1
|
Cao J, Hu D, Yu H, Xie Y, Mi L, Ye Y, Deng M, Zhang W, Li M, Wang D, Qi F, Wu J, Song Y, Zhu J, Ding N. Interleukin-2-inducible T-cell kinase inhibition to block NF-κB signaling exerts anti-tumor effects and enhances chemotherapy in NK/T-cell lymphoma. Cancer Lett 2025; 618:217602. [PMID: 40054659 DOI: 10.1016/j.canlet.2025.217602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 02/18/2025] [Accepted: 03/01/2025] [Indexed: 03/24/2025]
Abstract
Natural killer/T-cell lymphoma (NKTCL) is a highly aggressive non-Hodgkin lymphoma. Relapsed/refractory (R/R) NKTCL patients have dismal prognosis and lack effective treatments, novel therapeutics are urgently needed. Here we found interleukin-2-inducible T-cell kinase (ITK) expression was elevated in NKTCL cells and patient tumors. And higher ITK expression was associated with worse clinical outcomes. In vitro ITK knockdown inhibited NKTCL cell growth, induced apoptosis, cell cycle arrest and impaired its colony-forming ability while ITK overexpression accelerated cell proliferation. In vivo ITK knockdown greatly impeded lymphoma growth in mouse model, indicating it as a potential therapeutic target. Mechanistically, ITK knockdown inhibited NKTCL cell growth by attenuating oncogenic NF-κB signaling, which is revealed by transcriptomic profiling and further validated by in vitro assays and in vivo NKTCL models. Additionally, we showed that ITK inhibitors could inhibit NKTCL cell proliferation, promote apoptosis and suppressed tumor progression in NKTCL cell line-derived xenograft (CDX) model. Furthermore, we established a patient-derived xenograft (PDX) model from a NKTCL patient refractory to prior anti-PD-1 and asparaginase containing therapy. The primary cells from this patient highly expressed ITK and were responsive to ITK inhibitor. And ITK inhibitor effectively repressed tumor progression in PDX model. Finally, we found ITK inhibition improved the response of NKTCL cell lines to chemotherapy and overcome chemotherapy resistance in primary cells. Collectively, our results demonstrated that ITK served as an oncogene in NKTCL and represented a novel therapeutic vulnerability to be targeted or in combination with chemotherapy drugs for this disease.
Collapse
Affiliation(s)
- Jiaowu Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dingyao Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hui Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yan Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lan Mi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yingying Ye
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Mi Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Miaomiao Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dedao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Fei Qi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiajin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Ning Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Lymphoma Translational Research, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
2
|
Cai J, Qin X, Zhao X. Design, synthesis and anti-tumor activity of BTK inhibitor Orelabrutinib derivatives. Bioorg Chem 2025; 157:108278. [PMID: 40007347 DOI: 10.1016/j.bioorg.2025.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Bruton tyrosine kinase (BTK), a non-receptor tyrosine kinase falling within the Tec kinase family, forms an essential part of the B cell receptor (BCR) signaling cascade. It has come to be regarded as a potential drug target for addressing a wide range of diseases, with a particular focus on hematopoietic malignancies and autoimmune disorders related to B lymphocytes. In the present study, by uncovering the binding mechanisms of the inhibitor Orelabrutinib with BTK, we identified four crucial structural elements requisite for the inhibition. Using scaffold hopping strategies, 28 novel derivatives belonging to the tricyclic and pyridine amide series were designed and synthesized from the lead compound Orelabrutinib. The outcomes revealed that 11a and 11k were able to effectively restrain the growth and migration of the tumor cell TMD8 upon comparing their in vitro activities, meriting further examination.
Collapse
Affiliation(s)
- Jin Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China.
| | - Xintong Qin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Xiaomin Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| |
Collapse
|
3
|
Halder P, Rai A, Talukdar V, Das P, Lakkaniga NR. Pyrazolopyridine-based kinase inhibitors for anti-cancer targeted therapy. RSC Med Chem 2024; 15:1452-1470. [PMID: 38784451 PMCID: PMC11110789 DOI: 10.1039/d4md00003j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/24/2024] [Indexed: 05/25/2024] Open
Abstract
The need for effective cancer treatments continues to be a challenge for the biomedical research community. In this case, the advent of targeted therapy has significantly improved therapeutic outcomes. Drug discovery and development efforts targeting kinases have resulted in the approval of several small-molecule anti-cancer drugs based on ATP-mimicking heterocyclic cores. Pyrazolopyridines are a group of privileged heterocyclic cores in kinase drug discovery, which are present in several inhibitors that have been developed against various cancers. Notably, selpercatinib, glumetinib, camonsertib and olverembatinib have either received approval or are in late-phase clinical studies. This review presents the success stories employing pyrazolopyridine scaffolds as hinge-binding cores to address various challenges in kinase-targeted drug discovery research.
