1
|
Okoye CO, Jiang H, Wu Y, Li X, Gao L, Wang Y, Jiang J. Bacterial biosynthesis of flavonoids: Overview, current biotechnology applications, challenges, and prospects. J Cell Physiol 2024; 239:e31006. [PMID: 37025076 DOI: 10.1002/jcp.31006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023]
Abstract
Flavonoids are secondary metabolites present in plant organs and tissues. These natural metabolites are the most prevalent and display a wide range of beneficial physiological effects, making them usually intriguing in several scientific fields. Due to their safety for use and protective attributes, including antioxidant, anti-inflammatory, anticancer, and antimicrobial functions, flavonoids are broadly utilized in foods, pharmaceuticals, and nutraceuticals. However, conventional methods for producing flavonoids, such as plant extraction and chemical synthesis, entailed dangerous substances, and laborious procedures, with low product yield. Recent studies have documented the ability of microorganisms, such as fungi and bacteria, to synthesize adequate amounts of flavonoids. Bacterial biosynthesis of flavonoids from plant biomass is a viable and environmentally friendly technique for producing flavonoids on a larger scale and has recently received much attention. Still, only a few bacteria species, particularly Escherichia coli, have been extensively studied. The most recent developments in bacterial biosynthesis of flavonoids are reviewed and discussed in this article, including their various applications as natural food biocontrol agents. In addition, the challenges currently faced in bacterial flavonoid biosynthesis and possible solutions, including the application of modern biotechnology approaches for developing bacterial strains that could successfully produce flavonoids on an industrial scale, were elucidated.
Collapse
Affiliation(s)
- Charles O Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Huifang Jiang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yanfang Wu
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xia Li
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Lu Gao
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yongli Wang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jianxiong Jiang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Li C, Tao M, Li T, Huang X, Sui H, Fu X. Research Progress of Tamarixetin and its Glycosides. Mini Rev Med Chem 2024; 24:689-703. [PMID: 37642001 DOI: 10.2174/1389557523666230828123425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Tamarixetin and its glycosides are widely distributed in natural plants, and they are also natural flavonoid derivatives of quercetin. Its main pharmacological effects include antioxidant, antiinflammatory, antiviral, anticancer, cardiovascular effects, etc. The pharmacokinetics showed that the distribution of direct absorption differed from that of biosynthesis. At the same time, research shows that tamarixetin is safe to use because it has little self-toxicity. In this paper, 181 articles on tamarixetin published from 1976 to 2023 are obtained from PubMed, China Knowledge Base Database, Wanfang Data, and other electronic databases. Tamarixetin is searched based on keywords, and 121 articles remain. Transformation synthesis, pharmacokinetics, pharmacological action, and structureactivity relationship of tamarixetin were reviewed.
Collapse
Affiliation(s)
- Cunbing Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Mengxin Tao
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Tingting Li
- Ningxia Minority Medicine Modernization Key Laboratory of Ministry of Education, Yinchuan, 75004, China
| | - Xiaofen Huang
- Ningxia Minority Medicine Modernization Key Laboratory of Ministry of Education, Yinchuan, 75004, China
| | - Hong Sui
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Minority Medicine Modernization Key Laboratory of Ministry of Education, Yinchuan, 75004, China
| |
Collapse
|
3
|
Ren J, Barton CD, Zhan J. Engineered production of bioactive polyphenolic O-glycosides. Biotechnol Adv 2023; 65:108146. [PMID: 37028465 DOI: 10.1016/j.biotechadv.2023.108146] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/04/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Polyphenolic compounds (such as quercetin and resveratrol) possess potential medicinal values due to their various bioactivities, but poor water solubility hinders their health benefits to humankind. Glycosylation is a well-known post-modification method to biosynthesize natural product glycosides with improved hydrophilicity. Glycosylation has profound effects on decreasing toxicity, increasing bioavailability and stability, together with changing bioactivity of polyphenolic compounds. Therefore, polyphenolic glycosides can be used as food additives, therapeutics, and nutraceuticals. Engineered biosynthesis provides an environmentally friendly and cost-effective approach to generate polyphenolic glycosides through the use of various glycosyltransferases (GTs) and sugar biosynthetic enzymes. GTs transfer the sugar moieties from nucleotide-activated diphosphate sugar (NDP-sugar) donors to sugar acceptors such as polyphenolic compounds. In this review, we systematically review and summarize the representative polyphenolic O-glycosides with various bioactivities and their engineered biosynthesis in microbes with different biotechnological strategies. We also review the major routes towards NDP-sugar formation in microbes, which is significant for producing unusual or novel glycosides. Finally, we discuss the trends in NDP-sugar based glycosylation research to promote the development of prodrugs that positively impact human health and wellness.
Collapse
Affiliation(s)
- Jie Ren
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Caleb Don Barton
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA.
| |
Collapse
|
4
|
Poudel PB, Dhakal D, Magar RT, Sohng JK. Microbial Biosynthesis of Chrysazin Derivatives in Recombinant Escherichia coli and Their Biological Activities. Molecules 2022; 27:molecules27175554. [PMID: 36080320 PMCID: PMC9457698 DOI: 10.3390/molecules27175554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
Anthraquinone and its derivatives show remarkable biological properties such as anticancer, antibacterial, antifungal, and antiviral activities. Hence, anthraquinones derivatives have been of prime interest in drug development. This study developed a recombinant Escherichia coli strain to modify chrysazin to chrysazin-8-O-α-l-rhamnoside (CR) and chrysazin-8-O-α-l-2′-O-methylrhamnoside (CRM) using rhamnosyl transferase and sugar-O-methyltransferase. Biosynthesized CR and CRM were structurally characterized using HPLC, high-resolution mass spectrometry, and various nuclear magnetic resonance analyses. Antimicrobial effects of chrysazin, CR, and CRM against 18 superbugs, including 14 Gram-positive and 4 Gram-negative pathogens, were investigated. CR and CRM exhibited antimicrobial activities against nine pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA) in a disk diffusion assay at a concentration of 40 µg per disk. There were MIC and MBC values of 7.81−31.25 µg/mL for CR and CRM against methicillin-sensitive S. aureus CCARM 0205 (MSSA) for which the parent chrysazin is more than >1000 µg/mL. Furthermore, the anti-proliferative properties of chrysazin, CR, and CRM were assayed using AGS, Huh7, HL60, and HaCaT cell lines. CR and CRM showed higher antibacterial and anticancer properties than chrysazin.
