1
|
Yan J, Li Z, Wang K, Xie C, Zhu J, Wu S. Association between ambient fine particulate matter constituents and mortality and morbidity of cardiovascular and respiratory diseases: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 379:126476. [PMID: 40383471 DOI: 10.1016/j.envpol.2025.126476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/25/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Existing studies have explored the associations between short-term or long-term exposures to PM2.5 constituents and mortality and morbidity outcomes related to all-causes, natural causes and the cardiopulmonary system, but the results are still inconclusive. To explore the associations between short-term and long-term exposures to ambient PM2.5 constituents with mortality and morbidity outcomes of all-cause, natural, cardiovascular and respiratory diseases. We comprehensively searched PubMed, Embase, Web of Science and Scopus electronic databases to identify studies until 28, August 2023. We estimated the pooled relative risk (RR) with 95 % confidence interval (CI) using random-effect models. Then we explored potential sources of heterogeneity across different studies by subgroup and meta-regression analysis. A total of 67 articles were included in the meta-analysis. We found that short-term exposures to PM2.5 carbon-containing constituents (black carbon and organic carbon) and metal iron showed the most consistent associations with the eight health outcomes among different PM2.5 constituents. Meanwhile, only long-term exposures to nitrate ions and silicon in PM2.5 showed significant positive associations with cardiovascular and natural mortality outcomes. Additionally, subgroup and meta-regression analyses highlight that geographical region and age group are primary sources of heterogeneity. The current meta-analysis reveals potential key PM2.5 constituents associated with elevated risk of mortality and morbidity of cardiovascular and respiratory diseases. Thus, greater attention should be directed toward establishing exposure limits for specific PM2.5 constituents to protect public health and alleviate the associated burden of diseases.
Collapse
Affiliation(s)
- Jie Yan
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Cuiyao Xie
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Jiaqi Zhu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Liu M, Chen X, Zheng G, Zhou B, Fang Z, Chen H, Liang X, Hao G. Association between road traffic noise exposure and heart failure: A systematic review and meta-analysis of prospective cohort studies. Public Health 2025; 241:107-114. [PMID: 39970506 DOI: 10.1016/j.puhe.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/05/2025] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVES To examine the relationship between road traffic noise exposure and heart failure. STUDY DESIGN A systematic review and meta-analysis was conducted. METHODS We systematically searched eight databases (PubMed, Embase, Scopus, Cochrane, Web of Science, CNKI, Wanfang Data, and Chinese Biomedical Literature Database) through July 2024 to identify cohort studies on road traffic noise exposure and heart failure according to a priori inclusion criteria. The random effect model was adopted to summarize the effect estimates. Using the piecewise linear model, the dose-response relationship between road traffic noise exposure and heart failure was also estimated. RESULTS This meta-analysis included eight cohort studies including 8,601,385 participants and 221,842 patients with heart failure. Overall, higher road traffic noise exposure was associated with an increased risk of heart failure (pooled HR = 1.12, 95 % CI: 1.06-1.18) with high heterogeneity (I2 = 87.8 %, p < 0.001, τ2 = 0.004, Q-statistic = 57.31). Piecewise linear model showed an obvious linear relationship between exposure to road traffic noise above 50 dB and heart failure (p < 0.001), and the risk of heart failure increased by 7 % per 10 dB increase in road traffic noise exposure. CONCLUSIONS The existing evidence showed a significant correlation between road traffic noise exposure and the incidence of heart failure. Further studies are required to explain the potential biological mechanisms.
Collapse
Affiliation(s)
- Mingliang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xia Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Guangjun Zheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Biying Zhou
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Zhenger Fang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Haiyan Chen
- Department of Parasitic Disease and Endemic Disease Control and Prevention, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Xiaohua Liang
- Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child, Chongqing, China.
| | - Guang Hao
- Department of Epidemiology and Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
3
|
Wang AJ, Frishman WH. Literature Review: Effects of Environmental Noise on the Cardiovascular Health. Cardiol Rev 2025:00045415-990000000-00404. [PMID: 39936928 DOI: 10.1097/crd.0000000000000852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The adverse effects of environmental noise on human health have been recognized for more than a century. In particular, during the last decades, the vast majority of studies have focused on the detrimental role of noise in the induction of cardiovascular diseases. In this study, we aim to conduct a literature review on chronic stress responses induced by environmental noise, the risk of cardiovascular disease, and the underlying pathophysiological mechanisms. We retrieved the publications from the PubMed database by searching for "noise AND cardiovascular." By reviewing these publications in this study, we will first describe the epidemiologic research on cardiovascular risk factors and diseases induced by environmental noise, then discuss the mechanism(s) underlying these noise-induced cardiovascular impairments based on clinical and experimental studies, and finally evaluate the strategies to mitigate the effects of noise on cardiovascular health. We also evaluate the studies that describe the effects of noise level and noise intermittency, such as train noise, on cardiovascular health. We discuss whether environmental noise should be part of a risk factor profile for cardiovascular disease and how we should manage it, and assess the strategy that can be used to mitigate the noise-induced physiopathological changes. Furthermore, we briefly describe the effects of air pollution and heavy metals on cardiovascular health and discuss the relevance of these environmental stressors in the noise-induced cardiovascular disease. Our studies suggest that future studies are warranted to investigate new strategies that can mitigate the adverse effects of environmental noise on cardiovascular health.