Collapse
Affiliation(s)
- Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Anubhav Rai
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Vishal Talukdar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad India
| |
Collapse
|
4
|
Xu S, Wu S, Zhang M, Xie J, Lin M, Jin L, Zhang J, Wang Y, Fan M, Fang Z, Li W, Ouyang C, Kwon D, Que N, Li Z, Mao J, Chen H, Harris J, Wu X, Wu J, Yin H, Chan WC, Horne D, Huang W. Pharmacological profiling of a berbamine derivative for lymphoma treatment. Blood Adv 2024; 8:309-323. [PMID: 37967356 PMCID: PMC10824694 DOI: 10.1182/bloodadvances.2023010873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
ABSTRACT Ca2+/calmodulin-dependent protein kinase II γ (CAMKIIγ) has been identified as a potential target for treating cancer. Based on our previous study of berbamine (BBM) as a CAMKIIγ inhibitor, we have synthesized a new BBM derivative termed PA4. Compared with BBM, PA4 showed improved potency and specificity and was more cytotoxic against lymphoma and leukemia than against other types of cancer. In addition to indirectly targeting c-Myc protein stability, we demonstrated that its cytotoxic effects were also mediated via increased reactive oxygen species production in lymphoma cells. PA4 significantly impeded tumor growth in vivo in a xenograft T-cell lymphoma mouse model. Pharmacokinetics studies demonstrated quick absorption into plasma after oral administration, with a maximum concentration of 1680 ± 479 ng/mL at 5.33 ± 2.31 hours. The calculated oral absolute bioavailability was 34.1%. Toxicity assessment of PA4 showed that the therapeutic window used in our experiments was safe for future development. Given its efficacy, safety, and favorable pharmacokinetic profile, PA4 is a potential lead candidate for treating lymphoma.
Collapse
Affiliation(s)
- Senlin Xu
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| | - Shunquan Wu
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fujian, China
| | - Mingfeng Zhang
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
| | - Jun Xie
- Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA
| | - Min Lin
- Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA
| | - Lihua Jin
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
| | - Jiawei Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yangmeng Wang
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
| | - Mingjie Fan
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
| | - Zhipeng Fang
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
| | - Weini Li
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
| | - Ching Ouyang
- Integrative Genomic Core, City of Hope National Medical Center, Duarte, CA
| | - David Kwon
- Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA
| | - Natalie Que
- Eugene and Ruth Roberts Summer Student Academy, City of Hope, Duarte, CA
| | - Zhirou Li
- School of AI and Advanced Computing, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Jinge Mao
- School of AI and Advanced Computing, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Haonan Chen
- Eugene and Ruth Roberts Summer Student Academy, City of Hope, Duarte, CA
| | - Josephine Harris
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
| | - Xiwei Wu
- Integrative Genomic Core, City of Hope National Medical Center, Duarte, CA
| | - Jun Wu
- Animal Tumor Model Core, City of Hope National Medical Center, Duarte, CA
| | - Hongwei Yin
- Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA
| | - Wing C. Chan
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - David Horne
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
- Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA
| | - Wendong Huang
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| |
Collapse
|
5
|
Zamora-Fuentes JM, Hernández-Lemus E, Espinal-Enríquez J. Methylation-related genes involved in renal carcinoma progression. Front Genet 2023; 14:1225158. [PMID: 37693315 PMCID: PMC10486271 DOI: 10.3389/fgene.2023.1225158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
Renal carcinomas are a group of malignant tumors often originating in the cells lining the small tubes in the kidney responsible for filtering waste from the blood and urine production. Kidney tumors arise from the uncontrolled growth of cells in the kidneys and are responsible for a large share of global cancer-related morbidity and mortality. Understanding the molecular mechanisms driving renal carcinoma progression results crucial for the development of targeted therapies leading to an improvement of patient outcomes. Epigenetic mechanisms such as DNA methylation are known factors underlying the development of several cancer types. There is solid experimental evidence of relevant biological functions modulated by methylation-related genes, associated with the progression of different carcinomas. Those mechanisms can often be associated to different epigenetic marks, such as DNA methylation sites or chromatin conformation patterns. Currently, there is no definitive method to establish clear relations between genetic and epigenetic factors that influence the progression of cancer. Here, we developed a data-driven method to find methylation-related genes, so we could find relevant bonds between gene co-expression and methylation-wide-genome regulation patterns able to drive biological processes during the progression of clear cell renal carcinoma (ccRC). With this approach, we found out genes such as ITK oncogene that appear hypomethylated during all four stages of ccRC progression and are strongly involved in immune response functions. Also, we found out relevant tumor suppressor genes such as RAB25 hypermethylated, thus potentially avoiding repressed functions in the AKT signaling pathway during the evolution of ccRC. Our results have relevant implications to further understand some epigenetic-genetic-affected roles underlying the progression of renal cancer.
Collapse
Affiliation(s)
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Carty SA, Murga-Zamalloa CA, Wilcox RA. SOHO State of the Art Updates and Next Questions | New Pathways and New Targets in PTCL: Staying on Target. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:561-574. [PMID: 37142534 PMCID: PMC10565700 DOI: 10.1016/j.clml.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
While the peripheral T-cell lymphomas (PTCL) remain a therapeutic challenge, and increasingly account for a disproportionate number of lymphoma-related deaths, improved understanding of disease pathogenesis and classification, and the development of novel therapeutic agents over the past decade, all provide reasons for a more optimistic outlook in the next. Despite their genetic and molecular heterogeneity, many PTCL are dependent upon signaling input provided by antigen, costimulatory, and cytokine receptors. While gain-of-function alterations effecting these pathways are recurrently observed in many PTCL, more often than not, signaling remains ligand-and tumor microenvironment (TME)-dependent. Consequently, the TME and its constituents are increasingly recognized as "on target". Utilizing a "3 signal" model, we will review new-and old-therapeutic targets that are relevant for the more common nodal PTCL subtypes.
