1
|
Arabkari V, Barua D, Hossain MM, Webber M, Smith T, Gupta A, Gupta S. miRNA-378 Is Downregulated by XBP1 and Inhibits Growth and Migration of Luminal Breast Cancer Cells. Int J Mol Sci 2023; 25:186. [PMID: 38203358 PMCID: PMC10778669 DOI: 10.3390/ijms25010186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
X-box binding protein 1 (XBP1) is a transcription factor that plays a crucial role in the unfolded protein response (UPR), a cellular stress response pathway involved in maintaining protein homeostasis in the endoplasmic reticulum (EnR). While the role of XBP1 in UPR is well-characterised, emerging evidence suggests its involvement in endocrine resistance in breast cancer. The transcriptional activity of spliced XBP1 (XBP1s) is a major component of its biological effects, but the targets of XBP1s in estrogen receptor (ER)-positive breast cancer are not well understood. Here, we show that the expression of miR-378 and PPARGC1B (host gene of miR-378) is downregulated during UPR. Using chemical and genetic methods, we show that XBP1s is necessary and sufficient for the downregulation of miR-378 and PPARGC1B. Our results show that overexpression of miR-378 significantly suppressed cell growth, colony formation, and migration of ER-positive breast cancer cells. Further, we found that expression of miR-378 sensitised the cells to UPR-induced cell death and anti-estrogens. The expression of miR-378 and PPARGC1B was downregulated in breast cancer, and higher expression of miR-378 is associated with better outcomes in ER-positive breast cancer. We found that miR-378 upregulates the expression of several genes that regulate type I interferon signalling. Analysis of separate cohorts of breast cancer patients showed that a gene signature derived from miR-378 upregulated genes showed a strong association with improved overall and recurrence-free survival in breast cancer. Our results suggest a growth-suppressive role for miR-378 in ER-positive breast cancer where downregulation of miR-378 by XBP1 contributes to endocrine resistance in ER-positive breast cancer.
Collapse
Affiliation(s)
- Vahid Arabkari
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91TK33 Galway, Ireland; (V.A.); (D.B.); (M.M.H.); (M.W.)
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - David Barua
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91TK33 Galway, Ireland; (V.A.); (D.B.); (M.M.H.); (M.W.)
| | - Muhammad Mosaraf Hossain
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91TK33 Galway, Ireland; (V.A.); (D.B.); (M.M.H.); (M.W.)
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Mark Webber
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91TK33 Galway, Ireland; (V.A.); (D.B.); (M.M.H.); (M.W.)
| | - Terry Smith
- Molecular Diagnostic Research Group, College of Science, University of Galway, H91TK33 Galway, Ireland;
| | - Ananya Gupta
- Discipline of Physiology, School of Medicine, University of Galway, H91TK33 Galway, Ireland;
| | - Sanjeev Gupta
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91TK33 Galway, Ireland; (V.A.); (D.B.); (M.M.H.); (M.W.)
| |
Collapse
|
2
|
Amiri BS, Sabernia N, Abouali B, Amini P, Rezaeeyan H. Evaluation of MicroRNA as Minimal Residual Disease in Leukemia: Diagnostic and Prognostic Approach: A Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:2541-2553. [PMID: 38435763 PMCID: PMC10903317 DOI: 10.18502/ijph.v52i12.14315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/19/2023] [Indexed: 03/05/2024]
Abstract
Various factors are effective in the development of minimal residual disease (MRD), one of which is MicroRNAs (miRNAs). miRNAs and their dysfunction in gene expression have influential role in the pathogenesis of leukemia. Nowadays, treatments that lead to the suppression or replacement of miRNAs have been developed. Focusing on the role of miRNAs in managing the treatment of leukemia, in this review article we have investigated the miRNAs and signaling pathways involved in the process of apoptosis and cell proliferation, as well as miRNAs with oncogenic function in malignant leukemia cells. Among the studied miRNAs, miR-99a, and miR-181a play an essential role in apoptosis, proliferation and oncogenesis via AKT, MAPK, RAS, and mTOR signaling pathways. miR-223 and miR-125a affect apoptosis and oncogenesis via Wnt/B-catenin, PTEN/PI3K, and STAT5/AKT/ERK/Src signaling pathways. miR-100 also affects both apoptosis and oncogenesis; it acts via IGF1 and mTOR signaling pathways.
Collapse
Affiliation(s)
- Bahareh Shateri Amiri
- Department of Internal Medicine, School of Medicine, Hazrat-e Rasool General Hospital, Iran University of Medical Sciences Tehran, Iran
| | - Neda Sabernia
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behdokht Abouali
- Department of Ophthalmology, School of Medicine, Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parya Amini
- Department of Cardiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Rezaeeyan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization, Tehran, Iran
| |
Collapse
|
3
|
Al-Sisan SM, Zihlif MA, Hammad HM. Differential miRNA expression of hypoxic MCF7 and PANC-1 cells. Front Endocrinol (Lausanne) 2023; 14:1110743. [PMID: 37583428 PMCID: PMC10424510 DOI: 10.3389/fendo.2023.1110743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/21/2023] [Indexed: 08/17/2023] Open
Abstract
Background Hypoxia plays a critical role in the tumor microenvironment by affecting cellular proliferation, metabolism, apoptosis, DNA repair, and chemoresistance. Since hypoxia provokes a distinct shift of microRNA, it is important to illustrate the relative contribution of each hypoxamiR to cancer progression. Aims The present study aims to shed light on the hypoxamiRs that are involved in pancreatic and breast cancer progression to highlight novel targets for the development of new therapies. Methods For 20 cycles, MCF7 breast cancer cells and PANC-1 pancreatic cancer cells were subjected to chronic cyclic hypoxia, which consisted of 72 hours of hypoxia followed by 24 hours of reoxygenation. After 10 and 20 cycles of hypoxia, miRNA expression alterations were profiled using RT-PCR array and further analyzed using a visual analytics platform. The MTT cell proliferation assay was used to determine hypoxic cells' chemoresistance to doxorubicin. Results Under chronic cyclic hypoxia, hypoxic PANC-1 cells have a comparable doubling time with their normoxic counterparts, whereas hypoxic MCF7 cells show a massive increase in doubling time when compared to their normoxic counterparts. Both hypoxic cell lines developed EMT-like phenotypes as well as doxorubicin resistance. According to the findings of miRNet, 6 and 10 miRNAs were shown to play an important role in enriching six hallmarks of pancreatic cancer in the 10th and 20th cycles of hypoxia, respectively, while 7 and 11 miRNAs were shown to play an important role in enriching the four hallmarks of breast cancer in the 10th and 20th cycles of hypoxia, respectively. Conclusions miR-221, miR-21, miR-155, and miR-34 were found to be involved in the potentiation of hypoxic PANC-1 hallmarks at both the 10th and 20th cycles, while miR-93, miR-20a, miR-15, and miR-17 were found to be involved in the potentiation of hypoxic MCF7 hallmarks at both the 10th and 20th cycles. This variation in miRNA expression was also connected to the emergence of an EMT-like phenotype, alterations in proliferation rates, and doxorubicin resistance. The chemosensitivity results revealed that chronic cyclic hypoxia is critical in the formation of chemoresistant phenotypes in pancreatic and breast cancer cells. miR-181a and let-7e expression disparities in PANC1, as well as miR-93, miR-34, and miR-27 expression disparities in MCF7, may be associated with the formation of chemoresistant MCF7 and PANC-1 cells following 20 cycles of chronic cyclic hypoxia. Indeed, further research is needed since the particular mechanisms that govern these processes are unknown.
Collapse
Affiliation(s)
- Sandy M. Al-Sisan
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Malek A. Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Hana M. Hammad
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
| |
Collapse
|
4
|
Qin Y, Liang R, Lu P, Lai L, Zhu X. Depicting the Implication of miR-378a in Cancers. Technol Cancer Res Treat 2022; 21:15330338221134385. [PMID: 36285472 PMCID: PMC9608056 DOI: 10.1177/15330338221134385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
MicroRNA-378a (miR-378a), including miR-378a-3p and miR-378a-5p, are encoded in PPARGC1B gene. miR-378a is essential for tumorigenesis and is an independent prognostic biomarker for various malignant tumors. Aberrant expression of miR-378a affects several physiological and pathological processes, including proliferation, apoptosis, tumorigenesis, cancer invasion, metastasis, and therapeutic resistance. Interestingly, miR-378a has a dual functional role in either promoting or inhibiting tumorigenesis, independent of the cancer type. In this review, we comprehensively summarized the role and regulatory mechanisms of miR-378a in cancer development, hoping to provide a direction for its potential use in cancer therapy.
Collapse
Affiliation(s)
- Yuelan Qin
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Renba Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Pingan Lu
- Faculty of Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lin Lai
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China,Affiliated Wuming Hospital of Guangxi Medical University, Nanning, People's Republic of China,Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor, Guangxi Medical University, Ministry of Education, Nanning, People's Republic of China,Xiaodong Zhu, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 22 Shuang Yong Road, Nanning 530021, People's Republic of China.
