Center of Espírito Santo - HEMOES, Vitória, 29040-090, Brazil
| | - D M Débora
- Department of Biological Sciences, Federal University of Espírito Santo, Vitória, 29075-910, Brazil
| | - N L P Alessandra
- Haemostasis Laboratory, Hemotherapy and Hematology Center of Espírito Santo - HEMOES, Vitória, 29040-090, Brazil
| | - S S Z Alexia
- Department of Biological Sciences, Federal University of Espírito Santo, Vitória, 29075-910, Brazil
| | - M C R Débora
- Haemostasis Laboratory, Hemotherapy and Hematology Center of Espírito Santo - HEMOES, Vitória, 29040-090, Brazil
| | - N V Elizabel
- Haemostasis Laboratory, Hemotherapy and Hematology Center of Espírito Santo - HEMOES, Vitória, 29040-090, Brazil
| | - A M Felipe
- Department of Biological Sciences, Federal University of Espírito Santo, Vitória, 29075-910, Brazil
| | - M G Giulia
- Department of Biological Sciences, Federal University of Espírito Santo, Vitória, 29075-910, Brazil
| | - P R Henrique
- Department of Biological Sciences, Federal University of Espírito Santo, Vitória, 29075-910, Brazil
| | - R M B Karen
- Department of Biological Sciences, Federal University of Espírito Santo, Vitória, 29075-910, Brazil
| | - S B Layane
- Department of Biological Sciences, Federal University of Espírito Santo, Vitória, 29075-910, Brazil
| | - A B Leandro
- Department of Biological Sciences, Federal University of Espírito Santo, Vitória, 29075-910, Brazil
| | - C M Livia
- Department of Biological Sciences, Federal University of Espírito Santo, Vitória, 29075-910, Brazil
| | - S R T Raquel
- Department of Biological Sciences, Federal University of Espírito Santo, Vitória, 29075-910, Brazil
| | - S C A Lorena
- Department of Biological Sciences, Federal University of Espírito Santo, Vitória, 29075-910, Brazil
| | - N R A Lyvia
- Department of Biological Sciences, Federal University of Espírito Santo, Vitória, 29075-910, Brazil
| | - T R Mariana
- Department of Biological Sciences, Federal University of Espírito Santo, Vitória, 29075-910, Brazil
| | - C C Matheus
- Department of Biological Sciences, Federal University of Espírito Santo, Vitória, 29075-910, Brazil
| | - D P V Vinícius
- Department of Biological Sciences, Federal University of Espírito Santo, Vitória, 29075-910, Brazil
| | - M G Yasmin
- Department of Biological Sciences, Federal University of Espírito Santo, Vitória, 29075-910, Brazil
| | - D L Iúri
- Department of Biological Sciences, Federal University of Espírito Santo, Vitória, 29075-910, Brazil.
| |
Collapse
|
25
|
Thomas C, Faghy MA, Chidley C, Phillips BE, Bewick T, Ashton RE. Blood Biomarkers of Long COVID: A Systematic Review. Mol Diagn Ther 2024; 28:537-574. [PMID: 39103645 DOI: 10.1007/s40291-024-00731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Long coronavirus disease (COVID; LC) affects millions of people worldwide. The exact mechanisms which result in a broad, undulating and detrimental symptom profile remain unknown. Blood biomarkers associated with LC have been described; however, consensus on these remains elusive, in part due to a lack of continuity between studies on a universally accepted definition of LC. This systematic review aimed to consolidate current knowledge of blood biomarkers associated with the prevalence of LC on the basis of the World Health Organisation (WHO) clinical definition of this condition. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Observational, cross-sectional, and randomised control studies published in the English language that studied blood biomarkers associated with the WHO definition of LC. All studies included participants who were ≥ 18 years old and group sizes ≥ 10 participants, and were compared against a control group without any known co-morbidities. METHODS A systematic literature search was conducted according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines and prospectively registered on Prospero (ID: CRD42022373121). The Cochrane, Embase, PubMed and Web of Science databases were searched from inception to January 2024. Search results were gathered using Rayyan software and data extracted using Microsoft Excel. The reporting recommendations for tumour markers prognostic studies (REMARK) questionnaire was used to assess the quality of the included studies. RESULTS A total of 45 observational and one interventional study comprising 4415 participants were included in this review which identified 525 blood biomarkers thought to be associated with LC. Three blood biomarker subtypes were associated with the development of LC: (1) immunological and inflammatory dysfunction, (2) endothelial/vascular dysfunction and (3) metabolic and clotting abnormalities. DISCUSSION AND CONCLUSIONS Our data are consistent with previous findings; however, no single biomarker was sufficiently associated with LC prevalence and instead a profile of biomarkers across various physiological systems may be more clinically useful. In all, 196 studies were excluded due to a lack of an adequately healthy comparator group and/or failure to meet the WHO LC definition. This demonstrates a need for further research incorporating a universal LC definition across all disease severity groups and symptom profiles, and longitudinal data reflecting the relapsing and remitting nature of this condition. Further investigation into blood biomarkers of LC, including clear reporting of healthy comparator groups and the investigation of acute and chronic biomarker changes, within the context of medical practice, may support the development of curative/restorative approaches.
Collapse
Affiliation(s)
- Callum Thomas
- Biomedical and Clinical Science Research Theme, School of Human Sciences, University of Derby, Derby, UK.
- Healthy Living for Pandemic Event Protection (HL-PIVOT) Network, Chicago, IL, USA.
| | - Mark A Faghy
- Biomedical and Clinical Science Research Theme, School of Human Sciences, University of Derby, Derby, UK
- Healthy Living for Pandemic Event Protection (HL-PIVOT) Network, Chicago, IL, USA
- Department of Physical Therapy, College of Applied Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Corinna Chidley
- Biomedical and Clinical Science Research Theme, School of Human Sciences, University of Derby, Derby, UK
| | - Bethan E Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Thomas Bewick
- Department of Respiratory Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Ruth E Ashton
- Biomedical and Clinical Science Research Theme, School of Human Sciences, University of Derby, Derby, UK
- Healthy Living for Pandemic Event Protection (HL-PIVOT) Network, Chicago, IL, USA
- Research Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry, UK
| |
Collapse
|
26
|
Calzari L, Dragani DF, Zanotti L, Inglese E, Danesi R, Cavagnola R, Brusati A, Ranucci F, Di Blasio AM, Persani L, Campi I, De Martino S, Farsetti A, Barbi V, Gottardi Zamperla M, Baldrighi GN, Gaetano C, Parati G, Gentilini D. Epigenetic patterns, accelerated biological aging, and enhanced epigenetic drift detected 6 months following COVID-19 infection: insights from a genome-wide DNA methylation study. Clin Epigenetics 2024; 16:112. [PMID: 39164752 PMCID: PMC11337605 DOI: 10.1186/s13148-024-01724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND The epigenetic status of patients 6-month post-COVID-19 infection remains largely unexplored. The existence of long-COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), suggests potential long-term changes. Long-COVID includes symptoms like fatigue, neurological issues, and organ-related problems, regardless of initial infection severity. The mechanisms behind long-COVID are unclear, but virus-induced epigenetic changes could play a role. METHODS AND RESULTS Our study explores the lasting epigenetic impacts of SARS-CoV-2 infection. We analyzed genome-wide DNA methylation patterns in an Italian cohort of 96 patients 6 months after COVID-19 exposure, comparing them to 191 healthy controls. We identified 42 CpG sites with significant methylation differences (FDR < 0.05), primarily within CpG islands and gene promoters. Dysregulated genes highlighted potential links to glutamate/glutamine metabolism, which may be relevant to PASC symptoms. Key genes with potential significance to COVID-19 infection and long-term effects include GLUD1, ATP1A3, and ARRB2. Furthermore, Horvath's epigenetic clock showed a slight but significant age acceleration in post-COVID-19 patients. We also observed a substantial increase in stochastic epigenetic mutations (SEMs) in the post-COVID-19 group, implying potential epigenetic drift. SEM analysis identified 790 affected genes, indicating dysregulation in pathways related to insulin resistance, VEGF signaling, apoptosis, hypoxia response, T-cell activation, and endothelin signaling. CONCLUSIONS Our study provides valuable insights into the epigenetic consequences of COVID-19. Results suggest possible associations with accelerated aging, epigenetic drift, and the disruption of critical biological pathways linked to insulin resistance, immune response, and vascular health. Understanding these epigenetic changes could be crucial for elucidating the complex mechanisms behind long-COVID and developing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Luciano Calzari
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Davide Fernando Dragani
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Lucia Zanotti
- Department of Cardiology, S. Luca Hospital, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Elvira Inglese
- Clinical Chemistry Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Romano Danesi
- Clinical Chemistry Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy
| | - Rebecca Cavagnola
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Alberto Brusati
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Francesco Ranucci
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Anna Maria Di Blasio
- Molecular Biology Laboratory, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, Lab of Endocrine and Metabolic Research, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Irene Campi
- Department of Endocrine and Metabolic Diseases, Lab of Endocrine and Metabolic Research, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Sara De Martino
- Consiglio Nazionale delle Ricerche (CNR) - IASI, Rome, Italy
| | | | - Veronica Barbi
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy
| | - Michela Gottardi Zamperla
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy
| | - Giulia Nicole Baldrighi
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy
| | - Gianfranco Parati
- Department of Cardiology, S. Luca Hospital, IRCCS, Istituto Auxologico Italiano, Milan, Italy
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy.