Collapse
Affiliation(s)
- Andrew Jun Wang
- From the Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | | |
Collapse
|
4
|
Tan Q, Zhou M, You X, Ma J, Ye Z, Shi W, Cui X, Mu G, Yu L, Chen W. Association of ambient ozone exposure with early cardiovascular damage among general urban adults: A repeated-measures cohort study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177380. [PMID: 39505024 DOI: 10.1016/j.scitotenv.2024.177380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/21/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Longitudinal evidence of long-term ozone exposure on heart rate variability (HRV, an early indicator of cardiovascular damage) is lacking and the potential mechanism remains largely unclear. Our objectives were to evaluate the cross-sectional and longitudinal associations of ozone exposure with HRV alteration, and the potential roles of protein carbonyl (PC, biomarker of oxidative protein damage) and transforming growth factor (TGF)-β1 in this association. This repeated-measures prospective study included 4138 participants with 6617 observations from the Wuhan-Zhuhai cohort. Ozone concentrations were estimated using a high temporospatial resolution model for each participant. HRV indices, PC, and TGF-β1 were also repeatedly measured. Cross-sectional and longitudinal relationships of ozone exposure with HRV alteration were evaluated by linear mixed model. Cross-sectionally, the strongest lag effect of each 10 ppb increment in short-term ozone exposure showed a 12.40 %, 8.47 %, 4.31 %, 8.03 %, 3.69 %, and 2.41 % decrement on very low frequency (VLF, lag 3 weeks), LF (lag 2 weeks), high frequency (HF, lag 0-7 days), total power (TP, lag 2 weeks), standard deviation of all normal-to-normal intervals (SDNN, lag 3 weeks), and square root of the mean squared difference between adjacent normal-to-normal intervals (lag 2 weeks), respectively. Longitudinally, each 10 ppb increment of annual average ozone was related with an annual change rate of -0.024 ms2/year in VLF, -0.009 ms2/year in LF, -0.013 ms2/year in HF, -0.014 ms2/year in TP, and -0.004 ms/year in SDNN. Mediation analyses indicated that PC mediated 20.77 % and 12.18 % of ozone-associated VLF and TP decline, respectively; TGF-β1 mediated 16.87 % and 27.78 % of ozone-associated VLF and SDNN reduction, respectively. Our study demonstrated that ozone exposure was cross-sectionally and longitudinally related with HRV decline in general Chinese urban adults, and oxidative protein damage and increased TGF-β1 partly mediated ozone exposure-related HRV reduction.
Collapse
Affiliation(s)
- Qiyou Tan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojie You
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wendi Shi
- Lucy Cavendish College, University of Cambridge, Cambridge CB3 0BU, UK
| | - Xiuqing Cui
- Institute of Health Surveillance Analysis and Protection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Data Center, Medical Affairs Department, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
5
|
Mayntz SP, Rosenbech KE, Mohamed RA, Lindholt JS, Diederichsen ACP, Frohn LM, Lambrechtsen J. Impact of air pollution and noise exposure on cardiovascular disease incidence and mortality: A systematic review. Heliyon 2024; 10:e39844. [PMID: 39524794 PMCID: PMC11550137 DOI: 10.1016/j.heliyon.2024.e39844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background The relationship between environmental pollutants, specifically air pollution and noise, and cardiovascular disease is well-recognized. However, their combined effects on cardiovascular health are not fully explored. Objectives To review evidence on the correlation between air pollution and noise exposure and cardiovascular disease incidence and mortality. Methods Following the PRISMA 2020 guidelines, we identified relevant studies through multiple databases and snowballing. We focused on studies published between 2003 and 2024. Studies were selected based on a PEOS framework, with a focus on exposure to air pollution or noise and clinical cardiovascular outcomes and evaluated for bias using the ROBINS-E tool. Results A total of 140 studies met our inclusion criteria. Most studies suggested a consistent association between long-term exposure to air pollutants and an increased risk of cardiovascular diseases, notably ischemic heart disease and stroke. While air pollution was often studied in isolation, the interaction effects between air pollution and noise exposure were less commonly investigated, showing mixed results. The majority of these studies were conducted in Western countries, which may limit the generalizability of the findings to global populations. No studies were found to use time-updated confounders, despite the long durations over which participants were followed, which could influence the accuracy of the results. Moreover, none of the studies incorporated both residential and occupational addresses in exposure assessments, suggesting a need for future studies to include these multiple exposure points to improve measurement precision and accuracy. Conclusion Air pollution exposure is increasingly linked to cardiovascular disease risks. Although individual air pollution and noise exposures are recognized as significant risk factors, the combined interaction between these exposures needs further exploration. Registration PROSPERO (CRD42023460443).