Collapse
Affiliation(s)
- Shannon A Carty
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | | | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
7
|
Li J, Wang L, Yu X, Guan Y, Wang X. Panaxadiol targeting IL2 inducible T cell kinase promotes T cell immunity in radiotherapy. Anticancer Drugs 2023; 34:705-714. [PMID: 36730497 DOI: 10.1097/cad.0000000000001448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ginseng, as a traditional Chinese medicine, has a good protective effect against radiotherapy, but its mechanism in radiotherapy still needs to be further explored. The active ingredients of Ginseng were analyzed according to pharmacodynamics in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, and the target genes of active ingredients were screened by UniProt, PubChem and Swiss target prediction database. The differentially expressed genes of GSE6871 and GSE20162 were analyzed from the GEO database. Further, cluster analysis and enrichment analysis were carried out through protein-protein interaction network to determine hub gene. Next, build the drug-disease target network, conduct molecular docking simulation, and determine the key ingredients and targets of Ginseng on radiotherapy. We screened 16 active ingredients of Ginseng and 747 target genes from the TCMSP database. Eighty-two common differentially expressed genes were obtained by the GEO database. After topological analysis, we finally determined CD28, FYN, IL2 inducible T cell kinase (ITK), MYC and CD247 as hub genes. After integrating the drug-disease target network and molecular docking, we found that Panaxadiol, as an active ingredient of Ginseng, can target ITK to participate in T cell signal receptor pathway and act on radiotherapy. Panaxadiol can act on the key target ITK of radiotherapy, participate in T cell signal receptor pathway, and then affect the proliferation, differentiation and immune response of radiotherapy T cells, so as to reduce the side effects of radiotherapy.
Collapse
Affiliation(s)
- Jiuwei Li
- College of Second Clinical Medical, Shandong University of Traditional Chinese Medicine
| | - Lu Wang
- Office of Academic Research, School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine
| | - Xiaodan Yu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan
| | - Yong Guan
- Gaoxinyuan Experimental School of Zhucheng, Weifang
| | - Xue Wang
- Pharmacology of Traditional Chinese Medical Formulae, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Jiang B, Weinstock DM, Donovan KA, Sun HW, Wolfe A, Amaka S, Donaldson NL, Wu G, Jiang Y, Wilcox RA, Fischer ES, Gray NS, Wu W. ITK degradation to block T cell receptor signaling and overcome therapeutic resistance in T cell lymphomas. Cell Chem Biol 2023; 30:383-393.e6. [PMID: 37015223 PMCID: PMC10151063 DOI: 10.1016/j.chembiol.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 04/05/2023]
Abstract
Interleukin (IL)-2-inducible T cell kinase (ITK) is essential for T cell receptor (TCR) signaling and plays an integral role in T cell proliferation and differentiation. Unlike the ITK homolog BTK, no inhibitors of ITK are currently US Food and Drug Administration (FDA) approved. In addition, recent studies have identified mutations within BTK that confer resistance to both covalent and non-covalent inhibitors. Here, as an alternative strategy, we report the development of BSJ-05-037, a potent and selective heterobifunctional degrader of ITK. BSJ-05-037 displayed enhanced anti-proliferative effects relative to its parent inhibitor BMS-509744, blocked the activation of NF-kB/GATA-3 signaling, and increased the sensitivity of T cell lymphoma cells to cytotoxic chemotherapy both in vitro and in vivo. In summary, targeted degradation of ITK is a novel approach to modulate TCR signal strength that could have broad application for the investigation and treatment of T cell-mediated diseases.
Collapse
Affiliation(s)
- Baishan Jiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong-Wei Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital, Jinan University, Zhuhai, China
| | - Ashley Wolfe
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sam Amaka
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicholas L Donaldson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gongwei Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yuan Jiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Wenchao Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
9
|
Prawiro C, Bunney TD, Kampyli C, Yaguchi H, Katan M, Bangham CRM. A frequent PLCγ1 mutation in adult T-cell leukemia/lymphoma determines functional properties of the malignant cells. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166601. [PMID: 36442790 DOI: 10.1016/j.bbadis.2022.166601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Development of adult T-cell leukemia/lymphoma (ATL) involves human T-cell leukemia virus type 1 (HTLV-1) infection and accumulation of somatic mutations. The most frequently mutated gene in ATL (36 % of cases) is phospholipase C gamma1 (PLCG1). PLCG1 is also frequently mutated in other T-cell lymphomas. However, the functional consequences of the PLCG1 mutations in cancer cells have not been characterized. METHODS We compared the activity of the wild-type PLCγ1 with that of a mutant carrying a hot-spot mutation of PLCγ1 (S345F) observed in ATL, both in cells and in cell-free assays. To analyse the impact of the mutation on cellular properties, we quantified cellular proliferation, aggregation, chemotaxis and apoptosis by live cell-imaging in an S345F+ ATL-derived cell line (KK1) and a KK1 cell line in which we reverted the mutation to the wild-type sequence using CRISPR/Cas9 and homology-directed repair. FINDINGS The PLCγ1 S345F mutation results in an increase of basal PLC activity in vitro and in different cell types. This higher basal activity is further enhanced by upstream signalling. Reversion of the S345F mutation in the KK1 cell line resulted in reduction of the PLC activity, lower rates of proliferation and aggregation, and a marked reduction in chemotaxis towards CCL22. The PLCγ1-pathway inhibitors ibrutinib and ritonavir reduced both the PLC activity and the tested functions of KK1 cells. INTERPRETATION Consistent with observations from clinical studies, our data provide direct evidence that activated variants of the PLCγ1 enzyme contribute to the properties of the malignant T-cell clone in ATL. FUNDING MRC (UK) Project Grant (P028160).