Collapse
Affiliation(s)
- Purna Bahadur Poudel
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Chungnam, Korea
| | - Dipesh Dhakal
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Chungnam, Korea
| | - Rubin Thapa Magar
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Chungnam, Korea
| | - Jae Kyung Sohng
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Chungnam, Korea
- Department of Biotechnology and Pharmaceutical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Chungnam, Korea
- Correspondence: ; Tel.: +82-(41)-530-2246; Fax: +82-(41)-530-8229
| |
Collapse
|
5
|
Lee NJ, Kwon Y, Kang W, Seo M, Seol Y, Park JW. Enzymatic synthesis of novel unnatural phenoxodiol glycosides with a glycosyl donor flexible glycosyltransferase MeUGT1. Enzyme Microb Technol 2022; 161:110113. [PMID: 35998478 DOI: 10.1016/j.enzmictec.2022.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/25/2022]
Abstract
Isoflavonoids are of great interest due to their human health-promoting properties, which have resulted in studies on exploiting these phytochemicals as hotspots in diverse bio -industries. Biocatalytic glycosylation of isoflavonoid aglycones to glycosides has attracted marked interests because it enable the biosynthesis of isoflavonoid glycosides with high selectivity under mild conditions, and also provide an environmentally friendly option for the chemical synthesis. Thus, these inspired us to exploit new flexible and effective glycosyltransferases from microbes for making glycosides attractive compounds that are in high demand in several industries. Most recently, we have reported the functional characterization of a bacterial-origin recombinant glycosyltransferase (MeUGT1). Herein, more detailed kinetic characteristics of this biocatalyst, using a number of glycosyl donor substrates, were examined for further investigation of its biocatalytic applicability, enabling it feasible to biosynthesize new glycosides; phenoxodiol-4'-O-α-glucuronide, phenoxodiol-4'-O-α-(2''-N-acetyl)glucosaminide, phenoxodiol-4'-O-α-galactoside, phenoxodiol-4'-O-α-(2''-N-acetyl)galactosaminide and phenoxodiol-4'-O-α-(2''-deoxy)glucoside. The thorough kinetic analyses revealed that while the recombinant enzyme can utilize, albeit with different substrate preference and catalytic efficiency, a total five different nucleotide sugars as glycosyl donors, exhibiting its promiscuity towards glycosyl donors. This is the first report that a recombinant glycosyltransferase MeUGT1 that can regio-specifically glycosylate C4'-hydroxyl function of semi-synthetic phenoxodiol isoflavene to biosynthesize a series of unnatural phenoxodiol-4'-O-α-glycosides.
Collapse
Affiliation(s)
- Na Joon Lee
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul 02841, South Korea
| | - Younghae Kwon
- Transdisciplinary Major in Learning Health Systems, Department of Integrated Biomedical and Life Sciences, Korea University, Seoul 02841, South Korea
| | - Woongshin Kang
- Transdisciplinary Major in Learning Health Systems, Department of Integrated Biomedical and Life Sciences, Korea University, Seoul 02841, South Korea
| | - Minsuk Seo
- Transdisciplinary Major in Learning Health Systems, Department of Integrated Biomedical and Life Sciences, Korea University, Seoul 02841, South Korea
| | - Yurin Seol
- Transdisciplinary Major in Learning Health Systems, Department of Integrated Biomedical and Life Sciences, Korea University, Seoul 02841, South Korea
| | - Je Won Park
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul 02841, South Korea; School of Biosystems and Biomedical Sciences, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
6
|
Biochemical characterization of synthesized fisetin glucoside by dextransucrase from Leuconostoc mesenteroides NRRL B-1299CB4 with enhanced water solubility. Enzyme Microb Technol 2022; 161:110111. [DOI: 10.1016/j.enzmictec.2022.110111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
|
7
|
Poudel PB, Pandey RP, Dhakal D, Kim TS, Nguyen TTH, Jung HJ, Shin HJ, Timalsina B, Sohng JK. Functional Characterization of a Regiospecific Sugar- O-Methyltransferase from Nocardia. Appl Environ Microbiol 2022; 88:e0075422. [PMID: 35703553 PMCID: PMC9275233 DOI: 10.1128/aem.00754-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Methyltransferases transfer a methyl group to a diverse group of natural products, thus providing structural diversity, stability, and altered pharmacological properties to the molecules. A limited number of regiospecific sugar-O-methyltransferases are functionally characterized. Thus, discovery of such an enzyme could solve the difficulties of biological production of methoxy derivatives of glycosylated molecules. In the current study, a regiospecific sugar-O-methyltransferase, ThnM1, belonging to the biosynthetic gene cluster (BGC) of 1-(α-L-(2-O-methyl)-6-deoxymannopyranosyloxy)-3,6,8-trimethoxynaphthalene produced by Nocardia sp. strain CS682, was analyzed and functionally characterized. ThnM1 demonstrated promiscuity to diverse chemical structures such as rhamnose-containing anthraquinones and flavonoids with regiospecific methylation at the 2'-hydroxyl group of the sugar moiety. Compared with other compounds, anthraquinone rhamnosides were found to be the preferred substrates for methylation. Thus, the enzyme was further employed for whole-cell biotransformation using engineered Escherichia coli to produce a methoxy-rhamnosyl derivative of quinizarin, an anthraquinone derivative. The structure of the newly generated derivative from Escherichia coli fermentation was elucidated by liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopic analyses and identified as quinizarin-4-O-α-l-2-O-methylrhamnoside (QRM). Further, the biological impact of methylation was studied by comparing the cytotoxicity of QRM with that of quinizarin against the U87MG, SNU-1, and A375SM cancer cell lines. IMPORTANCE ThnM1 is a putative sugar-O-methyltransferase produced by the Nocardia sp. strain CS682 and is encoded by a gene belonging to the biosynthetic gene cluster (BGC) of 1-(α-l-(2-O-methyl)-6-deoxymannopyranosyloxy)-3,6,8-trimethoxynaphthalene. We demonstrated that ThnM1 is a promiscuous enzyme with regiospecific activity at the 2'-OH of rhamnose. As regiospecific methylation of sugars by chemical synthesis is a challenging step, ThnM1 may fill the gap in the potential diversification of natural products by methylating the rhamnose moiety attached to them.