| |
Collapse
|
5
|
Wei S, Hu W, Feng J, Geng Y. Promotion or remission: a role of noncoding RNAs in colorectal cancer resistance to anti-EGFR therapy. Cell Commun Signal 2022; 20:150. [PMID: 36131281 PMCID: PMC9490904 DOI: 10.1186/s12964-022-00960-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Anti-epidermal-growth-factor-receptor (EGFR) monoclonal antibodies (mAbs) are of great significance for RAS and BRAF wild-type metastatic colorectal cancer (mCRC) patients. However, the generation of primary and secondary resistance to anti-EGFR mAbs has become an important factor restricting its efficacy. Recent studies have revealed that non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are implicated in anti-EGFR antibodies resistance, affecting the sensitivity of CRC cells to Cetuximab and Panitumumab. This paper briefly reviewed the research advance of the expression, signaling network and functional mechanism of ncRNAs related to anti-EGFR mAbs resistance in CRC, as well as their relationship with clinical prognosis and the possibility of therapeutic targets. In addition, some ncRNAs that are involved in the regulation of signaling pathways or genes related to anti-EGFR resistance, but need to be further verified by resistance experiments were also included in this review, thereby providing more ideas and basis for ncRNAs as CRC prognostic markers and anti-EGFR therapy sensitizers. Video Abstract.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Feng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
6
|
Castellani G, Buccarelli M, Lulli V, Ilari R, De Luca G, Pedini F, Boe A, Felli N, Biffoni M, Pilozzi E, Marziali G, Ricci-Vitiani L. MiR-378a-3p Acts as a Tumor Suppressor in Colorectal Cancer Stem-Like Cells and Affects the Expression of MALAT1 and NEAT1 lncRNAs. Front Oncol 2022; 12:867886. [PMID: 35814429 PMCID: PMC9263271 DOI: 10.3389/fonc.2022.867886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
MiR-378a-3p plays a critical role in carcinogenesis acting as a tumor suppressor, promoting apoptosis and cell cycle arrest and reducing invasion and drug resistance in several human cancers, including colorectal cancer (CRC), where its expression is significantly associated with histological classification and prognosis. In this study, we investigated the biological and cellular processes affected by miR-378a-3p in the context of CRC carcinogenesis. In agreement with the literature, miR-378a-3p is downregulated in our cohort of CRC patients as well as, in 15 patient-derived colorectal cancer stem-like cell (CRC-SC) lines and 8 CRC cell lines, compared to normal mucosae. Restoration of miR-378a-3p restrains tumorigenic properties of CRC and CRC-SC lines, as well as, significantly reduces tumor growth in two CRC-SC xenograft mouse models. We reported that miR-378a-3p modulates the expression of the lncRNAs MALAT1 and NEAT1. Their expression is inversely correlated with that of miR-378a-3p in patient-derived CRC-SC lines. Silencing of miR-378a-3p targets, MALAT1 and NEAT1, significantly impairs tumorigenic properties of CRC-SCs, supporting the critical role of miR-378a-3p in CRC carcinogenesis as a tumor-suppressor factor by establishing a finely tuned crosstalk with lncRNAs MALAT1 and NEAT1.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina Lulli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ramona Ilari
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele De Luca
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Pedini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Boe
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Nadia Felli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, UOC Anatomia Patologica, Sant’Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Giovanna Marziali
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Lucia Ricci-Vitiani,
| |
Collapse
|
7
|
EPA Modulates KLK Genes via miR-378: A Potential Therapy in Prostate Cancer. Cancers (Basel) 2022; 14:cancers14112813. [PMID: 35681793 PMCID: PMC9179265 DOI: 10.3390/cancers14112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/09/2021] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
It is known that miRNA-378a-3p (miR-378) could be induced by eicosapentaenoic acid (EPA), an omega-3 fatty acid. Herein, we first demonstrated how miR-378 exerts anti-prostate cancer (PCa) actions by influencing multiple target genes, including KLK2, KLK4, KLK6, and KLK14, which are implicated in PCa development, cell proliferation, and cell survival. Furthermore, these genes also correlate with androgen and mTOR signaling transduction, and are considered pivotal pathways for the onset and progression of PCa. In total, four PCa cell lines and eight pairing tissues (tumor vs. normal) from clinical PCa patients were included in the current study. The results showed high significance after EPA induced tumor cells containing higher expression levels of miR-378, and led the PCa cells having low cell viabilities, and they progressed to apoptosis when compared with normal prostate cells (p < 0.001). The findings indicated that EPA might become a potential therapy for PCa, especially because it is derived from the components of natural fish oil; it may prove to be a great help for solving the problem of castration-resistant prostate cancer (CRPC).
Collapse
|
8
|
Serum MicroRNAs: -28-3p, -31-5p, -378a-3p, and -382-5p as novel potential biomarkers in acute lymphoblastic leukemia. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Lundy SR, Abney K, Ellerson D, Igietseme JU, Carroll D, Eko FO, Omosun YO. MiR-378b Modulates Chlamydia-Induced Upper Genital Tract Pathology. Pathogens 2021; 10:566. [PMID: 34067003 PMCID: PMC8151610 DOI: 10.3390/pathogens10050566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 04/17/2023] Open
Abstract
Genital Chlamydia trachomatis infection causes severe reproductive pathologies such as salpingitis and pelvic inflammatory disease that can lead to tubal factor infertility. MicroRNAs (miRNAs) are evolutionarily conserved regulators of mammalian gene expression in development, immunity and pathophysiologic processes during inflammation and infection, including Chlamydia infection. Among the miRNAs involved in regulating host responses and pathologic outcome of Chlamydia infection, we have shown that miR-378b was significantly differentially expressed during primary infection and reinfection. In this study, we tested the hypothesis that miR-378b is involved in the pathological outcome of Chlamydia infection. We developed miR-378b knockout mice (miR-378b-/-) using Crispr/Cas and infected them along with their wild-type (WT) control with Chlamydia to compare the infectivity and reproductive pathologies. The results showed that miR-378b-/- mice were unable to clear the infection compared to WT mice; also, miR-378b-/- mice exhibited a relatively higher Chlamydia burden throughout the duration of infection. However, gross pathology results showed that miR-378b-/- mice had significantly reduced uterine dilatations and pathologic lesions after two infections compared to WT mice. In addition, the pregnancy and fertility rates for infected miR-378b-/- mice showed protection from Chlamydia-induced infertility with fertility rate that was comparable to uninfected WT mice. These results are intriguing as they suggest that miR-378b is important in regulating host immune responses that control Chlamydial replication and drive the inflammation that causes complications such as infertility. The finding has important implications for biomarkers of Chlamydial complications and targets for prevention of disease.
Collapse
Affiliation(s)
- Stephanie R. Lundy
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.R.L.); (K.A.); (J.U.I.); (F.O.E.)
| | - Kobe Abney
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.R.L.); (K.A.); (J.U.I.); (F.O.E.)
- Department of Chemistry and Biochemistry, Spelman College, Atlanta, GA 30310, USA
| | - Debra Ellerson
- Centers for Disease Control & Prevention (CDC), Atlanta, GA 30333, USA; (D.E.); (D.C.)
| | - Joseph U. Igietseme
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.R.L.); (K.A.); (J.U.I.); (F.O.E.)
- Centers for Disease Control & Prevention (CDC), Atlanta, GA 30333, USA; (D.E.); (D.C.)
| | - Darin Carroll
- Centers for Disease Control & Prevention (CDC), Atlanta, GA 30333, USA; (D.E.); (D.C.)
| | - Francis O. Eko
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.R.L.); (K.A.); (J.U.I.); (F.O.E.)
| | - Yusuf O. Omosun
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.R.L.); (K.A.); (J.U.I.); (F.O.E.)
- Centers for Disease Control & Prevention (CDC), Atlanta, GA 30333, USA; (D.E.); (D.C.)
| |
Collapse
|
10
|
Gong W, Zhu C, Liu Y, Muckenhuber A, Bronger H, Scorilas A, Kiechle M, Dorn J, Magdolen V, Dreyer T. Elevated levels of both microRNA 378 (miR-378) and kallikrein-related peptidase 4 (KLK4) mRNA are associated with an unfavorable prognosis in triple-negative breast cancer. Am J Transl Res 2021; 13:1594-1606. [PMID: 33841682 PMCID: PMC8014413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Triple-negative breast cancer (TNBC) patients have the worst outcome among all breast cancer subtypes. In oral squamous carcinoma cells, miR-378 was reported to target the mRNA of kallikrein-related peptidase 4 (KLK4), resulting in inhibition of cell proliferation, migration and invasion, induction of apoptosis, and reduction of tumor growth in vivo. Similarly, a miR-378/KLK4 axis has been proposed in prostate cancer. Here, we analyzed the correlation between miR-378 and KLK4 mRNA expression and determined the prognostic impact of both factors in TNBC. miR-378 and KLK4 mRNA expression levels were determined by quantitative PCR in tumor tissue of TNBC patients (n=103) and correlated with clinical parameters and patients' survival. There was no significant correlation between miR-378 and KLK4 mRNA expression. In univariate Cox regression analysis, elevated miR-378 expression was significantly associated with shortened disease-free survival (DFS, P=0.047) and overall survival (OS, P=0.031), high KLK4 mRNA levels were linked to a worse DFS (P=0.033). Combination of KLK4 mRNA and miR-378 (KLK4+miR-378, low/low versus high and/or high) allowed even better discrimination between favorable and unfavorable prognosis (DFS, P=0.008; OS, P=0.025). In multivariable analysis, miR-378 and KLK4+miR-378 expression remained independent predictive factors for DFS (P=0.014, P=0.010, respectively) and OS (P=0.016, P=0.049, respectively), while KLK4 mRNA only showed a trend towards significance for DFS (P=0.061). Our findings suggest that in TNBC there is no significant impact of miR-378 on KLK4 expression. Both factors, miR-378 and, to a lesser extent, KLK4 mRNA represent unfavorable prognostic markers in TNBC patients.
Collapse
Affiliation(s)
- Weiwei Gong
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of MunichGermany
- Department of Hematology-Oncology, Guangzhou Women and Children’s Medical CenterGuangzhou, People’s Republic of China
| | - Caixia Zhu
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of MunichGermany
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, People’s Republic of China
| | - Yueyang Liu
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of MunichGermany
- Department of Gynecology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical SciencesGuangzhou, People’s Republic of China
| | | | - Holger Bronger
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of MunichGermany
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, University of AthensGreece
| | - Marion Kiechle
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of MunichGermany
| | - Julia Dorn
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of MunichGermany
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of MunichGermany
| | - Tobias Dreyer
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of MunichGermany
| |
Collapse
|
11
|
Involvement of Differentially Expressed microRNAs in the PEGylated Liposome Encapsulated 188Rhenium-Mediated Suppression of Orthotopic Hypopharyngeal Tumor. Molecules 2020; 25:molecules25163609. [PMID: 32784458 PMCID: PMC7463599 DOI: 10.3390/molecules25163609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
Hypopharyngeal cancer (HPC) accounts for the lowest survival rate among all types of head and neck cancers (HNSCC). However, the therapeutic approach for HPC still needs to be investigated. In this study, a theranostic 188Re-liposome was prepared to treat orthotopic HPC tumors and analyze the deregulated microRNA expressive profiles. The therapeutic efficacy of 188Re-liposome on HPC tumors was evaluated using bioluminescent imaging followed by next generation sequencing (NGS) analysis, in order to address the deregulated microRNAs and associated signaling pathways. The differentially expressed microRNAs were also confirmed using clinical HNSCC samples and clinical information from The Cancer Genome Atlas (TCGA) database. Repeated doses of 188Re-liposome were administrated to tumor-bearing mice, and the tumor growth was apparently suppressed after treatment. For NGS analysis, 13 and 9 microRNAs were respectively up-regulated and down-regulated when the cutoffs of fold change were set to 5. Additionally, miR-206-3p and miR-142-5p represented the highest fold of up-regulation and down-regulation by 188Re-liposome, respectively. According to Differentially Expressed MiRNAs in human Cancers (dbDEMC) analysis, most of 188Re-liposome up-regulated microRNAs were categorized as tumor suppressors, while down-regulated microRNAs were oncogenic. The KEGG pathway analysis showed that cancer-related pathways and olfactory and taste transduction accounted for the top pathways affected by 188Re-liposome. 188Re-liposome down-regulated microRNAs, including miR-143, miR-6723, miR-944, and miR-136 were associated with lower survival rates at a high expressive level. 188Re-liposome could suppress the HPC tumors in vivo, and the therapeutic efficacy was associated with the deregulation of microRNAs that could be considered as a prognostic factor.