Collapse
Affiliation(s)
- Christy Prawiro
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Tom D Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Charis Kampyli
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Hiroko Yaguchi
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK.
| | - Charles R M Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
10
|
Krug A, Tari G, Saidane A, Gaulard P, Ricci JE, Lemonnier F, Verhoeyen E. Novel T Follicular Helper-like T-Cell Lymphoma Therapies: From Preclinical Evaluation to Clinical Reality. Cancers (Basel) 2022; 14:cancers14102392. [PMID: 35625998 PMCID: PMC9139536 DOI: 10.3390/cancers14102392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary This work reviews the multiple efforts that have been and are being invested by researchers as well as clinicians to improve the treatment of a specific T-cell lymphoma called follicular helper peripheral T-cell lymphoma. Still, though treatments for B-cell lymphomas have improved, this particular T-cell lymphoma has little to no new therapeutic options that show marked improvements in the survival of the patients compared to treatment with chemotherapy. We report here the evaluation of targeted new therapies for this T-cell lymphoma in new preclinical models for this cancer or in clinical trials with the objective to offer better (combination) treatment options. Abstract The classification of peripheral T-cell lymphomas (PTCL) is constantly changing and contains multiple subtypes. Here, we focus on Tfh-like PTCL, to which angioimmunoblastic T-cell lymphoma (AITL) belongs, according to the last WHO classification. The first-line treatment of these malignancies still relies on chemotherapy but gives very unsatisfying results for these patients. Enormous progress in the last decade in terms of understanding the implicated genetic mutations leading to signaling and epigenetic pathway deregulation in Tfh PTCL allowed the research community to propose new therapeutic approaches. These findings point towards new biomarkers and new therapies, including hypomethylating agents, such as azacytidine, and inhibitors of the TCR-hyperactivating molecules in Tfh PTCL. Additionally, metabolic interference, inhibitors of the NF-κB and PI3K-mTOR pathways and possibly novel immunotherapies, such as antibodies and chimeric antigen receptors (CAR) directed against Tfh malignant T-cell surface markers, are discussed in this review among other new treatment options.
Collapse
Affiliation(s)
- Adrien Krug
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - Gamze Tari
- Univ Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France;
| | - Aymen Saidane
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - Philippe Gaulard
- Département de Pathologie, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France;
| | - Jean-Ehrland Ricci
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - François Lemonnier
- Service Unité Hémopathies Lymphoides, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France;
| | - Els Verhoeyen
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon1, CNRS, UMR 5308, 69007 Lyon, France
- Correspondence: or ; Tel.: +33-4-72728731
| |
Collapse
|
11
|
Yin Z, Zou Y, Wang D, Huang X, Xiong S, Cao L, Zhang Y, Sun Y, Zhang N. Regulation of the Tec family of non-receptor tyrosine kinases in cardiovascular disease. Cell Death Discov 2022; 8:119. [PMID: 35296647 PMCID: PMC8927484 DOI: 10.1038/s41420-022-00927-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Tyrosine phosphorylation by protein tyrosine kinases (PTKs) is a type of post-translational modification. Tec kinases, which are a subfamily of non-receptor PTKs, were originally discovered in the hematopoietic system and include five members: Tec, Btk, Itk/Emt/Tsk, Etk/Bmx, and Txk/Rlk. With the progression of modern research, certain members of the Tec family of kinases have been found to be expressed outside the hematopoietic system and are involved in the development and progression of a variety of diseases. The role of Tec family kinases in cardiovascular disease is receiving increasing attention. Tec kinases are involved in the occurrence and progression of ischemic heart disease, atherosclerosis, cardiac dysfunction associated with sepsis, atrial fibrillation, myocardial hypertrophy, coronary atherosclerotic heart disease, and myocardial infarction and post-myocardial. However, no reviews have comprehensively clarified the role of Tec kinases in the cardiovascular system. Therefore, this review summarizes research on the role of Tec kinases in cardiovascular disease, providing new insights into the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Zeyu Yin
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dong Wang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyue Huang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shengjun Xiong
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning, China
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
12
|
Parkman GL, Foth M, Kircher DA, Holmen SL, McMahon M. The role of PI3'-lipid signalling in melanoma initiation, progression and maintenance. Exp Dermatol 2022; 31:43-56. [PMID: 34717019 PMCID: PMC8724390 DOI: 10.1111/exd.14489] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/11/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023]
Abstract
Phosphatidylinositol-3'-kinases (PI3Ks) are a family of lipid kinases that phosphorylate the 3' hydroxyl (OH) of the inositol ring of phosphatidylinositides (PI). Through their downstream effectors, PI3K generated lipids (PI3K-lipids hereafter) such as PI(3,4,5)P3 and PI(3,4)P2 regulate myriad biochemical and biological processes in both normal and cancer cells including responses to growth hormones and cytokines; the cell division cycle; cell death; cellular growth; angiogenesis; membrane dynamics; and autophagy and many aspects of cellular metabolism. Engagement of receptor tyrosine kinase by their cognate ligands leads to activation of members of the Class I family of PI3'-kinases (PI3Kα, β, δ & γ) leading to accumulation of PI3K-lipids. Importantly, PI3K-lipid accumulation is antagonized by the hydrolytic action of a number of PI3K-lipid phosphatases, most notably the melanoma suppressor PTEN (lipid phosphatase and tensin homologue). Downstream of PI3K-lipid production, the protein kinases AKT1-3 are believed to be key effectors of PI3'-kinase signalling in cells. Indeed, in preclinical models, activation of the PI3K→AKT signalling axis cooperates with alterations such as expression of the BRAFV600E oncoprotein kinase to promote melanoma progression and metastasis. In this review, we describe the different classes of PI3K-lipid effectors, and how they may promote melanomagenesis, influence the tumour microenvironment, melanoma maintenance and progression to metastatic disease. We also provide an update on both FDA-approved or experimental inhibitors of the PI3K→AKT pathway that are currently being evaluated for the treatment of melanoma either in preclinical models or in clinical trials.