Collapse
Affiliation(s)
- Purna Bahadur Poudel
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Ramesh Prasad Pandey
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Dipesh Dhakal
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Tae-Su Kim
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Trang Thi Huyen Nguyen
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Hye Jin Jung
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of Biotechnology and Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Hee Jeong Shin
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - Jae Kyung Sohng
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of Biotechnology and Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| |
Collapse
|
8
|
Lorthongpanich N, Mahalapbutr P, Rungrotmongkol T, Charoenwongpaiboon T, Prousoontorn MH. Fisetin glycosides synthesized by cyclodextrin glycosyltransferase from Paenibacillus sp. RB01: characterization, molecular docking, and antioxidant activity. PeerJ 2022; 10:e13467. [PMID: 35637717 PMCID: PMC9147316 DOI: 10.7717/peerj.13467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/29/2022] [Indexed: 01/20/2023] Open
Abstract
Fisetin is a flavonoid that exhibits high antioxidant activity and is widely employed in the pharmacological industries. However, the application of fisetin is limited due to its low water solubility. In this study, glycoside derivatives of fisetin were synthesized by an enzymatic reaction using cyclodextrin glycosyltransferase (CGTase) from Paenibacillus sp. RB01 in order to improve the water solubility of fisetin. Under optimal conditions, CGTase was able to convert more than 400 mg/L of fisetin to its glycoside derivatives, which is significantly higher than the previous biosynthesis using engineered E. coli. Product characterization by HPLC and LC-MS/MS revealed that the transglycosylated products consisted of at least five fisetin glycoside derivatives, including fisetin mono-, di- and triglucosides, as well as their isomers. Enzymatic analysis by glucoamylase and α-glucosidase showed that these fisetin glycosides were formed by α-1,4-glycosidic linkages. Molecular docking demonstrated that there are two possible binding modes of fisetin in the enzyme active site containing CGTase-glysosyl intermediate, in which O7 and O4' atoms of fisetin positioned close to the C1 of glycoside donor, corresponding to the isomers of the obtained fisetin monoglucosides. In addition, the water solubility and the antioxidant activity of the fisetin monoglucosides were tested. It was found that their water solubility was increased at least 800 times when compared to that of their parent molecule while still maintaining the antioxidant activity. This study revealed the potential application of CGTase to improve the solubility of flavonoids.
Collapse
Affiliation(s)
| | - Panupong Mahalapbutr
- Department of Biochemistry, and Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thanyada Rungrotmongkol
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand,Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | | |
Collapse
|
9
|
He B, Bai X, Tan Y, Xie W, Feng Y, Yang GY. Glycosyltransferases: Mining, engineering and applications in biosynthesis of glycosylated plant natural products. Synth Syst Biotechnol 2022; 7:602-620. [PMID: 35261926 PMCID: PMC8883072 DOI: 10.1016/j.synbio.2022.01.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/10/2021] [Accepted: 01/02/2022] [Indexed: 12/14/2022] Open
Abstract
UDP-Glycosyltransferases (UGTs) catalyze the transfer of nucleotide-activated sugars to specific acceptors, among which the GT1 family enzymes are well-known for their function in biosynthesis of natural product glycosides. Elucidating GT function represents necessary step in metabolic engineering of aglycone glycosylation to produce drug leads, cosmetics, nutrients and sweeteners. In this review, we systematically summarize the phylogenetic distribution and catalytic diversity of plant GTs. We also discuss recent progress in the identification of novel GT candidates for synthesis of plant natural products (PNPs) using multi-omics technology and deep learning predicted models. We also highlight recent advances in rational design and directed evolution engineering strategies for new or improved GT functions. Finally, we cover recent breakthroughs in the application of GTs for microbial biosynthesis of some representative glycosylated PNPs, including flavonoid glycosides (fisetin 3-O-glycosides, astragalin, scutellarein 7-O-glucoside), terpenoid glycosides (rebaudioside A, ginsenosides) and polyketide glycosides (salidroside, polydatin).
Collapse
Affiliation(s)
- Bo He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yumeng Tan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wentao Xie
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
10
|
Kurze E, Ruß V, Syam N, Effenberger I, Jonczyk R, Liao J, Song C, Hoffmann T, Schwab W. Glucosylation of (±)-Menthol by Uridine-Diphosphate-Sugar Dependent Glucosyltransferases from Plants. Molecules 2021; 26:5511. [PMID: 34576983 PMCID: PMC8470988 DOI: 10.3390/molecules26185511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Menthol is a cyclic monoterpene alcohol of the essential oils of plants of the genus Mentha, which is in demand by various industries due to its diverse sensorial and physiological properties. However, its poor water solubility and its toxic effect limit possible applications. Glycosylation offers a solution as the binding of a sugar residue to small molecules increases their water solubility and stability, renders aroma components odorless and modifies bioactivity. In order to identify plant enzymes that catalyze this reaction, a glycosyltransferase library containing 57 uridine diphosphate sugar-dependent enzymes (UGTs) was screened with (±)-menthol. The identity of the products was confirmed by mass spectrometry and nuclear magnetic resonance spectroscopy. Five enzymes were able to form (±)-menthyl-β-d-glucopyranoside in whole-cell biotransformations: UGT93Y1, UGT93Y2, UGT85K11, UGT72B27 and UGT73B24. In vitro enzyme activity assays revealed highest catalytic activity for UGT93Y1 (7.6 nkat/mg) from Camellia sinensis towards menthol and its isomeric forms. Although UGT93Y2 shares 70% sequence identity with UGT93Y1, it was less efficient. Of the five enzymes, UGT93Y1 stood out because of its high in vivo and in vitro biotransformation rate. The identification of novel menthol glycosyltransferases from the tea plant opens new perspectives for the biotechnological production of menthyl glucoside.
Collapse
Affiliation(s)
- Elisabeth Kurze
- Biotechnology of Natural Products, School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 1, 85354 Freising, Germany; (E.K.); (V.R.); (N.S.); (R.J.); (J.L.); (T.H.)
| | - Victoria Ruß
- Biotechnology of Natural Products, School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 1, 85354 Freising, Germany; (E.K.); (V.R.); (N.S.); (R.J.); (J.L.); (T.H.)
| | - Nadia Syam
- Biotechnology of Natural Products, School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 1, 85354 Freising, Germany; (E.K.); (V.R.); (N.S.); (R.J.); (J.L.); (T.H.)
| | | | - Rafal Jonczyk
- Biotechnology of Natural Products, School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 1, 85354 Freising, Germany; (E.K.); (V.R.); (N.S.); (R.J.); (J.L.); (T.H.)
| | - Jieren Liao
- Biotechnology of Natural Products, School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 1, 85354 Freising, Germany; (E.K.); (V.R.); (N.S.); (R.J.); (J.L.); (T.H.)