Collapse
|
12
|
Danbaran GR, Aslani S, Sharafkandi N, Hemmatzadeh M, Hosseinzadeh R, Azizi G, Jadidi-Niaragh F, Babaie F, Mohammadi H. How microRNAs affect the PD-L1 and its synthetic pathway in cancer. Int Immunopharmacol 2020; 84:106594. [PMID: 32416456 DOI: 10.1016/j.intimp.2020.106594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
Abstract
Programmed cell death-ligand 1 (PD-L1) is a glycoprotein that is expressed on the cell surface of both hematopoietic and nonhematopoietic cells. PD-L1 play a role in the immune tolerance and protect self-tissues from immune system attack. Dysfunction of this molecule has been highlighted in the pathogenesis of tumors, autoimmunity, and infectious disorders. MicroRNAs (miRNAs) are endogenous molecules that are classified as small non-coding RNA with approximately 20-22 nucleotides (nt) length. The function of miRNAs is based on complementary interactions with target mRNA via matching completely or incompletely. The result of this function is decay of the target mRNA or preventing mRNA translation. In the past decades, several miRNAs have been discovered which play an important role in the regulation of PD-L1 in various malignancies. In this review, we discuss the effect of miRNAs on PD-L1 expression and consider the effect of miRNAs on the synthetic pathway of PD-L1, especially during cancers.
Collapse
Affiliation(s)
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
13
|
microRNA-378a-5p iS a novel positive regulator of melanoma progression. Oncogenesis 2020; 9:22. [PMID: 32060259 PMCID: PMC7021836 DOI: 10.1038/s41389-020-0203-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Evaluating the expression levels of miR-378a-5p both in a large melanoma patient cohort from The Cancer Genome Atlas database and in melanoma patients from our Institute, we found that miR-378a-5p is upregulated in metastatic melanoma specimens. miR-378a-5p expression was also increased in melanoma cells resistant to target therapy, and decreased in response to drug treatment. We also demonstrated that overexpression of miR-378a-5p enhances in vitro cell invasion and migration, and facilitates the ability of melanoma cells to form de novo vasculogenic structures. While performing downstream targeting studies, we confirmed the ability of miR-378a-5p to modulate the expression of known target genes, such as SUFU, FUS-1, and KLF9. Luciferase-3′UTR experiments also identified STAMBP and HOXD10 as new miR-378a-5p target genes. MMP2 and uPAR, two HOXD10 target genes, were positively regulated by miR-378a-5p. Genetic and pharmacologic approaches inhibiting uPAR expression and activity evidenced that the in vitro tumor-promoting functions of miR-378a-5p, were in part mediated by uPAR. Of note miR-378a-5p was also able to increase VEGF, as well as in vitro and in vivo angiogenesis. Finally, genetic and pharmacologic modulation of Bcl-2 evidenced Bcl-2 ability to regulate miR-378a-5p expression. In conclusion, to the best of our knowledge, this is the first study demonstrating that miR-378a-5p acts as an oncogenic microRNA in melanoma.
Collapse
|
14
|
Asadi M, Talesh ST, Gjerstorff MF, Shanehbandi D, Baradaran B, Hashemzadeh S, Zafari V. Identification of miRNAs correlating with stage and progression of colorectal cancer. COLORECTAL CANCER 2019. [DOI: 10.2217/crc-2018-0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aim: miRNAs control biological processes that are implicated in carcinogenesis, and have been researched as potential biomarkers for colorectal cancer (CRC). The aim of the current study was to evaluate the miRNA expression profile in CRC patients to determine their potential to be used as biomarkers in the disease. Materials & methods: Total 47 tissues and their matched marginal tissues, as control group, were obtained from CRC patients. The transcript levels of a selected panel of 15 cancer-associated miRNAs were quantified via real-time gene expression method. Results: miR-155, miR130a, miR-181b, miR-196a, miR-200c and miR-224 were significantly upregulated, while miR122, miR-132, miR-203b, miR330, miR-323, miR-378a-3p and miR-598 we significantly downregulated in CRC. Conclusion: We identified a panel of miRNAs that may be involved in the etiology and pathogenesis of CRC, and may be used for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Milad Asadi
- Liver & Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shoan Taheri Talesh
- Hematology & Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morten Frier Gjerstorff
- Department of Cancer & Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Hashemzadeh
- Hematology & Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of General and Thoracic Surgery, Tabriz University of Medical Sciences, Imam Reza Hospital, Tabriz, Iran
| | - Venus Zafari
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Zhou Z, Ma J. miR-378 serves as a prognostic biomarker in cholangiocarcinoma and promotes tumor proliferation, migration, and invasion. Cancer Biomark 2019; 24:173-181. [PMID: 30594918 DOI: 10.3233/cbm-181980] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNAs) have been demonstrated that play a critical role in tumorigenesis. The aim of this study is to identify the functional role of miR-378 in cholangiocarcinoma (CCA). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the expression levels of miR-378 in human CCA tissue samples and CCA cell lines. The receiver operating characteristic (ROC) curve was established, and the area under the ROC curve (AUC) was calculated to estimate the capacity of miR-378 in distinguishing CCA patients with different TNM stages. Kaplan-Meier survival analysis and Cox regression assay were performed to explore the prognostic value of miR-378. Cell proliferation capacity was assessed by MTT assay. Cell migration and invasion were identified by Transwell assays. miR-378 was significantly elevated in CCA tissues when compared with adjacent normal tissues, and in CCA cell lines compared to HIBEC cells. And we found that the expression of miR-378 was significantly associated with TNM stage (P= 0.030) and lymph node metastasis (P= 0.018). ROC curve analysis result showed miR-378 could distinguish CCA patients with TNM stages III and IV from those with stages I and II, with the AUC was 0.816. Patients with high expression of miR-378 had a shorter overall survival rate (Log-rank P= 0.030). The miR-378 was proven to be an independent prognostic predictor for the CCA patients (HR = 1.735, 95% CI = 1.007-2.988, P= 0.041). Downregulation of miR-378 could inhibit cell proliferation, migration, and invasion. These results indicated that miR-378 function as an oncogene and promote CCA cells proliferation, migration, and invasion. The miR-378 could be a novel prognostic marker for CCA.
Collapse
|
16
|
Xi X, Teng M, Zhang L, Xia L, Chen J, Cui Z. MicroRNA-204-3p represses colon cancer cells proliferation, migration, and invasion by targeting HMGA2. J Cell Physiol 2019; 235:1330-1338. [PMID: 31286521 DOI: 10.1002/jcp.29050] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/14/2019] [Indexed: 11/09/2022]
Abstract
Colon cancer is a detrimental neoplasm of the digestive tract. MicroRNAs (miRNAs) as central regulators have been discovered in colon cancer. Nonetheless, the impact of miR-204-3p on colon cancer remains indistinct. The research attempted to uncover the impacts of miR-204-3p on colon cancer cells growth, migration, and invasion. miR-204-3p expression level in colon cancer tissues and diverse colon cancer cell lines were testified by the quantitative real-time polymerase chain reaction. Exploration of the impacts of miR-204-3p on cell growth, migration, invasion, and their associated factors through assessment of CCK-8, flow cytometry, Transwell, and western blot, respectively. High mobility group AT-hook 2 (HMGA2) expression was then detected in Caco-2 cells after miR-204-3p mimic and inhibitor transfection, additionally dual-luciferase activity was implemented to further uncover the correlation between HMGA2 and miR-204-3p. The impact of HMGA2 on Caco-2 cell growth, migration, and invasion was finally assessed. We found that repression of miR-204-3p was discovered in colon cancer tissues and HCT116, SW480, Caco-2, HT29 and SW620 cell lines. MiR-204-3p overexpression mitigated Coca-2 cell viability, facilitated apoptosis, simultaneously adjusted CyclinD1 and cleaved caspase-3 expression. Cell migration, invasion, and the associated factors were all suppressed by miR-204-3p overexpression. Reduction of HMGA2 was presented in Caco-2 cells with miR-204-3p mimic transfection, and HMGA2 was predicated to be a target gene of miR-204-3p. Besides, HMGA2 silence showed the inhibitory effect on Caco-2 cells growth, migration, and invasion. In conclusion, miR-204-3p repressed colon cancer cell growth, migration, and invasion through targeting HMGA2.
Collapse
Affiliation(s)
- Xiangpeng Xi
- General Surgery Center, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Mujian Teng
- General Surgery Center, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Liang Zhang
- Department of Gastrointestinal Surgery, Jinan Zhangqiu District Hospital of TCM, Jinan, China
| | - Lijian Xia
- Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Jingbo Chen
- Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Zhonghui Cui
- Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
17
|
Anvarnia A, Mohaddes‐Gharamaleki F, Asadi M, Akbari M, Yousefi B, Shanehbandi D. Dysregulated microRNAs in colorectal carcinogenesis: New insight to cell survival and apoptosis regulation. J Cell Physiol 2019; 234:21683-21693. [DOI: 10.1002/jcp.28872] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Alireza Anvarnia
- Department of Biochemistry and Clinical Laboratories Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Tabriz University of Medical Sciences Tabriz Iran
| | - Farzad Mohaddes‐Gharamaleki
- Department of Biochemistry and Clinical Laboratories Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Tabriz University of Medical Sciences Tabriz Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
18
|
Marranci A, D'Aurizio R, Vencken S, Mero S, Guzzolino E, Rizzo M, Pitto L, Pellegrini M, Chiorino G, Greene CM, Poliseno L. Systematic evaluation of the microRNAome through miR-CATCHv2.0 identifies positive and negative regulators of BRAF-X1 mRNA. RNA Biol 2019; 16:865-878. [PMID: 30929607 DOI: 10.1080/15476286.2019.1600934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Here we present miR-CATCHv2.0, an implemented experimental method that allows the identification of the microRNA species directly bound to an RNA of interest. After cross-linking of microRNA::RNA::Ago2 complexes using formaldehyde, the RNA is fragmented using sonication and then subjected to affinity purification using two sets of biotinylated tiling probes (ODD and EVEN). Finally, enriched microRNA species are retrieved by means of small RNA sequencing coupled with an ad hoc analytical workflow. In BRAFV600E mutant A375 melanoma cells, miR-CATCHv2.0 allowed us to identify 20 microRNAs that target X1, the most abundant isoform of BRAF mRNA. These microRNAs fall into different functional classes, according to the effect that they exert (decrease/increase in BRAFV600E mRNA and protein levels) and to the mechanism they use to achieve it (destabilization/stabilization of X1 mRNA or decrease/increase in its translation). microRNA-induced variations in BRAFV600E protein levels are most of the times coupled to consistent variations in pMEK levels, in melanoma cell proliferation in vitro and in sensitivity to the BRAF inhibitor vemurafenib in a xenograft model in zebrafish. However, microRNAs exist that uncouple the degree of activation of the ERK pathway from the levels of BRAFV600E protein. Our study proposes miR-CATCHv2.0 as an effective tool for the identification of direct microRNA-target interactions and, by using such a tool, unveils the complexity of the post-transcriptional regulation to which BRAFV600E and the ERK pathway are subjected in melanoma cells.
