1
|
Reiter A, Wesseling L, Wiechert W, Oldiges M. Rapid exometabolome footprinting combined with multivariate statistics: A powerful tool for bioprocess optimization. Eng Life Sci 2025; 25:2300222. [PMID: 39990767 PMCID: PMC11842285 DOI: 10.1002/elsc.202300222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/03/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2025] Open
Abstract
Corynebacterium glutamicum is used as an industrial platform organism for amino acid production. Previously, the organism was utilized to produce l-histidine with research focusing on metabolic engineering approaches to increase titer and yield. Only a few studies have been published that provide information on bioprocess development, with media optimization and fed-batch cultivation procedure being particularly promising areas. In this work, we show how experimental setups such as miniature cultivation technology, dynamic and time-optimized LC-MS/MS metabolic footprinting tools, and automated workflows for the detection of local and global metabolic patterns can significantly accelerate bioprocess development. Potential media bottlenecks in form of phosphate and magnesium availability were identified by sensitivity analysis in parallelized microscale cultivation assisted by lab automation. A rapid dilute-and-shoot flow-injection-analysis tandem mass spectrometry approach was used to cope with the resulting cultivation throughput and allowed to quantify amino acids with 1 min per sample. We were able to increase the l-histidine titer of a C. glutamicum random mutagenesis mutant by a factor of 5.8 through process optimization while also identifying both known and previously unknown targets for additional strain improvements. The presented methodology can be seen as a supplement to traditional approaches in the field of bioprocess development.
Collapse
Affiliation(s)
- Alexander Reiter
- Institute of Bio‐ and GeosciencesIBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Institute of BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Lars Wesseling
- Institute of Bio‐ and GeosciencesIBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
| | - Wolfgang Wiechert
- Institute of Bio‐ and GeosciencesIBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Computational Systems BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Marco Oldiges
- Institute of Bio‐ and GeosciencesIBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Institute of BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
2
|
Li MH, Li H, Zhang X, Liang YC, Li C, Sun ML, Li K, Liu CG, Sinskey AJ. Metabolic engineering of Corynebacterium glutamicum: Unlocking its potential as a key cell factory platform for organic acid production. Biotechnol Adv 2024; 77:108475. [PMID: 39515670 DOI: 10.1016/j.biotechadv.2024.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Corynebacterium glutamicum, a well-studied industrial model microorganism, has garnered widespread attention due to its ability for producing amino acids with a long history. In recent years, research efforts have been increasingly focused on exploring its potential for producing various organic acids beyond amino acids. Organic acids, which are characterized by their acidic functional groups, have diverse applications across industries such as food, agriculture, pharmaceuticals, and biobased materials. Leveraging advancements in metabolic engineering and synthetic biology, the metabolic pathways of C. glutamicum have been broadened to facilitate the production of numerous high-value organic acids. This review summarizes the recent progress in metabolic engineering for the production of both amino acids and other organic acids by C. glutamicum. Notably, these acids include, amino acids (lysine, isoleucine, and phenylalanine), TCA cycle-derived organic acids (succinic acid, α-ketoglutaric acid), aromatic organic acids (protocatechuate, 4-amino-3-hydroxybenzoic acid, anthranilate, and para-coumaric acid), and other organic acids (itaconic acid and cis, cis-muconic acid).
Collapse
Affiliation(s)
- Ming-Hou Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Chen Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Meng-Lin Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| |
Collapse
|
3
|
Cho JS, Luo ZW, Moon CW, Prabowo CPS, Lee SY. Metabolic engineering of Corynebacterium glutamicum for the production of pyrone and pyridine dicarboxylic acids. Proc Natl Acad Sci U S A 2024; 121:e2415213121. [PMID: 39475655 PMCID: PMC11551391 DOI: 10.1073/pnas.2415213121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/18/2024] [Indexed: 11/13/2024] Open
Abstract
Environmental concerns from plastic waste are driving interest in alternative monomers from bio-based sources. Pseudoaromatic dicarboxylic acids are promising alternatives with chemical structures similar to widely used petroleum-based aromatic dicarboxylic acids. However, their use in polyester synthesis has been limited due to production challenges. Here, we report the fermentative production of five pseudoaromatic dicarboxylic acids, including 2-pyrone-4,6-dicarboxylic acid (PDC) and pyridine dicarboxylic acids (PDCAs: 2,3-, 2,4-, 2,5-, and 2,6-PDCA), from glucose using five engineered Corynebacterium glutamicum strains. A platform C. glutamicum chassis strain was constructed by modulating the expression of nine genes involved in the synthesis and degradation pathways of precursor protocatechuate (PCA) and the glucose-uptake system. Comparative transcriptome analysis of the engineered strain against wild-type C. glutamicum identified iolE (NCgl0160) as a target for PDC production. Optimized fed-batch fermentation conditions enabled the final engineered strain to produce 76.17 ± 1.24 g/L of PDC. Using this platform strain, we constructed 2,3-, 2,4-, and 2,5-PDCA-producing strains by modulating the expression of key enzymes. Additionally, we demonstrated a previously uncharacterized pathway for 2,3-PDCA biosynthesis. The engineered strains produced 2.79 ± 0.005 g/L of 2,3-PDCA, 494.26 ± 2.61 mg/L of 2,4-PDCA, and 1.42 ± 0.02 g/L of 2,5-PDCA through fed-batch fermentation. To complete the portfolio, we introduced the 2,6-PDCA biosynthetic pathway to an L-aspartate pathway-enhanced C. glutamicum strain, producing 15.01 ± 0.03 g/L of 2,6-PDCA in fed-batch fermentation. The metabolic engineering strategies developed here will be useful for the production of pseudoaromatic chemicals.
Collapse
Affiliation(s)
- Jae Sung Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four Program), Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
- BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Zi Wei Luo
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four Program), Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
- BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Cheon Woo Moon
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four Program), Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
- BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Cindy Pricilia Surya Prabowo
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four Program), Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
- BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four Program), Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
- BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| |
Collapse
|
4
|
Liu A, Ellis D, Mhatre A, Brahmankar S, Seto J, Nielsen DR, Varman AM. Biomanufacturing of value-added chemicals from lignin. Curr Opin Biotechnol 2024; 89:103178. [PMID: 39098292 DOI: 10.1016/j.copbio.2024.103178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Lignin valorization faces persistent biomanufacturing challenges due to the heterogeneous and toxic carbon substrates derived from lignin depolymerization. To address the heterogeneous nature of aromatic feedstocks, plant cell wall engineering and 'lignin first' pretreatment methods have recently emerged. Next, to convert the resulting aromatic substrates into value-added chemicals, diverse microbial host systems also continue to be developed. This includes microbes that (1) lack aromatic metabolism, (2) metabolize aromatics but not sugars, and (3) co-metabolize both aromatics and sugars, each system presenting unique pros and cons. Considering the intrinsic complexity of lignin-derived substrate mixtures, emerging and non-model microbes with native metabolism for aromatics appear poised to provide the greatest impacts on lignin valorization via biomanufacturing.
Collapse
Affiliation(s)
- Arren Liu
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Dylan Ellis
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Apurv Mhatre
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Sumant Brahmankar
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Jong Seto
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - David R Nielsen
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA; Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Arul M Varman
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA; Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
5
|
Park J, Lim S. Review of the Proteomics and Metabolic Properties of Corynebacterium glutamicum. Microorganisms 2024; 12:1681. [PMID: 39203523 PMCID: PMC11356982 DOI: 10.3390/microorganisms12081681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Corynebacterium glutamicum (C. glutamicum) has become industrially important in producing glutamic acid and lysine since its discovery and has been the subject of proteomics and central carbon metabolism studies. The proteome changes depending on environmental conditions, nutrient availability, and stressors. Post-translational modification (PTMs), such as phosphorylation, methylation, and glycosylation, alter the function and activity of proteins, allowing them to respond quickly to environmental changes. Proteomics techniques, such as mass spectrometry and two-dimensional gel electrophoresis, have enabled the study of proteomes, identification of proteins, and quantification of the expression levels. Understanding proteomes and central carbon metabolism in microorganisms provides insight into their physiology, ecology, and biotechnological applications, such as biofuels, pharmaceuticals, and industrial enzyme production. Several attempts have been made to create efficient production strains to increase productivity in several research fields, such as genomics and proteomics. In addition to amino acids, C. glutamicum is used to produce vitamins, nucleotides, organic acids, and alcohols, expanding its industrial applications. Considerable information has been accumulated, but recent research has focused on proteomes and central carbon metabolism. The development of genetic engineering technologies, such as CRISPR-Cas9, has improved production efficiency by allowing precise manipulation of the metabolic pathways of C. glutamicum. In addition, methods for designing new metabolic pathways and developing customized strains using synthetic biology technology are gradually expanding. This review is expected to enhance the understanding of C. glutamicum and its industrial potential and help researchers identify research topics and design studies.
Collapse
Affiliation(s)
| | - Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, Asan-si 31499, Chungnam, Republic of Korea
| |
Collapse
|
6
|
Tian S, Zhao G, Lv G, Wu C, Su R, Wang F, Wang Z, Liu Y, Chen N, Li Y. Efficient Fermentative Production of d-Alanine and Other d-Amino Acids by Metabolically Engineered Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8039-8051. [PMID: 38545740 DOI: 10.1021/acs.jafc.4c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
d-Amino acids (d-AAs) have wide applications in industries such as pharmaceutical, food, and cosmetics due to their unique properties. Currently, the production of d-AAs has relied on chemical synthesis or enzyme catalysts, and it is challenging to produce d-AAs via direct fermentation from glucose. We observed that Corynebacterium glutamicum exhibits a remarkable tolerance to high concentrations of d-Ala, a crucial characteristic for establishing a successful fermentation process. By optimizing meso-diaminopilmelate dehydrogenases in different C. glutamicum strains and successively deleting l-Ala biosynthetic pathways, we developed an efficient d-Ala fermentation system. The d-Ala titer was enhanced through systems metabolic engineering, which involved strengthening glucose assimilation and pyruvate supply, reducing the formation of organic acid byproducts, and attenuating the TCA cycle. During fermentation in a 5-L bioreactor, a significant accumulation of l-Ala was observed in the broth, which was subsequently diminished by introducing an l-amino acid deaminase. Ultimately, the engineered strain DA-11 produced 85 g/L d-Ala with a yield of 0.30 g/g glucose, accompanied by an optical purity exceeding 99%. The fermentation platform has the potential to be extended for the synthesis of other d-AAs, as demonstrated by the production of d-Val and d-Glu.
Collapse
Affiliation(s)
- Siyu Tian
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Guihong Zhao
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Gengcheng Lv
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Chen Wu
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Rui Su
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Feiao Wang
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Zeting Wang
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Yuexiang Liu
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Yanjun Li
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| |
Collapse
|
7
|
Li J, Lu X, Zou X, Ye BC. Recent Advances in Microbial Metabolic Engineering for Production of Natural Phenolic Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4538-4551. [PMID: 38377566 DOI: 10.1021/acs.jafc.3c07658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Phenolic acids are important natural bioactive compounds with varied physiological functions. They are extensively used in food, pharmaceutical, cosmetic, and other chemical industries and have attractive market prospects. Compared to plant extraction and chemical synthesis, microbial fermentation for phenolic acid production from renewable carbon sources has significant advantages. This review focuses on the structural information, physiological functions, current applications, and biosynthesis pathways of phenolic acids, especially advances in the development of metabolically engineered microbes for the production of phenolic acids. This review provides useful insights concerning phenolic acid production through metabolic engineering of microbial cell factories.