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, China;
| | - Thomas Hoffmann
- Biotechnology of Natural Products, School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 1, 85354 Freising, Germany; (E.K.); (V.R.); (N.S.); (R.J.); (J.L.); (T.H.)
| | - Wilfried Schwab
- Biotechnology of Natural Products, School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 1, 85354 Freising, Germany; (E.K.); (V.R.); (N.S.); (R.J.); (J.L.); (T.H.)
| |
Collapse
|
11
|
An integrative approach to improving the biocatalytic reactions of whole cells expressing recombinant enzymes. World J Microbiol Biotechnol 2021; 37:105. [PMID: 34037845 DOI: 10.1007/s11274-021-03075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Biotransformation is a selective, stereospecific, efficient, and environment friendly method, compared to chemical synthesis, and a feasible tool for industrial and pharmaceutical applications. The design of biocatalysts using enzyme engineering and metabolic engineering tools has been widely reviewed. However, less importance has been given to the biocatalytic reaction of whole cells expressing recombinant enzymes. Along with the remarkable development of biotechnology tools, a variety of techniques have been applied to improve the biocatalytic reaction of whole cell biotransformation. In this review, techniques related to the biocatalytic reaction are examined, reorganized, and summarized via an integrative approach. Moreover, equilibrium-shifted biotransformation is reviewed for the first time.
Collapse
|
12
|
Xu Z, He WQ, Liu CS, Kong JQ. Enzymatic synthesis of myricetin 3-O-galactoside through a whole-cell biocatalyst. CHINESE HERBAL MEDICINES 2020; 12:384-389. [PMID: 36120167 PMCID: PMC9476700 DOI: 10.1016/j.chmed.2020.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 11/17/2022] Open
Abstract
Objective Myricetin 3-O-galactoside is an active compound with pharmaceutical potential. The insufficient supply of this compound becomes a bottleneck in the druggability study of myricetin 3-O-galactoside. Thus, it is necessary to develop a biosynthetic process for myricetin 3-O-galactoside through metabolic engineering. Methods Two genes OcSUS1 and OcUGE1 encoding sucrose synthase and UDP-glucose 4-epimerase were introduced into BL21(DE3) to reconstruct a UDP-D-galactose (UDP-Gal) biosynthetic pathway in Escherichia coli. The resultant chassis strain was able to produce UDP-Gal. Subsequently, a flavonol 3-O-galactosyltransferase DkFGT gene was transformed into the chassis strain producing UDP-Gal. An artificial pathway for myricetin 3-O-galactoside biosynthesis was thus constructed in E. coli. Results The obtained engineered strain was demonstrated to be capable of producing myricetin 3-O-galactoside, reaching 29.7 mg/L. Conclusion Biosynthesis of myricetin 3-O-galactoside through engineered E. coli could be achieved. This result lays the foundation for the large-scale preparation of myricetin 3-O-galactoside.
Collapse
|
13
|
Zhu TT, Liu H, Wang PY, Ni R, Sun CJ, Yuan JC, Niu M, Lou HX, Cheng AX. Functional characterization of UDP-glycosyltransferases from the liverwort Plagiochasma appendiculatum and their potential for biosynthesizing flavonoid 7-O-glucosides. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110577. [PMID: 32900434 DOI: 10.1016/j.plantsci.2020.110577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Flavonoid glucosides, typically generated from aglycones via the action of uridine diphosphate-dependent glycosyltransferases (UGTs), both contribute to plant viability and are pharmacologically active. The properties of UGTs produced by liverworts, one of the basal groups of non-vascular land plants, have not been systematically explored. Here, two UGTs potentially involved in flavonoids synthesis were identified from the transcriptome of Plagiochasma appendiculatum. Enzymatic analysis showed that PaUGT1 and PaUGT2 accepted various flavones, flavonols, flavanones and dihydrochalcones as substrates. A mutated form PaUGT1-Q19A exhibited a higher catalytic efficiency than did the wild type enzyme. When expressed in Escherichia coli, the yield of flavonol 7-O-glucosides reached to over 70 %. Co-expression of PaUGT1-Q19A with the upstream flavone synthase I PaFNS I-1 proved able to convert the flavanone aglycones naringenin and eriodictyol into the higher-yield apigenin 7-O-glucoside (A7G) and luteolin 7-O-glucoside (L7G). The maximum concentration of 81.0 μM A7G and 88.6 μM L7G was achieved upon supplementation with 100 μM naringenin and 100 μM eriodictyol under optimized conditions. This is the first time that flavonoids UGTs have been characterized from liverworts and co-expression of UGTs and FNS Is from the same species serves as an effective strategy to synthesize flavone 7-O-glucosides in E. coli.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Hui Liu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Piao-Yi Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Rong Ni
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Chun-Jing Sun
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Jing-Cong Yuan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Meng Niu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Hong-Xiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Ai-Xia Cheng
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
14
|
Mrudulakumari Vasudevan U, Lee EY. Flavonoids, terpenoids, and polyketide antibiotics: Role of glycosylation and biocatalytic tactics in engineering glycosylation. Biotechnol Adv 2020; 41:107550. [PMID: 32360984 DOI: 10.1016/j.biotechadv.2020.107550] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids, terpenoids, and polyketides are structurally diverse secondary metabolites used widely as pharmaceuticals and nutraceuticals. Most of these molecules exist in nature as glycosides, in which sugar residues act as a decisive factor in their architectural complexity and bioactivity. Engineering glycosylation through selective trimming or extension of the sugar residues in these molecules is a prerequisite to their commercial production as well to creating novel derivatives with specialized functions. Traditional chemical glycosylation methods are tedious and can offer only limited end-product diversity. New in vitro and in vivo biocatalytic tools have emerged as outstanding platforms for engineering glycosylation in these three classes of secondary metabolites to create a large repertoire of versatile glycoprofiles. As knowledge has increased about secondary metabolite-associated promiscuous glycosyltransferases and sugar biosynthetic machinery, along with phenomenal progress in combinatorial biosynthesis, reliable industrial production of unnatural secondary metabolites has gained momentum in recent years. This review highlights the significant role of sugar residues in naturally occurring flavonoids, terpenoids, and polyketide antibiotics. General biocatalytic tools used to alter the identity and pattern of sugar molecules are described, followed by a detailed illustration of diverse strategies used in the past decade to engineer glycosylation of these valuable metabolites, exemplified with commercialized products and patents. By addressing the challenges involved in current bio catalytic methods and considering the perspectives portrayed in this review, exceptional drugs, flavors, and aromas from these small molecules could come to dominate the natural-product industry.
Collapse
Affiliation(s)
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
15
|
Efficient Biocatalytic Preparation of Rebaudioside KA: Highly Selective Glycosylation Coupled with UDPG Regeneration. Sci Rep 2020; 10:6230. [PMID: 32277148 PMCID: PMC7148340 DOI: 10.1038/s41598-020-63379-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/30/2020] [Indexed: 11/30/2022] Open
Abstract
Rebaudioside KA is a diterpene natural sweetener isolated in a trace amount from the leaves of Stevia rebaudiana. Selective glycosylation of rubusoside, a natural product abundantly presented in various plants, is a feasible approach for the biosynthesis of rebaudioside KA. In this study, bacterial glycosyltransferase OleD was identified to selectively transfer glucose from UDPG to 2′-hydroxyl group with a β-1,2 linkage at 19-COO-β-D-glucosyl moiety of rubusoside for the biosynthesis of rebaudioside KA. To eliminate the use of UDPG and improve the productivity, a UDPG regeneration system was constructed as an engineered Escherichia coli strain to couple with the glycosyltransferase. Finally, rubusoside at 22.5 g/L (35.0 mM) was completely converted to rebaudioside KA by the whole cells without exogenous addition of UDPG. This study provides an efficient and scalable method for highly selective biosynthesis of rebaudioside KA.