Collapse
Affiliation(s)
- Andrea Marranci
- a Institute of Clinical Physiology , CNR , Pisa , Italy.,b Oncogenomics Unit, Core Research Laboratory , ISPRO , Pisa , Italy.,c Signal Transduction Unit, Core Research Laboratory , ISPRO , Siena , Italy
| | | | - Sebastian Vencken
- e Department of Clinical Microbiology , Royal College of Surgeon in Ireland , Dublin , Ireland
| | - Serena Mero
- a Institute of Clinical Physiology , CNR , Pisa , Italy.,b Oncogenomics Unit, Core Research Laboratory , ISPRO , Pisa , Italy
| | | | - Milena Rizzo
- a Institute of Clinical Physiology , CNR , Pisa , Italy
| | - Letizia Pitto
- a Institute of Clinical Physiology , CNR , Pisa , Italy
| | | | - Giovanna Chiorino
- f Cancer Genomics Lab , Fondazione Edo ed Elvo Tempia , Biella , Italy
| | - Catherine M Greene
- e Department of Clinical Microbiology , Royal College of Surgeon in Ireland , Dublin , Ireland
| | - Laura Poliseno
- a Institute of Clinical Physiology , CNR , Pisa , Italy.,b Oncogenomics Unit, Core Research Laboratory , ISPRO , Pisa , Italy
| |
Collapse
|
19
|
Liu S, Yang Y, Jiang S, Xu H, Tang N, Lobo A, Zhang R, Liu S, Yu T, Xin H. MiR-378a-5p Regulates Proliferation and Migration in Vascular Smooth Muscle Cell by Targeting CDK1. Front Genet 2019; 10:22. [PMID: 30838018 PMCID: PMC6389607 DOI: 10.3389/fgene.2019.00022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/15/2019] [Indexed: 12/14/2022] Open
Abstract
Objective: Abnormal proliferation or migration of vascular smooth muscle cells (VSMCs) can lead to vessel lesions, resulting in atherosclerosis and in stent-restenosis (IRS). The purpose of our study was to establish the role of miR-378a-5p and its targets in regulating VSMCs function and IRS. Methods: EdU assays and Cell Counting Kit-8 (CCK-8) assays were applied to evaluate VSMCs proliferation, wound healing assays and transwell assays were applied to assess cells migration. Furthermore, quantitative reverse transcription–polymerase chain reaction (qRT-PCR) was performed to investigate the expression level of miR-378a-5p IRS patients and healthy individuals. Target genes were predicted using Target Scan and miRanda software, and biological functions of candidate genes were explored through bioinformatics analysis. Moreover, RNA-binding protein immunoprecipitation (RIP) was carried out to analyze the miRNAs interactions with proteins. We also used Immunofluorescence (IF) and fluorescence microscopy to determine the binding properties, localization and expression of miR-378a-5p with downstream target CDK1. Results: The expression of miR-378a-5p was increased in the group with stent restenosis compared with healthy people, as well as in the group which VSMCs stimulated by platelet-derived growth factor-BB (PDGF-BB) compared with NCs. MiR-378a-5p over-expression had significantly promoted proliferative and migratory effects, while miR-378a-5p inhibitor suppressed VSMC proliferation and migration. CDK1 was proved to be the functional target of miR-378a-5p in VSMCs. Encouragingly, the expression of miR-378a-5p was increased in patients with stent restenosis compared with healthy people, as well as in PDGF-BB-stimulated VSMCs compared with control cells. Furthermore, co-transfection experiments demonstrated that miR-378a-5p over-expression promoted proliferation and migration of VSMCs specifically by reducing CDK1 gene expression levels. Conclusion: In this investigatory, we concluded that miR-378a-5p is a critical mediator in regulating VSMC proliferation and migration by targeting CDK1/p21 signaling pathway. Thereby, interventions aimed at miR-378a-5p may be of therapeutic application in the prevention and treatment of stent restenosis.
Collapse
Affiliation(s)
- Shaoyan Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Shaoyan Jiang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Xu
- Department of Orthodontic, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ningning Tang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Amara Lobo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rui Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Song Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Benyeogor I, Simoneaux T, Wu Y, Lundy S, George Z, Ryans K, McKeithen D, Pais R, Ellerson D, Lorenz WW, Omosun T, Thompson W, Eko FO, Black CM, Blas-Machado U, Igietseme JU, He Q, Omosun Y. A unique insight into the MiRNA profile during genital chlamydial infection. BMC Genomics 2019; 20:143. [PMID: 30777008 PMCID: PMC6379932 DOI: 10.1186/s12864-019-5495-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background Genital C. trachomatis infection may cause pelvic inflammatory disease (PID) that can lead to tubal factor infertility (TFI). Understanding the pathogenesis of chlamydial complications including the pathophysiological processes within the female host genital tract is important in preventing adverse pathology. MicroRNAs regulate several pathophysiological processes of infectious and non-infectious etiologies. In this study, we tested the hypothesis that the miRNA profile of single and repeat genital chlamydial infections will be different and that these differences will be time dependent. Thus, we analyzed and compared differentially expressed mice genital tract miRNAs after single and repeat chlamydia infections using a C. muridarum mouse model. Mice were sacrificed and their genital tract tissues were collected at 1, 2, 4, and 8 weeks after a single and repeat chlamydia infections. Histopathology, and miRNA sequencing were performed. Results Histopathology presentation showed that the oviduct and uterus of reinfected mice were more inflamed, distended and dilated compared to mice infected once. The miRNAs expression profile was different in the reproductive tissues after a reinfection, with a greater number of miRNAs expressed after reinfection. Also, the number of miRNAs expressed each week after chlamydia infection and reinfection varied, with weeks eight and one having the highest number of differentially expressed miRNAs for chlamydia infection and reinfection respectively. Ten miRNAs; mmu-miR-378b, mmu-miR-204-5p, mmu-miR-151-5p, mmu-miR-142-3p, mmu-miR-128-3p, mmu-miR-335-3p, mmu-miR-195a-3p, mmu-miR-142-5p, mmu-miR-106a-5p and mmu-miR-92a-3p were common in both primary chlamydia infection and reinfection. Pathway analysis showed that, amongst other functions, the differentially regulated miRNAs control pathways involved in cellular and tissue development, disease conditions and toxicity. Conclusions This study provides insights into the changes in miRNA expression over time after chlamydia infection and reinfection, as well as the pathways they regulate to determine pathological outcomes. The miRNAs networks generated in our study shows that there are differences in the focus molecules involved in significant biological functions in chlamydia infection and reinfection, implying that chlamydial pathogenesis occurs differently for each type of infection and that this could be important when determining treatments regime and disease outcome. The study underscores the crucial role of host factors in chlamydia pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12864-019-5495-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ifeyinwa Benyeogor
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Tankya Simoneaux
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Yuehao Wu
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Stephanie Lundy
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Zenas George
- Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - Khamia Ryans
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Danielle McKeithen
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Roshan Pais
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Debra Ellerson
- Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - W Walter Lorenz
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Tolulope Omosun
- Department of Physical Sciences, Georgia State University, Covington, GA, 30014, USA
| | - Winston Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Francis O Eko
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Carolyn M Black
- Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - Uriel Blas-Machado
- Department of Pathology, University of Georgia, College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Joseph U Igietseme
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA.,Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - Qing He
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA.,Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - Yusuf Omosun
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA. .,Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA.
| |
Collapse
|
21
|
Kandhavelu J, Subramanian K, Khan A, Omar A, Ruff P, Penny C. Computational Analysis of miRNA and their Gene Targets Significantly Involved in Colorectal Cancer Progression. Microrna 2019; 8:68-75. [PMID: 30073936 DOI: 10.2174/2211536607666180803100246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/05/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Globally, colorectal cancer (CRC) is the third most common cancer in women and the fourth most common cancer in men. Dysregulation of small non-coding miRNAs have been correlated with colon cancer progression. Since there are increasing reports of candidate miRNAs as potential biomarkers for CRC, this makes it important to explore common miRNA biomarkers for colon cancer. As computational prediction of miRNA targets is a critical initial step in identifying miRNA: mRNA target interactions for validation, we aim here to construct a potential miRNA network and its gene targets for colon cancer from previously reported candidate miRNAs, inclusive of 10 up- and 9 down-regulated miRNAs from tissues; and 10 circulatory miRNAs. METHODS The gene targets were predicted using DIANA-microT-CDS and TarBaseV7.0 databases. Each miRNA and its targets were analyzed further for colon cancer hotspot genes, whereupon DAVID analysis and mirPath were used for KEGG pathway analysis. RESULTS We have predicted 874 and 157 gene targets for tissue and serum specific miRNA candidates, respectively. The enrichment of miRNA revealed that particularly hsa-miR-424-5p, hsa-miR-96-5p, hsa-miR-1290, hsa-miR-224, hsa-miR-133a and has-miR-363-3p present possible targets for colon cancer hallmark genes, including BRAF, KRAS, EGFR, APC, amongst others. DAVID analysis of miRNA and associated gene targets revealed the KEGG pathways most related to cancer and colon cancer. Similar results were observed in mirPath analysis. A new insight gained in the colon cancer network pathway was the association of hsa-mir-133a and hsa-mir-96-5p with the PI3K-AKT signaling pathway. In the present study, target prediction shows that while hsa-mir-424-5p has an association with mostly 10 colon cancer hallmark genes, only their associations with MAP2 and CCND1 have been experimentally validated. CONCLUSION These miRNAs and their targets require further evaluation for a better understanding of their associations, ultimately with the potential to develop novel therapeutic targets.
Collapse
Affiliation(s)
- Jeyalakshmi Kandhavelu
- Oncology Division, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa
| | - Kumar Subramanian
- Oncology Division, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa
| | - Amber Khan
- Oncology Division, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa
| | - Aadilah Omar
- Oncology Division, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa
| | - Paul Ruff
- Oncology Division, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa
| | - Clement Penny
- Oncology Division, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa
| |
Collapse
|
22
|
Pan X, Zhao L, Quan J, Liu K, Lai Y, Li Z, Zhang Z, Xu J, Xu W, Guan X, Li H, Yang S, Gui Y, Chen Y, Lai Y. MiR-378a-5p acts as a tumor suppressor in renal cell carcinoma and is associated with the good prognosis of patients. Am J Transl Res 2019; 11:2207-2218. [PMID: 31105829 PMCID: PMC6511777 DOI: pmid/31105829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/13/2018] [Indexed: 02/05/2023]
Abstract
Renal cell carcinoma (RCC) is a common cancer that accounts for about 1.6% of all malignancies. Accumulating evidence has shown that miRNAs may play important roles in the development of cancers and that these same miRNAs may serve as diagnostic and prognostic biomarkers. The role of the miRNA miR-378a-5p in RCC, however, has been largely unexplored. In our study, we have demonstrated that miR-378a-5p expression was decreased in renal tissues and in RCC cell lines compared with corresponding expression levels in normal renal tissues and in the 293-T cell line. Functional studies in two RCC cell lines (ACHN and 786-O) have indicated that miR-378a-5p overexpression attenuated cell proliferation, migration, and invasion while promoting cell apoptosis. Inhibition of miR-378a-5p expression, on the other hand, promoted cell proliferation, migration, and invasion while reducing cell apoptosis. Additionally, in 42 cases of renal cancer formalin-fixed paraffin-embedded specimens, patients with higher expression levels of miR-378a-5p had significantly longer overall survival rates (P<0.05) than patients with lower miR-378a-5p expression levels. Thus, in this study, we have shown that miR-378a-5p can serve as a tumor suppressor and a potential prognostic biomarker in RCC.