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy.
| |
Collapse
|
27
|
D’Amato M, Grignano MA, Iadarola P, Rampino T, Gregorini M, Viglio S. The Impact of Serum/Plasma Proteomics on SARS-CoV-2 Diagnosis and Prognosis. Int J Mol Sci 2024; 25:8633. [PMID: 39201322 PMCID: PMC11354567 DOI: 10.3390/ijms25168633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
While COVID-19's urgency has diminished since its emergence in late 2019, it remains a significant public health challenge. Recent research reveals that the molecular intricacies of this virus are far more complex than initially understood, with numerous post-translational modifications leading to diverse proteoforms and viral particle heterogeneity. Mass spectrometry-based proteomics of patient serum/plasma emerges as a promising complementary approach to traditional diagnostic methods, offering insights into SARS-CoV-2 protein dynamics and enhancing understanding of the disease and its long-term consequences. This article highlights key findings from three years of pandemic-era proteomics research. It delves into biomarker discovery, diagnostic advancements, and drug development efforts aimed at monitoring COVID-19 onset and progression and exploring treatment options. Additionally, it examines global protein abundance and post-translational modification profiling to elucidate signaling pathway alterations and protein-protein interactions during infection. Finally, it explores the potential of emerging multi-omics analytic strategies in combatting SARS-CoV-2.
Collapse
Affiliation(s)
- Maura D’Amato
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (M.D.); (S.V.)
| | - Maria Antonietta Grignano
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (M.A.G.); (T.R.); (M.G.)
| | - Paolo Iadarola
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Teresa Rampino
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (M.A.G.); (T.R.); (M.G.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Marilena Gregorini
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (M.A.G.); (T.R.); (M.G.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Simona Viglio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (M.D.); (S.V.)
- Lung Transplantation Unit, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| |
Collapse
|
28
|
Thierry AR, Salmon D. Inflammation-, immunothrombosis,- and autoimmune-feedback loops may lead to persistent neutrophil self-stimulation in long COVID. J Med Virol 2024; 96:e29887. [PMID: 39189651 DOI: 10.1002/jmv.29887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Understanding the pathophysiology of long COVID is one of the most intriguing challenges confronting contemporary medicine. Despite observations recently made in the relevant molecular, cellular, and physiological domains, it is still difficult to say whether the post-acute sequelae of COVID-19 directly correspond to the consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This work hypothesizes that neutrophils and neutrophil extracellular traps (NETs) production are at the interconnection of three positive feedback loops which are initiated in the acute phase of SARS-CoV-2 infection, and which involve inflammation, immunothrombosis, and autoimmunity. This phenomenon could be favored by the fact that SARS-CoV-2 may directly bind and penetrate neutrophils. The ensuing strong neutrophil stimulation leads to a progressive amplification of an exacerbated and uncontrolled NETs production, potentially persisting for months beyond the acute phase of infection. This continuous self-stimulation of neutrophils leads, in turn, to systemic inflammation, micro-thromboses, and the production of autoantibodies, whose significant consequences include the persistence of endothelial and multiorgan damage, and vascular complications.
Collapse
Affiliation(s)
- Alain R Thierry
- IRCM, Institute of Research on Cancerology of Montpellier, INSERM U1194, University of Montpellier, Montpellier, France
- Montpellier Cancer Institute (ICM), Montpellier, France
| | | |
Collapse
|
29
|
Hurler L, Mescia F, Bergamaschi L, Kajdácsi E, Sinkovits G, Cervenak L, Prohászka Z, Lyons PA, Toonen EJ. sMR and PTX3 levels associate with COVID-19 outcome and survival but not with Long COVID. iScience 2024; 27:110162. [PMID: 39027374 PMCID: PMC11255846 DOI: 10.1016/j.isci.2024.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/28/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
Biomarkers for monitoring COVID-19 disease course are lacking. Study aim was to identify biomarkers associated with disease severity, survival, long-term outcome, and Long COVID. As excessive macrophages activation is a hallmark of COVID-19 and complement activation is key in this, we selected the following proteins involved in these processes: PTX3, C1q, C1-INH, C1s/C1-INH, and sMR. EDTA-plasma concentrations were measured in 215 patients and 47 controls using ELISA. PTX3, sMR, C1-INH, and C1s/C1-INH levels were associated with disease severity. PTX3 and sMR were also associated with survival and long-term immune recovery. Lastly, sMR levels associate with ICU admittance. sMR (AUC 0.85) and PTX3 (AUC 0.78) are good markers for disease severity, especially when used in combination (AUC 0.88). No association between biomarker levels and Long COVID was observed. sMR has not previously been associated with COVID-19 disease severity, ICU admittance or survival and may serve as marker for disease course.