Collapse
Affiliation(s)
- Jin Li
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiumin Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiang Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
8
|
Milke L, Kabuu M, Zschoche R, Gätgens J, Krumbach K, Carlstedt KL, Wurzbacher CE, Balluff S, Beemelmanns C, Jogler C, Marienhagen J, Kallscheuer N. A type III polyketide synthase cluster in the phylum Planctomycetota is involved in alkylresorcinol biosynthesis. Appl Microbiol Biotechnol 2024; 108:239. [PMID: 38407604 PMCID: PMC10896814 DOI: 10.1007/s00253-024-13065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
Members of the bacterial phylum Planctomycetota have recently emerged as promising and for the most part untapped sources of novel bioactive compounds. The characterization of more than 100 novel species in the last decade stimulated recent bioprospection studies that start to unveil the chemical repertoire of the phylum. In this study, we performed systematic bioinformatic analyses based on the genomes of all 131 described members of the current phylum focusing on the identification of type III polyketide synthase (PKS) genes. Type III PKSs are versatile enzymes involved in the biosynthesis of a wide array of structurally diverse natural products with potent biological activities. We identified 96 putative type III PKS genes of which 58 are encoded in an operon with genes encoding a putative oxidoreductase and a methyltransferase. Sequence similarities on protein level and the genetic organization of the operon point towards a functional link to the structurally related hierridins recently discovered in picocyanobacteria. The heterologous expression of planctomycetal type III PKS genes from strains belonging to different families in an engineered Corynebacterium glutamicum strain led to the biosynthesis of pentadecyl- and heptadecylresorcinols. Phenotypic assays performed with the heterologous producer strains and a constructed type III PKS gene deletion mutant suggest that the natural function of the identified compounds differs from that confirmed in other bacterial alkylresorcinol producers. KEY POINTS: • Planctomycetal type III polyketide synthases synthesize long-chain alkylresorcinols. • Phylogenetic analyses suggest an ecological link to picocyanobacterial hierridins. • Engineered C. glutamicum is suitable for an expression of planctomycete-derived genes.
Collapse
Affiliation(s)
- Lars Milke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Moses Kabuu
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Renè Zschoche
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Jochem Gätgens
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Karin Krumbach
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Kim-Loreen Carlstedt
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Carmen E Wurzbacher
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Sven Balluff
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123, Saarbrücken, Germany
| | - Christine Beemelmanns
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123, Saarbrücken, Germany
- Saarland University, Saarbrücken, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany.
| |
Collapse
|
9
|
Lee CH, Kim S, Seo H, Kim KJ. Structural and Biochemical Analysis of 3-Dehydroquinate Dehydratase from Corynebacterium glutamicum. J Microbiol Biotechnol 2023; 33:1595-1605. [PMID: 38151830 PMCID: PMC10772564 DOI: 10.4014/jmb.2305.05018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 12/29/2023]
Abstract
Dehydroquinate dehydratase (DHQD) catalyzes the conversion of 3-dehydroquinic acid (DHQ) into 3-dehydroshikimic acid in the mid stage of the shikimate pathway, which is essential for the biosynthesis of aromatic amino acids and folates. Here, we report two the crystal structures of type II DHQD (CgDHQD) derived from Corynebacterium glutamicum, which is a widely used industrial platform organism. We determined the structures for CgDHQDWT with the citrate at a resolution of 1.80Å and CgDHQDR19A with DHQ complexed forms at a resolution of 2.00 Å, respectively. The enzyme forms a homododecamer consisting of four trimers with three interfacial active sites. We identified the DHQ-binding site of CgDHQD and observed an unusual binding mode of citrate inhibitor in the site with a half-opened lid loop. A structural comparison of CgDHQD with a homolog derived from Streptomyces coelicolor revealed differences in the terminal regions, lid loop, and active site. Particularly, CgDHQD, including some Corynebacterium species, possesses a distinctive residue P105, which is not conserved in other DHQDs at the position near the 5-hydroxyl group of DHQ. Replacements of P105 with isoleucine and valine, conserved in other DHQDs, caused an approximately 70% decrease in the activity, but replacement of S103 with threonine (CgDHQDS103T) caused a 10% increase in the activity. Our biochemical studies revealed the importance of key residues and enzyme kinetics for wild type and CgDHQDS103T, explaining the effect of the variation. This structural and biochemical study provides valuable information for understanding the reaction efficiency that varies due to structural differences caused by the unique sequences of CgDHQD.
Collapse
Affiliation(s)
- Chan Hwi Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sangwoo Kim
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hogyun Seo
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
10
|
Mutz M, Kösters D, Wynands B, Wierckx N, Marienhagen J. Microbial synthesis of the plant natural product precursor p-coumaric acid with Corynebacterium glutamicum. Microb Cell Fact 2023; 22:209. [PMID: 37833813 PMCID: PMC10576375 DOI: 10.1186/s12934-023-02222-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Phenylpropanoids such as p-coumaric acid represent important precursors for the synthesis of a broad range of plant secondary metabolites including stilbenoids, flavonoids, and lignans, which are of pharmacological interest due to their health-promoting properties. Although extraction from plant material or chemical synthesis is possible, microbial synthesis of p-coumaric acid from glucose has the advantage of being less expensive and more resource efficient. In this study, Corynebacterium glutamicum was engineered for the production of the plant polyphenol precursor p-coumaric acid from glucose. RESULTS Heterologous expression of the tyrosine ammonia-lyase encoding gene from Flavobacterium johnsoniae enabled the conversion of endogenously provided tyrosine to p-coumaric acid. Product consumption was avoided by abolishing essential reactions of the phenylpropanoid degradation pathway. Accumulation of anthranilate as a major byproduct was eliminated by reducing the activity of anthranilate synthase through targeted mutagenesis to avoid tryptophan auxotrophy. Subsequently, the carbon flux into the shikimate pathway was increased, phenylalanine biosynthesis was reduced, and phosphoenolpyruvate availability was improved to boost p-coumaric acid accumulation. A maximum titer of 661 mg/L p-coumaric acid (4 mM) in defined mineral medium was reached. Finally, the production strain was utilized in co-cultivations with a C. glutamicum strain previously engineered for the conversion of p-coumaric acid into the polyphenol resveratrol. These co-cultivations enabled the synthesis of 31.2 mg/L (0.14 mM) resveratrol from glucose without any p-coumaric acid supplementation. CONCLUSIONS The utilization of a heterologous tyrosine ammonia-lyase in combination with optimization of the shikimate pathway enabled the efficient production of p-coumaric acid with C. glutamicum. Reducing the carbon flux into the phenylalanine and tryptophan branches was the key to success along with the introduction of feedback-resistant enzyme variants.
Collapse
Affiliation(s)
- Mario Mutz
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Dominic Kösters
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| |
Collapse
|
11
|
Luo Q, Luo H, Zhang T, Liu X, Chen X, Chen Q, Feng J, Qu P, Chen C, Xu N. Corynebacterium lipophilum sp. nov., a lipophilic bacterium isolated from clinical breast specimens and emended description of the species Corynebacterium pilbarense. Antonie Van Leeuwenhoek 2023; 116:1091-1101. [PMID: 37610475 DOI: 10.1007/s10482-023-01854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2023] [Indexed: 08/24/2023]
Abstract
Two isolates (MC-18T and MC-17D), representing the Gram-stain-positive, facultatively anaerobic, irregular rod-shaped, non-motile, and non-spore-forming actinobacteria, were isolated from clinical breast specimens in Guangzhou, China. The growth of the isolates is enhanced by supplementing 1% Tween-80 on Luria Bertani agar. Optimal growth of the isolates was observed at 37 °C, pH 7-8, and with 1% (w/v) NaCl on Columbia blood agar. Pairwise comparison of the 16S rRNA gene sequences revealed that isolates MC-18T and MC-17D shared the highest sequence similarities with Corynebacterium liangguodongii 2184T (96.9%), which were lower than the threshold value for species delineation (98.65%). Phylogenetic dendrograms based on the 16S rRNA gene, rpoB gene, and core genomes indicated that two isolates formed a distinct lineage within the genus Corynebacterium. The estimated dDDH, ANIb, ANIm, and AAI values between strain MC-18T and its closely related strains were below the threshold values generally considered for recognizing a new species. The genome DNA G + C contents of both the isolates MC-18T and MC-17D are 60.6%. The two isolates have virulence-related genes of the VF classes of adhesion and antiphagocytosis, and also contain the antimicrobial resistance genes ErmX, mtrA, rpoB2, and RbpA. The major fatty acids (> 10%) of isolates MC-18T and MC-17D were C16:0, C18:1 ω9c, C18:0 and summed feature 5 (anteiso-C18:0 and/or C18:2 ω6,9c). The main respiratory quinone of strain MC-18T was MK-8(H2), and the polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, three unidentified glycolipids, an unidentified aminolipid, and four unidentified phosphoglycolipids. The two isolates lack mycolic acids in the cell envelope. Based on the above findings, the two isolates are considered to represent a novel species of the genus Corynebacterium, for which the name Corynebacterium lipophilum sp. nov. is proposed, with isolate MC-18T (= NBRC 115144T = CCTCC AB 2020201T) as the type strain. An emended description of the Corynebacterium pilbarense is also provided.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Haimin Luo
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Tianqi Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Xiaofang Liu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Xiaowei Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Qianming Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Junhui Feng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Pinghua Qu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Cha Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Ning Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
12
|
Kurpejović E, Wibberg D, Bastem GM, Burgardt A, Busche T, Kaya FEA, Dräger A, Wendisch VF, Akbulut BS. Can Genome Sequencing Coupled to Flux Balance Analyses Offer Precision Guidance for Industrial Strain Development? The Lessons from Carbon Trafficking in Corynebacterium glutamicum ATCC 21573. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:434-443. [PMID: 37707996 DOI: 10.1089/omi.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Systems biology tools offer new prospects for industrial strain selection. For bacteria that are significant for industrial applications, whole-genome sequencing coupled to flux balance analysis (FBA) can help unpack the complex relationships between genome mutations and carbon trafficking. This work investigates the l-tyrosine (l-Tyr) overproducing model system Corynebacterium glutamicum ATCC 21573 with an eye to more rational and precision strain development. Using genome-wide mutational analysis of C. glutamicum, we identified 27,611 single nucleotide polymorphisms and 479 insertion/deletion mutations. Mutations in the carbon uptake machinery have led to phosphotransferase system-independent routes as corroborated with FBA. Mutations within the central carbon metabolism of C. glutamicum impaired the carbon flux, as evidenced by the lower growth rate. The entry to and flow through the tricarboxylic acid cycle was affected by mutations in pyruvate and α-ketoglutarate dehydrogenase complexes, citrate synthase, and isocitrate dehydrogenase. FBA indicated that the estimated flux through the shikimate pathway became larger as the l-Tyr production rate increased. In addition, protocatechuate export was probabilistically impossible, which could have contributed to the l-Tyr accumulation. Interestingly, aroG and cg0975, which have received previous attention for aromatic amino acid overproduction, were not mutated. From the branch point molecule, prephenate, the change in the promoter region of pheA could be an influential contributor. In summary, we suggest that genome sequencing coupled with FBA is well poised to offer rational guidance for industrial strain development, as evidenced by these findings on carbon trafficking in C. glutamicum ATCC 21573.