Collapse
Affiliation(s)
- Xiang Pan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Liwen Zhao
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Jing Quan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Kaihao Liu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Yulin Lai
- Guangzhou Medical UniversityGuangzhou 511436, Guangdong, P. R. China
| | - Zuwei Li
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| | - Zeng Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Jinling Xu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Weijie Xu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Xin Guan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Hang Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Shangqi Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Yun Chen
- Department of Ultrasound, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| |
Collapse
|
23
|
Hibner G, Kimsa-Furdzik M, Francuz T. Relevance of MicroRNAs as Potential Diagnostic and Prognostic Markers in Colorectal Cancer. Int J Mol Sci 2018; 19:ijms19102944. [PMID: 30262723 PMCID: PMC6213499 DOI: 10.3390/ijms19102944] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is currently the third and the second most common cancer in men and in women, respectively. Every year, more than one million new CRC cases and more than half a million deaths are reported worldwide. The majority of new cases occur in developed countries. Current screening methods have significant limitations. Therefore, a lot of scientific effort is put into the development of new diagnostic biomarkers of CRC. Currently used prognostic markers are also limited in assessing the effectiveness of CRC therapy. MicroRNAs (miRNAs) are a promising subject of research especially since single miRNA can recognize a variety of different mRNA transcripts. MiRNAs have important roles in epigenetic regulation of basic cellular processes, such as proliferation, apoptosis, differentiation, and migration, and may serve as potential oncogenes or tumor suppressors during cancer development. Indeed, in a large variety of human tumors, including CRC, significant distortions in miRNA expression profiles have been observed. Thus, the use of miRNAs as diagnostic and prognostic biomarkers in cancer, particularly in CRC, appears to be an inevitable consequence of the advancement in oncology and gastroenterology. Here, we review the literature to discuss the potential usefulness of selected miRNAs as diagnostic and prognostic biomarkers in CRC.
Collapse
Affiliation(s)
- Grzegorz Hibner
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia in Katowice, St. Medyków 18, 40-752 Katowice, Poland.
| | - Małgorzata Kimsa-Furdzik
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia in Katowice, St. Medyków 18, 40-752 Katowice, Poland.
| | - Tomasz Francuz
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia in Katowice, St. Medyków 18, 40-752 Katowice, Poland.
| |
Collapse
|
24
|
Ghasabi M, Mansoori B, Mohammadi A, Duijf PH, Shomali N, Shirafkan N, Mokhtarzadeh A, Baradaran B. MicroRNAs in cancer drug resistance: Basic evidence and clinical applications. J Cell Physiol 2018; 234:2152-2168. [PMID: 30146724 DOI: 10.1002/jcp.26810] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/30/2018] [Indexed: 12/19/2022]
Abstract
Development of drug resistance has considerably limited the efficacy of cancer treatments, including chemotherapy and targeted therapies. Hence, understanding the molecular mechanisms underpinning the innate or the acquired resistance to these therapies is critical to improve drug efficiency and clinical outcomes. Several studies have implicated microRNAs (miRNA) in this process. MiRNAs repress gene expression by specific binding to complementary sequences in the 3' region of target messenger RNAs (mRNAs), followed by target mRNA degradation or blocked translation. By targeting molecules specific to a particular pathway within tumor cells, the new generation of cancer treatment strategies has shown significant advantages over conventional chemotherapy. However, the long-term efficacy of targeted therapies often remains poor, because tumor cells develop resistance to such therapeutics. Targeted therapies often involve monoclonal antibodies (mAbs), such as those blocking the ErB/HER tyrosine kinases, epidermal growth factor receptor (cetuximab) and HER2 (trastuzumab), and those inhibiting vascular endothelial growth factor receptor signaling (e.g., bevacizumab). Even though these are among the most used agents in tumor medicine, clinical response to these drugs is reduced due to the emergence of drug resistance as a result of toxic effects in the tumor microenvironment. Research on different types of human cancers has revealed that aberrant expression of miRNAs promotes resistance to the aforementioned drugs. In this study, we review the mechanisms of tumor cell resistance to mAb therapies and the role of miRNAs therein. Emerging treatment strategies combine therapies using innovative miRNA mimics or antagonizers with conventional approaches to maximize outcomes of patients with cancer.
Collapse
Affiliation(s)
- Mehri Ghasabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal Hg Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naghmeh Shirafkan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
De Robertis M, Poeta ML, Signori E, Fazio VM. Current understanding and clinical utility of miRNAs regulation of colon cancer stem cells. Semin Cancer Biol 2018; 53:232-247. [PMID: 30130662 DOI: 10.1016/j.semcancer.2018.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) in colorectal tumorigenesis are suggested to be responsible for initiation, development and propagation of colorectal cancer (CRC) and have been extensively characterized by the expression of phenotypic determinants, such as surface or intracellular proteins. The generation of CSCs is likely due to a dysregulation of the signaling pathways that principally control self-renewal and pluripotency in normal intestinal stem cells (ISCs) through different (epi)genetic changes that define cell fate, identity, and phenotype of CSCs. These aspects are currently under intense investigation. In the framework of the oncogenic signaling pathways controlled by microRNAs (miRNAs) during CRC development, a plethora of data suggests that miRNAs can play a key role in several regulatory pathways involving CSCs biology, epithelial-mesenchymal transition (EMT), angiogenesis, metastatization, and pharmacoresistance. This review examines the most relevant evidences about the role of miRNAs in the etiology of CRC, through the regulation of colon CSCs and the principal differences between colorectal CSCs and benign stem cells. In this perspective, the utility of the principal CSCs-related miRNAs changes is explored, emphasizing their use as potential biomarkers to aid in diagnosis, prognosis and predicting response to therapy in CRC patients, but also as promising targets for more effective and personalized anti-CRC treatments.
Collapse
Affiliation(s)
- Mariangela De Robertis
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Via Orabona 4, 70126 Bari, Italy; Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Maria Luana Poeta
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Via Orabona 4, 70126 Bari, Italy
| | - Emanuela Signori
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Vito Michele Fazio
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; IRCCS "Casa Sollievo della Sofferenza", viale dei Cappuccini, 71013 San Giovanni Rotondo (FG), Italy
| |
Collapse
|
26
|
Lei X, Zhang BD, Ren JG, Luo FL. Astragaloside suppresses apoptosis of the podocytes in rats with diabetic nephropathy via miR-378/TRAF5 signaling pathway. Life Sci 2018; 206:77-83. [DOI: 10.1016/j.lfs.2018.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/07/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023]
|
27
|
Extensive screening of microRNA populations identifies hsa-miR-375 and hsa-miR-133a-3p as selective markers for human rectal and colon cancer. Oncotarget 2018; 9:27256-27267. [PMID: 29930763 PMCID: PMC6007480 DOI: 10.18632/oncotarget.25535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 04/28/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are ∼22-nt molecules exerting control of protein expression in cancer tissues. The current study determined the full spectrum of miRNA dysregulation in freshly isolated human colon or rectal cancer biopsies as well as in controls of healthy adjacent tissue (total of n = 100) using an Illumina sequencing technology. In this work, we aimed to identify miRNAs that may serve as future marker to discern between these two subtypes. DESeq2 analysis revealed 53 significantly dysregulated miRNAs in colon cancer, 67 miRNAs in rectal cancer, and 97 miRNAs in both at a Padj value < 0.05 and ≥ 10 read counts. 65% of miRNAs were upregulated in colon as well as rectal cancer. Highest significant dysregulation (Padj < 0.00001) was detected for hsa-miR-21-5p, -215-5p and -378a in both colon and rectal cancer. Among the group of miRNAs with Padj < 0.05 and more than 2-fold expression differences, hsa-miR-375 was detected in rectal cancer only, and hsa-miR-133a-3p only in colon cancer. Receiver operating characteristic (ROC) analysis confirmed highly distinct sensitivities for hsa-miR-375 to detect rectal cancer (area under the curve (AUC): 0.9), while hsa-miR-133a-3p (AUC: 0.89) had the highest sensitivity for detecting colon cancer. We conclude that hsa-miR-375 and hsa-miR-133a-3p may serve as new markers of rectal or colon cancer and should be further investigated to search for different etiologies of colorectal cancer.
Collapse
|
28
|
Zhu X, Chen S, Jiang Y, Xu Y, Zhao Y, Chen L, Li C, Zhou X. Analysis of miRNA expression profiles in melatonin-exposed GC-1 spg cell line. Gene 2018; 642:513-521. [DOI: 10.1016/j.gene.2017.11.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/24/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022]
|
29
|
Chen J, Jiang Y, Zhou J, Liu S, Qin N, Du J, Jin G, Hu Z, Ma H, Shen H, Dai J. Evaluation of CpG-SNPs in miRNA promoters and risk of breast cancer. Gene 2018; 651:1-8. [PMID: 29374520 DOI: 10.1016/j.gene.2018.01.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/05/2018] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
CpG-SNPs in gene promoter regions are proposed to be associated with multiple diseases. To date, few studies have focused on the associations between CpG-SNPs in miRNA promoters and the risk of breast cancer. In this study, 138 miRNAs differentially expressed between breast cancer and non-cancer tissues (fold change >2, P < 0.05) were identified using The Cancer Genome Atlas (TCGA) Research database. In total, 13 SNPs were selected in the promoters of the miRNAs and were evaluated in a case-control study of Chinese women including 1486 cases and 1519 controls. After multivariate logistic regression analysis, we found that three CpG-SNPs: rs1190983, rs155247, and rs62382272, were significantly associated with breast-cancer susceptibility in the population (Additive model: rs1190983: adjusted OR = 0.88, 95% CI: 0.79-0.99, P = 0.034; rs155247: adjusted OR = 0.83, 95% CI: 0.74-0.93, P = 0.002; rs62382272: adjusted OR = 1.24, 95% CI: 1.04-1.47, P = 0.016). eQTL analysis showed that these three SNPs were correlated with the expression of the related miRNAs in TCGA breast cancer tissues (P = 0.006,0.009,0.001 for rs1190983, rs155247, and rs62382272). Furthermore, rs1190983 was found to be associated with CpG site (cg20488673) methylation (meQTL) (P = 0.004), which was in turn correlated with miR-342 expression (P = 0.016). These findings indicated that the three CpG-SNPs in the promoters of miRNAs were likely to possess important biological functions to breast cancer in the Han Chinese population.