Collapse
Affiliation(s)
- Lisa Hurler
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Federica Mescia
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Laura Bergamaschi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Cambridge Institute of Therapeutic Immunology and Infectious Disease-National Institute of Health Research (CITIID-NIHR) COVID BioResource Collaboration
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Research Group for Immunology and Haematology, Semmelweis University - Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
- Research and Development Department, Hycult Biotech, Uden, the Netherlands
| | - Erika Kajdácsi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - György Sinkovits
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - László Cervenak
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
- Research Group for Immunology and Haematology, Semmelweis University - Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Paul A. Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Erik J.M. Toonen
- Research and Development Department, Hycult Biotech, Uden, the Netherlands
| |
Collapse
|
30
|
Peluso MJ, Ryder D, Flavell R, Wang Y, Levi J, LaFranchi BH, Deveau TM, Buck AM, Munter SE, Asare KA, Aslam M, Koch W, Szabo G, Hoh R, Deswal M, Rodriguez A, Buitrago M, Tai V, Shrestha U, Lu S, Goldberg SA, Dalhuisen T, Vasquez JJ, Durstenfeld MS, Hsue PY, Kelly JD, Kumar N, Martin JN, Gambhir A, Somsouk M, Seo Y, Deeks SG, Laszik ZG, VanBrocklin HF, Henrich TJ. Tissue-based T cell activation and viral RNA persist for up to 2 years after SARS-CoV-2 infection. Sci Transl Med 2024; 16:eadk3295. [PMID: 38959327 PMCID: PMC11337933 DOI: 10.1126/scitranslmed.adk3295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
The mechanisms of postacute medical conditions and unexplained symptoms after SARS-CoV-2 infection [Long Covid (LC)] are incompletely understood. There is growing evidence that viral persistence, immune dysregulation, and T cell dysfunction may play major roles. We performed whole-body positron emission tomography imaging in a well-characterized cohort of 24 participants at time points ranging from 27 to 910 days after acute SARS-CoV-2 infection using the radiopharmaceutical agent [18F]F-AraG, a selective tracer that allows for anatomical quantitation of activated T lymphocytes. Tracer uptake in the postacute COVID-19 group, which included those with and without continuing symptoms, was higher compared with prepandemic controls in many regions, including the brain stem, spinal cord, bone marrow, nasopharyngeal and hilar lymphoid tissue, cardiopulmonary tissues, and gut wall. T cell activation in the spinal cord and gut wall was associated with the presence of LC symptoms. In addition, tracer uptake in lung tissue was higher in those with persistent pulmonary symptoms specifically. Increased T cell activation in these tissues was also observed in many individuals without LC. Given the high [18F]F-AraG uptake detected in the gut, we obtained colorectal tissue for in situ hybridization of SARS-CoV-2 RNA and immunohistochemical studies in a subset of five participants with LC symptoms. We identified intracellular SARS-CoV-2 single-stranded spike protein-encoding RNA in rectosigmoid lamina propria tissue in all five participants and double-stranded spike protein-encoding RNA in three participants up to 676 days after initial COVID-19, suggesting that tissue viral persistence could be associated with long-term immunologic perturbations.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Dylan Ryder
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Robert Flavell
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Yingbing Wang
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Jelena Levi
- CellSight Technologies, San Francisco, CA, USA, 94107
| | - Brian H. LaFranchi
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Amanda M. Buck
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Sadie E. Munter
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Kofi A. Asare
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Maya Aslam
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Walter Koch
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Gyula Szabo
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA, 94143
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Monika Deswal
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Antonio Rodriguez
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Melissa Buitrago
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Viva Tai
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Uttam Shrestha
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Thomas Dalhuisen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Joshua J. Vasquez
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Matthew S. Durstenfeld
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Priscilla Y. Hsue
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Nitasha Kumar
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Aruna Gambhir
- CellSight Technologies, San Francisco, CA, USA, 94107
| | - Ma Somsouk
- Division of Gastroenterology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Youngho Seo
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Zoltan G. Laszik
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA, 94143
| | - Henry F. VanBrocklin
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| |
Collapse
|
31
|
Abstract
Soon after the outbreak of coronavirus disease 2019 (COVID-19), unexplained sustained fatigue, cognitive disturbance, and muscle ache/weakness were reported in patients who had recovered from acute COVID-19 infection. This abnormal condition has been recognized as "long COVID (postacute sequelae of COVID-19 [PASC])" with a prevalence estimated to be from 10 to 20% of convalescent patients. Although the pathophysiology of PASC has been studied, the exact mechanism remains obscure. Microclots in circulation can represent one of the possible causes of PASC. Although hypercoagulability and thrombosis are critical mechanisms of acute COVID-19, recent studies have reported that thromboinflammation continues in some patients, even after the virus has cleared. Viral spike proteins and RNA can be detected months after patients have recovered, findings that may be responsible for persistent thromboinflammation and the development of microclots. Despite this theory, long-term results of anticoagulation, antiplatelet therapy, and vascular endothelial protection are inconsistent, and could not always show beneficial treatment effects. In summary, PASC reflects a heterogeneous condition, and microclots cannot explain all the presenting symptoms. After clarification of the pathomechanisms of each symptom, a symptom- or biomarker-based stratified approach should be considered for future studies.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jean M Connors
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
32
|
Pretorius E, Kell DB. A Perspective on How Fibrinaloid Microclots and Platelet Pathology May be Applied in Clinical Investigations. Semin Thromb Hemost 2024; 50:537-551. [PMID: 37748515 PMCID: PMC11105946 DOI: 10.1055/s-0043-1774796] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Microscopy imaging has enabled us to establish the presence of fibrin(ogen) amyloid (fibrinaloid) microclots in a range of chronic, inflammatory diseases. Microclots may also be induced by a variety of purified substances, often at very low concentrations. These molecules include bacterial inflammagens, serum amyloid A, and the S1 spike protein of severe acute respiratory syndrome coronavirus 2. Here, we explore which of the properties of these microclots might be used to contribute to differential clinical diagnoses and prognoses of the various diseases with which they may be associated. Such properties include distributions in their size and number before and after the addition of exogenous thrombin, their spectral properties, the diameter of the fibers of which they are made, their resistance to proteolysis by various proteases, their cross-seeding ability, and the concentration dependence of their ability to bind small molecules including fluorogenic amyloid stains. Measuring these microclot parameters, together with microscopy imaging itself, along with methodologies like proteomics and imaging flow cytometry, as well as more conventional assays such as those for cytokines, might open up the possibility of a much finer use of these microclot properties in generative methods for a future where personalized medicine will be standard procedures in all clotting pathology disease diagnoses.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
33
|
Schofield J, Abrams ST, Jenkins R, Lane S, Wang G, Toh CH. Microclots, as defined by amyloid-fibrinogen aggregates, predict risks of disseminated intravascular coagulation and mortality. Blood Adv 2024; 8:2499-2508. [PMID: 38507683 PMCID: PMC11131067 DOI: 10.1182/bloodadvances.2023012473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
ABSTRACT Microclots have been associated with various conditions, including postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection. They have been postulated to be amyloid-fibrin(ogen) aggregates, but their role as a prognostic biomarker remains unclear. To examine their possible clinical utility, blood samples were collected for the first 96 hours from critically ill patients (n = 104) admitted to the intensive care unit (ICU). Detection was by staining platelet-poor plasma samples with thioflavin T and visualized by fluorescent microscopy. Image J software was trained to identify and quantify microclots, which were detected in 44 patients (42.3%) on ICU admission but not in the remaining 60 (57.7%) or the 20 healthy controls (0.0%). Microclots on admission to ICU were associated with a primary diagnosis of sepsis (microclots present in sepsis, 23/44 [52.3%] vs microclots absent in sepsis, 19/60 [31.7%]; P = .044). Multicolor immunofluorescence demonstrated that microclots consisted of amyloid-fibrinogen aggregates, which was supported by proteomic analysis. Patients with either a high number or larger-sized microclots had a higher likelihood of developing disseminated intravascular coagulation (odds ratio [OR], 51.4; 95% confidence interval [CI], 6.3-6721.1; P < .001) and had an increased probability of 28-day mortality (OR, 5.3; 95% CI, 2.0-15.6; P < .001). This study concludes that microclots, as defined by amyloid-fibrin(ogen) aggregates, are potentially useful in identifying sepsis and predicting adverse coagulopathic and clinical outcomes.