Collapse
Affiliation(s)
- Eldin Kurpejović
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | - Arthur Burgardt
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Medical School East Westphalia-Lippe, Bielefeld University, Bielefeld, Germany
| | - Fatma Ece Altinisik Kaya
- Department of Bioengineering, Marmara University, Istanbul, Turkey
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Andreas Dräger
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
13
|
Nonaka K, Osamura T, Takahashi F. A 4-hydroxybenzoate 3-hydroxylase mutant enables 4-amino-3-hydroxybenzoic acid production from glucose in Corynebacterium glutamicum. Microb Cell Fact 2023; 22:168. [PMID: 37644492 PMCID: PMC10466732 DOI: 10.1186/s12934-023-02179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Microbial production of aromatic chemicals is an attractive method for obtaining high-performance materials from biomass resources. A non-proteinogenic amino acid, 4-amino-3-hydroxybenzoic acid (4,3-AHBA), is expected to be a precursor of highly functional polybenzoxazole polymers; however, methods for its microbial production have not been reported. In this study, we attempted to produce 4,3-AHBA from glucose by introducing 3-hydroxylation of 4-aminobenzoic acid (4-ABA) into the metabolic pathway of an industrially relevant bacterium, Corynebacterium glutamicum. RESULTS Six different 4-hydroxybenzoate 3-hydroxylases (PHBHs) were heterologously expressed in C. glutamicum strains, which were then screened for the production of 4,3-AHBA by culturing with glucose as a carbon source. The highest concentration of 4,3-AHBA was detected in the strain expressing PHBH from Caulobacter vibrioides (CvPHBH). A combination of site-directed mutagenesis in the active site and random mutagenesis via laccase-mediated colorimetric assay allowed us to obtain CvPHBH mutants that enhanced 4,3-AHBA productivity under deep-well plate culture conditions. The recombinant C. glutamicum strain expressing CvPHBHM106A/T294S and having an enhanced 4-ABA biosynthetic pathway produced 13.5 g/L (88 mM) 4,3-AHBA and 0.059 g/L (0.43 mM) precursor 4-ABA in fed-batch culture using a nutrient-rich medium. The culture of this strain in the chemically defined CGXII medium yielded 9.8 C-mol% of 4,3-AHBA from glucose, corresponding to 12.8% of the theoretical maximum yield (76.8 C-mol%) calculated using a genome-scale metabolic model of C. glutamicum. CONCLUSIONS Identification of PHBH mutants that could efficiently catalyze the 3-hydroxylation of 4-ABA in C. glutamicum allowed us to construct an artificial biosynthetic pathway capable of producing 4,3-AHBA on a gram-scale using glucose as the carbon source. These findings will contribute to a better understanding of enzyme-catalyzed regioselective hydroxylation of aromatic chemicals and to the diversification of biomass-derived precursors for high-performance materials.
Collapse
Affiliation(s)
- Kyoshiro Nonaka
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan.
| | - Tatsuya Osamura
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
| | - Fumikazu Takahashi
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
| |
Collapse
|
14
|
Zhu N, Xia W, Wang G, Song Y, Gao X, Liang J, Wang Y. Engineering Corynebacterium glutamicum for de novo production of 2-phenylethanol from lignocellulosic biomass hydrolysate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:75. [PMID: 37143059 PMCID: PMC10158149 DOI: 10.1186/s13068-023-02327-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND 2-Phenylethanol is a specific aromatic alcohol with a rose-like smell, which has been widely used in the cosmetic and food industries. At present, 2-phenylethanol is mainly produced by chemical synthesis. The preference of consumers for "natural" products and the demand for environmental-friendly processes have promoted biotechnological processes for 2-phenylethanol production. Yet, high 2-phenylethanol cytotoxicity remains an issue during the bioproduction process. RESULTS Corynebacterium glutamicum with inherent tolerance to aromatic compounds was modified for the production of 2-phenylethanol from glucose and xylose. The sensitivity of C. glutamicum to 2-phenylethanol toxicity revealed that this host was more tolerant than Escherichia coli. Introduction of a heterologous Ehrlich pathway into the evolved phenylalanine-producing C. glutamicum CALE1 achieved 2-phenylethanol production, while combined expression of the aro10. Encoding 2-ketoisovalerate decarboxylase originating from Saccharomyces cerevisiae and the yahK encoding alcohol dehydrogenase originating from E. coli was shown to be the most efficient. Furthermore, overexpression of key genes (aroGfbr, pheAfbr, aroA, ppsA and tkt) involved in the phenylpyruvate pathway increased 2-phenylethanol titer to 3.23 g/L with a yield of 0.05 g/g glucose. After introducing a xylose assimilation pathway from Xanthomonas campestris and a xylose transporter from E. coli, 3.55 g/L 2-phenylethanol was produced by the engineered strain CGPE15 with a yield of 0.06 g/g xylose, which was 10% higher than that with glucose. This engineered strain CGPE15 also accumulated 3.28 g/L 2-phenylethanol from stalk hydrolysate. CONCLUSIONS In this study, we established and validated an efficient C. glutamicum strain for the de novo production of 2-phenylethanol from corn stalk hydrolysate. This work supplied a promising route for commodity 2-phenylethanol bioproduction from nonfood lignocellulosic feedstock.
Collapse
Affiliation(s)
- Nianqing Zhu
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, People's Republic of China
| | - Wenjing Xia
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, People's Republic of China.
- School of Chemistry and Biological Engineering, Nanjing Normal University Taizhou College, Taizhou, 225300, Jiangsu, People's Republic of China.
| | - Guanglu Wang
- Laboratory of Biotransformation and Biocatalysis, School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450000, People's Republic of China
| | - Yuhe Song
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, People's Republic of China
| | - Xinxing Gao
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, People's Republic of China
| | - Jilei Liang
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, People's Republic of China
| | - Yan Wang
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, People's Republic of China
| |
Collapse
|
15
|
Wu Z, Liang X, Li M, Ma M, Zheng Q, Li D, An T, Wang G. Advances in the optimization of central carbon metabolism in metabolic engineering. Microb Cell Fact 2023; 22:76. [PMID: 37085866 PMCID: PMC10122336 DOI: 10.1186/s12934-023-02090-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023] Open
Abstract
Central carbon metabolism (CCM), including glycolysis, tricarboxylic acid cycle and the pentose phosphate pathway, is the most fundamental metabolic process in the activities of living organisms that maintains normal cellular growth. CCM has been widely used in microbial metabolic engineering in recent years due to its unique regulatory role in cellular metabolism. Using yeast and Escherichia coli as the representative organisms, we summarized the metabolic engineering strategies on the optimization of CCM in eukaryotic and prokaryotic microbial chassis, such as the introduction of heterologous CCM metabolic pathways and the optimization of key enzymes or regulatory factors, to lay the groundwork for the future use of CCM optimization in metabolic engineering. Furthermore, the bottlenecks in the application of CCM optimization in metabolic engineering and future application prospects are summarized.
Collapse
Affiliation(s)
- Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mengyu Ma
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
16
|
Weber D, de Souza Bastos L, Winkler M, Ni Y, Aliev AE, Hailes HC, Rother D. Multi-enzyme catalysed processes using purified and whole-cell biocatalysts towards a 1,3,4-substituted tetrahydroisoquinoline †‡. RSC Adv 2023; 13:10097-10109. [PMID: 37006360 PMCID: PMC10053099 DOI: 10.1039/d3ra01210g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
In this work, two multi-enzyme catalysed processes to access a 1,3,4-substituted tetrahydroisoquinoline (THIQ), using either purified enzymes or lyophilised whole-cell catalysts, are presented. A key focus was the first step in which the reduction of 3-hydroxybenzoic acid (3-OH-BZ) into 3-hydroxybenzaldehyde (3-OH-BA) was catalysed by a carboxylate reductase (CAR) enzyme. Incorporation of the CAR-catalysed step enables substituted benzoic acids as the aromatic components, which can potentially be obtained from renewable resources by microbial cell factories. In this reduction, the implementation of an efficient cofactor regeneration system of both ATP and NADPH was crucial. Two different recycling approaches, either using purified enzymes or lyophilised whole-cells, were established and compared. Both of them showed high conversions of the acid into 3-OH-BA (>80%). However, the whole-cell system showed superior performance because it allowed the combination of the first and second steps into a one-pot cascade with excellent HPLC yields (>99%, enantiomeric excess (ee) ≥ 95%) producing the intermediate 3-hydroxyphenylacetylcarbinol. Moreover, enhanced substrate loads could be achieved compared to the system employing only purified enzymes. The third and fourth steps were performed in a sequential mode to avoid cross-reactivities and the formation of several side products. Thus, (1R,2S)-metaraminol could be formed with high HPLC yields (>90%, isomeric content (ic) ≥ 95%) applying either purified or whole-cell transaminases from Bacillus megaterium (BmTA) or Chromobacterium violaceum (Cv2025). Finally, the cyclisation step was performed using either a purified or lyophilised whole-cell norcoclaurine synthase variant from Thalictrum flavum (ΔTfNCS-A79I), leading to the formation of the target THIQ product with high HPLC yields (>90%, ic > 90%). As many of the educts applied are from renewable resources and a complex product with three chiral centers can be gained by only four highly selective steps, a very step- and atom efficient approach to stereoisomerically pure THIQ is shown. In this work, two multi-enzyme catalysed processes to access a 1,3,4-substituted tetrahydroisoquinoline (THIQ), using either purified enzymes or lyophilised whole-cell catalysts, are presented.![]()
Collapse
Affiliation(s)
- Douglas Weber
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Juelich GmbH52425 JuelichGermany
- Aachen Biology and Biotechnology (ABBt), RWTH Aachen UniversityWorringer Weg 152062 AachenGermany
| | - Lucas de Souza Bastos
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Juelich GmbH52425 JuelichGermany
| | - Margit Winkler
- acib GmbHKrenngasse 37A-8010 GrazAustria
- Institute of Molecular Biotechnology, Graz University of TechnologyPetersgasse 148010 GrazAustria
| | - Yeke Ni
- Department of Chemistry, University College LondonLondonWC1H 0AJUK
| | - Abil E. Aliev
- Department of Chemistry, University College LondonLondonWC1H 0AJUK
| | - Helen C. Hailes
- Department of Chemistry, University College LondonLondonWC1H 0AJUK
| | - Doerte Rother
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Juelich GmbH52425 JuelichGermany
- Aachen Biology and Biotechnology (ABBt), RWTH Aachen UniversityWorringer Weg 152062 AachenGermany
| |
Collapse
|
17
|
Shikina E, Kovalevsky R, Shirkovskaya A, Toukach P. Prospective bacterial and fungal sources of hyaluronic acid: A review. Comput Struct Biotechnol J 2022; 20:6214-6236. [PMID: 36420162 PMCID: PMC9676211 DOI: 10.1016/j.csbj.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative. Variations in combinations of expressed genes and fermentation conditions alter the yield and molecular weight of produced hyaluronic acid. This review is devoted to the current state of hyaluronic acid production by recombinant bacterial and fungal organisms.