Collapse
Affiliation(s)
- Jiaping Chen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yue Jiang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jing Zhou
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Sijun Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Na Qin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jiangbo Du
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Guangfu Jin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
30
|
Wang P, Liu XM, Ding L, Zhang XJ, Ma ZL. mTOR signaling-related MicroRNAs and Cancer involvement. J Cancer 2018; 9:667-673. [PMID: 29556324 PMCID: PMC5858488 DOI: 10.7150/jca.22119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of single-stranded RNAs, 18-23 nucleotides in length that regulate gene expression at the post-transcriptional level. Dysregulation of miRNAs has been closely associated with the development of cancer. In the process of tumorigenesis, mammalian target of rapamycin (mTOR) plays important roles, and the mTOR signaling pathway is aberrant in various types of human cancers, including non-small cell lung cancer (NSCLC), breast cancer, prostate cancer, as well as others. However, the relationship between miRNAs and the mTOR signaling pathway is indistinct. Herein, we not only summarize the progress of miRNAs and the mTOR signaling pathway in cancers, but also highlight their role in the diagnosis and treatment in the clinic.
Collapse
Affiliation(s)
- Ping Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiao-Min Liu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China.,School of Environmental Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Lei Ding
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xin-Ju Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhong-Liang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
31
|
Strubberg AM, Madison BB. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis Model Mech 2017; 10:197-214. [PMID: 28250048 PMCID: PMC5374322 DOI: 10.1242/dmm.027441] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs that repress mRNA translation
and trigger mRNA degradation. Of the ∼1900 miRNA-encoding genes present
in the human genome, ∼250 miRNAs are reported to have changes in
abundance or altered functions in colorectal cancer. Thousands of studies have
documented aberrant miRNA levels in colorectal cancer, with some miRNAs reported
to actively regulate tumorigenesis. A recurrent phenomenon with miRNAs is their
frequent participation in feedback loops, which probably serve to reinforce or
magnify biological outcomes to manifest a particular cellular phenotype. Here,
we review the roles of oncogenic miRNAs (oncomiRs), tumor suppressive miRNAs
(anti-oncomiRs) and miRNA regulators in colorectal cancer. Given their stability
in patient-derived samples and ease of detection with standard and novel
techniques, we also discuss the potential use of miRNAs as biomarkers in the
diagnosis of colorectal cancer and as prognostic indicators of this disease.
MiRNAs also represent attractive candidates for targeted therapies because their
function can be manipulated through the use of synthetic antagonists and miRNA
mimics. Summary: This Review provides an overview of some important
microRNAs and their roles in colorectal cancer.
Collapse
Affiliation(s)
- Ashlee M Strubberg
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Blair B Madison
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| |
Collapse
|
32
|
Yasui T, Yanagida T, Ito S, Konakade Y, Takeshita D, Naganawa T, Nagashima K, Shimada T, Kaji N, Nakamura Y, Thiodorus IA, He Y, Rahong S, Kanai M, Yukawa H, Ochiya T, Kawai T, Baba Y. Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires. SCIENCE ADVANCES 2017; 3:e1701133. [PMID: 29291244 PMCID: PMC5744465 DOI: 10.1126/sciadv.1701133] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/16/2017] [Indexed: 05/06/2023]
Abstract
Analyzing microRNAs (miRNAs) within urine extracellular vesicles (EVs) is important for realizing miRNA-based, simple, and noninvasive early disease diagnoses and timely medical checkups. However, the inherent difficulty in collecting dilute concentrations of EVs (<0.01 volume %) from urine has hindered the development of these diagnoses and medical checkups. We propose a device composed of nanowires anchored into a microfluidic substrate. This device enables EV collections at high efficiency and in situ extractions of various miRNAs of different sequences (around 1000 types) that significantly exceed the number of species being extracted by the conventional ultracentrifugation method. The mechanical stability of nanowires anchored into substrates during buffer flow and the electrostatic collection of EVs onto the nanowires are the two key mechanisms that ensure the success of the proposed device. In addition, we use our methodology to identify urinary miRNAs that could potentially serve as biomarkers for cancer not only for urologic malignancies (bladder and prostate) but also for nonurologic ones (lung, pancreas, and liver). The present device concept will provide a foundation for work toward the long-term goal of urine-based early diagnoses and medical checkups for cancer.
Collapse
Affiliation(s)
- Takao Yasui
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Corresponding author. (T. Yasui); (T. Yanagida); (T.K.); (Y.B.)
| | - Takeshi Yanagida
- Institute of Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka-cho, Ibaraki, Osaka 567-0047, Japan
- Corresponding author. (T. Yasui); (T. Yanagida); (T.K.); (Y.B.)
| | - Satoru Ito
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuki Konakade
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Daiki Takeshita
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tsuyoshi Naganawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kazuki Nagashima
- Institute of Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Taisuke Shimada
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Noritada Kaji
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yuta Nakamura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ivan Adiyasa Thiodorus
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yong He
- Institute of Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Sakon Rahong
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- College of Nanotechnology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - Masaki Kanai
- Institute of Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Hiroshi Yukawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tomoji Kawai
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka-cho, Ibaraki, Osaka 567-0047, Japan
- Corresponding author. (T. Yasui); (T. Yanagida); (T.K.); (Y.B.)
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu 761-0395, Japan
- College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan, Republic of China
- Corresponding author. (T. Yasui); (T. Yanagida); (T.K.); (Y.B.)
| |
Collapse
|
33
|
Gutiérrez ML, Corchete LA, Sarasquete ME, Del Mar Abad M, Bengoechea O, Fermiñán E, Anduaga MF, Del Carmen S, Iglesias M, Esteban C, Angoso M, Alcazar JA, García J, Orfao A, Muñoz-Bellvís L, Sayagués JM. Prognostic impact of a novel gene expression profile classifier for the discrimination between metastatic and non-metastatic primary colorectal cancer tumors. Oncotarget 2017; 8:107685-107700. [PMID: 29296198 PMCID: PMC5746100 DOI: 10.18632/oncotarget.22591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/28/2017] [Indexed: 02/06/2023] Open
Abstract
Despite significant advances have been achieved in the genetic characterization of sporadic colorectal cancer (sCRC), the precise genetic events leading to the development of distant metastasis remain poorly understood. Thus, accurate prediction of metastatic disease in newly-diagnosed sCRC patients remains a challenge. Here, we evaluated the specific genes and molecular pathways associated with the invasive potential of colorectal tumor cells, through the assessment of the gene expression profile (GEP) of coding and non-coding genes in metastatic (MTX) vs. non-metastatic (non-MTX) primary sCRC tumors followed for >5 years. Overall, MTX tumors showed up-regulation of genes associated with tumor progression and metastatic potential while non-MTX cases displayed GEP associated with higher cell proliferation, activation of DNA repair and anti-tumoral immune/inflammatory responses. Based on only 19 genes a specific GEP that classifies sCRC tumors into two MTX-like and non-MTX-like molecular subgroups was defined which shows an independent prognostic impact on patient overall survival, particularly when it is combined with the lymph node status at diagnosis. In summary, we show an association between the global GEP of primary sCRC cells and their metastatic potential and defined a GEP-based classifier that provides the basis for further prognostic stratification of sCRC patients who are at risk of distant metastases.
Collapse
Affiliation(s)
- María Laura Gutiérrez
- Cytometry Service-NUCLEUS, Cancer Research Center, IBMCC-CSIC/USAL, Department of Medicine, University of Salamanca, Institute of Biomedical Research of Salamanca, Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, Salamanca, Spain
| | - Luis Antonio Corchete
- Cancer Research Center and Service of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - María Eugenia Sarasquete
- Cancer Research Center and Service of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - María Del Mar Abad
- Department of Pathology, University Hospital of Salamanca, Salamanca, Spain
| | - Oscar Bengoechea
- Department of Pathology, University Hospital of Salamanca, Salamanca, Spain
| | - Encarna Fermiñán
- Genomics Unit, Cancer Research Center, IBMCC-CSIC/USAL, Salamanca, Spain
| | - María Fernanda Anduaga
- Service of General and Gastrointestinal Surgery, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Sofía Del Carmen
- Department of Pathology, University Hospital of Salamanca, Salamanca, Spain
| | - Manuel Iglesias
- Service of General and Gastrointestinal Surgery, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Carmen Esteban
- Service of General and Gastrointestinal Surgery, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - María Angoso
- Service of General and Gastrointestinal Surgery, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Jose Antonio Alcazar
- Service of General and Gastrointestinal Surgery, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Jacinto García
- Service of General and Gastrointestinal Surgery, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Cytometry Service-NUCLEUS, Cancer Research Center, IBMCC-CSIC/USAL, Department of Medicine, University of Salamanca, Institute of Biomedical Research of Salamanca, Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, Salamanca, Spain
| | - Luis Muñoz-Bellvís
- Service of General and Gastrointestinal Surgery, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - José María Sayagués
- Cytometry Service-NUCLEUS, Cancer Research Center, IBMCC-CSIC/USAL, Department of Medicine, University of Salamanca, Institute of Biomedical Research of Salamanca, Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, Salamanca, Spain
| |
Collapse
|
34
|
Othman N, Nagoor NH. miR-608 regulates apoptosis in human lung adenocarcinoma via regulation of AKT2. Int J Oncol 2017; 51:1757-1764. [PMID: 29075783 DOI: 10.3892/ijo.2017.4174] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/05/2017] [Indexed: 11/06/2022] Open
Abstract
Lung cancer remains a major health problem with a low 5-year survival rate of patients. Recent studies have shown that dysregulation of microRNAs (miRNAs) are prevalent in lung cancer and these aberrations play a significant role in the progression of tumour progression. In the present study, bioinformatics analyses was employed to predict potential miR-608 targets, which are associated with signaling pathways involved in cancer. Luciferase reporter assay identified AKT2 as a novel target of miR-608, and suppression of its protein levels was validated through western blot analysis. Zebrafish embryos were microinjected with cells transfected with miR-608 to elucidate the role of miR-608 in vivo, and immunostained with antibodies to detect activated caspase-3. We present the first evidence that miR-608 behaves as a tumour suppressor in A549 and SK-LU-1 cells through the regulation of AKT2, suggesting that selective targeting of AKT2 via miR-608 may be developed as a potential therapeutic strategy for miRNA-based non-small cell lung cancer (NSCLC) therapy.