Collapse
Affiliation(s)
- Jeremy Schofield
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Roald Dahl Haemostasis and Thrombosis Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Simon T. Abrams
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Haematology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Rosalind Jenkins
- Centre for Drug Safety Science Bioanalytical Facility, Liverpool Shared Research Facilities, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Steven Lane
- Department of Medical Statistics, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Guozheng Wang
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Haematology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Roald Dahl Haemostasis and Thrombosis Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Department of Haematology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
34
|
Durstenfeld MS, Weiman S, Holtzman M, Blish C, Pretorius R, Deeks SG. Long COVID and post-acute sequelae of SARS-CoV-2 pathogenesis and treatment: A Keystone Symposia report. Ann N Y Acad Sci 2024; 1535:31-41. [PMID: 38593220 PMCID: PMC11500513 DOI: 10.1111/nyas.15132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In 2023, the Keystone Symposia held the first international scientific conference convening research leaders investigating the pathology of post-acute sequelae of COVID-19 (PASC) or Long COVID, a growing and urgent public health priority. In this report, we present insights from the talks and workshops presented during this meeting and highlight key themes regarding what researchers have discovered regarding the underlying biology of PASC and directions toward future treatment. Several themes have emerged in the biology, with inflammation and other immune alterations being the most common focus, potentially related to viral persistence, latent virus reactivation, and/or tissue damage and dysfunction, especially of the endothelium, nervous system, and mitochondria. In order to develop safe and effective treatments for people with PASC, critical next steps should focus on the replication of major findings regarding potential mechanisms, disentangling pathogenic mechanisms from downstream effects, development of cellular and animal models, mechanism-focused randomized, placebo-controlled trials, and closer collaboration between people with lived experience, scientists, and other stakeholders. Ultimately, by learning from other post-infectious syndromes, the knowledge gained may help not only those with PASC/Long COVID, but also those with other post-infectious syndromes.
Collapse
Affiliation(s)
| | | | - Michael Holtzman
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Catherine Blish
- Stanford Immunology Program and Department of Medicine, Stanford University, Stanford, California, USA
| | - Resia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
35
|
Liu X, Zhu H, Peng Y, Liu Y, Shi X. Twenty-Four week Taichi training improves pulmonary diffusion capacity and glycemic control in patients with Type 2 diabetes mellitus. PLoS One 2024; 19:e0299495. [PMID: 38635535 PMCID: PMC11025805 DOI: 10.1371/journal.pone.0299495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/11/2024] [Indexed: 04/20/2024] Open
Abstract
This study evaluated the effect of 24-week Taichi training and Taichi plus resistance band training on pulmonary diffusion capacity and glycemic control in patients with Type 2 diabetes mellitus (T2DM). Forty-eight patients with T2DM were randomly divided into three groups: Group A-Taichi training: practiced Taichi 60 min/day, 6 days/week for 24 weeks; Group B-Taichi plus resistance band training: practiced 60-min Taichi 4 days/week plus 60-min resistance band training 2 days/week for 24 weeks; and Group C-controls: maintaining their daily lifestyles. Stepwise multiple regression analysis was applied to predict diffusion capacity of the lungs for carbon monoxide (DLCO) by fasting blood glucose, insulin, glycosylated hemoglobin (HbA1c), tumour necrosis factor alpha (TNF-α), von Willebrand Factor (vWF), interleukin-6 (IL-6), intercellular adhesion molecule 1 (ICAM-1), endothelial nitric oxide synthase (eNOS), nitric oxide (NO), endothelin-1 (ET-1), vascular endothelial growth factor, and prostaglandin I-2. Taichi with or without resistance band training significantly improved DLCO, increased insulin sensitivity, eNOS and NO, and reduced fasting blood glucose, insulin, HbA1c, TNF-α, vWF, IL-6, ICAM-1, and ET-1. There was no change in any of these variables in the control group. DLCO was significantly predicted (R2 = 0.82) by insulin sensitivity (standard-β = 0.415, P<0.001), eNOS (standard-β = 0.128, P = 0.017), TNF-α (standard-β = -0.259, P = 0.001), vWF (standard-β = -0.201, P = 0.007), and IL-6 (standard-β = -0.175, P = 0.032) in patients with T2DM. The impact of insulin sensitivity was the most important predictor for the variation of DLCO based on the multiple regression modeling. This study demonstrates that 24-week Taichi training and Taichi plus resistance band training effectively improve pulmonary diffusion capacity and blood glycemic control in patients with T2DM. Variation of DLCO is explained by improved insulin sensitivity and endothelial function, and reduced inflammatory markers, including TNF-α, vWF, and IL-6.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Physical Education, Xihua University, Chengdu, Sichuan, China
- Department of Physical Education, Hubei Minzu University, Enshi, Hubei, China
- University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Huan Zhu
- Department of Physical Education, Hubei Minzu University, Enshi, Hubei, China
| | - Yong Peng
- Department of Physical Education, Hubei Minzu University, Enshi, Hubei, China
| | - Yaofeng Liu
- Department of Physical Education, Hubei Minzu University, Enshi, Hubei, China
| | - Xiangrong Shi
- University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| |
Collapse
|
36
|
Kell DB, Lip GYH, Pretorius E. Fibrinaloid Microclots and Atrial Fibrillation. Biomedicines 2024; 12:891. [PMID: 38672245 PMCID: PMC11048249 DOI: 10.3390/biomedicines12040891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Atrial fibrillation (AF) is a comorbidity of a variety of other chronic, inflammatory diseases for which fibrinaloid microclots are a known accompaniment (and in some cases, a cause, with a mechanistic basis). Clots are, of course, a well-known consequence of atrial fibrillation. We here ask the question whether the fibrinaloid microclots seen in plasma or serum may in fact also be a cause of (or contributor to) the development of AF. We consider known 'risk factors' for AF, and in particular, exogenous stimuli such as infection and air pollution by particulates, both of which are known to cause AF. The external accompaniments of both bacterial (lipopolysaccharide and lipoteichoic acids) and viral (SARS-CoV-2 spike protein) infections are known to stimulate fibrinaloid microclots when added in vitro, and fibrinaloid microclots, as with other amyloid proteins, can be cytotoxic, both by inducing hypoxia/reperfusion and by other means. Strokes and thromboembolisms are also common consequences of AF. Consequently, taking a systems approach, we review the considerable evidence in detail, which leads us to suggest that it is likely that microclots may well have an aetiological role in the development of AF. This has significant mechanistic and therapeutic implications.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool L7 8TX, UK;
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
37
|
Sun YK, Wang C, Lin PQ, Hu L, Ye J, Gao ZG, Lin R, Li HM, Shu Q, Huang LS, Tan LH. Severe pediatric COVID-19: a review from the clinical and immunopathophysiological perspectives. World J Pediatr 2024; 20:307-324. [PMID: 38321331 PMCID: PMC11052880 DOI: 10.1007/s12519-023-00790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/14/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) tends to have mild presentations in children. However, severe and critical cases do arise in the pediatric population with debilitating systemic impacts and can be fatal at times, meriting further attention from clinicians. Meanwhile, the intricate interactions between the pathogen virulence factors and host defense mechanisms are believed to play indispensable roles in severe COVID-19 pathophysiology but remain incompletely understood. DATA SOURCES A comprehensive literature review was conducted for pertinent publications by reviewers independently using the PubMed, Embase, and Wanfang databases. Searched keywords included "COVID-19 in children", "severe pediatric COVID-19", and "critical illness in children with COVID-19". RESULTS Risks of developing severe COVID-19 in children escalate with increasing numbers of co-morbidities and an unvaccinated status. Acute respiratory distress stress and necrotizing pneumonia are prominent pulmonary manifestations, while various forms of cardiovascular and neurological involvement may also be seen. Multiple immunological processes are implicated in the host response to COVID-19 including the type I interferon and inflammasome pathways, whose dysregulation in severe and critical diseases translates into adverse clinical manifestations. Multisystem inflammatory syndrome in children (MIS-C), a potentially life-threatening immune-mediated condition chronologically associated with COVID-19 exposure, denotes another scientific and clinical conundrum that exemplifies the complexity of pediatric immunity. Despite the considerable dissimilarities between the pediatric and adult immune systems, clinical trials dedicated to children are lacking and current management recommendations are largely adapted from adult guidelines. CONCLUSIONS Severe pediatric COVID-19 can affect multiple organ systems. The dysregulated immune pathways in severe COVID-19 shape the disease course, epitomize the vast functional diversity of the pediatric immune system and highlight the immunophenotypical differences between children and adults. Consequently, further research may be warranted to adequately address them in pediatric-specific clinical practice guidelines.