Collapse
|
18
|
Kranz A, Polen T, Kotulla C, Arndt A, Bosco G, Bussmann M, Chattopadhyay A, Cramer A, Davoudi CF, Degner U, Diesveld R, Freiherr von Boeselager R, Gärtner K, Gätgens C, Georgi T, Geraths C, Haas S, Heyer A, Hünnefeld M, Ishige T, Kabus A, Kallscheuer N, Kever L, Klaffl S, Kleine B, Kočan M, Koch-Koerfges A, Kraxner KJ, Krug A, Krüger A, Küberl A, Labib M, Lange C, Mack C, Maeda T, Mahr R, Majda S, Michel A, Morosov X, Müller O, Nanda AM, Nickel J, Pahlke J, Pfeifer E, Platzen L, Ramp P, Rittmann D, Schaffer S, Scheele S, Spelberg S, Schulte J, Schweitzer JE, Sindelar G, Sorger-Herrmann U, Spelberg M, Stansen C, Tharmasothirajan A, Ooyen JV, van Summeren-Wesenhagen P, Vogt M, Witthoff S, Zhu L, Eikmanns BJ, Oldiges M, Schaumann G, Baumgart M, Brocker M, Eggeling L, Freudl R, Frunzke J, Marienhagen J, Wendisch VF, Bott M. A manually curated compendium of expression profiles for the microbial cell factory Corynebacterium glutamicum. Sci Data 2022; 9:594. [PMID: 36182956 PMCID: PMC9526701 DOI: 10.1038/s41597-022-01706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/18/2022] [Indexed: 11/12/2022] Open
Abstract
Corynebacterium glutamicum is the major host for the industrial production of amino acids and has become one of the best studied model organisms in microbial biotechnology. Rational strain construction has led to an improvement of producer strains and to a variety of novel producer strains with a broad substrate and product spectrum. A key factor for the success of these approaches is detailed knowledge of transcriptional regulation in C. glutamicum. Here, we present a large compendium of 927 manually curated microarray-based transcriptional profiles for wild-type and engineered strains detecting genome-wide expression changes of the 3,047 annotated genes in response to various environmental conditions or in response to genetic modifications. The replicates within the 927 experiments were combined to 304 microarray sets ordered into six categories that were used for differential gene expression analysis. Hierarchical clustering confirmed that no outliers were present in the sets. The compendium provides a valuable resource for future fundamental and applied research with C. glutamicum and contributes to a systemic understanding of this microbial cell factory. Measurement(s) Gene Expression Analysis Technology Type(s) Two Color Microarray Factor Type(s) WT condition A vs. WT condition B • Plasmid-based gene overexpression in parental strain vs. parental strain with empty vector control • Deletion mutant vs. parental strain Sample Characteristic - Organism Corynebacterium glutamicum Sample Characteristic - Environment laboratory environment Sample Characteristic - Location Germany.
Collapse
Affiliation(s)
- Angela Kranz
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany.
- IBG-4: Bioinformatics, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Christian Kotulla
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Annette Arndt
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069, Ulm, Germany
| | - Graziella Bosco
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Michael Bussmann
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Ava Chattopadhyay
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Annette Cramer
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069, Ulm, Germany
| | - Cedric-Farhad Davoudi
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Ursula Degner
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Ramon Diesveld
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | | | - Kim Gärtner
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Cornelia Gätgens
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Tobias Georgi
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Christian Geraths
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Sabine Haas
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Antonia Heyer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Max Hünnefeld
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Takeru Ishige
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Armin Kabus
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Nicolai Kallscheuer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Larissa Kever
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Simon Klaffl
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Britta Kleine
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Martina Kočan
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Abigail Koch-Koerfges
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Kim J Kraxner
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Andreas Krug
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Aileen Krüger
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Andreas Küberl
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Mohamed Labib
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Christian Lange
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Christina Mack
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Tomoya Maeda
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Regina Mahr
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Stephan Majda
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Andrea Michel
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Xenia Morosov
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Olga Müller
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Arun M Nanda
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Jens Nickel
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Jennifer Pahlke
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Eugen Pfeifer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Laura Platzen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Paul Ramp
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Doris Rittmann
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Steffen Schaffer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Sandra Scheele
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Stephanie Spelberg
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Julia Schulte
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Jens-Eric Schweitzer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Georg Sindelar
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Ulrike Sorger-Herrmann
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Markus Spelberg
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Corinna Stansen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Apilaasha Tharmasothirajan
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Jan van Ooyen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | | | - Michael Vogt
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Sabrina Witthoff
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Lingfeng Zhu
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Bernhard J Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069, Ulm, Germany
| | - Marco Oldiges
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Georg Schaumann
- SenseUp GmbH, c/o Campus Forschungszentrum, Wilhelm-Johnen-Strasse, D-52425, Jülich, Germany
| | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Melanie Brocker
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Lothar Eggeling
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Roland Freudl
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Julia Frunzke
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Jan Marienhagen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Biology & CeBiTec, Bielefeld University, Universitaetsstr. 25, D-33615, Bielefeld, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| |
Collapse
|
19
|
Pierrel F, Burgardt A, Lee JH, Pelosi L, Wendisch VF. Recent advances in the metabolic pathways and microbial production of coenzyme Q. World J Microbiol Biotechnol 2022; 38:58. [PMID: 35178585 PMCID: PMC8854274 DOI: 10.1007/s11274-022-03242-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/30/2022] [Indexed: 12/13/2022]
Abstract
Coenzyme Q (CoQ) serves as an electron carrier in aerobic respiration and has become an interesting target for biotechnological production due to its antioxidative effect and benefits in supplementation to patients with various diseases. Here, we review discovery of the pathway with a particular focus on its superstructuration and regulation, and we summarize the metabolic engineering strategies for overproduction of CoQ by microorganisms. Studies in model microorganisms elucidated the details of CoQ biosynthesis and revealed the existence of multiprotein complexes composed of several enzymes that catalyze consecutive reactions in the CoQ pathways of Saccharomyces cerevisiae and Escherichia coli. Recent findings indicate that the identity and the total number of proteins involved in CoQ biosynthesis vary between species, which raises interesting questions about the evolution of the pathway and could provide opportunities for easier engineering of CoQ production. For the biotechnological production, so far only microorganisms have been used that naturally synthesize CoQ10 or a related CoQ species. CoQ biosynthesis requires the aromatic precursor 4-hydroxybenzoic acid and the prenyl side chain that defines the CoQ species. Up to now, metabolic engineering strategies concentrated on the overproduction of the prenyl side chain as well as fine-tuning the expression of ubi genes from the ubiquinone modification pathway, resulting in high CoQ yields. With expanding knowledge about CoQ biosynthesis and exploration of new strategies for strain engineering, microbial CoQ production is expected to improve.
Collapse
Affiliation(s)
- Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France.
| | - Arthur Burgardt
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jin-Ho Lee
- Department of Food Science & Biotechnology, Kyungsung University, Busan, South Korea
| | - Ludovic Pelosi
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
20
|
Lin K, Han S, Zheng S. Application of Corynebacterium glutamicum engineering display system in three generations of biorefinery. Microb Cell Fact 2022; 21:14. [PMID: 35090458 PMCID: PMC8796525 DOI: 10.1186/s12934-022-01741-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/09/2022] [Indexed: 11/29/2022] Open
Abstract
The fermentation production of platform chemicals in biorefineries is a sustainable alternative to the current petroleum refining process. The natural advantages of Corynebacterium glutamicum in carbon metabolism have led to C. glutamicum being used as a microbial cell factory that can use various biomass to produce value-added platform chemicals and polymers. In this review, we discussed the use of C. glutamicum surface display engineering bacteria in the three generations of biorefinery resources, and analyzed the C. glutamicum engineering display system in degradation, transport, and metabolic network reconstruction models. These engineering modifications show that the C. glutamicum engineering display system has great potential to become a cell refining factory based on sustainable biomass, and further optimizes the inherent properties of C. glutamicum as a whole-cell biocatalyst. This review will also provide a reference for the direction of future engineering transformation.
Collapse
Affiliation(s)
- Kerui Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China. .,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
21
|
Dover LG, Thompson AR, Sutcliffe IC, Sangal V. Phylogenomic Reappraisal of Fatty Acid Biosynthesis, Mycolic Acid Biosynthesis and Clinical Relevance Among Members of the Genus Corynebacterium. Front Microbiol 2021; 12:802532. [PMID: 35003033 PMCID: PMC8733736 DOI: 10.3389/fmicb.2021.802532] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
The genus Corynebacterium encompasses many species of biotechnological, medical or veterinary significance. An important characteristic of this genus is the presence of mycolic acids in their cell envelopes, which form the basis of a protective outer membrane (mycomembrane). Mycolic acids in the cell envelope of Mycobacterium tuberculosis have been associated with virulence. In this study, we have analysed the genomes of 140 corynebacterial strains, including representatives of 126 different species. More than 50% of these strains were isolated from clinical material from humans or animals, highlighting the true scale of pathogenic potential within the genus. Phylogenomically, these species are very diverse and have been organised into 19 groups and 30 singleton strains. We find that a substantial number of corynebacteria lack FAS-I, i.e., have no capability for de novo fatty acid biosynthesis and must obtain fatty acids from their habitat; this appears to explain the well-known lipophilic phenotype of some species. In most species, key genes associated with the condensation and maturation of mycolic acids are present, consistent with the reports of mycolic acids in their species descriptions. Conversely, species reported to lack mycolic acids lacked these key genes. Interestingly, Corynebacterium ciconiae, which is reported to lack mycolic acids, appears to possess all genes required for mycolic acid biosynthesis. We suggest that although a mycolic acid-based mycomembrane is widely considered to be the target for interventions by the immune system and chemotherapeutics, the structure is not essential in corynebacteria and is not a prerequisite for pathogenicity or colonisation of animal hosts.
Collapse
|
22
|
Park E, Kim HJ, Seo SY, Lee HN, Choi SS, Lee SJ, Kim ES. Shikimate Metabolic Pathway Engineering in Corynebacterium glutamicum. J Microbiol Biotechnol 2021; 31:1305-1310. [PMID: 34373439 PMCID: PMC9705862 DOI: 10.4014/jmb.2106.06009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022]
Abstract
Shikimate is a key high-demand metabolite for synthesizing valuable antiviral drugs, such as the anti-influenza drug, oseltamivir (Tamiflu). Microbial-based strategies for shikimate production have been developed to overcome the unstable and expensive supply of shikimate derived from traditional plant extraction processes. In this study, a microbial cell factory using Corynebacterium glutamicum was designed to overproduce shikimate in a fed-batch culture system. First, the shikimate kinase gene (aroK) responsible for converting shikimate to the next step was disrupted to facilitate the accumulation of shikimate. Several genes encoding the shikimate bypass route, such as dehydroshikimate dehydratase (QsuB), pyruvate kinase (Pyk1), and quinate/shikimate dehydrogenase (QsuD), were disrupted sequentially. An artificial operon containing several shikimate pathway genes, including aroE, aroB, aroF, and aroG were overexpressed to maximize the glucose uptake and intermediate flux. The rationally designed shikimate-overproducing C. glutamicum strain grown in an optimized medium produced approximately 37.3 g/l of shikimate in 7-L fed-batch fermentation. Overall, rational cell factory design and culture process optimization for the microbial-based production of shikimate will play a key role in complementing traditional plant-derived shikimate production processes.