Collapse
Affiliation(s)
- Stephan Peronard Mayntz
- Cardiology Research Unit, Odense University Hospital, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN – Open Patient Data Explorative Network, Odense University Hospital, Denmark
| | | | - Roda Abdulkadir Mohamed
- Cardiology Research Unit, Odense University Hospital, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN – Open Patient Data Explorative Network, Odense University Hospital, Denmark
| | - Jes Sanddal Lindholt
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Cardiac, Thoracic, and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Axel Cosmus Pyndt Diederichsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Lise Marie Frohn
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Jess Lambrechtsen
- Cardiology Research Unit, Odense University Hospital, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN – Open Patient Data Explorative Network, Odense University Hospital, Denmark
| |
Collapse
|
6
|
Zhang Z, Wang C, Lin C, Wu Y, Wei J, Lu J, Chen B, Wu C, Zhang X, Yang Y, Cui J, Xu W, Song L, Yang H, Zhang Y, He W, Tian Y, Zhou X, Li X. Association of long-term exposure to ozone with cardiovascular mortality and its metabolic mediators: evidence from a nationwide, population-based, prospective cohort study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 52:101222. [PMID: 39444716 PMCID: PMC11497431 DOI: 10.1016/j.lanwpc.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Background Previous studies about chronic effects of ozone (O3) on cardiovascular mortality are scarce and inconclusive. We aimed to investigate the association between cardiovascular mortality and a broad range of long-term O3 exposure levels. Methods This analysis included 3,206,871 participants aged 35-75 years enrolled in the ChinaHEART study. Participants were recruited from the 31 provinces of the Chinese mainland between January 2015 and December 2020. The five-year average O3 concentrations before baseline visits were calculated to represent long-term exposure. Findings Over a median follow-up period of 4.7 (interquartile range: 3.7-6.2) years, 35,553 (1.1%) participants died from cardiovascular diseases (CVD). Following multivariable adjustment, nonlinear relationships were identified between O3 concentrations and CVD and ischemic heart disease (IHD) mortality, with inflection points at 85.44 and 88.15 μg/m3, respectively. Above these points, a 10.0 μg/m3 increase in the O3 level was associated with a 13.9% (hazard ratio [HR]: 1.139, 95% confidence interval [CI]: 1.096-1.184) and 25.0% (HR: 1.250, 95% CI: 1.151-1.357) greater risk of CVD and IHD mortality, respectively. Conversely, O3 exposure exhibited a linear relationship with ischemic stroke mortality. Moreover, the metabolic factors explained more than half of the association between O3 exposure and CVD mortality. Interpretation Substantial influences of long-term O3 exposure on CVD mortality were identified, with notable mediation proportions attributed to metabolic factors. These findings could facilitate the air quality standard revisions and risk reduction strategy making in the future. Funding This study was supported by the CAMS Innovation Fund for Medical Science (2021-1-I2M-011), the CAMS Innovation Fund for Medical Science (CIFMS, 2022-I2M-C&T-A-010), the National High Level Hospital Clinical Research Funding (2022-GSP-GG-4), the Ministry of Finance of China and National Health Commission of China, the 111 Project from the Ministry of Education of China (B16005).