Collapse
Affiliation(s)
- Yi-Kan Sun
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China
| | - Can Wang
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Pei-Quan Lin
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Lei Hu
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jing Ye
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Zhi-Gang Gao
- Department of General Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Ru Lin
- Department of Cardiopulmonary and Extracorporeal Life Support, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Hao-Min Li
- Clinical Data Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Qiang Shu
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Li-Su Huang
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
- Department of Infectious Diseases, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Lin-Hua Tan
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
38
|
Violi F, Harenberg J, Pignatelli P, Cammisotto V. COVID-19 and Long-COVID Thrombosis: From Clinical and Basic Science to Therapeutics. Thromb Haemost 2024; 124:286-296. [PMID: 37967846 DOI: 10.1055/s-0043-1776713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Coronavirus infectious disease-19 (COVID-19) is a pandemic characterized by serious lung disease and thrombotic events in the venous and circulation trees, which represent a harmful clinical sign of poor outcome. Thrombotic events are more frequent in patients with severe disease requiring intensive care units and are associated with platelet and clotting activation. However, after resolution of acute infection, patients may still have clinical sequelae, the so-called long-COVID-19, including thrombotic events again in the venous and arterial circulation. The mechanisms accounting for thrombosis in acute and long COVID-19 have not been fully clarified; interactions of COVID-19 with angiotensin converting enzyme 2 or toll-like receptor family or infection-induced cytokine storm have been suggested to be implicated in endothelial cells, leucocytes, and platelets to elicit clotting activation in acute as well in chronic phase of the disease. In acute COVID-19, prophylactic or full doses of anticoagulants exert beneficial effects even if the dosage choice is still under investigation; however, a residual risk still remains suggesting a need for a more appropriate therapeutic approach. In long COVID-19 preliminary data provided useful information in terms of antiplatelet treatment but definition of candidates for thrombotic prophylaxis is still undefined.
Collapse
Affiliation(s)
- Francesco Violi
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Via Orazio, Naples, Italy
| | - Job Harenberg
- Medical Faculty Mannheim, Ruprecht-karls University Heidelberg, Heidelberg, Germany
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Via Orazio, Naples, Italy
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
39
|
Bergaglio T, Synhaivska O, Nirmalraj PN. 3D Holo-tomographic Mapping of COVID-19 Microclots in Blood to Assess Disease Severity. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:194-204. [PMID: 39474148 PMCID: PMC11503935 DOI: 10.1021/cbmi.3c00126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 04/15/2025]
Abstract
The coronavirus disease 2019 (COVID-19) has impacted health globally. Cumulative evidence points to long-term effects of COVID-19 such as cardiovascular and cognitive disorders, diagnosed in patients even after the recovery period. In particular, micrometer-sized blood clots and hyperactivated platelets have been identified as potential indicators of long COVID. Here, we resolve microclot structures in the plasma of patients with different subphenotypes of COVID-19 in a label-free manner, using 3D digital holo-tomographic microscopy (DHTM). Based on 3D refractive index (RI) tomograms, the size, dry mass, and prevalence of microclot composites were quantified and then parametrically differentiated from fibrin-rich microclots and platelet aggregates in the plasma of COVID-19 patients. Importantly, fewer microclots and platelet aggregates were detected in the plasma of healthy controls compared to COVID-19 patients. Our imaging and analysis workflow is built around a commercially available DHT microscope capable of operation in clinical settings with a 2 h time period from sample preparation and data acquisition to results.
Collapse
Affiliation(s)
- Talia Bergaglio
- Transport
at Nanoscale Interfaces Laboratory, Swiss
Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
- Graduate
School for Cellular and Biomedical Sciences, University of Bern, Bern CH-3012, Switzerland
| | - Olena Synhaivska
- Transport
at Nanoscale Interfaces Laboratory, Swiss
Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Peter Niraj Nirmalraj
- Transport
at Nanoscale Interfaces Laboratory, Swiss
Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| |
Collapse
|
40
|
Huang K, Li Z, He X, Dai J, Huang B, Shi Y, Fan D, Zhang Z, Liu Y, Li N, Zhang Z, Peng J, Liu C, Zeng R, Cen Z, Wang T, Yang W, Cen M, Li J, Yuan S, Zhang L, Hu D, Huang S, Chen P, Lai P, Lin L, Wen J, Zhao Z, Huang X, Yuan L, Zhou L, Wu H, Huang L, Feng K, Wang J, Liao B, Cai W, Deng X, Li Y, Li J, Hu Z, Yang L, Li J, Zhuo Y, Zhang F, Lin L, Luo Y, Zhang W, Ni Q, Hong X, Chang G, Zhang Y, Guan D, Cai W, Lu Y, Li F, Yan L, Ren M, Li L, Chen S. Gut microbial co-metabolite 2-methylbutyrylcarnitine exacerbates thrombosis via binding to and activating integrin α2β1. Cell Metab 2024; 36:598-616.e9. [PMID: 38401546 DOI: 10.1016/j.cmet.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/08/2023] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Thrombosis represents the leading cause of death and disability upon major adverse cardiovascular events (MACEs). Numerous pathological conditions such as COVID-19 and metabolic disorders can lead to a heightened thrombotic risk; however, the underlying mechanisms remain poorly understood. Our study illustrates that 2-methylbutyrylcarnitine (2MBC), a branched-chain acylcarnitine, is accumulated in patients with COVID-19 and in patients with MACEs. 2MBC enhances platelet hyperreactivity and thrombus formation in mice. Mechanistically, 2MBC binds to integrin α2β1 in platelets, potentiating cytosolic phospholipase A2 (cPLA2) activation and platelet hyperresponsiveness. Genetic depletion or pharmacological inhibition of integrin α2β1 largely reverses the pro-thrombotic effects of 2MBC. Notably, 2MBC can be generated in a gut-microbiota-dependent manner, whereas the accumulation of plasma 2MBC and its thrombosis-aggravating effect are largely ameliorated following antibiotic-induced microbial depletion. Our study implicates 2MBC as a metabolite that links gut microbiota dysbiosis to elevated thrombotic risk, providing mechanistic insight and a potential therapeutic strategy for thrombosis.
Collapse
Affiliation(s)
- Kan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China; Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xi He
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jun Dai
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Bingding Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Yongxia Shi
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Dongxiao Fan
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zefeng Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Yunchong Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Na Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zhongyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Chenshu Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Renli Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Zhipeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Wenchao Yang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Meifeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jingyu Li
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Shuai Yuan
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Lu Zhang
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Dandan Hu
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Shuxiang Huang
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Pin Chen
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Liyan Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Zhengde Zhao
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xiuyi Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lining Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Lifang Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Haoliang Wu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lihua Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Kai Feng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jian Wang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Baolin Liao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Weiping Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Xilong Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Yueping Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jianping Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Zhongwei Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Li Yang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jiaojiao Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Youguang Zhuo
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Lin Lin
- Department of Respiratory Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yifeng Luo
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wei Zhang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Qianlin Ni
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Xiqiang Hong
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Guangqi Chang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yang Zhang
- School of Public Health, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Yutong Lu
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Fang Li
- Department of Obstetrics and Gynecology, Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510620, China
| | - Li Yan
- Guangdong Clinical Research Center for Metabolic Diseases (Diabetes), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Meng Ren
- Guangdong Clinical Research Center for Metabolic Diseases (Diabetes), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| | - Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China.