Collapse
Affiliation(s)
- Eunhwi Park
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Hye-Jin Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Seung-Yeul Seo
- STR Biotech Co., Ltd., Chuncheon 24232, Republic of Korea
| | - Han-Na Lee
- STR Biotech Co., Ltd., Chuncheon 24232, Republic of Korea
| | - Si-Sun Choi
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Sang Joung Lee
- STR Biotech Co., Ltd., Chuncheon 24232, Republic of Korea
| | - Eung-Soo Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea,Corresponding author Phone: 82-32-860-8318 Fax: 82-32-872-4046 E-mail:
| |
Collapse
|
23
|
Dickey RM, Forti AM, Kunjapur AM. Advances in engineering microbial biosynthesis of aromatic compounds and related compounds. BIORESOUR BIOPROCESS 2021; 8:91. [PMID: 38650203 PMCID: PMC10992092 DOI: 10.1186/s40643-021-00434-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
Aromatic compounds have broad applications and have been the target of biosynthetic processes for several decades. New biomolecular engineering strategies have been applied to improve production of aromatic compounds in recent years, some of which are expected to set the stage for the next wave of innovations. Here, we will briefly complement existing reviews on microbial production of aromatic compounds by focusing on a few recent trends where considerable work has been performed in the last 5 years. The trends we highlight are pathway modularization and compartmentalization, microbial co-culturing, non-traditional host engineering, aromatic polymer feedstock utilization, engineered ring cleavage, aldehyde stabilization, and biosynthesis of non-standard amino acids. Throughout this review article, we will also touch on unmet opportunities that future research could address.
Collapse
Affiliation(s)
- Roman M Dickey
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA
| | - Amanda M Forti
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA
| | - Aditya M Kunjapur
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA.
| |
Collapse
|
24
|
Kuriya Y, Inoue M, Yamamoto M, Murata M, Araki M. Knowledge extraction from literature and enzyme sequences complements FBA analysis in metabolic engineering. Biotechnol J 2021; 16:e2000443. [PMID: 34516717 DOI: 10.1002/biot.202000443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/10/2022]
Abstract
Flux balance analysis (FBA) using genome-scale metabolic model (GSM) is a useful method for improving the bio-production of useful compounds. However, FBA often does not impose important constraints such as nutrients uptakes, by-products excretions and gases (oxygen and carbon dioxide) transfers. Furthermore, important information on metabolic engineering such as enzyme amounts, activities, and characteristics caused by gene expression and enzyme sequences is basically not included in GSM. Therefore, simple FBA is often not sufficient to search for metabolic manipulation strategies that are useful for improving the production of target compounds. In this study, we proposed a method using literature and enzyme search to complement the FBA-based metabolic manipulation strategies. As a case study, this method was applied to shikimic acid production by Corynebacterium glutamicum to verify its usefulness. As unique strategies in literature-mining, overexpression of the transcriptional regulator SugR and gene disruption related to by-products productions were complemented. In the search for alternative enzyme sequences, it was suggested that those candidates are searched for from various species based on features captured by deep learning, which are not simply homologous to amino acid sequences of the base enzymes.
Collapse
Affiliation(s)
- Yuki Kuriya
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Mai Inoue
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Masaki Yamamoto
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Masahiro Murata
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Michihiro Araki
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan.,Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
25
|
Flachbart LK, Gertzen CGW, Gohlke H, Marienhagen J. Development of a Biosensor Platform for Phenolic Compounds Using a Transition Ligand Strategy. ACS Synth Biol 2021; 10:2002-2014. [PMID: 34369151 DOI: 10.1021/acssynbio.1c00165] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The time-consuming and laborious characterization of protein or microbial strain designs limits the development of high-performance biocatalysts for biotechnological applications. Here, transcriptional biosensors emerged as valuable tools as they allow for rapid characterization of several thousand variants within a very short time. However, for many molecules of interest, no specific transcriptional regulator determining a biosensor's specificity is available. We present an approach for rapidly engineering biosensor specificities using a semirational transition ligand approach combined with fluorescence-activated cell sorting. In this two-step approach, a biosensor is first evolved toward a more relaxed-ligand specificity before using the resulting variant as the starting point in a second round of directed evolution toward high specificity for several chemically different ligands. By following this strategy, highly specific biosensors for 4-hydroxybenzoic acid, p-coumaric acid, 5-bromoferulic acid, and 6-methyl salicylic acid were developed, starting from a biosensor for the intracellular detection of trans-cinnamic acid.
Collapse
Affiliation(s)
- Lion Konstantin Flachbart
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Christoph Gerhard Wilhelm Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| |
Collapse
|
26
|
Shin JH, Andersen AJC, Achterberg P, Olsson L. Exploring functionality of the reverse β-oxidation pathway in Corynebacterium glutamicum for production of adipic acid. Microb Cell Fact 2021; 20:155. [PMID: 34348702 PMCID: PMC8336102 DOI: 10.1186/s12934-021-01647-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Adipic acid, a six-carbon platform chemical mainly used in nylon production, can be produced via reverse β-oxidation in microbial systems. The advantages posed by Corynebacterium glutamicum as a model cell factory for implementing the pathway include: (1) availability of genetic tools, (2) excretion of succinate and acetate when the TCA cycle becomes overflown, (3) initiation of biosynthesis with succinyl-CoA and acetyl-CoA, and (4) established succinic acid production. Here, we implemented the reverse β-oxidation pathway in C. glutamicum and assessed its functionality for adipic acid biosynthesis. RESULTS To obtain a non-decarboxylative condensation product of acetyl-CoA and succinyl-CoA, and to subsequently remove CoA from the condensation product, we introduced heterologous 3-oxoadipyl-CoA thiolase and acyl-CoA thioesterase into C. glutamicum. No 3-oxoadipic acid could be detected in the cultivation broth, possibly due to its endogenous catabolism. To successfully biosynthesize and secrete 3-hydroxyadipic acid, 3-hydroxyadipyl-CoA dehydrogenase was introduced. Addition of 2,3-dehydroadipyl-CoA hydratase led to biosynthesis and excretion of trans-2-hexenedioic acid. Finally, trans-2-enoyl-CoA reductase was inserted to yield 37 µg/L of adipic acid. CONCLUSIONS In the present study, we engineered the reverse β-oxidation pathway in C. glutamicum and assessed its potential for producing adipic acid from glucose as starting material. The presence of adipic acid, albeit small amount, in the cultivation broth indicated that the synthetic genes were expressed and functional. Moreover, 2,3-dehydroadipyl-CoA hydratase and β-ketoadipyl-CoA thiolase were determined as potential target for further improvement of the pathway.
Collapse
Affiliation(s)
- Jae Ho Shin
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Puck Achterberg
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
27
|
Labib M, Görtz J, Brüsseler C, Kallscheuer N, Gätgens J, Jupke A, Marienhagen J, Noack S. Metabolic and process engineering for microbial production of protocatechuate with Corynebacterium glutamicum. Biotechnol Bioeng 2021; 118:4414-4427. [PMID: 34343343 DOI: 10.1002/bit.27909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 11/10/2022]
Abstract
3,4-Dihydroxybenzoate (protocatechuate, PCA) is a phenolic compound naturally found in edible vegetables and medicinal herbs. PCA is of high interest in the chemical industry and has wide potential for pharmaceutical applications. We designed and constructed a novel Corynebacterium glutamicum strain to enable the efficient utilization of d-xylose for microbial production of PCA. Shake flask cultivation of the engineered strain showed a maximum PCA titer of 62.1 ± 12.1 mM (9.6 ± 1.9 g L-1 ) from d-xylose as the primary carbon and energy source. The corresponding yield was 0.33 C-mol PCA per C-mol d-xylose, which corresponds to 38% of the maximum theoretical yield. Under growth-decoupled bioreactor conditions, a comparable PCA titer and a total amount of 16.5 ± 1.1 g PCA could be achieved when d-glucose and d-xylose were combined as orthogonal carbon substrates for biocatalyst provision and product synthesis, respectively. Downstream processing of PCA was realized via electrochemically induced crystallization by taking advantage of the pH-dependent properties of PCA. This resulted in a maximum final purity of 95.4%. The established PCA production process represents a highly sustainable approach, which will serve as a blueprint for the bio-based production of other hydroxybenzoic acids from alternative sugar feedstocks.
Collapse
Affiliation(s)
- Mohamed Labib
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jonas Görtz
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany.,Aachener Verfahrenstechnik - Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Aachen, Germany
| | - Christian Brüsseler
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Nicolai Kallscheuer
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jochem Gätgens
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Jupke
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany.,Aachener Verfahrenstechnik - Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Aachen, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
28
|
Becker J, Wittmann C. Metabolic Engineering of
Corynebacterium glutamicum. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Weber D, Patsch D, Neumann A, Winkler M, Rother D. Production of the Carboxylate Reductase from Nocardia otitidiscaviarum in a Soluble, Active Form for in vitro Applications. Chembiochem 2021; 22:1823-1832. [PMID: 33527702 PMCID: PMC8251736 DOI: 10.1002/cbic.202000846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/28/2021] [Indexed: 01/22/2023]
Abstract
Accessing aldehydes from carboxylate moieties is often a challenging task. In this regard, carboxylate reductases (CARs) are promising catalysts provided by nature that are able to accomplish this task in just one step, avoiding over-reduction to the alcohol product. However, the heterologous expression of CARs can be quite difficult due to the excessive formation of insoluble protein, thus hindering further characterization and application of the enzyme. Here, the heterologous production of the carboxylate reductase from Nocardia otitidiscaviarum (NoCAR) was optimized by a combination of i) optimized cultivation conditions, ii) post-translational modification with a phosphopantetheinyl transferase and iii) selection of an appropriate expression strain. Especially, the selection of Escherichia coli tuner cells as host had a strong effect on the final 110-fold increase in the specific activity of NoCAR. This highly active NoCAR was used to reduce sodium benzoate to benzaldehyde, and it was successfully assembled with an in vitro regeneration of ATP and NADPH, being capable of reducing about 30 mM sodium benzoate with high selectivity in only 2 h of reaction.