Collapse
|
16
|
Ruprecht C, Bönisch F, Ilmberger N, Heyer TV, Haupt ET, Streit WR, Rabausch U. High level production of flavonoid rhamnosides by metagenome-derived Glycosyltransferase C in Escherichia coli utilizing dextrins of starch as a single carbon source. Metab Eng 2019; 55:212-219. [DOI: 10.1016/j.ymben.2019.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/14/2019] [Accepted: 07/07/2019] [Indexed: 01/09/2023]
|
17
|
Bashyal P, Pandey RP, Thapa SB, Kang MK, Kim CJ, Sohng JK. Biocatalytic Synthesis of Non-Natural Monoterpene O-Glycosides Exhibiting Superior Antibacterial and Antinematodal Properties. ACS OMEGA 2019; 4:9367-9375. [PMID: 31460026 PMCID: PMC6648847 DOI: 10.1021/acsomega.9b00535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/07/2019] [Indexed: 05/02/2023]
Abstract
A promiscuous Bacillus glycosyltransferase (YjiC) was explored for the enzymatic synthesis of monoterpene O-glycosides in vitro and in vivo. YjiC converted seven monoterpenes into 41 different sugar-conjugated novel glycoside derivatives. The whole-cell biotransformation of the same set of monoterpenes exhibited robust enzyme activity to synthesize O-glucosyl derivatives from Escherichia coli. These newly synthesized selected monoterpene-O-glucosyl derivatives exhibited enhanced antibacterial activities against human pathogenic bacteria and antinematodal activities against pine wood nematode Bursaphelenchus xylophilus.
Collapse
Affiliation(s)
- Puspalata Bashyal
- Department
of Life Science and Biochemical Engineering and Department of
Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Republic of Korea
| | - Ramesh Prasad Pandey
- Department
of Life Science and Biochemical Engineering and Department of
Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Republic of Korea
| | - Samir Bahadur Thapa
- Department
of Life Science and Biochemical Engineering and Department of
Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Republic of Korea
| | - Min-Kyoung Kang
- Industrial
Biomaterials Research Center Korea Research, Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon 34141, Korea
| | - Chang-Jin Kim
- Industrial
Biomaterials Research Center Korea Research, Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon 34141, Korea
| | - Jae Kyung Sohng
- Department
of Life Science and Biochemical Engineering and Department of
Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Republic of Korea
- E-mail: . Tel: +82(41)530-2246 Fax: +82(41)530-8229
| |
Collapse
|
18
|
Liposome fragment-mediated introduction of multiple plasmids into Bacillus subtilis. Biochem Biophys Rep 2019; 18:100646. [PMID: 31111103 PMCID: PMC6512750 DOI: 10.1016/j.bbrep.2019.100646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/19/2019] [Accepted: 04/29/2019] [Indexed: 11/21/2022] Open
Abstract
Transformation of microorganisms by plasmid introduction is one of the central techniques in modern biotechnology. However, applicable transformation methods for simultaneous introduction of multiple plasmids are still limiting. Here, we reported a liposome-mediated method that efficiently introduces multiple plasmids into B. subtilis. In this method, liposomes containing three kinds of plasmids were mixed with B. subtilis protoplasts in the presence of 36% polyethylene glycol (PEG), and the resultant protoplasts were grown in cell wall-regeneration media. We found that the rates of introduction of multiple plasmids were significantly increased in the presence of liposomes. We also found that an intact liposome structure was not required for introduction, and the presence of phosphatidylglycerol (PG) was important for efficient introduction of multiple plasmids. Therefore, the liposome- or liposome fragment-mediated transformation method reported here can advance studies utilizing multiple plasmids.
Collapse
|
19
|
Enzymatic and Microbial Biosynthesis of Novel Violacein Glycosides with Enhanced Water Solubility and Improved Anti-nematode Activity. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0466-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Shrestha B, Pandey RP, Darsandhari S, Parajuli P, Sohng JK. Combinatorial approach for improved cyanidin 3-O-glucoside production in Escherichia coli. Microb Cell Fact 2019; 18:7. [PMID: 30654816 PMCID: PMC6335687 DOI: 10.1186/s12934-019-1056-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/07/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Multi-monocistronic and multi-variate vectors were designed, built, and tested for the improved production of cyanidin 3-O-glucoside (C3G) in Escherichia coli BL21 (DE3). The synthetic bio-parts were designed in such a way that multiple genes can be assembled using the bio-brick system, and expressed under different promoters in a single vector. The vectors harbor compatible cloning sites, so that the genes can be shuffled from one vector to another in a single step, and assembled into a single vector. The two required genes: anthocyanidin synthase (PhANS) from Petunia hybrida, and cyanidin 3-O-glucosyltransferase (At3GT) from Arabidopsis thaliana, were individually cloned under PT7, Ptrc, and PlacUV5 promoters. Both PhANS and At3GT were shuffled back and forth, so as to generate a combinatorial system for C3G production. The constructed systems were further coupled with the genes for UDP-D-glucose synthesis, all cloned in a multi-monocistronic fashion under PT7. Finally, the production of C3G was checked and confirmed using the modified M9 media, and analyzed through various chromatography and spectrometric analyses. RESULTS The engineered strains endowed with newly generated vectors and the genes for C3G biosynthesis and UDP-D-glucose synthesis were fed with 2 mM (+)-catechin and D-glucose for the production of cyanidin, and its subsequent conversion to C3G. One of the engineered strains harboring At3GT and PhANS under Ptrc promoter and UDP-D-glucose biosynthesis genes under PT7 promoter led to the production of ~ 439 mg/L of C3G within 36 h of incubation, when the system was exogenously fed with 5% (w/v) D-glucose. This system did not require exogenous supplementation of UDP-D-glucose. CONCLUSION A synthetic vector system using different promoters has been developed and used for the synthesis of C3G in E. coli BL21 (DE3) by directing the metabolic flux towards the UDP-D-glucose. This system has the potential of generating better strains for the synthesis of valuable natural products.