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China.
| |
Collapse
|
41
|
Gheorghita R, Soldanescu I, Lobiuc A, Caliman Sturdza OA, Filip R, Constantinescu – Bercu A, Dimian M, Mangul S, Covasa M. The knowns and unknowns of long COVID-19: from mechanisms to therapeutical approaches. Front Immunol 2024; 15:1344086. [PMID: 38500880 PMCID: PMC10944866 DOI: 10.3389/fimmu.2024.1344086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has been defined as the greatest global health and socioeconomic crisis of modern times. While most people recover after being infected with the virus, a significant proportion of them continue to experience health issues weeks, months and even years after acute infection with SARS-CoV-2. This persistence of clinical symptoms in infected individuals for at least three months after the onset of the disease or the emergence of new symptoms lasting more than two months, without any other explanation and alternative diagnosis have been named long COVID, long-haul COVID, post-COVID-19 conditions, chronic COVID, or post-acute sequelae of SARS-CoV-2 (PASC). Long COVID has been characterized as a constellation of symptoms and disorders that vary widely in their manifestations. Further, the mechanisms underlying long COVID are not fully understood, which hamper efficient treatment options. This review describes predictors and the most common symptoms related to long COVID's effects on the central and peripheral nervous system and other organs and tissues. Furthermore, the transcriptional markers, molecular signaling pathways and risk factors for long COVID, such as sex, age, pre-existing condition, hospitalization during acute phase of COVID-19, vaccination, and lifestyle are presented. Finally, recommendations for patient rehabilitation and disease management, as well as alternative therapeutical approaches to long COVID sequelae are discussed. Understanding the complexity of this disease, its symptoms across multiple organ systems and overlapping pathologies and its possible mechanisms are paramount in developing diagnostic tools and treatments.
Collapse
Affiliation(s)
- Roxana Gheorghita
- Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
| | - Iuliana Soldanescu
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), University of Suceava, Suceava, Romania
| | - Andrei Lobiuc
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
| | - Olga Adriana Caliman Sturdza
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Suceava Emergency Clinical County Hospital, Suceava, Romania
| | - Roxana Filip
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Suceava Emergency Clinical County Hospital, Suceava, Romania
| | - Adela Constantinescu – Bercu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Institute of Cardiovascular Science, Hemostasis Research Unit, University College London (UCL), London, United Kingdom
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), University of Suceava, Suceava, Romania
- Department of Computer, Electronics and Automation, University of Suceava, Suceava, Romania
| | - Serghei Mangul
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Quantitative and Computational Biology, USC Dornsife College of Letters, Arts and Sciences, University of Southern California (USC), Los Angeles, CA, United States
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA, United States
| |
Collapse
|
42
|
Turner S, Naidoo CA, Usher TJ, Kruger A, Venter C, Laubscher GJ, Khan MA, Kell DB, Pretorius E. Increased Levels of Inflammatory and Endothelial Biomarkers in Blood of Long COVID Patients Point to Thrombotic Endothelialitis. Semin Thromb Hemost 2024; 50:288-294. [PMID: 37207671 DOI: 10.1055/s-0043-1769014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The prevailing hypotheses for the persistent symptoms of Long COVID have been narrowed down to immune dysregulation and autoantibodies, widespread organ damage, viral persistence, and fibrinaloid microclots (entrapping numerous inflammatory molecules) together with platelet hyperactivation. Here we demonstrate significantly increased concentrations of von Willebrand factor (VWF), platelet factor 4 (PF4), serum amyloid A (SAA), α-2 antiplasmin (α-2AP), endothelial-leukocyte adhesion molecule 1 (E-selectin), and platelet endothelial cell adhesion molecule (PECAM-1) in the soluble part of the blood. It was noteworthy that the mean level of α-2 antiplasmin exceeded the upper limit of the laboratory reference range in Long COVID patients, and the other 5 were significantly elevated in Long COVID patients as compared to the controls. This is alarming if we take into consideration that a significant amount of the total burden of these inflammatory molecules has previously been shown to be entrapped inside fibrinolysis-resistant microclots (thus decreasing the apparent level of the soluble molecules). We conclude that presence of microclotting, together with relatively high levels of six biomarkers known to be key drivers of endothelial and clotting pathology, points to thrombotic endothelialitis as a key pathological process in Long COVID.
Collapse
Affiliation(s)
- Simone Turner
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Caitlin A Naidoo
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Thomas J Usher
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Arneaux Kruger
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Chantelle Venter
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | | | - M Asad Khan
- Department of Respiratory Medicine, Wythenshawe Hospital, Manchester University, Manchester, United Kingdom
| | - Douglas B Kell
- Department of Biochemistry and Systems Biology; Institute of Systems, Molecular and Integrative Biology; Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet Lyngby, Denmark
| |
Collapse
|
43
|
Smith MM, Melrose J. Lumican, a Multifunctional Cell Instructive Biomarker Proteoglycan Has Novel Roles as a Marker of the Hypercoagulative State of Long Covid Disease. Int J Mol Sci 2024; 25:2825. [PMID: 38474072 DOI: 10.3390/ijms25052825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
This study has reviewed the many roles of lumican as a biomarker of tissue pathology in health and disease. Lumican is a structure regulatory proteoglycan of collagen-rich tissues, with cell instructive properties through interactions with a number of cell surface receptors in tissue repair, thereby regulating cell proliferation, differentiation, inflammation and the innate and humoral immune systems to combat infection. The exponential increase in publications in the last decade dealing with lumican testify to its role as a pleiotropic biomarker regulatory protein. Recent findings show lumican has novel roles as a biomarker of the hypercoagulative state that occurs in SARS CoV-2 infections; thus, it may also prove useful in the delineation of the complex tissue changes that characterize COVID-19 disease. Lumican may be useful as a prognostic and diagnostic biomarker of long COVID disease and its sequelae.
Collapse
Affiliation(s)
- Margaret M Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Arthropharm Pty Ltd., Bondi Junction, NSW 2022, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
44
|
Krishna BA, Lim EY, Metaxaki M, Jackson S, Mactavous L, Lyons PA, Doffinger R, Bradley JR, Smith KGC, Sinclair J, Matheson NJ, Lehner PJ, Sithole N, Wills MR. Spontaneous, persistent, T cell-dependent IFN-γ release in patients who progress to Long Covid. SCIENCE ADVANCES 2024; 10:eadi9379. [PMID: 38381822 PMCID: PMC10881041 DOI: 10.1126/sciadv.adi9379] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
After acute infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a proportion of patients experience persistent symptoms beyond 12 weeks, termed Long Covid. Understanding the mechanisms that cause this debilitating disease and identifying biomarkers for diagnostic, therapeutic, and monitoring purposes are urgently required. We detected persistently high levels of interferon-γ (IFN-γ) from peripheral blood mononuclear cells of patients with Long Covid using highly sensitive FluoroSpot assays. This IFN-γ release was seen in the absence of ex vivo peptide stimulation and remains persistently elevated in patients with Long Covid, unlike the resolution seen in patients recovering from acute SARS-CoV-2 infection. The IFN-γ release was CD8+ T cell-mediated and dependent on antigen presentation by CD14+ cells. Longitudinal follow-up of our study cohort showed that symptom improvement and resolution correlated with a decrease in IFN-γ production to baseline levels. Our study highlights a potential mechanism underlying Long Covid, enabling the search for biomarkers and therapeutics in patients with Long Covid.