Collapse
Affiliation(s)
- Gennie L. Parkman
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Mona Foth
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - David A. Kircher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Sheri L. Holmen
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Martin McMahon
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| |
Collapse
|
13
|
Yu DD, Zhang J. Update on recurrent mutations in angioimmunoblastic T-cell lymphoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:1108-1118. [PMID: 35027991 PMCID: PMC8748014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is a subtype of peripheral T cell lymphoma (PTCL), defined by genetic alterations that induce abnormal immune activity and inflammatory disorders. Through recent discoveries using genomic studies, the identification of various recurrent mutations has provided greater insight and changed our understanding of the molecular genetics of the disease. By acknowledging these recurrent mutations and their affected pathways, the diagnosis, prognosis, treatment, and survival of AITL can be improved. In this review, we summarize the known recurrent mutations present in the molecular pathogenesis of AITL by emphasizing the effects of mutations on signaling pathways and genes, as well as the multistep process of AITL development.
Collapse
Affiliation(s)
| | - Jianzhong Zhang
- Department of Pathology, Strategic Support Force Medical CenterBeijing, China
| |
Collapse
|
14
|
Huang Y, Chen L, Tang Z, Min Y, Yu W, Yang G, Zhang L. A Novel Immune and Stroma Related Prognostic Marker for Invasive Breast Cancer in Tumor Microenvironment: A TCGA Based Study. Front Endocrinol (Lausanne) 2021; 12:774244. [PMID: 34867821 PMCID: PMC8636929 DOI: 10.3389/fendo.2021.774244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the most frequent cancer in women. The tumor microenvironment (TME), consisting of blood vessels, immune cells, fibroblasts, and extracellular matrix, plays a pivotal role in tumorigenesis and progression. Increasing evidence has emphasized the importance of TME, especially the immune components, in patients with BC. Nevertheless, we still lack a deep understanding of the correlation between tumor invasion and TME status. METHODS Transcriptome and clinical data were retrieved from The Cancer Genome Atlas (TCGA) database. ESTIMATE algorithm was applied for quantifying stromal and immune scores. Then we screened out the differentially expressed genes (DEGs) through the intersection analysis. Furthermore, the establishment of protein-protein interaction (PPI) network and univariate COX regression analysis were utilized to determine the core genes in DEGs. In addition, we also performed Gene Set Enrichment Analysis (GSEA) and CIBERSORT analysis to distinguish the function of crucial gene expression and the proportion of tumor-infiltrating immune cells (TICs), respectively. RESULTS A total of 1178 samples (112 normal samples and 1066 tumor samples) were extracted from TCGA for calculation, and 226 DEGs were obtained from this assessment. Further intersection analysis revealed eight key genes, including ITK, CD3E, CCL19, CD2, SH2D1A, CD5, SLAMF6, SPN, which were proven to correlate with BC status. Moreover, ITK was picked out for further study. The results illustrated that high expression of BC patients had a more prolonged overall survival (OS) time than ITK low expression BC patients (p = 0.009), and ITK expression also presented the statistical significance in age, TNM staging, tumor size classification, and metastasis classification. Additionally, GSEA and CIBERSORT analysis indicated that ITK expression had an association with immune activity in TME. CONCLUSION ITK may be a potential indicator for prognosis prediction in patients with BC, and its biological behavior may promote our understanding of the molecular mechanism of tumor progression and targeted therapy.