Collapse
Affiliation(s)
- Biplav Shrestha
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
| | - Sumangala Darsandhari
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
| | - Prakash Parajuli
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
| |
Collapse
|
21
|
Yang B, Liu H, Yang J, Gupta VK, Jiang Y. New insights on bioactivities and biosynthesis of flavonoid glycosides. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Microbial Synthesis of Non-Natural Anthraquinone Glucosides Displaying Superior Antiproliferative Properties. Molecules 2018; 23:molecules23092171. [PMID: 30154376 PMCID: PMC6225150 DOI: 10.3390/molecules23092171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
Anthraquinones, naturally occurring bioactive compounds, have been reported to exhibit various biological activities, including anti-inflammatory, antiviral, antimicrobial, and anticancer effects. In this study, we biotransformed three selected anthraquinones into their novel O-glucoside derivatives, expressing a versatile glycosyltransferase (YjiC) from Bacillus licheniformis DSM 13 in Escherichia coli. Anthraflavic acid, alizarin, and 2-amino-3-hydroxyanthraquinone were exogenously fed to recombinant E. coli as substrate for biotransformation. The products anthraflavic acid-O-glucoside, alizarin 2-O-β-d-glucoside, and 2-amino-3-O-glucosyl anthraquinone produced in the culture broths were characterized by various chromatographic and spectroscopic analyses. The comparative anti-proliferative assay against various cancer cells (gastric cancer-AGS, uterine cervical cancer-HeLa, and liver cancer-HepG2) were remarkable, since the synthesized glucoside compounds showed more than 60% of cell growth inhibition at concentrations ranging from ~50 μM to 100 μM. Importantly, one of the synthesized glucoside derivatives, alizarin 2-O-glucoside inhibited more than 90% of cell growth in all the cancer cell lines tested.
Collapse
|
23
|
Metabolic engineering of glycosylated polyketide biosynthesis. Emerg Top Life Sci 2018; 2:389-403. [DOI: 10.1042/etls20180011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022]
Abstract
Microbial cell factories are extensively used for the biosynthesis of value-added chemicals, biopharmaceuticals, and biofuels. Microbial biosynthesis is also realistic for the production of heterologous molecules including complex natural products of plant and microbial origin. Glycosylation is a well-known post-modification method to engineer sugar-functionalized natural products. It is of particular interest to chemical biologists to increase chemical diversity of molecules. Employing the state-of-the-art systems and synthetic biology tools, a range of small to complex glycosylated natural products have been produced from microbes using a simple and sustainable fermentation approach. In this context, this review covers recent notable metabolic engineering approaches used for the biosynthesis of glycosylated plant and microbial polyketides in different microorganisms. This review article is broadly divided into two major parts. The first part is focused on the biosynthesis of glycosylated plant polyketides in prokaryotes and yeast cells, while the second part is focused on the generation of glycosylated microbial polyketides in actinomycetes.
Collapse
|
24
|
|
25
|
Shrestha A, Pandey RP, Dhakal D, Parajuli P, Sohng JK. Biosynthesis of flavone C-glucosides in engineered Escherichia coli. Appl Microbiol Biotechnol 2018; 102:1251-1267. [PMID: 29308528 DOI: 10.1007/s00253-017-8694-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/27/2022]
Abstract
Two plant-originated C-glucosyltransferases (CGTs) UGT708D1 from Glycine max and GtUF6CGT1 from Gentiana triflora were accessed for glucosylation of selected flavones chrysin and luteolin. Uridine diphosphate (UDP)-glucose pool was enhanced in Escherichia coli cell cytosol by introducing heterologous UDP-glucose biosynthetic genes, i.e., glucokinase (glk), phosphoglucomutase (pgm2), and glucose 1-phosphate uridylyltransferase (galU), along with glucose facilitator diffusion protein from (glf) from different organisms, in a multi-monocistronic vector with individual T7 promoter, ribosome binding site, and terminator for each gene. The C-glucosylated products were analyzed by high-performance liquid chromatography-photodiode array, high-resolution quadruple time-of-flight electrospray ionization mass spectrometry, and one-dimensional nuclear magnetic resonance analyses. Fed-batch shake flask culture showed 8% (7 mg/L; 16 μM) and 11% (9 mg/L; 22 μM) conversion of chrysin to chrysin 6-C-β-D-glucoside with UGT708D1 and GtUF6CGT1, respectively. Moreover, the bioengineered E. coli strains with exogenous UDP-glucose biosynthetic genes and glucose facilitator diffusion protein enhanced the production of chrysin 6-C-β-D-glucoside by approximately 1.4-fold, thus producing 10 mg/L (12%, 24 μM) and 14 mg/L (17%, 34 μM) by UGT708D1 and GtUF6CGT1, respectively, without supplementation of additional UDP-glucose in the medium. The biotransformation was further elevated when the bioengineered strain was scaled up in lab-scale fermentor at 3 L volume. HPLC analysis of fermentation broth extract revealed 50% (42 mg/L, 100 μM) conversion of chrysin to chrysin 6-C-β-D-glucoside at 48 h upon supplementation of 200 μM of chrysin. The maximum conversion of luteolin was 38% (34 mg/L, 76 μM) in 50-mL shake flask fermentation at 48 h. C-glucosylated derivative of chrysin was found to be more soluble and more stable to high temperature, different pH range, and β-glucosidase enzyme, than O-glucosylated derivative of chrysin.
Collapse
Affiliation(s)
- Anil Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Prakash Parajuli
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.
| |
Collapse
|
26
|
Substrate Scope of O-Methyltransferase from Streptomyces peucetius for Biosynthesis of Diverse Natural Products Methoxides. Appl Biochem Biotechnol 2017; 184:1404-1420. [PMID: 29043664 DOI: 10.1007/s12010-017-2603-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
Abstract
Methylation is a common post-modification reaction that is observed during the biosynthesis of secondary metabolites produced by plants and microorganisms. Based on the sequence information from Streptomyces peucetius ATCC27952, a putative O-methyltransferase (OMT) gene SpOMT7740 was polymerase chain reaction amplified and cloned into E. coli BL21 (DE3) host to test the substrate promiscuity and conduct functional characterization. In vitro and in vivo reaction assays were carried out over various classes of substrates: flavonoids (flavonol, flavones, and isoflavonoid), chalcones, anthraquinones, anthracyclines, and sterol molecules, and the applications in synthesizing diverse classes of O-methoxy natural products were also illustrated. SpOMT7740 catalyzed the O-methylation reaction to form various natural and non-natural O-methoxides, includes 7-hydroxy-8-O-methoxy flavone, 3-O-methoxy flavone, three mono-, di-, and tri-O-methoxy genistein, mono-O-methoxy phloretin, mono-O-methoxy luteolin, 3-O-methoxy β-sitosterol, and O-methoxy anthraquinones (emodin and aloe emodin) and O-methoxy anthracycline (daunorubicin) exhibiting diverse substrate flexibility. Daunorubicin is a native secondary metabolite of S. peucetius. Among the compounds tested, 7,8-dihydroxyflavone was the best substrate for bioconversion to 7-hydroxy-8-O-methoxy flavone, and it was structurally elucidated. This enzyme showed a flexible catalysis over the given ranges of temperature, pH, and divalent cationic conditions for O-methylation.