Collapse
Affiliation(s)
- Douglas Weber
- Institute of Bio- and Geosciences (IBG-1)Biotechnology Forschungszentrum Jülich GmbHLeo-Brandt-Str. 152425JülichGermany
- Aachen Biology and Biotechnology (ABBt)RWTH Aachen UniversityWorringer Weg 152074AachenGermany
| | - David Patsch
- Institute of Bio- and Geosciences (IBG-1)Biotechnology Forschungszentrum Jülich GmbHLeo-Brandt-Str. 152425JülichGermany
| | - Annika Neumann
- Institute of Bio- and Geosciences (IBG-1)Biotechnology Forschungszentrum Jülich GmbHLeo-Brandt-Str. 152425JülichGermany
| | - Margit Winkler
- acib-Austrian Centre of Industrial BiotechnologyPetersgasse148010GrazAustria
- Institute of MolecularBiotechnology, Graz University of TechnologyPetersgasse148010GrazAustria
| | - Dörte Rother
- Institute of Bio- and Geosciences (IBG-1)Biotechnology Forschungszentrum Jülich GmbHLeo-Brandt-Str. 152425JülichGermany
- Aachen Biology and Biotechnology (ABBt)RWTH Aachen UniversityWorringer Weg 152074AachenGermany
| |
Collapse
|
30
|
Kerbs A, Mindt M, Schwardmann L, Wendisch VF. Sustainable Production of N-methylphenylalanine by Reductive Methylamination of Phenylpyruvate Using Engineered Corynebacterium glutamicum. Microorganisms 2021; 9:microorganisms9040824. [PMID: 33924554 PMCID: PMC8070496 DOI: 10.3390/microorganisms9040824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
N-alkylated amino acids occur widely in nature and can also be found in bioactive secondary metabolites such as the glycopeptide antibiotic vancomycin and the immunosuppressant cyclosporine A. To meet the demand for N-alkylated amino acids, they are currently produced chemically; however, these approaches often lack enantiopurity, show low product yields and require toxic reagents. Fermentative routes to N-alkylated amino acids like N-methyl-l-alanine or N-methylantranilate, a precursor of acridone alkaloids, have been established using engineered Corynebacterium glutamicum, which has been used for the industrial production of amino acids for decades. Here, we describe metabolic engineering of C. glutamicum for de novo production of N-methylphenylalanine based on reductive methylamination of phenylpyruvate. Pseudomonas putida Δ-1-piperideine-2-carboxylate reductase DpkA containing the amino acid exchanges P262A and M141L showed comparable catalytic efficiencies with phenylpyruvate and pyruvate, whereas the wild-type enzyme preferred the latter substrate over the former. Deletion of the anthranilate synthase genes trpEG and of the genes encoding branched-chain amino acid aminotransferase IlvE and phenylalanine aminotransferase AroT in a strain engineered to overproduce anthranilate abolished biosynthesis of l-tryptophan and l-phenylalanine to accumulate phenylpyruvate. Upon heterologous expression of DpkAP262A,M141L, N-methylphenylalanine production resulted upon addition of monomethylamine to the medium. In glucose-based minimal medium, an N-methylphenylalanine titer of 0.73 ± 0.05 g L−1, a volumetric productivity of 0.01 g L−1 h−1 and a yield of 0.052 g g−1 glucose were reached. When xylose isomerase gene xylA from Xanthomonas campestris and the endogenous xylulokinase gene xylB were expressed in addition, xylose as sole carbon source supported production of N-methylphenylalanine to a titer of 0.6 ± 0.04 g L−1 with a volumetric productivity of 0.008 g L−1 h−1 and a yield of 0.05 g g−1 xylose. Thus, a fermentative route to sustainable production of N-methylphenylalanine by recombinant C. glutamicum has been established.
Collapse
Affiliation(s)
- Anastasia Kerbs
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (A.K.); (L.S.)
| | - Melanie Mindt
- BU Bioscience, Wagenigen University and Research, 6700AA Wageningen, The Netherlands;
| | - Lynn Schwardmann
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (A.K.); (L.S.)
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (A.K.); (L.S.)
- Correspondence: ; Tel.: +49-521-106-5611
| |
Collapse
|
31
|
Wang S, Fu C, Liu K, Cui J, Hu H, Wang W, Zhang X. Engineering a Synthetic Pathway for Gentisate in Pseudomonas Chlororaphis P3. Front Bioeng Biotechnol 2021; 8:622226. [PMID: 33553126 PMCID: PMC7862547 DOI: 10.3389/fbioe.2020.622226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas chlororaphis P3 has been well-engineered as a platform organism for biologicals production due to enhanced shikimate pathway and excellent physiological and genetic characteristics. Gentisate displays high antiradical and antioxidant activities and is an important intermediate that can be used as a precursor for drugs. Herein, a plasmid-free biosynthetic pathway of gentisate was constructed by connecting the endogenous degradation pathway from 3-hydroxybenzoate in Pseudomonas for the first time. As a result, the production of gentisate reached 365 mg/L from 3-HBA via blocking gentisate conversion and enhancing the gentisate precursors supply through the overexpression of the rate-limiting step. With a close-up at the future perspectives, a series of bioactive compounds could be achieved by constructing synthetic pathways in conventional Pseudomonas to establish a cell factory.
Collapse
Affiliation(s)
- Songwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Cong Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kaiquan Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jiajia Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Kogure T, Suda M, Hiraga K, Inui M. Protocatechuate overproduction by Corynebacterium glutamicum via simultaneous engineering of native and heterologous biosynthetic pathways. Metab Eng 2020; 65:232-242. [PMID: 33238211 DOI: 10.1016/j.ymben.2020.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 10/22/2022]
Abstract
Protocatechuic acid (3, 4-dihydroxybenzoic acid, PCA) is a natural bioactive phenolic acid potentially valuable as a pharmaceutical raw material owing to its diverse pharmacological activities. Corynebacterium glutamicum forms PCA as a key intermediate in a native pathway to assimilate shikimate/quinate through direct conversion of the shikimate pathway intermediate 3-dehydroshikimate (DHS), which is catalyzed by qsuB-encoded DHS dehydratase (the DHS pathway). PCA can also be formed via an alternate pathway extending from chorismate by introducing heterologous chorismate pyruvate lyase that converts chorismate into 4-hydroxybenzoate (4-HBA), which is then converted into PCA catalyzed by endogenous 4-HBA 3-hydroxylase (the 4-HBA pathway). In this study, we generated three plasmid-free C. glutamicum strains overproducing PCA based on the markerless chromosomal recombination by engineering each or both of the above mentioned two PCA-biosynthetic pathways combined with engineering of the host metabolism to enhance the shikimate pathway flux and to block PCA consumption. Aerobic growth-arrested cell reactions were performed using the resulting engineered strains, which revealed that strains dependent on either the DHS or 4-HBA pathway as the sole PCA-biosynthetic route produced 43.8 and 26.2 g/L of PCA from glucose with a yield of 35.3% and 10.0% (mol/mol), respectively, indicating that PCA production through the DHS pathway is significantly efficient compared to that produced through the 4-HBA pathway. Remarkably, a strain simultaneously using both DHS and 4-HBA pathways achieved the highest reported PCA productivity of 82.7 g/L with a yield of 32.8% (mol/mol) from glucose in growth-arrested cell reaction. These results indicated that simultaneous engineering of both DHS and 4-HBA pathways is an efficient method for PCA production. The generated PCA-overproducing strain is plasmid-free and does not require supplementation of aromatic amino acids and vitamins due to the intact shikimate pathway, thereby representing a promising platform for the industrial bioproduction of PCA and derived chemicals from renewable sugars.
Collapse
Affiliation(s)
- Takahisa Kogure
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan.
| | - Masako Suda
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan.
| | - Kazumi Hiraga
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan.
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan; Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan.
| |
Collapse
|
33
|
Common problems associated with the microbial productions of aromatic compounds and corresponding metabolic engineering strategies. Biotechnol Adv 2020; 41:107548. [DOI: 10.1016/j.biotechadv.2020.107548] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/06/2023]
|
34
|
Fermentative N-Methylanthranilate Production by Engineered Corynebacterium glutamicum. Microorganisms 2020; 8:microorganisms8060866. [PMID: 32521697 PMCID: PMC7356990 DOI: 10.3390/microorganisms8060866] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
The N-functionalized amino acid N-methylanthranilate is an important precursor for bioactive compounds such as anticancer acridone alkaloids, the antinociceptive alkaloid O-isopropyl N-methylanthranilate, the flavor compound O-methyl-N-methylanthranilate, and as a building block for peptide-based drugs. Current chemical and biocatalytic synthetic routes to N-alkylated amino acids are often unprofitable and restricted to low yields or high costs through cofactor regeneration systems. Amino acid fermentation processes using the Gram-positive bacterium Corynebacterium glutamicum are operated industrially at the million tons per annum scale. Fermentative processes using C. glutamicum for N-alkylated amino acids based on an imine reductase have been developed, while N-alkylation of the aromatic amino acid anthranilate with S-adenosyl methionine as methyl-donor has not been described for this bacterium. After metabolic engineering for enhanced supply of anthranilate by channeling carbon flux into the shikimate pathway, preventing by-product formation and enhancing sugar uptake, heterologous expression of the gene anmt encoding anthranilate N-methyltransferase from Ruta graveolens resulted in production of N-methylanthranilate (NMA), which accumulated in the culture medium. Increased SAM regeneration by coexpression of the homologous adenosylhomocysteinase gene sahH improved N-methylanthranilate production. In a test bioreactor culture, the metabolically engineered C. glutamicum C1* strain produced NMA to a final titer of 0.5 g·L−1 with a volumetric productivity of 0.01 g·L−1·h−1 and a yield of 4.8 mg·g−1 glucose.
Collapse
|
35
|
Valanciene E, Jonuskiene I, Syrpas M, Augustiniene E, Matulis P, Simonavicius A, Malys N. Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis. Biomolecules 2020; 10:E874. [PMID: 32517243 PMCID: PMC7356249 DOI: 10.3390/biom10060874] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Biotechnological production of phenolic acids is attracting increased interest due to their superior antioxidant activity, as well as other antimicrobial, dietary, and health benefits. As secondary metabolites, primarily found in plants and fungi, they are effective free radical scavengers due to the phenolic group available in their structure. Therefore, phenolic acids are widely utilised by pharmaceutical, food, cosmetic, and chemical industries. A demand for phenolic acids is mostly satisfied by utilising chemically synthesised compounds, with only a low quantity obtained from natural sources. As an alternative to chemical synthesis, environmentally friendly bio-based technologies are necessary for development in large-scale production. One of the most promising sustainable technologies is the utilisation of microbial cell factories for biosynthesis of phenolic acids. In this paper, we perform a systematic comparison of the best known natural sources of phenolic acids. The advances and prospects in the development of microbial cell factories for biosynthesis of these bioactive compounds are discussed in more detail. A special consideration is given to the modern production methods and analytics of phenolic acids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania; (E.V.); (I.J.); (M.S.); (E.A.); (P.M.); (A.S.)
| |
Collapse
|
36
|
Milke L, Marienhagen J. Engineering intracellular malonyl-CoA availability in microbial hosts and its impact on polyketide and fatty acid synthesis. Appl Microbiol Biotechnol 2020; 104:6057-6065. [PMID: 32385515 PMCID: PMC7316851 DOI: 10.1007/s00253-020-10643-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
Malonyl-CoA is an important central metabolite serving as the basic building block for the microbial synthesis of many pharmaceutically interesting polyketides, but also fatty acid-derived compounds including biofuels. Especially Saccharomyces cerevisiae, Escherichia coli, and Corynebacterium glutamicum have been engineered towards microbial synthesis of such compounds in recent years. However, developed strains and processes often suffer from insufficient productivity. Usually, tightly regulated intracellular malonyl-CoA availability is regarded as the decisive bottleneck limiting overall product formation. Therefore, metabolic engineering towards improved malonyl-CoA availability is essential to design efficient microbial cell factories for the production of polyketides and fatty acid derivatives. This review article summarizes metabolic engineering strategies to improve intracellular malonyl-CoA formation in industrially relevant microorganisms and its impact on productivity and product range, with a focus on polyketides and other malonyl-CoA-dependent products.Key Points• Malonyl-CoA is the central building block of polyketide synthesis.• Increasing acetyl-CoA supply is pivotal to improve malonyl-CoA availability.• Improved acetyl-CoA carboxylase activity increases availability of malonyl-CoA.• Fatty acid synthesis as an ambivalent target to improve malonyl-CoA supply.