Collapse
Affiliation(s)
- Norahayu Othman
- Institute of Biological Sciences (Genetics and Molecular Biology), Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noor Hasima Nagoor
- Institute of Biological Sciences (Genetics and Molecular Biology), Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Haunsberger SJ, Connolly NMC, Prehn JHM. miRNAmeConverter: an R/bioconductor package for translating mature miRNA names to different miRBase versions. Bioinformatics 2017; 33:592-593. [PMID: 27797767 DOI: 10.1093/bioinformatics/btw660] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/18/2016] [Indexed: 11/12/2022] Open
Abstract
Summary The miRBase database is the central and official repository for miRNAs and the current release is miRBase version 21.0. Name changes in different miRBase releases cause inconsistencies in miRNA names from version to version. When working with only a small number of miRNAs the translation can be done manually. However, with large sets of miRNAs, the necessary correction of such inconsistencies becomes burdensome and error-prone. We developed miRNAmeConverter , available as a Bioconductor R package and web interface that addresses the challenges associated with mature miRNA name inconsistencies. The main algorithm implemented enables high-throughput automatic translation of species-independent mature miRNA names to user selected miRBase versions. The web interface enables users less familiar with R to translate miRNA names given in form of a list or embedded in text and download of the results. Availability and Implementation The miRNAmeConverter R package is open source under the Artistic-2.0 license. It is freely available from Bioconductor ( http://bioconductor.org/packages/miRNAmeConverter ). The web interface is based on R Shiny and can be accessed under the URL http://www.systemsmedicineireland.ie/tools/mirna-name-converter/ . The database that miRNAmeConverter depends on is provided by the annotation package miRBaseVersions.db and can be downloaded from Bioconductor ( http://bioconductor.org/packages/miRBaseVersions.db ). Minimum R version 3.3.0 is required. Contact stefanhaunsberger@rcsi.ie. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Stefan J Haunsberger
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Centre for Systems Medicine, Dublin 2, Ireland
| | - Niamh M C Connolly
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Centre for Systems Medicine, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Centre for Systems Medicine, Dublin 2, Ireland
| |
Collapse
|
36
|
Mandujano-Tinoco EA, Garcia-Venzor A, Muñoz-Galindo L, Lizarraga-Sanchez F, Favela-Orozco A, Chavez-Gutierrez E, Krötzsch E, Salgado RM, Melendez-Zajgla J, Maldonado V. miRNA expression profile in multicellular breast cancer spheroids. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1642-1655. [DOI: 10.1016/j.bbamcr.2017.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/06/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023]
|
37
|
Shi L, Zhang L, Wang C, Sun S, Cao X, Zhang X. Expression of serum microRNA-378 and its clinical significance in renal cell carcinoma. Genet Mol Biol 2017. [PMID: 28644508 PMCID: PMC5488467 DOI: 10.1590/1678-4685-gmb-2016-0121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Studies have demonstrated that miRNA-378 is expressed in various malignant tumors. In
the present study, we aimed to explore the expression of serum miRNA-378 and its
clinical significance in renal cell carcinoma (RCC) patients. A total of 75 RCC
patients, 63 renal cysts (RC) patients and 75 healthy controls were selected. The
miRNA-378 level in RCC and RC groups was significantly higher than in healthy control
group, with RCC group having the highest level. The miRNA-378 levels were
significantly decreased within the same group after surgery. When compared with
healthy controls, RC group had higher levels but not significantly (p > 0.05)
while levels in RCC group were significantly higher (p < 0.05). miRNA-378
expression was correlated with clinical stage and differentiation degree, but not
correlated with patient's age, gender, surgical strategy and tumor diameter. The AUC
of miRNA-378 was 0.896, 95% confidence interval was 0.847 to 0.945, and AUC
hypothesis testing was statistically significant (p < 0.001, RCC vs healthy
control). miRNA-378 shows potential in the diagnosis and prediction of postoperative
curative effect of renal cell carcinoma, but further studies with lager samples are
needed.
Collapse
Affiliation(s)
- Lixin Shi
- Department of Urology, PLA General Hospital, Beijing, China
| | - Lei Zhang
- Department of Urology, PLA General Hospital, Beijing, China
| | - Chunyang Wang
- Department of Urology, PLA General Hospital, Beijing, China
| | - Shengkun Sun
- Department of Urology, PLA General Hospital, Beijing, China
| | - Xiyuan Cao
- Institute of Basic Medicine, Military Medical Science Academy of the PLA, Beijing, China
| | - Xu Zhang
- Department of Urology, PLA General Hospital, Beijing, China
| |
Collapse
|
38
|
Wang Z, Song J, Zhang L, Huang S, Bao L, Chen F, Zhao X. Increased expression of microRNA-378a-5p in acute ethanol exposure of rat cardiomyocytes. Cell Stress Chaperones 2017; 22:245-252. [PMID: 28160209 PMCID: PMC5352598 DOI: 10.1007/s12192-016-0760-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/18/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022] Open
Abstract
Alcohol abuse is a risk factor for a distinct form of congestive heart failure, known as alcoholic cardiomyopathy (ACM). Here, we investigate how microRNAs may participate in the induction of cardiomyocyte apoptosis associated with ethanol exposure in vitro. Increasing the concentrations of ethanol to primary rat cardiomyocytes resulted in elevated apoptosis assessed by annexin V and propidium iodide staining, and reduced expression of an enzyme for alcohol detoxification aldehyde dehydrogenase 2 (ALDH2). These ethanol effects were accompanied by a substantial elevation of miR-378a-5p. Driving miR-378a-5p overexpression in cardiomyocytes decreased ALDH2. The specific interaction of miR-378a-5p with the 3'UTR of ALDH2 was examined by luciferase reporter assays, and we found that miR-378a-5p activity depends on a complementary base pairing at the 3'-UTR region of ALDH2 mRNA. Finally, ethanol-induced apoptosis in cardiomyocytes was attenuated in the presence of anti-miR378a-5p. Collectively, these data implicate a likely involvement of miR-378a-5p in the stimulation of cardiomyocyte apoptosis through ALDH2 gene suppression, which might play a potential role in the pathogenesis of ACM.
Collapse
Affiliation(s)
- Zhongkai Wang
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Jingwen Song
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Liang Zhang
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Songqun Huang
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Lizhi Bao
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Feng Chen
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Xianxian Zhao
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
39
|
Abba ML, Patil N, Leupold JH, Moniuszko M, Utikal J, Niklinski J, Allgayer H. MicroRNAs as novel targets and tools in cancer therapy. Cancer Lett 2017; 387:84-94. [DOI: 10.1016/j.canlet.2016.03.043] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023]
|
40
|
Li J, Mao X, Wang X, Miao G, Li J. miR-433 reduces cell viability and promotes cell apoptosis by regulating MACC1 in colorectal cancer. Oncol Lett 2016; 13:81-88. [PMID: 28123526 PMCID: PMC5245085 DOI: 10.3892/ol.2016.5445] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/06/2016] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are reported to have important roles in regulating the progression of numerous human cancers, although little is known regarding the role of miRNAs in colorectal cancer. The present study aimed to investigate the role of microRNA-433 (miR-433) in colorectal cancer. The expression levels of miR-433 and its target gene metastasis associated in colon cancer-1 (MACC1) in colorectal cancer tissues were evaluated using reverse transcription-quantitative polymerase chain reaction and western blotting. Furthermore, flow cytometry and MTT assays were used to examine the apoptosis, cell cycle distribution and viability of human colorectal cancer cells, and luciferase reporter and western blot assays were performed to verify the regulatory mechanism of miR-433 on MACC1. In addition, caspase-3 and caspase-9 expression were examined using western blotting. It was demonstrated that miR-433 expression was downregulated in colorectal cancer tissues and cell lines. Artificial upregulation of miR-433 in colorectal cancer cell lines using miR-433 mimics revealed that upregulation of miR-433 was able to reduce the viability and promote the apoptosis of colorectal cancer cells by downregulating MACC1. Taken together, these results suggested that miR-433 may have an important role in the pathogenesis of colorectal cancer.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of General Surgery, Danyang Hospital Affiliated to Nantong University, Zhenjiang, Jiangsu 212300, P.R. China
| | - Xuping Mao
- Department of General Surgery, Danyang Hospital Affiliated to Nantong University, Zhenjiang, Jiangsu 212300, P.R. China
| | - Xing Wang
- Department of Hepatic Surgery, Jiangsu Provincial People's Hospital (The First Affiliated Hospital of Nanjing Medical University), Nanjing, Jiangsu 210029, P.R. China
| | - Ganggang Miao
- Department of General Surgery, Danyang Hospital Affiliated to Nantong University, Zhenjiang, Jiangsu 212300, P.R. China
| | - Jiaxin Li
- Department of General Surgery, Danyang Hospital Affiliated to Nantong University, Zhenjiang, Jiangsu 212300, P.R. China
| |
Collapse
|
41
|
Hiratsuka I, Yamada H, Munetsuna E, Hashimoto S, Itoh M. Circulating MicroRNAs in Graves' Disease in Relation to Clinical Activity. Thyroid 2016; 26:1431-1440. [PMID: 27610819 DOI: 10.1089/thy.2016.0062] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Understanding the roles of circulating microRNAs (miRNAs) can provide important and novel information regarding disease pathogenesis and a patient's clinical condition. Circulating miRNAs, such as exosomal miRNA, may regulate various bioactivities related to intercellular communication. However, the circulation of miRNAs in Graves' disease (GD) in relation to disease activity has never been elucidated. This study aimed to identify circulating miRNAs in GD in relation to disease activity and whether their exosomes play a role in the pathogenesis of GD. METHODS Circulating miRNAs were measured in serum obtained from seven intractable GD patients, seven GD patients in remission, and seven healthy controls using the miScript miRNA PCR Array. Altered miRNAs selected from array data were validated in 65 subjects. To investigate exosome biology, peripheral blood mononuclear cells (PBMCs) were incubated with exosomes isolated from the subjects' sera. mRNAs were quantified for cytokines using quantitative real-time polymerase chain reaction. RESULTS Circulating miR-23b-5p and miR-92a-39 were increased in GD patients in remission compared with intractable GD patients (p < 0.05). On the other hand, let-7g-3p and miR-339-5p were decreased in GD patients in remission compared with intractable GD patients (p < 0.05). Exosomes from intractable GD patients stimulated mRNA expression for IL-1β and TNF-α compared with GD patients in remission or healthy controls. CONCLUSIONS This study demonstrates that different levels of circulating miRNAs are associated with intractable GD. Moreover, serum exosomes of patients with intractable GD may activate immune cells, which may play an important role in GD pathogenesis.