Collapse
|
27
|
Öztürk S, Ergün BG, Çalık P. Double promoter expression systems for recombinant protein production by industrial microorganisms. Appl Microbiol Biotechnol 2017; 101:7459-7475. [DOI: 10.1007/s00253-017-8487-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 01/19/2023]
|
28
|
3-O-Glucosylation of quercetin enhances inhibitory effects on the adipocyte differentiation and lipogenesis. Biomed Pharmacother 2017; 95:589-598. [PMID: 28869898 DOI: 10.1016/j.biopha.2017.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/21/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
Glycosylation of natural flavonoids with various sugar moieties can affect their physicochemical and pharmacological properties. In this study, the plant flavonoids quercetin aglycon (Quer) and quercetin 3-O-glucoside (Q3G) were evaluated and compared for their potential anti-obesity effects. The Q3G dose-dependently reduced the TG contents and lipid accumulation in 3T3-L1 adipocyte cells, by 52% and 60% at 20μM, respectively, compared to differentiated control (100%), which were 1.6-fold and 2.4-fold higher reduction than Quer. The Q3G (20μM) also more significantly reduced the expression of adipogenic markers such as C/EBP-β, C/EBP-α, PPAR-γ, and aP2 than Quer, indicating that the Q3G suppresses both adipocyte differentiation and lipogenesis more effectively than Quer in vitro. Comparing to those in the high-fat diet (HFD) fed mice control group for 10 weeks, both the body and liver weights and the size of adipocytes in epididymal adipose tissues were significantly reduced in HFD mice fed with Q3G for another 6 weeks (30mg/kg body weight by oral administration), accompanied by the reductions of TG, total cholesterol, and HDL-cholesterol in serum. The Q3G also reduced the levels of the lipid metabolism-associated proteins, PPAR-γ, SREBP-1c, and FAS in the liver tissues. These results clearly demonstrated that Q3G exhibits a stronger anti-obesity effect than Quer and its anti-obesity effect is mediated via inhibition of adipocyte differentiation and lipogenesis, decreasing serum lipid levels by altering hepatic lipid metabolism, and reducing body weight gain. The results of this study suggest that the Q3G, but not Quer, can be a potent functional ingredient of beneficial health foods or a therapeutic agent to prevent or treat obesity.
Collapse
|
29
|
Koirala N, Pandey RP, Thuan NH, Ghimire GP, Jung HJ, Oh TJ, Sohng JK. Metabolic engineering of Escherichia coli for the production of isoflavonoid-4'-O-methoxides and their biological activities. Biotechnol Appl Biochem 2017; 66:484-493. [PMID: 26498482 DOI: 10.1002/bab.1452] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/16/2015] [Indexed: 12/20/2022]
Abstract
Isoflavonoid representatives such as genistein and daidzein are highly potent anticancer, antibacterial, and antioxidant agents. It have been demonstrated that methylation of flavonoids enhanced the transporting ability, which lead to facilitated absorption and greatly increased bioavailability. In this paper, genetically engineered Escherichia coli was reconstructed by harboring E. coli K12-derived metK encoding S-adenosine-l-methionine (SAM) synthase (accession number: K02129) for enhancement of SAM as a precursor and Streptomyces avermitilis originated SaOMT2 (O-methyltransferase, accession number: NP_823558) for methylation of daidzein and genistein as preferred substrates. The formation of desired products via biotransformation including 4'-O-methyl-genistein and 4'-O-methyl-daidzein was confirmed individually by using chromatographical methods such as high-performance liquid chromatography, liquid chromatography/time-of-flight/mass spectrometry (LC-TOF-MS), and nuclear magnetic resonance (NMR), and NMR (1 H and 13 C). Furthermore, substrates concentration, incubation time, and media parameters were optimized using flask culture. Finally, the most fit conditions were applied for fed-batch fermentation with scale-up to 3 L (working volume) to obtain the maximum yield of the products including 164.25 µM (46.81 mg/L) and 382.50 µM (102.88 mg/L) for 4'-O-methyl genistein and 4'-O-methyl daidzein, respectively. In particular, potent inhibitory activities of those isoflavonoid methoxides against the growth of cancer line (B16F10, AGS, and HepG2) and human umbilical vein endothelial cells were investigated and demonstrated. Taken together, this research work described the production of isoflavonoid-4'-O-methoxides by E. coli engineering, improvement of production, characterization of produced compounds, and preliminary in vitro biological activities of the flavonoids being manufactured.
Collapse
Affiliation(s)
- Niranjan Koirala
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asansi, Chungnam, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asansi, Chungnam, Republic of Korea.,Department of Life Science and Biochemical Engineering, Sun Moon University, Asansi, Chungnam, Republic of Korea
| | - Nguyen Huy Thuan
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Danang city, Vietnam
| | - Gopal Prasad Ghimire
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asansi, Chungnam, Republic of Korea
| | - Hye Jin Jung
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asansi, Chungnam, Republic of Korea.,Department of Life Science and Biochemical Engineering, Sun Moon University, Asansi, Chungnam, Republic of Korea
| | - Tae-Jin Oh
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asansi, Chungnam, Republic of Korea.,Department of Life Science and Biochemical Engineering, Sun Moon University, Asansi, Chungnam, Republic of Korea
| | - Jae Kyung Sohng
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asansi, Chungnam, Republic of Korea.,Department of Life Science and Biochemical Engineering, Sun Moon University, Asansi, Chungnam, Republic of Korea
| |
Collapse
|
30
|
Microbial production of astilbin, a bioactive rhamnosylated flavanonol, from taxifolin. World J Microbiol Biotechnol 2017; 33:36. [DOI: 10.1007/s11274-017-2208-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
|
31
|
Parajuli P, Pandey RP, Darsandhari S, Park YI, Sohng JK. Donor substrate flexibility study of AtUGT89C1, a glycosyltransferase from Arabidopsis thaliana. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2016.1251941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Prakash Parajuli
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Sumangala Darsandhari
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Yong Il Park
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| |
Collapse
|
32
|
Parajuli P, Pandey RP, Huyen Nguyen TT, Shrestha B, Yamaguchi T, Sohng JK. Biosynthesis of natural and non-natural genistein glycosides. RSC Adv 2017. [DOI: 10.1039/c6ra28145a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Biosynthesis of various genistein glycopyranoside scaffolds using versatile GTs and SOMTs. Each compound was structurally characterized and biological activity assay was carried out.