Collapse
Affiliation(s)
- Lars Milke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany. .,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
37
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
38
|
Braga A, Faria N. Bioprocess Optimization for the Production of Aromatic Compounds With Metabolically Engineered Hosts: Recent Developments and Future Challenges. Front Bioeng Biotechnol 2020; 8:96. [PMID: 32154231 PMCID: PMC7044121 DOI: 10.3389/fbioe.2020.00096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Abstract
The most common route to produce aromatic chemicals - organic compounds containing at least one benzene ring in their structure - is chemical synthesis. These processes, usually starting from an extracted fossil oil molecule such as benzene, toluene, or xylene, are highly environmentally unfriendly due to the use of non-renewable raw materials, high energy consumption and the usual production of toxic by-products. An alternative way to produce aromatic compounds is extraction from plants. These extractions typically have a low yield and a high purification cost. This motivates the search for alternative platforms to produce aromatic compounds through low-cost and environmentally friendly processes. Microorganisms are able to synthesize aromatic amino acids through the shikimate pathway. The construction of microbial cell factories able to produce the desired molecule from renewable feedstock becomes a promising alternative. This review article focuses on the recent advances in microbial production of aromatic products, with a special emphasis on metabolic engineering strategies, as well as bioprocess optimization. The recent combination of these two techniques has resulted in the development of several alternative processes to produce phenylpropanoids, aromatic alcohols, phenolic aldehydes, and others. Chemical species that were unavailable for human consumption due to the high cost and/or high environmental impact of their production, have now become accessible.
Collapse
Affiliation(s)
- Adelaide Braga
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | |
Collapse
|
39
|
Holwerda EK, Olson DG, Ruppertsberger NM, Stevenson DM, Murphy SJL, Maloney MI, Lanahan AA, Amador-Noguez D, Lynd LR. Metabolic and evolutionary responses of Clostridium thermocellum to genetic interventions aimed at improving ethanol production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:40. [PMID: 32175007 PMCID: PMC7063780 DOI: 10.1186/s13068-020-01680-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/10/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Engineering efforts targeted at increasing ethanol by modifying the central fermentative metabolism of Clostridium thermocellum have been variably successful. Here, we aim to understand this variation by a multifaceted approach including genomic and transcriptomic analysis combined with chemostat cultivation and high solids cellulose fermentation. Three strain lineages comprising 16 strains total were examined. Two strain lineages in which genes involved in pathways leading to organic acids and/or sporulation had been knocked out resulted in four end-strains after adaptive laboratory evolution (ALE). A third strain lineage recapitulated mutations involving adhE that occurred spontaneously in some of the engineered strains. RESULTS Contrary to lactate dehydrogenase, deleting phosphotransacetylase (pta, acetate) negatively affected steady-state biomass concentration and caused increased extracellular levels of free amino acids and pyruvate, while no increase in ethanol was detected. Adaptive laboratory evolution (ALE) improved growth and shifted elevated levels of amino acids and pyruvate towards ethanol, but not for all strain lineages. Three out of four end-strains produced ethanol at higher yield, and one did not. The occurrence of a mutation in the adhE gene, expanding its nicotinamide-cofactor compatibility, enabled two end-strains to produce more ethanol. A disruption in the hfsB hydrogenase is likely the reason why a third end-strain was able to make more ethanol. RNAseq analysis showed that the distribution of fermentation products was generally not regulated at the transcript level. At 120 g/L cellulose loadings, deletions of spo0A, ldh and pta and adaptive evolution did not negatively influence cellulose solubilization and utilization capabilities. Strains with a disruption in hfsB or a mutation in adhE produced more ethanol, isobutanol and 2,3-butanediol under these conditions and the highest isobutanol and ethanol titers reached were 5.1 and 29.9 g/L, respectively. CONCLUSIONS Modifications in the organic acid fermentative pathways in Clostridium thermocellum caused an increase in extracellular pyruvate and free amino acids. Adaptive laboratory evolution led to improved growth, and an increase in ethanol yield and production due a mutation in adhE or a disruption in hfsB. Strains with deletions in ldh and pta pathways and subjected to ALE demonstrated undiminished cellulolytic capabilities when cultured on high cellulose loadings.
Collapse
Affiliation(s)
- Evert K. Holwerda
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Daniel G. Olson
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | | | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Sean J. L. Murphy
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
| | - Marybeth I. Maloney
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Anthony A. Lanahan
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Lee R. Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
40
|
Escobar-Muciño E, Luna-Guevara ML, Ramos-Cassellis ME, Amador-Espejo GG, Castañeda-Lucio M, Arenas-Hernández MMP. Evaluation of process involved in the production of aromatic compounds in Gram-negative bacteria isolated from vanilla (Vanilla planifolia ex. Andrews) beans. J Appl Microbiol 2019; 128:1086-1098. [PMID: 31793107 DOI: 10.1111/jam.14537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/15/2019] [Accepted: 11/28/2019] [Indexed: 11/29/2022]
Abstract
AIM The present investigation was aimed at isolating and identifying bacterial strains from cured vanilla beans. Additionally, the study focused on evaluating bacterial processes pertaining to the aromatic compounds production (ACP). METHODS AND RESULTS Three bacteria were isolated from Vanilla planifolia beans, previously subjected to the curing process. According to morphological, biochemical and 16S rRNA analysis, the strains were identified as Citrobacter sp., Enterobacter sp. and Pseudomonas sp. The polygalacturonase activity (PGA) was determined using the drop, cup-plate and DNS methods. Aromatic compounds production was analysed by cup-plate method using FA as substrate and quantified by high performance liquid chromatography (ppm), the functional groups of vanillic acid (VA) were identified by FT-IR and the aromatic compounds (AC) resistance was determined and reported as minimum inhibitory concentration. Citrobacter sp., Enterobacter sp. and Pseudomonas showed PGA (70·31 ± 364, 76·07 ± 12·47 and 51 ± 10·92 U ml-1 respectively), were producers of VA (3·23 ± 0·49, 324 ± 41 and 265·99 ± 11·61 ppm respectively) and were resistant to AC. CONCLUSIONS The Gram-negative bacteria isolated from V. planifolia beans were responsible for ACP. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first evidence for the role of Gram-negative bacterial isolates from cured Mexican V. planifolia beans in the process related to ACP.
Collapse
Affiliation(s)
- E Escobar-Muciño
- Centro de Investigación en Ciencias Microbiológicas, Posgrado en Microbiología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - M L Luna-Guevara
- Colegío de Ingeniería en Alimentos, Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - M E Ramos-Cassellis
- Colegío de Ingeniería en Alimentos, Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - G G Amador-Espejo
- CONACYT-Centro de Investigación en Biotecnología Aplicada-IPN, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac, Tlaxcala, México
| | - M Castañeda-Lucio
- Centro de Investigación en Ciencias Microbiológicas, Posgrado en Microbiología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - M M P Arenas-Hernández
- Centro de Investigación en Ciencias Microbiológicas, Posgrado en Microbiología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| |
Collapse
|
41
|
Kallscheuer N, Kage H, Milke L, Nett M, Marienhagen J. Microbial synthesis of the type I polyketide 6-methylsalicylate with Corynebacterium glutamicum. Appl Microbiol Biotechnol 2019; 103:9619-9631. [DOI: 10.1007/s00253-019-10121-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/26/2019] [Accepted: 09/04/2019] [Indexed: 12/28/2022]
|
42
|
Veldmann KH, Dachwitz S, Risse JM, Lee JH, Sewald N, Wendisch VF. Bromination of L-tryptophan in a Fermentative Process With Corynebacterium glutamicum. Front Bioeng Biotechnol 2019; 7:219. [PMID: 31620432 PMCID: PMC6759940 DOI: 10.3389/fbioe.2019.00219] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/27/2019] [Indexed: 01/22/2023] Open
Abstract
Brominated compounds such as 7-bromo-l-tryptophan (7-Br-Trp) occur in Nature. Many synthetic and natural brominated compounds have applications in the agriculture, food, and pharmaceutical industries, for example, the 20S-proteasome inhibitor TMC-95A that may be derived from 7-Br-Trp. Mild halogenation by cross-linked enzyme aggregates containing FAD-dependent halogenase, NADH-dependent flavin reductase, and alcohol dehydrogenase as well as by fermentation with recombinant Corynebacterium glutamicum expressing the genes for the FAD-dependent halogenase RebH and the NADH-dependent flavin reductase RebF from Lechevalieria aerocolonigenes have recently been developed as green alternatives to more hazardous chemical routes. In this study, the fermentative production of 7-Br-Trp was established. The fermentative process employs an l-tryptophan producing C. glutamicum strain expressing rebH and rebF from L. aerocolonigenes for halogenation and is based on glucose, ammonium and sodium bromide. C. glutamicum tolerated high sodium bromide concentrations, but its growth rate was reduced to half-maximal at 0.09 g L−1 7-bromo-l-tryptophan. This may be, at least in part, due to inhibition of anthranilate phosphoribosyltransferase by 7-Br-Trp since anthranilate phosphoribosyltransferase activity in crude extracts was half-maximal at about 0.03 g L−1 7-Br-Trp. Fermentative production of 7-Br-Trp by recombinant C. glutamicum was scaled up to a working volume of 2 L and operated in batch and fed-batch mode. The titers were increased from batch fermentation in CGXII minimal medium with 0.3 g L−1 7-Br-Trp to fed-batch fermentation in HSG complex medium, where up to 1.2 g L−1 7-Br-Trp were obtained. The product isolated from the culture broth was characterized by NMR and LC-MS and shown to be 7-Br-Trp.
Collapse
Affiliation(s)
- Kareen H Veldmann
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Steffen Dachwitz
- Organic and Bioorganic Chemistry, Faculty of Chemistry & Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Joe Max Risse
- Fermentation Technology, Technical Faculty & Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jin-Ho Lee
- Major in Food Science and Biotechnology, School of Food Biotechnology and Nutrition, BB21+, Kyungsung University, Busan, South Korea
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry & Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
43
|
Qin Y, He Y, She Q, Larese-Casanova P, Li P, Chai Y. Heterogeneity in respiratory electron transfer and adaptive iron utilization in a bacterial biofilm. Nat Commun 2019; 10:3702. [PMID: 31420537 PMCID: PMC6697725 DOI: 10.1038/s41467-019-11681-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022] Open
Abstract
In Bacillus subtilis, robust biofilm formation requires large quantities of ferric iron. Here we show that this process requires preferential production of a siderophore precursor, 2,3-dihydroxybenzoate, instead of the siderophore bacillibactin. A large proportion of iron is associated extracellularly with the biofilm matrix. The biofilms are conductive, with extracellular iron potentially acting as electron acceptor. A relatively small proportion of ferric iron is internalized and boosts production of iron-containing enzymes involved in respiratory electron transfer and establishing strong membrane potential, which is key to biofilm matrix production. Our study highlights metabolic diversity and versatile energy generation strategies within B. subtilis biofilms. Biofilm formation in Bacillus subtilis requires high levels of ferric iron. Here, Qin et al. show that iron accumulation requires production of dihydroxybenzoate (a precursor in siderophore biosynthesis), and matrix-associated iron may be acting as extracellular electron acceptor during respiratory electron transfer.