Collapse
Affiliation(s)
- Izumi Hiratsuka
- 1 Department of Endocrinology and Metabolism, Fujita Health University School of Medicine , Aichi, Japan
| | - Hiroya Yamada
- 2 Department of Hygiene, Fujita Health University School of Medicine , Aichi, Japan
| | - Eiji Munetsuna
- 3 Department of Biochemistry, Fujita Health University School of Medicine , Aichi, Japan
| | - Shuji Hashimoto
- 2 Department of Hygiene, Fujita Health University School of Medicine , Aichi, Japan
| | - Mitsuyasu Itoh
- 1 Department of Endocrinology and Metabolism, Fujita Health University School of Medicine , Aichi, Japan
| |
Collapse
|
42
|
Wei X, Li H, Zhang B, Li C, Dong D, Lan X, Huang Y, Bai Y, Lin F, Zhao X, Chen H. miR-378a-3p promotes differentiation and inhibits proliferation of myoblasts by targeting HDAC4 in skeletal muscle development. RNA Biol 2016; 13:1300-1309. [PMID: 27661135 DOI: 10.1080/15476286.2016.1239008] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Muscle development, or myogenesis, is a highly regulated, complex process. A subset of microRNAs (miRNAs) have been identified as critical regulators of myogenesis. Recently, miR-378a was found to be involved in myogenesis, but the mechanism of how miR-378a regulates the proliferation and differentiation of myoblasts has not been determined. We found that miR-378a-3p expression in muscle was significantly higher than in other tissues, suggesting an important effect on muscle development. Overexpression of miR-378a-3p increased the expression of MyoD and MHC in C2C12 myoblasts both at the level of mRNA and protein, confirming that miR-378a-3p promoted muscle cell differentiation. The forced expression of miR-378a-3p promoted apoptosis of C2C12 cells as evidenced by CCK-8 assay and Annexin V-FITC/PI staining results. Through TargetScan, histone acetylation enzyme 4 (HDAC4) was identified as a potential target of miR-378a-3p. We confirmed targeting of HDAC4 by miR-378a-3p using a dual luciferase assay and western blotting. Our RNAi analysis results also showed that HDAC4 significantly promoted differentiation of C2C12 cells and inhibited cell survival through Bcl-2. Therefore, we conclude that miR-378a-3p regulates skeletal muscle growth and promotes the differentiation of myoblasts through the post-transcriptional down-regulation of HDAC4.
Collapse
Affiliation(s)
- Xuefeng Wei
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Hui Li
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Bowen Zhang
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Caixia Li
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Dong Dong
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Xianyong Lan
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Yongzhen Huang
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Yueyu Bai
- b Animal Health Supervision in Henan Province , Zhengzhou , Henan , China
| | - Fengpeng Lin
- c Bureau of Animal Husbandry of Biyang County , Biyang , Henan , China
| | - Xue Zhao
- d Bureau of Animal Husbandry of Suibin County , Suibin , Heilongjiang , China
| | - Hong Chen
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| |
Collapse
|
43
|
Slattery ML, Herrick JS, Mullany LE, Wolff E, Hoffman MD, Pellatt DF, Stevens JR, Wolff RK. Colorectal tumor molecular phenotype and miRNA: expression profiles and prognosis. Mod Pathol 2016; 29:915-27. [PMID: 27198570 PMCID: PMC4967007 DOI: 10.1038/modpathol.2016.73] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 02/08/2023]
Abstract
MiRNAs regulate gene expression by post-transcriptionally suppressing mRNA translation or by causing mRNA degradation. It has been proposed that unique miRNAs influence specific tumor molecular phenotype. In this paper, we test the hypotheses that miRNA expression differs by tumor molecular phenotype and that those differences may influence prognosis. Data come from population-based studies of colorectal cancer conducted in Utah and the Northern California Kaiser Permanente Medical Care Program. A total of 1893 carcinoma samples were run on the Agilent Human miRNA Microarray V19.0 containing 2006 miRNAs. We assessed differences in miRNA expression between TP53-mutated and non-mutated, KRAS-mutated and non-mutated, BRAF-mutated and non-mutated, CpG island methylator phenotype (CIMP) high and CIMP low, and microsatellite instability (MSI) and microsatellite stable (MSS) colon and rectal tumors. Using a Cox proportional hazard model we evaluated if those miRNAs differentially expressed by tumor phenotype influenced survival after adjusting for age, sex, and AJCC stage. There were 22 differentially expressed miRNAs for TP53-mutated colon tumors and 5 for TP53-mutated rectal tumors with a fold change of >1.49 (or <0.67). Additionally, 13 miRNAS were differentially expressed for KRAS-mutated rectal tumors, 8 differentially expressed miRNAs for colon CIMP high tumors, and 2 differentially expressed miRNAs for BRAF-mutated colon tumors. The majority of differentially expressed miRNAS were observed between MSI and MSS tumors (94 differentially expressed miRNAs for colon; 41 differentially expressed miRNAs for rectal tumors). Of these miRNAs differentially expressed between MSI and MSS tumors, the majority were downregulated. Ten of the differentially expressed miRNAs were associated with survival; after adjustment for MSI status, five miRNAS, miR-196b-5p, miR-31-5p, miR-99b-5p, miR-636, and miR-192-3p, were significantly associated with survival. In summary, it appears that the majority of miRNAs that are differentially expressed by tumor molecular phenotype are MSI tumors. However, these miRNAs appear to have minimal effect on prognosis.
Collapse
Affiliation(s)
- Martha L. Slattery
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, Utah 84108
| | - Jennifer S. Herrick
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, Utah 84108
| | - Lila E. Mullany
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, Utah 84108
| | - Erica Wolff
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, Utah 84108
| | - Michael D. Hoffman
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, Utah 84108
| | - Daniel F. Pellatt
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, Utah 84108
| | - John R. Stevens
- Department of Mathematics and Statistics, Utah State University, 3900 Old Main Hill, Logan UT 84322-3900
| | - Roger K. Wolff
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, Utah 84108
| |
Collapse
|
44
|
Yi R, Li Y, Wang FL, Miao G, Qi RM, Zhao YY. MicroRNAs as diagnostic and prognostic biomarkers in colorectal cancer. World J Gastrointest Oncol 2016; 8:330-40. [PMID: 27096028 PMCID: PMC4824711 DOI: 10.4251/wjgo.v8.i4.330] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 01/13/2016] [Accepted: 01/28/2016] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) are key regulators involved in various tumors. They regulate cell cycle, apoptosis and cancer stemness, metastasis and chemoresistance by controlling their target gene expressions. Here, we mainly discuss the potential uses of miRNAs in colorectal cancer (CRC) diagnosis. We also shed light on the important corresponding miRNA targets and on the major regulators of miRNAs. Furthermore, we discuss miRNA activity in assessing the prognosis and recurrence of CRC as well as in modulating responsiveness to chemotherapy. Based on the various pro-oncogenic/anti-oncogenic roles of miRNAs, the advantages of a therapeutic strategy based on the delivery of miRNA mimics are also mentioned. Together, miRNA seems to be an excellent tool for effectively monitoring and targeting CRC.
Collapse
|
45
|
WENG WENHUI, LEUNG WAIHUNG, PANG YEUJYE, HSU HSIHSIEN. Lauric acid can improve the sensitization of Cetuximab in KRAS/BRAF mutated colorectal cancer cells by retrievable microRNA-378 expression. Oncol Rep 2015; 35:107-16. [DOI: 10.3892/or.2015.4336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/05/2015] [Indexed: 11/05/2022] Open
|
46
|
Chang SW, Yue J, Wang BC, Zhang XL. miR-503 inhibits cell proliferation and induces apoptosis in colorectal cancer cells by targeting E2F3. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12853-12860. [PMID: 26722476 PMCID: PMC4680421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/20/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE Colorectal cancer (CRC) is one of the major healthcare problems worldwide. A lot of miRNAs are aberrantly expressed in CRC and involved in its development and progression. The purpose of this study was to investigate the expression and function of miR-503 in CRC. METHODS miR-503 expression was detected in CRC tissues and cell lines by Quantitative real-time PCR. Cell proliferation was assessed by MTT assay. Cell apoptosis and cell cycle distribution were measured by flow cytometry. Moreover, luciferase reporter assay and western blot were performed to determine the potential target of miR-503 in CRC cells. RESULTS miR-503 was significantly decreased in CRC tissues and cell lines in comparison with controls. Overexpression of miR-503 in CRC cells remarkably inhibited cell proliferation and induced apoptosis. Furthermore, E2F3 was identified as a direct target of miR-503 in CRC cells and down-regulation of E2F3 had a similar effect as miR-503 overexpression on CRC cells. In addition, the expression of E2F3 was negatively correlated with miR-503 level in CRC tissues. CONCLUSIONS miR-503 inhibits cell proliferation and induces apoptosis by directly targeting E2F3 in CRC cells, indicating its potential application in CRC diagnosis and therapy.
Collapse
Affiliation(s)
- Shun-Wu Chang
- Department of Surgery, Third Clinical Medical College of Southern Medical UniversityGuangzhou 510630, China
- Department of Surgery, People’s Hospital of Hainan ProvinceHaikou 570311, China
| | - Jie Yue
- Department of Surgery, People’s Hospital of Hainan ProvinceHaikou 570311, China
| | - Bao-Chun Wang
- Department of Surgery, People’s Hospital of Hainan ProvinceHaikou 570311, China
| | - Xue-Li Zhang
- Department of General Surgery, Fengxian Hospital Affiliated to Southern Medical UniversityShanghai 201499, China
| |
Collapse
|
47
|
Wu L, Shi B, Huang K, Fan G. MicroRNA-128 suppresses cell growth and metastasis in colorectal carcinoma by targeting IRS1. Oncol Rep 2015; 34:2797-805. [PMID: 26352220 DOI: 10.3892/or.2015.4251] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/03/2015] [Indexed: 01/24/2023] Open
Abstract
Evidence has shown that microRNAs play important roles in tumor development, progression, and metastasis. miR-128 has been reported to be deregulated in different tumor types, whereas the function of miR-128 in colorectal carcinoma (CRC) largely remains to be elucidated. The aim of the present study was to investigate the clinical significance, biological effects and underlying mechanisms of miR-128 in CRC using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. It was found that the expression of miR-128 was downregulated in CRC tissues and cell lines as determined by RT-qPCR. Furthermore, the expression of miR-128 in tumor tissues was significantly negatively correlated with TNM stage and lymph node metastasis in CRC patients. Functional assay revealed that the overexpression of miR-128 inhibited CRC cell proliferation, colony formation, migration and invasion and promoted apoptosis in vitro, and suppressed CRC xenograft tumor growth in vivo. In addition, insulin receptor substrate 1 (IRS1), a key mediator in oncogenic insulin-like growth factor (IGF) signaling, was confirmed as a direct target of miR-128 by a luciferase reporter assay. Western blot analysis indicated that the overexpression of miR-128 significantly downregulated IRS1 expression and its downstream Akt signaling in CRC cells. Moreover, miR-128 was negatively associated with IRS1 in CRC tissues compared to adjacent non-tumor tissues. Taken together, these data suggested that miR-128 serves as a tumor suppressor and blocks CRC growth and metastasis by targeting IRS1.
Collapse
Affiliation(s)
- Lan Wu
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bo Shi
- The Experiment Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Kexin Huang
- The Experiment Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guoyu Fan
- Department of Oncology, The Center Hospital of Jilin City, Fengman, Jilin 132011, P.R. China
| |
Collapse
|