Collapse
Affiliation(s)
- Yizhou Huang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lizhi Chen
- College of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ziyi Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Min
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wanli Yu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lili Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Lechner K, Mott S, Al-Saifi R, Knipfer L, Wirtz S, Atreya R, Vieth M, Rath T, Fraass T, Winter Z, August A, Luban J, Zimmermann VS, Weigmann B, Neurath MF. Targeting of the Tec Kinase ITK Drives Resolution of T Cell-Mediated Colitis and Emerges as Potential Therapeutic Option in Ulcerative Colitis. Gastroenterology 2021; 161:1270-1287.e19. [PMID: 34224738 DOI: 10.1053/j.gastro.2021.06.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The molecular checkpoints driving T cell activation and cytokine responses in ulcerative colitis (UC) are incompletely understood. Here, we studied the Tec kinase ITK in UC. METHODS We analyzed patients with inflammatory bowel disease (n = 223) and evaluated ITK activity as well as the functional effects of cyclosporine-A (CsA). In addition, 3 independent murine colitis models were used to investigate the functional role of ITK. Finally, the activity of ITK was blocked via pharmacological inhibitors and genetically engineered mice. Readout parameters were mini-endoscopy, histopathology, mucosal T cell apoptosis, and cytokine production. RESULTS We found an expansion of pITK-expressing mucosal CD4+ T cells in UC rather than Crohn's disease that correlated with disease severity. CsA suppressed activation of ITK in cultured CD4+ T cells and calcineurin-containing microclusters adjacent to the T cell receptor signaling complex. Functionally, the capacity of CsA to suppress activity of experimental colitis was critically dependent on ITK. Genetic inactivation of Itk via gene targeting or induction of allele-sensitive Itk mutants prevented experimental colitis in 3 colitis models, and treatment with pharmacological ITK blockers suppressed established colitis. In addition, ITK controlled apoptosis and activation of mucosal Th2 and Th17 lymphocytes via NFATc2 signaling pathways. CONCLUSIONS ITK activation was detected in UC and could be down-regulated in cultured T cells by CsA administration. Selective targeting of ITK emerges as an attractive approach for treatment of chronic intestinal inflammation and potentially UC by driving resolution of mucosal inflammation.
Collapse
Affiliation(s)
- Kristina Lechner
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Stefanie Mott
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Ragheed Al-Saifi
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Lisa Knipfer
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, University of Erlangen-Nuremberg, Erlangen Germany
| | - Timo Rath
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | | | | | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York
| | - Jeremy Luban
- Program in Molecular Medicine and Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Valérie S Zimmermann
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Le Centre National de la Recherche Scientifique, Montpellier, France
| | - Benno Weigmann
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany; Medical Immunology Campus Erlangen, Medical Clinic 1, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany.
| |
Collapse
|
16
|
Chen C, Chen Z, Huang L, Zhou L, Zhu L, Liu S, Luo G, Li W, Zeng C, Li Y. TNFAIP3 mutation may be associated with favorable overall survival for patients with T-cell lymphoma. Cancer Cell Int 2021; 21:490. [PMID: 34526012 PMCID: PMC8444556 DOI: 10.1186/s12935-021-02191-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/03/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND T-cell lymphoma (TCL) is highly aggressive and has a poor prognosis; thus, it is worth exploring biomarkers that may predict clinical outcomes and investigate their potential role in developing targeted therapies. In this study, we characterized the mutation pattern of tumor necrosis factor-alpha-inducing protein 3 (TNFAIP3) and its role in the prognosis of TCL patients. METHODS Coding sequence (CDS) mutations in TNFAIP3 in TCL patients was explored using exome-sequencing data from 79 patients in our center (Guangdong Provincial People's Hospital, GDPH) and 544 samples from the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Additionally, non-CDS mutations in TNFAIP3 in 41 TCL patients from our center (JNU) were investigated by polymerase chain reaction (PCR) and Sanger sequencing. Furthermore, non-CDS mutations in TNFAIP3 in 47 TCL patients from Gene Expression Omnibus (GEO) dataset were explored. RESULTS In the COSMIC database, TNFAIP3 mutations in TCL patients were located in the CDS, and the overall mutation frequency was 2.2%. However, TNFAIP3 mutations were not detected in the CDS of any of the samples in our center's datasets. Interestingly, non-CDS TNFAIP3 mutations were found in 14.6% and 4.3% of TCL patients in the JNU and GSE15842 dataset, respectively. Importantly, there was a clear trend showing that TCL patients with a TNFAIP3 mutation were associated with a longer 5-year restricted mean survival time (RMST) and favorable OS rate compared with those without a TNFAIP3 mutation in the JNU dataset [hazard ratio (HR) = 0.29, 95% confidence interval (CI) 0.07 to 1.31, P = 0.089]. Furthermore, TNFAIP3 mutations significantly correlated with T-cell large granular lymphocytic leukemia (T-LGLL) with a favorable prognosis in the JNU dataset (P = 0.002). Notably, the different mutation patterns of TNFAIP3 when comparing our center and the COSMIC datasets might be due to different ethnic and genetic backgrounds. CONCLUSIONS To the best of our knowledge, we for the first time describe that TNFAIP3 mutations in non-CDS regions are associated with favorable OS for TCL patients, which might be a potential biomarker for the prognostic stratification of Chinese TCL patients.
Collapse
Affiliation(s)
- Cunte Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Zheng Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Ling Huang
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lingling Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lihua Zhu
- Department of Rheumatism and Immunology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Sichu Liu
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Gengxin Luo
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wenyu Li
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Chengwu Zeng
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
17
|
Abstract
The focus of this review is to examine the role of ITK signaling in multiple diseases and investigate the clinical potential of ITK inhibition. The diseases and potential interventions reviewed include T cell-derived malignancies as well as other neoplastic diseases, allergic diseases such as asthma and atopic dermatitis, certain infectious diseases, several autoimmune disorders such as rheumatoid arthritis and psoriasis, and finally the use of ITK inhibition in both solid organ and bone marrow transplantation recipients.