Collapse
Affiliation(s)
- Benjamin A. Krishna
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Eleanor Y. Lim
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Marina Metaxaki
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge CB2 0AW, UK
| | - Sarah Jackson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Lenette Mactavous
- Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - NIHR BioResource
- NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Paul A. Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - John R. Bradley
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
- Department of Renal Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Kenneth G. C. Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John Sinclair
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Nicholas J. Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
- NHS Blood and Transplant, Cambridge CB2 0PT, UK
| | - Paul J. Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Nyaradzai Sithole
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Mark R. Wills
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
45
|
Valencia I, Lumpuy-Castillo J, Magalhaes G, Sánchez-Ferrer CF, Lorenzo Ó, Peiró C. Mechanisms of endothelial activation, hypercoagulation and thrombosis in COVID-19: a link with diabetes mellitus. Cardiovasc Diabetol 2024; 23:75. [PMID: 38378550 PMCID: PMC10880237 DOI: 10.1186/s12933-023-02097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
Early since the onset of the COVID-19 pandemic, the medical and scientific community were aware of extra respiratory actions of SARS-CoV-2 infection. Endothelitis, hypercoagulation, and hypofibrinolysis were identified in COVID-19 patients as subsequent responses of endothelial dysfunction. Activation of the endothelial barrier may increase the severity of the disease and contribute to long-COVID syndrome and post-COVID sequelae. Besides, it may cause alterations in primary, secondary, and tertiary hemostasis. Importantly, these responses have been highly decisive in the evolution of infected patients also diagnosed with diabetes mellitus (DM), who showed previous endothelial dysfunction. In this review, we provide an overview of the potential triggers of endothelial activation related to COVID-19 and COVID-19 under diabetic milieu. Several mechanisms are induced by both the viral particle itself and by the subsequent immune-defensive response (i.e., NF-κB/NLRP3 inflammasome pathway, vasoactive peptides, cytokine storm, NETosis, activation of the complement system). Alterations in coagulation mediators such as factor VIII, fibrin, tissue factor, the von Willebrand factor: ADAMST-13 ratio, and the kallikrein-kinin or plasminogen-plasmin systems have been reported. Moreover, an imbalance of thrombotic and thrombolytic (tPA, PAI-I, fibrinogen) factors favors hypercoagulation and hypofibrinolysis. In the context of DM, these mechanisms can be exacerbated leading to higher loss of hemostasis. However, a series of therapeutic strategies targeting the activated endothelium such as specific antibodies or inhibitors against thrombin, key cytokines, factor X, complement system, the kallikrein-kinin system or NETosis, might represent new opportunities to address this hypercoagulable state present in COVID-19 and DM. Antidiabetics may also ameliorate endothelial dysfunction, inflammation, and platelet aggregation. By improving the microvascular pathology in COVID-19 and post-COVID subjects, the associated comorbidities and the risk of mortality could be reduced.
Collapse
Affiliation(s)
- Inés Valencia
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, IIS Hospital Universitario de La Princesa, 28009, Madrid, Spain.
| | - Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
| | - Giselle Magalhaes
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain
| | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain.
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain.
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain.
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain.
| |
Collapse
|
46
|
Bellone S, Siegel ER, Scheim DE, Santin AD. Increased von Willebrand and Factor VIII plasma levels in gynecologic patients with Post-Acute-COVID-Sequela (PASC)/Long COVID. Gynecol Oncol Rep 2024; 51:101324. [PMID: 38273933 PMCID: PMC10809113 DOI: 10.1016/j.gore.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Abstract
Up to 30 % of COVID-infected patients may develop post-acute sequelae of COVID-19 (PASC), also known as Long COVID (LC), a syndrome characterized by a variety of debilitating symptoms lasting for more than 3 months after the acute infection. While the pathophysiological mechanisms behind PASC/LC are not completely understood, growing evidence suggests that an important component of this syndrome may be related to persistent microvascular inflammation causing clumping/clotting of red blood cells and platelets and thrombotic complications. We retrospectively evaluated the plasma levels of von Willebrand factor (VWF), Factor VIII and D-dimer in 10 gynecologic patients (60 % with an endometrial or ovarian cancer diagnosis) affected by PASC/LC vs 5 control patients (60 % harboring endometrial or ovarian tumors). We found elevated VWF and Factor VIII levels in all 10 PASC/LC patients (means of 254 % and 229 %, respectively) vs none of the 5 randomly selected cancer control patients (means of 108 % and 95 %, respectively), p = 0.0046 and p < 0.0001, respectively. In contrast, no significant difference was noted in the levels of D-dimer in PASC/LC. Importantly, abnormally elevated VWF and Factor VIII levels were found to persist for at least 2 years in patients with Long COVID symptoms. VWF and Factor VIII but not D-dimer levels are significantly elevated in the plasma of PASC/LC cancer patients. Abnormally and persistently elevated VWF and Factor VIII levels may represent the results of persistent microvascular damage (i.e., spike-induced endotheliosis) and may be biomarkers of persistent inflammation in gynecologic patients with PASC/LC.
Collapse
Affiliation(s)
- Stefania Bellone
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Eric R. Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - David E. Scheim
- US Public Health Service, Commissioned Corps, Inactive Reserve, Blacksburg, VA 24060-6367, USA
| | - Alessandro D. Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
47
|
Kell DB, Khan MA, Kane B, Lip GYH, Pretorius E. Possible Role of Fibrinaloid Microclots in Postural Orthostatic Tachycardia Syndrome (POTS): Focus on Long COVID. J Pers Med 2024; 14:170. [PMID: 38392604 PMCID: PMC10890060 DOI: 10.3390/jpm14020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024] Open
Abstract
Postural orthostatic tachycardia syndrome (POTS) is a common accompaniment of a variety of chronic, inflammatory diseases, including long COVID, as are small, insoluble, 'fibrinaloid' microclots. We here develop the argument, with accompanying evidence, that fibrinaloid microclots, through their ability to block the flow of blood through microcapillaries and thus cause tissue hypoxia, are not simply correlated with but in fact, by preceding it, may be a chief intermediary cause of POTS, in which tachycardia is simply the body's exaggerated 'physiological' response to hypoxia. Similar reasoning accounts for the symptoms bundled under the term 'fatigue'. Amyloids are known to be membrane disruptors, and when their targets are nerve membranes, this can explain neurotoxicity and hence the autonomic nervous system dysfunction that contributes to POTS. Taken together as a system view, we indicate that fibrinaloid microclots can serve to link POTS and fatigue in long COVID in a manner that is at once both mechanistic and explanatory. This has clear implications for the treatment of such diseases.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| | - Muhammed Asad Khan
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester M23 9LT, UK;
| | - Binita Kane
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Manchester University Foundation Trust and School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK;
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
48
|
Appelman B, Charlton BT, Goulding RP, Kerkhoff TJ, Breedveld EA, Noort W, Offringa C, Bloemers FW, van Weeghel M, Schomakers BV, Coelho P, Posthuma JJ, Aronica E, Joost Wiersinga W, van Vugt M, Wüst RCI. Muscle abnormalities worsen after post-exertional malaise in long COVID. Nat Commun 2024; 15:17. [PMID: 38177128 PMCID: PMC10766651 DOI: 10.1038/s41467-023-44432-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
A subgroup of patients infected with SARS-CoV-2 remain symptomatic over three months after infection. A distinctive symptom of patients with long COVID is post-exertional malaise, which is associated with a worsening of fatigue- and pain-related symptoms after acute mental or physical exercise, but its underlying pathophysiology is unclear. With this longitudinal case-control study (NCT05225688), we provide new insights into the pathophysiology of post-exertional malaise in patients with long COVID. We show that skeletal muscle structure is associated with a lower exercise capacity in patients, and local and systemic metabolic disturbances, severe exercise-induced myopathy and tissue infiltration of amyloid-containing deposits in skeletal muscles of patients with long COVID worsen after induction of post-exertional malaise. This study highlights novel pathways that help to understand the pathophysiology of post-exertional malaise in patients suffering from long COVID and other post-infectious diseases.