Collapse
Affiliation(s)
- Yuxuan Qin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Yinghao He
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Qianxuan She
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Philip Larese-Casanova
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Pinglan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
44
|
Lenzen C, Wynands B, Otto M, Bolzenius J, Mennicken P, Blank LM, Wierckx N. High-Yield Production of 4-Hydroxybenzoate From Glucose or Glycerol by an Engineered Pseudomonas taiwanensis VLB120. Front Bioeng Biotechnol 2019; 7:130. [PMID: 31245364 PMCID: PMC6581684 DOI: 10.3389/fbioe.2019.00130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022] Open
Abstract
Aromatic compounds such as 4-hydroxybenzoic acid are broadly applied in industry for a myriad of applications used in everyday life. However, their industrial production currently relies heavily on fossil resources and involves environmentally unfriendly production conditions, thus creating the need for more sustainable biotechnological alternatives. In this study, synthetic biology was applied to metabolically engineer Pseudomonas taiwanensis VLB120 to produce 4-hydroxybenzoate from glucose, xylose, or glycerol as sole carbon sources. Genes encoding a 4-hydroxybenzoate production pathway were integrated into the host genome and the flux toward the central precursor tyrosine was enhanced by overexpressing genes encoding key enzymes of the shikimate pathway. The flux toward tryptophan biosynthesis was decreased by introducing a P290S point mutation in the trpE gene, and degradation pathways for 4-hydroxybenzoate, 4-hydroxyphenylpyruvate and 3-dehydroshikimate were knocked out. The resulting production strains were tailored for the utilization of glucose and glycerol through the rational modification of central carbon metabolism. In batch cultivations with a completely mineral medium, the best strain produced 1.37 mM 4-hydroxybenzoate from xylose with a C-mol yield of 8% and 3.3 mM from glucose with a C-mol yield of 19.0%. Using glycerol as a sole carbon source, the C-mol yield increased to 29.6%. To our knowledge, this is the highest yield achieved by any species in a fully mineral medium. In all, the efficient conversion of bio-based substrates into 4-hydroxybenzoate by these deeply engineered P. taiwanensis strains brings the renewable production of aromatics one step closer.
Collapse
Affiliation(s)
- Christoph Lenzen
- Institute of Applied Microbiology iAMB, RWTH Aachen University, Aachen, Germany
| | - Benedikt Wynands
- Institute of Applied Microbiology iAMB, RWTH Aachen University, Aachen, Germany.,Forschungszentrum Jülich, Institute of Bio- and Geosciences IBG-1: Biotechnology, Jülich, Germany
| | - Maike Otto
- Institute of Applied Microbiology iAMB, RWTH Aachen University, Aachen, Germany.,Forschungszentrum Jülich, Institute of Bio- and Geosciences IBG-1: Biotechnology, Jülich, Germany
| | - Johanna Bolzenius
- Institute of Applied Microbiology iAMB, RWTH Aachen University, Aachen, Germany
| | - Philip Mennicken
- Institute of Applied Microbiology iAMB, RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology iAMB, RWTH Aachen University, Aachen, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology iAMB, RWTH Aachen University, Aachen, Germany.,Forschungszentrum Jülich, Institute of Bio- and Geosciences IBG-1: Biotechnology, Jülich, Germany
| |
Collapse
|
45
|
Milke L, Kallscheuer N, Kappelmann J, Marienhagen J. Tailoring Corynebacterium glutamicum towards increased malonyl-CoA availability for efficient synthesis of the plant pentaketide noreugenin. Microb Cell Fact 2019; 18:71. [PMID: 30975146 PMCID: PMC6460773 DOI: 10.1186/s12934-019-1117-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/03/2019] [Indexed: 12/28/2022] Open
Abstract
Background In the last years, different biotechnologically relevant microorganisms have been engineered for the synthesis of plant polyphenols such as flavonoids and stilbenes. However, low intracellular availability of malonyl-CoA as essential precursor for most plant polyphenols of interest is regarded as the decisive bottleneck preventing high product titers. Results In this study, Corynebacterium glutamicum, which emerged as promising cell factory for plant polyphenol production, was tailored by rational metabolic engineering towards providing significantly more malonyl-CoA for product synthesis. This was achieved by improving carbon source uptake, transcriptional deregulation of accBC and accD1 encoding the two subunits of the acetyl-CoA carboxylase (ACC), reduced flux into the tricarboxylic acid (TCA) cycle, and elimination of anaplerotic carboxylation of pyruvate. The constructed strains were used for the synthesis of the pharmacologically interesting plant pentaketide noreugenin, which is produced by plants such as Aloe arborescens from five molecules of malonyl-CoA. In this context, accumulation of the C1/C6 cyclized intermediate 1-(2,4,6-trihydroxyphenyl)butane-1,3-dione (TPBD) was observed, which could be fully cyclized to the bicyclic product noreugenin by acidification. Conclusion The best strain C. glutamicum Nor2 C5 mufasOBCD1 PO6-iolT1 ∆pyc allowed for synthesis of 53.32 mg/L (0.278 mM) noreugenin in CGXII medium supplemented with casamino acids within 24 h. Electronic supplementary material The online version of this article (10.1186/s12934-019-1117-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lars Milke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Nicolai Kallscheuer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Jannick Kappelmann
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany. .,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.
| |
Collapse
|
46
|
Zhou Y, Li Z, Wang X, Zhang H. Establishing microbial co-cultures for 3-hydroxybenzoic acid biosynthesis on glycerol. Eng Life Sci 2019; 19:389-395. [PMID: 32625017 DOI: 10.1002/elsc.201800195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/25/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022] Open
Abstract
Converting renewable feedstocks to aromatic compounds using engineered microbes offers a robust approach for sustainable, environment-friendly, and cost-effective production of these value-added products without the reliance on petroleum. In this study, rationally designed E. coli-E. coli co-culture systems were established for converting glycerol to 3-hydroxybenzoic acid (3HB). Specifically, the 3HB pathway was modularized and accommodated by two metabolically engineered E. coli strains. The co-culture biosynthesis was optimized by using different cultivation temperatures, varying the inoculum ratio between the co-culture strains, recruitment of a key pathway intermediate transporter, strengthening the critical pathway enzyme expression, and adjusting the timing for inducing pathway gene expression. Compared with the E. coli mono-culture, the optimized co-culture showed 5.3-fold improvement for 3HB biosynthesis. This study demonstrated the applicability of modular co-culture engineering for addressing the challenges of aromatic compound biosynthesis.
Collapse
Affiliation(s)
- Yiyao Zhou
- Department of Chemical and Biochemical Engineering Rutgers the State University of New Jersey Piscataway NJ USA
| | - Zhenghong Li
- Department of Chemical and Biochemical Engineering Rutgers the State University of New Jersey Piscataway NJ USA
| | - Xiaonan Wang
- Department of Chemical and Biochemical Engineering Rutgers the State University of New Jersey Piscataway NJ USA
| | - Haoran Zhang
- Department of Chemical and Biochemical Engineering Rutgers the State University of New Jersey Piscataway NJ USA
| |
Collapse
|
47
|
Kallscheuer N, Classen T, Drepper T, Marienhagen J. Production of plant metabolites with applications in the food industry using engineered microorganisms. Curr Opin Biotechnol 2019; 56:7-17. [DOI: 10.1016/j.copbio.2018.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
|
48
|
Huccetogullari D, Luo ZW, Lee SY. Metabolic engineering of microorganisms for production of aromatic compounds. Microb Cell Fact 2019; 18:41. [PMID: 30808357 PMCID: PMC6390333 DOI: 10.1186/s12934-019-1090-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/19/2019] [Indexed: 01/09/2023] Open
Abstract
Metabolic engineering has been enabling development of high performance microbial strains for the efficient production of natural and non-natural compounds from renewable non-food biomass. Even though microbial production of various chemicals has successfully been conducted and commercialized, there are still numerous chemicals and materials that await their efficient bio-based production. Aromatic chemicals, which are typically derived from benzene, toluene and xylene in petroleum industry, have been used in large amounts in various industries. Over the last three decades, many metabolically engineered microorganisms have been developed for the bio-based production of aromatic chemicals, many of which are derived from aromatic amino acid pathways. This review highlights the latest metabolic engineering strategies and tools applied to the biosynthesis of aromatic chemicals, many derived from shikimate and aromatic amino acids, including L-phenylalanine, L-tyrosine and L-tryptophan. It is expected that more and more engineered microorganisms capable of efficiently producing aromatic chemicals will be developed toward their industrial-scale production from renewable biomass.
Collapse
Affiliation(s)
- Damla Huccetogullari
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program) and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Zi Wei Luo
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program) and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program) and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea.
- BioProcess Engineering Research Center and Bioinformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
49
|
Production of methylparaben in Escherichia coli. ACTA ACUST UNITED AC 2019; 46:91-99. [DOI: 10.1007/s10295-018-2102-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/27/2018] [Indexed: 10/27/2022]
Abstract
Abstract
Since the 1930s, parabens have been employed widely as preservatives in food, pharmaceutical, and personal care products. These alkyl esters of benzoic acid occur naturally in a broad range of plant species, where they are thought to enhance overall fitness through disease resistance and allelopathy. Current manufacture of parabens relies on chemical synthesis and the processing of 4-hydroxybenzoate as a precursor. A variety of bio-based production platforms have targeted 4-hydroxybenzoate for a greener alternative to chemical manufacturing, but parabens have yet to be made in microbes. Here, we deploy the plant enzyme benzoic acid carboxyl methyltransferase together with four additional recombinant enzymes to produce methylparaben in Escherichia coli. The feasibility of a tyrosine-dependent route to methylparaben is explored, establishing a framework for linking paraben production to emerging high-tyrosine E. coli strains. However, our use of a unique plant enzyme for bio-based methylparaben biosynthesis is potentially applicable to any microbial system engineered for the manufacture of 4-hydroxybenzoate.
Collapse
|
50
|
Grüninger MJ, Buchholz PCF, Mordhorst S, Strack P, Müller M, Hubrich F, Pleiss J, Andexer JN. Chorismatases – the family is growing. Org Biomol Chem 2019; 17:2092-2098. [DOI: 10.1039/c8ob03038c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A newly discovered subfamily of chorismatases catalyses the same reaction as chorismate lyases (cleavage of chorismate to 4-hydroxybenzoate), but does not suffer from product inhibition.
Collapse
Affiliation(s)
- Mads J. Grüninger
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Patrick C. F. Buchholz
- Institute of Biochemistry and Technical Biochemistry
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Silja Mordhorst
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Patrick Strack
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Florian Hubrich
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Jennifer N. Andexer
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| |
Collapse
|