Collapse
Affiliation(s)
- Samuel Weeks
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Rebecca Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| |
Collapse
|
18
|
Kornauth C, Herbaux C, Boidol B, Guillemette C, Caron P, Mayerhöfer ME, Poulain S, Tournilhac O, Pemovska T, Chong SJF, Van der Kouwe E, Kazianka L, Hopfinger G, Heintel D, Jäger R, Raderer M, Jäger U, Simonitsch-Klupp I, Sperr WR, Kubicek S, Davids MS, Staber PB. Rationale for the combination of venetoclax and ibrutinib in T-prolymphocytic leukemia. Haematologica 2021; 106:2251-2256. [PMID: 33626863 PMCID: PMC8327744 DOI: 10.3324/haematol.2020.271304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/11/2021] [Indexed: 01/22/2023] Open
Affiliation(s)
- Christoph Kornauth
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna
| | - Charles Herbaux
- Department of Medical Oncology, Dana-Faber Cancer Institute, Harvard Medical School, Boston
| | - Bernd Boidol
- Center for Molecular Medicine (CeMM), Austrian Academy of Sciences, Vienna
| | - Chantal Guillemette
- Centre Hospitalier Universitaire de Québec - Université Laval and Faculty of Pharmacy, Université Laval, Québec
| | - Patrick Caron
- Centre Hospitalier Universitaire de Québec - Université Laval and Faculty of Pharmacy, Université Laval, Québec
| | - Marius E Mayerhöfer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna
| | - Stéphanie Poulain
- UMR CANTHER, INSERM 1277-CNRS 9020 UMRS 12. University of Lille, Hematology Laboratory, Biology and pathology center, CHU de Lille, 59000 Lille
| | - Olivier Tournilhac
- Service d'Hematologie Clinique et de Therapie Cellulaire, CHU, Universite Clermont Auvergne, EA7453 CHELTER, CIC1405, Clermont Ferrand
| | - Tea Pemovska
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna
| | - Stephen J F Chong
- Department of Medical Oncology, Dana-Faber Cancer Institute, Harvard Medical School, Boston
| | - Emiel Van der Kouwe
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna
| | - Lukas Kazianka
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna
| | - Georg Hopfinger
- 3rd Medical Department, Centre for Oncology and Haematology, Kaiser Franz Josef-Spital, Vienna
| | - Daniel Heintel
- 1. Medical Department, Center for Oncology and Hematology, Wilhelminenhospital Vienna, Vienna
| | - Roland Jäger
- Department of Laboratory Medicine, Medical University of Vienna
| | - Markus Raderer
- Department of Medicine I, Division of Oncology, Medical University of Vienna
| | - Ulrich Jäger
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna
| | | | - Wolfgang R Sperr
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna
| | - Stefan Kubicek
- Center for Molecular Medicine (CeMM), Austrian Academy of Sciences, Vienna
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Faber Cancer Institute, Harvard Medical School, Boston
| | - Philipp B Staber
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna.
| |
Collapse
|
19
|
Chen X, Liu G, Wang S, Zhang H, Xue P. Machine learning analysis of gene expression profile reveals a novel diagnostic signature for osteoporosis. J Orthop Surg Res 2021; 16:189. [PMID: 33722258 PMCID: PMC7958453 DOI: 10.1186/s13018-021-02329-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/01/2021] [Indexed: 01/25/2023] Open
Abstract
Background Osteoporosis (OP) is increasingly prevalent with the aging of the world population. It is urgent to identify efficient diagnostic signatures for the clinical application. Method We downloaded the mRNA profile of 90 peripheral blood samples with or without OP from GEO database (Number: GSE152073). Weighted gene co-expression network analysis (WGCNA) was used to reveal the correlation among genes in all samples. GO term and KEGG pathway enrichment analysis was performed via the clusterProfiler R package. STRING database was applied to screen the interaction pairs among proteins. Protein–protein interaction (PPI) network was visualized based on Cytoscape, and the key genes were screened using the cytoHubba plug-in. The diagnostic model based on these key genes was constructed, and 5-fold cross validation method was applied to evaluate its reliability. Results A gene module consisted of 176 genes predicted to be associated with the occurrence of OP was identified. A total of 16 significantly enriched GO terms and 1 significantly enriched KEGG pathway were obtained based on the 176 genes. The top 50 key genes in the PPI network were identified. Then 22 genes were screened based on stepwise regression analysis from the 50 key genes. Of which, 9 genes were further screened out by multivariate regression analysis with the significant threshold of P value < 0.01. The diagnostic model was established based on the optimal 9 key genes, which efficiently separated the normal samples and OP samples. Conclusion A diagnostic model established based on nine key genes could reliably separate OP patients from healthy subjects, which provided novel lightings on the diagnostic research of OP. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02329-1.