Collapse
Affiliation(s)
- Brent Appelman
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Braeden T Charlton
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Richie P Goulding
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Tom J Kerkhoff
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Department of Physiology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Ellen A Breedveld
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Wendy Noort
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Carla Offringa
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Frank W Bloemers
- Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Department of Trauma Surgery, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Pedro Coelho
- Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, CHULN, Lisbon, Portugal
- Faculdade de Medicina, Centro de Estudos Egas Moniz, University of Lisbon, Lisbon, Portugal
- Department of (Neuro)pathology, Amsterdam Neuroscience, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jelle J Posthuma
- Department of Trauma Surgery, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Flevoziekenhuis, Division of Surgery, Hospitaalweg 1, Almere, the Netherlands
| | - Eleonora Aronica
- Department of (Neuro)pathology, Amsterdam Neuroscience, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - W Joost Wiersinga
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Michèle van Vugt
- Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands.
- Division of Infectious Diseases, Tropical Medicine, Department of Medicine, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Rob C I Wüst
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
49
|
El-Baky NA, Amara AA, Uversky VN, Redwan EM. Intrinsic factors behind long COVID: III. Persistence of SARS-CoV-2 and its components. J Cell Biochem 2024; 125:22-44. [PMID: 38098317 DOI: 10.1002/jcb.30514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
Considerable research has been done in investigating SARS-CoV-2 infection, its characteristics, and host immune response. However, debate is still ongoing over the emergence of post-acute sequelae of SARS-CoV-2 infection (PASC). A multitude of long-lasting symptoms have been reported several weeks after the primary acute SARS-CoV-2 infection that resemble several other viral infections. Thousands of research articles have described various post-COVID-19 conditions. Yet, the evidence around these ongoing health problems, the reasons behind them, and their molecular underpinnings are scarce. These persistent symptoms are also known as long COVID-19. The persistence of SARS-CoV-2 and/or its components in host tissues can lead to long COVID. For example, the presence of viral nucleocapsid protein and RNA was detected in the skin, appendix, and breast tissues of some long COVID patients. The persistence of viral RNA was reported in multiple anatomic sites, including non-respiratory tissues such as the adrenal gland, ocular tissue, small intestine, lymph nodes, myocardium, and sciatic nerve. Distinctive viral spike sequence variants were also found in non-respiratory tissues. Interestingly, prolonged detection of viral subgenomic RNA was observed across all tissues, sometimes in multiple tissues of the same patient, which likely reflects recent but defective viral replication. Moreover, the persistence of SARS-CoV-2 RNA was noticed throughout the brain at autopsy, as late as 230 days following symptom onset among unvaccinated patients who died of severe infection. Here, we review the persistence of SARS-CoV-2 and its components as an intrinsic factor behind long COVID. We also highlight the immunological consequences of this viral persistence.
Collapse
Affiliation(s)
- Nawal Abd El-Baky
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Amro A Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
50
|
Gu X, Wang S, Zhang W, Li C, Guo L, Wang Z, Li H, Zhang H, Zhou Y, Liang W, Li H, Liu Y, Wang Y, Huang L, Dong T, Zhang D, Wong CCL, Cao B. Probing long COVID through a proteomic lens: a comprehensive two-year longitudinal cohort study of hospitalised survivors. EBioMedicine 2023; 98:104851. [PMID: 37924708 PMCID: PMC10660018 DOI: 10.1016/j.ebiom.2023.104851] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND As a debilitating condition that can impact a whole spectrum of people and involve multi-organ systems, long COVID has aroused the most attention than ever. However, mechanisms of long COVID are not clearly understood, and underlying biomarkers that can affect the long-term consequences of COVID-19 are paramount to be identified. METHODS Participants for the current study were from a cohort study of COVID-19 survivors discharged from hospital between Jan 7, and May 29, 2020. We profiled the proteomic of plasma samples from hospitalised COVID-19 survivors at 6-month, 1-year, and 2-year after symptom onset and age and sex matched healthy controls. Fold-change of >2 or <0.5, and false-discovery rate adjusted P value of 0.05 were used to filter differentially expressed proteins (DEPs). In-genuity pathway analysis was performed to explore the down-stream effects in the dataset of significantly up- or down-regulated proteins. Proteins were integrated with long-term consequences of COVID-19 survivors to explore potential biomarkers of long COVID. FINDINGS The proteomic of 709 plasma samples from 181 COVID-19 survivors and 181 matched healthy controls was profiled. In both COVID-19 and control group, 114 (63%) were male. The results indicated four major recovery modes of biological processes. Pathways related to cell-matrix interactions and cytoskeletal remodeling and hypertrophic cardiomyopathy and dilated cardiomyopathy pathways recovered relatively earlier which was before 1-year after infection. Majority of immune response pathways, complement and coagulation cascade, and cholesterol metabolism returned to similar status of matched healthy controls later but before 2-year after infection. Fc receptor signaling pathway still did not return to status similar to healthy controls at 2-year follow-up. Pathways related to neuron generation and differentiation showed persistent suppression across 2-year after infection. Among 98 DEPs from the above pathways, evidence was found for association of 11 proteins with lung function recovery, with the associations consistent at two consecutive or all three follow-ups. These proteins were mainly enriched in complement and coagulation (COMP, PLG, SERPINE1, SRGN, COL1A1, FLNA, and APOE) and hypertrophic/dilated cardiomyopathy (TPM2, TPM1, and AGT) pathways. Two DEPs (APOA4 and LRP1) involved in both neuron and cholesterol pathways showed associations with smell disorder. INTERPRETATION The study findings provided molecular insights into potential mechanism of long COVID, and put forward biomarkers for more precise intervention to reduce burden of long COVID. FUNDING National Natural Science Foundation of China; Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences; Clinical Research Operating Fund of Central High Level Hospitals; the Talent Program of the Chinese Academy of Medical Science; Training Program of the Big Science Strategy Plan; Ministry of Science and Technology of the People's Republic of China; New Cornerstone Science Foundation; Peking Union Medical College Education Foundation; Research Funds from Health@InnoHK Program.
Collapse
Affiliation(s)
- Xiaoying Gu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China; Changping Laboratory, Beijing, PR China
| | - Siyuan Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, PR China
| | - Wanying Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
| | - Caihong Li
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, PR China
| | - Li Guo
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Zai Wang
- Changping Laboratory, Beijing, PR China; Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Haibo Li
- Changping Laboratory, Beijing, PR China; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
| | - Hui Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, PR China; Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing, PR China
| | - Yuhan Zhou
- Foreseen Biotechnology, Beijing, PR China
| | | | - Hui Li
- Changping Laboratory, Beijing, PR China; State Key Laboratory of Complex Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, PR China
| | - Yan Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, PR China; Department of Infectious Disease, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, PR China
| | - Yeming Wang
- Changping Laboratory, Beijing, PR China; State Key Laboratory of Complex Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, PR China
| | - Lixue Huang
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Tao Dong
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Dingyu Zhang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, PR China; Hubei Clinical Research Center for Infectious Diseases, Wuhan, Hubei Province, PR China.
| | - Catherine C L Wong
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, PR China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, PR China.
| | - Bin Cao
- Changping Laboratory, Beijing, PR China; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China; Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing, PR China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, PR China.
| |
Collapse
|