Collapse
Affiliation(s)
- Prakash Parajuli
- Department of Life Science and Biochemical Engineering
- Sun Moon University
- Tangjeong-myeon Asan-Si
- Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering
- Sun Moon University
- Tangjeong-myeon Asan-Si
- Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering
| | - Trang Thi Huyen Nguyen
- Department of Life Science and Biochemical Engineering
- Sun Moon University
- Tangjeong-myeon Asan-Si
- Republic of Korea
| | - Biplav Shrestha
- Department of Life Science and Biochemical Engineering
- Sun Moon University
- Tangjeong-myeon Asan-Si
- Republic of Korea
| | - Tokutaro Yamaguchi
- Department of Life Science and Biochemical Engineering
- Sun Moon University
- Tangjeong-myeon Asan-Si
- Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering
- Sun Moon University
- Tangjeong-myeon Asan-Si
- Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering
| |
Collapse
|
33
|
Pandey RP, Parajuli P, Chu LL, Kim SY, Sohng JK. Biosynthesis of a novel fisetin glycoside from engineered Escherichia coli. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.07.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Pandey RP, Parajuli P, Koffas MA, Sohng JK. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology. Biotechnol Adv 2016; 34:634-662. [DOI: 10.1016/j.biotechadv.2016.02.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 12/18/2022]
|
35
|
Wang H, Yang Y, Lin L, Zhou W, Liu M, Cheng K, Wang W. Engineering Saccharomyces cerevisiae with the deletion of endogenous glucosidases for the production of flavonoid glucosides. Microb Cell Fact 2016; 15:134. [PMID: 27491546 PMCID: PMC4973555 DOI: 10.1186/s12934-016-0535-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/28/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Glycosylation of flavonoids is a promising approach to improve the pharmacokinetic properties and biological activities of flavonoids. Recently, many efforts such as enzymatic biocatalysis and the engineered Escherichia coli biotransformation have increased the production of flavonoid glucosides. However, the low yield of flavonoid glucosides can not meet the increasing demand for human medical and dietary needs. Saccharomyces cerevisiae is a generally regarded as safe (GRAS) organism that has several attractive characteristics as a metabolic engineering platform for the production of flavonoid glucosides. However, endogenous glucosidases of S. cerevisiae as a whole-cell biocatalyst reversibly hydrolyse the glucosidic bond and hinder the biosynthesis of the desired products. In this study, a model flavonoid, scutellarein, was used to exploit how to enhance the production of flavonoid glucosides in the engineered S. cerevisiae. RESULTS To produce flavonoid glucosides, three flavonoid glucosyltransferases (SbGTs) from Scutellaria baicalensis Georgi were successfully expressed in E. coli, and their biochemical characterizations were identified. In addition, to synthesize the flavonoid glucosides in whole-cell S. cerevisiae, SbGT34 was selected for constructing the engineering yeast. Three glucosidase genes (EXG1, SPR1, YIR007W) were knocked out using homologous integration, and the EXG1 gene was determined to be the decisive gene of S. cerevisiae in the process of hydrolysing flavonoid glucosides. To further enhance the potential glycosylation activity of S. cerevisiae, two genes encoding phosphoglucomutase and UTP-glucose-1-phosphate uridylyltransferase involved in the synthetic system of uridine diphosphate glucose were over-expressed in S. cerevisiae. Consequently, approximately 4.8 g (1.2 g/L) of scutellarein 7-O-glucoside (S7G) was produced in 4 L of medium after 54 h of incubation in a 10-L fermenter while being supplied with ~3.5 g of scutellarein. CONCLUSIONS The engineered yeast harbouring SbGT with a deletion of glucosidases produced more flavonoid glucosides than strains without a deletion of glucosidases. This platform without glucosidase activity could be used to modify a wide range of valued plant secondary metabolites and to explore of their biological functions using whole-cell S. cerevisiae as a biocatalyst.
Collapse
Affiliation(s)
- Huimin Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan St., Beijing, 100050, China
| | - Yan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan St., Beijing, 100050, China
| | - Lin Lin
- College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Wenlong Zhou
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan St., Beijing, 100050, China
| | - Minzhi Liu
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan St., Beijing, 100050, China
| | - Kedi Cheng
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan St., Beijing, 100050, China
| | - Wei Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan St., Beijing, 100050, China.
| |
Collapse
|
36
|
Shin JY, Pandey RP, Jung HY, Chu LL, Park YI, Sohng JK. In vitro single-vessel enzymatic synthesis of novel Resvera-A glucosides. Carbohydr Res 2016; 424:8-14. [DOI: 10.1016/j.carres.2016.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/31/2015] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
|
37
|
Recent developments in the enzymatic O-glycosylation of flavonoids. Appl Microbiol Biotechnol 2016; 100:4269-81. [PMID: 27029191 DOI: 10.1007/s00253-016-7465-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 01/04/2023]
Abstract
The glycosylation of bioactive compounds, such as flavonoids, is of particular relevance, as it modulates many of their pharmacokinetic parameters. This article reviews the literature between 2010 and the end of 2015 that deals with the enzymatic O-glycosylation of this class of compounds. Enzymes of glycosyltransferase family 1 remain the biocatalysts of choice for glycodiversification of flavonoids, in spite of relatively low yields. Transfers of 14 different sugars, in addition to glucose, were reported. Several Escherichia coli strains were metabolically engineered to enable a (more efficient) synthesis of the required donor during in vivo glycosylations. For the transfer of glucose, enzymes of glycoside hydrolase families 13 and 70 were successfully assayed with several flavonoids. The number of acceptor substrates and of regiospecificities characterized so far is smaller than for glycosyltransferases. However, their glycosyl donors are much cheaper and yields are considerably higher. A few success stories of enzyme engineering were reported. These improved the catalytic efficiency as well as donor, acceptor, or product ranges. Currently, the development of appropriate high-throughput screening systems appears to be the major bottleneck for this powerful technology.
Collapse
|
38
|
Expanded acceptor substrates flexibility study of flavonol 7- O -rhamnosyltransferase, AtUGT89C1 from Arabidopsis thaliana. Carbohydr Res 2015; 418:13-19. [DOI: 10.1016/j.carres.2015.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/17/2015] [Accepted: 09/19/2015] [Indexed: 01/24/2023]
|
39
|
Chaudhary AK, Lee EY. Tightly regulated and high level expression vector construction for Escherichia coli BL21 (DE3). J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2015.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|