Collapse
Affiliation(s)
- Xinlei Chen
- Department of Orthopedics, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Guangping Liu
- Department of Orthopedics, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Shuxiang Wang
- Department of Orthopedics, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Haiyang Zhang
- Department of Orthopedics, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Peng Xue
- Department of Orthopedics, Zibo Central Hospital, Zibo, 255000, Shandong, China.
| |
Collapse
|
20
|
Mikhail AS, Negussie AH, Mauda-Havakuk M, Owen JW, Pritchard WF, Lewis AL, Wood BJ. Drug-eluting embolic microspheres: State-of-the-art and emerging clinical applications. Expert Opin Drug Deliv 2021; 18:383-398. [PMID: 33480306 PMCID: PMC11247414 DOI: 10.1080/17425247.2021.1835858] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Drug-eluting embolic (DEE) microspheres, or drug-eluting beads (DEB), delivered by transarterial chemoembolization (TACE) serve as a therapeutic embolic to stop blood flow to tumors and a drug delivery vehicle. New combinations of drugs and DEE microspheres may exploit the potential synergy between mechanisms of drug activity and local tissue responses generated by TACE to enhance the efficacy of this mainstay therapy. AREAS COVERED This review provides an overview of key drug delivery concepts related to DEE microspheres with a focus on recent technological developments and promising emerging clinical applications as well as speculation into the future. EXPERT OPINION TACE has been performed for nearly four decades by injecting chemotherapy drugs into the arterial supply of tumors while simultaneously cutting off their blood supply, trying to starve and kill cancer cells, with varying degrees of success. The practice has evolved over the decades but has yet to fulfill the promise of truly personalized therapies envisioned through rational selection of drugs and real-time multi-parametric image guidance to target tumor clonality or heterogeneity. Recent technologic and pharmacologic developments have opened the door for potentially groundbreaking advances in how TACE with DEE microspheres is performed with the goal of achieving advancements that benefit patients.
Collapse
Affiliation(s)
- Andrew S Mikhail
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ayele H Negussie
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Michal Mauda-Havakuk
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Joshua W Owen
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - William F Pritchard
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Andrew L Lewis
- Interventional Medicine Innovation Group, Biocompatibles UK, Ltd. (Now Boston Scientific Corp.), Camberley, UK
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Dubois S, Waldmann TA, Müller JR. Engagement of lymphoma T cell receptors causes accelerated growth and the secretion of an NK cell-inhibitory factor. Cell Immunol 2020; 357:104213. [PMID: 32977157 PMCID: PMC7554099 DOI: 10.1016/j.cellimm.2020.104213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
The development of T cell lymphomas in mice that constitutively express a single T cell receptor is surveilled by the action of NK cells. We investigated the effects of engaging the lymphoma TCR in this mouse model. We stimulated lymphoma cells expressing an ovalbumin-specific TCR in vivo using listeria monocytogenes as a vehicle. Infections with listeria expressing ovalbumin but not with control bacteria caused a stable change in lymphoma cells that allowed its growth in mice with normal NK cells. TCR engagement furthermore enhanced lymphoma growth in NK-cell-depleted mice suggesting a lymphoma-intrinsic change that lead to accelerated growth. The ability to grow in mice without prior NK cell depletion did not appear to be accompanied by changes in the recognition of lymphoma by NK cells. Rather, lymphoma immunization was associated with a decrease in NK cell numbers: Leukemic phases were observed for all mice starting three to eight weeks after immunizations, and leukemias were succeeded by the disappearance of NK cells from blood. We also observed strong decreases of NK cell numbers in spleens at the time of death. Co-culture experiments showed decreases in the ability of NK cells to proliferate in response to IL-15 when post-immunization lymphoma cells were present in a mechanism that did not require direct cell contact. Together these data suggest that TCR engagement caused intrinsic changes in T cell lymphoma cells resulting in both accelerated in vivo growth and in the secretion of a factor that caused NK cell disappearance.
Collapse
MESH Headings
- Animals
- CD56 Antigen/immunology
- CD56 Antigen/metabolism
- Disease Models, Animal
- Interleukin-15/immunology
- Interleukin-15/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Listeria monocytogenes/pathogenicity
- Lymphoma/immunology
- Lymphoma/metabolism
- Lymphoma/pathology
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Sigrid Dubois
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jürgen R Müller
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
22
|
Lechner KS, Neurath MF, Weigmann B. Role of the IL-2 inducible tyrosine kinase ITK and its inhibitors in disease pathogenesis. J Mol Med (Berl) 2020; 98:1385-1395. [PMID: 32808093 PMCID: PMC7524833 DOI: 10.1007/s00109-020-01958-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 01/18/2023]
Abstract
ITK (IL-2-inducible tyrosine kinase) belongs to the Tec family kinases and is mainly expressed in T cells. It is involved in TCR signalling events driving processes like T cell development as well as Th2, Th9 and Th17 responses thereby controlling the expression of pro-inflammatory cytokines. Studies have shown that ITK is involved in the pathogenesis of autoimmune diseases as well as in carcinogenesis. The loss of ITK or its activity either by mutation or by the use of inhibitors led to a beneficial outcome in experimental models of asthma, inflammatory bowel disease and multiple sclerosis among others. In humans, biallelic mutations in the ITK gene locus result in a monogenetic disorder leading to T cell dysfunction; in consequence, mainly EBV infections can lead to severe immune dysregulation evident by lymphoproliferation, lymphoma and hemophagocytic lymphohistiocytosis. Furthermore, patients who suffer from angioimmunoblastic T cell lymphoma have been found to express significantly more ITK. These findings put ITK in the strong focus as a target for drug development.
Collapse
Affiliation(s)
- Kristina S Lechner
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054, Erlangen, Germany
- Ludwig Demling Endoscopy Center of Excellence, Ulmenweg 18, 91054, Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany.
- Medical Immunology Campus Erlangen, Medical Clinic 1, Friedrich-Alexander University Erlangen-Nürnberg, 91052, Erlangen, Germany.
| |
Collapse
|