Collapse
Affiliation(s)
- Zenglei Zhang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chunqi Wang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chunying Lin
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yi Wu
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Jiapeng Lu
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Bowang Chen
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chaoqun Wu
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaoyan Zhang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yang Yang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jianlan Cui
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Wei Xu
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Lijuan Song
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Hao Yang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yan Zhang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Wenyan He
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yuan Tian
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xianliang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xi Li
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, People's Republic of China
- Central China Sub-center of the National Center for Cardiovascular Diseases, Zhengzhou, People's Republic of China
| |
Collapse
|
7
|
Kasdagli MI, Orellano P, Pérez Velasco R, Samoli E. Long-Term Exposure to Nitrogen Dioxide and Ozone and Mortality: Update of the WHO Air Quality Guidelines Systematic Review and Meta-Analysis. Int J Public Health 2024; 69:1607676. [PMID: 39494092 PMCID: PMC11527649 DOI: 10.3389/ijph.2024.1607676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Objectives We performed a systematic review and meta-analysis on long-term exposure to nitrogen dioxide (NO2) and ozone (O3) with mortality, to expand evidence that informed 2021 the WHO Air Quality Guidelines and guide the Health Risks of Air Pollution in Europe project. Methods We included cohorts investigating NO2 and O3 mortality from all-causes, respiratory diseases, chronic obstructive pulmonary disease (COPD), acute lower respiratory infections (ALRI); and NO2 mortality from circulatory, ischemic heart, cerebrovascular diseases and lung cancer. We pooled estimates by random-effects models and investigated heterogeneity. We assessed the certainty of the evidence using the Grading of Recommendations Assessment Development approach and Evaluation (GRADE). Results We selected 83 studies for NO2 and 26 for O3 for the meta-analysis. NO2 was associated with all outcomes, except for cerebrovascular mortality. O3 was associated with respiratory mortality following annual exposure. There was high heterogeneity, partly explained by region and pollutant levels. Certainty was high for NO2 with COPD and ALRI, and annual O3 with respiratory mortality. Conclusion An increasing body of evidence, with new results from countrywide areas and the Western Pacific, supports certainty, including new outcomes.
Collapse
Affiliation(s)
- Maria-Iosifina Kasdagli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Pablo Orellano
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Universidad Tecnologica Nacional, Facultad Regional San Nicolas, San Nicolas, Argentina
| | - Román Pérez Velasco
- World Health Organization (WHO) Regional Office for Europe, European Centre for Environment and Health, Bonn, Germany
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Bowman WS, Schmidt RJ, Sanghar GK, Thompson GR, Ji H, Zeki AA, Haczku A. "Air That Once Was Breath" Part 1: Wildfire-Smoke-Induced Mechanisms of Airway Inflammation - "Climate Change, Allergy and Immunology" Special IAAI Article Collection: Collegium Internationale Allergologicum Update 2023. Int Arch Allergy Immunol 2024; 185:600-616. [PMID: 38452750 PMCID: PMC11487202 DOI: 10.1159/000536578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Wildfires are a global concern due to their wide-ranging environmental, economic, and public health impacts. Climate change contributes to an increase in the frequency and intensity of wildfires making smoke exposure a more significant and recurring health concern for individuals with airway diseases. Some of the most prominent effects of wildfire smoke exposure are asthma exacerbations and allergic airway sensitization. Likely due to the delayed recognition of its health impacts in comparison with cigarette smoke and industrial or traffic-related air pollution, research on the composition, the mechanisms of toxicity, and the cellular/molecular pathways involved is poor or non-existent. SUMMARY This review discusses potential underlying pathological mechanisms of wildfire-smoke-related allergic airway disease and asthma. We focused on major gaps in understanding the role of wildfire smoke composition in the development of airway disease and the known and potential mechanisms involving cellular and molecular players of oxidative injury at the epithelial barrier in airway inflammation. We examine how PM2.5, VOCs, O3, endotoxin, microbes, and toxic gases may affect oxidative stress and inflammation in the respiratory mucosal barrier. We discuss the role of AhR in mediating smoke's effects in alarmin release and IL-17A production and how glucocorticoid responsiveness may be impaired by IL-17A-induced signaling and epigenetic changes leading to steroid-resistant severe airway inflammation. KEY MESSAGE Effective mitigation of wildfire-smoke-related respiratory health effects would require comprehensive research efforts aimed at a better understanding of the immune regulatory effects of wildfire smoke in respiratory health and disease.
Collapse
Affiliation(s)
- Willis S. Bowman
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, Sacramento, CA, USA
| | - Gursharan K. Sanghar
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - George R. Thompson
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Hong Ji
- UC Davis Lung Center, University of California, Davis, CA, USA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, Davis, CA, USA
| | - Amir A. Zeki
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Angela Haczku
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| |
Collapse
|
9
|
Sørensen M, Pershagen G, Thacher JD, Lanki T, Wicki B, Röösli M, Vienneau D, Cantuaria ML, Schmidt JH, Aasvang GM, Al-Kindi S, Osborne MT, Wenzel P, Sastre J, Fleming I, Schulz R, Hahad O, Kuntic M, Zielonka J, Sies H, Grune T, Frenis K, Münzel T, Daiber A. Health position paper and redox perspectives - Disease burden by transportation noise. Redox Biol 2024; 69:102995. [PMID: 38142584 PMCID: PMC10788624 DOI: 10.1016/j.redox.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023] Open
Abstract
Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Denmark.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesse Daniel Thacher
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Timo Lanki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland; School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Benedikt Wicki
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Manuella Lech Cantuaria
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Jesper Hvass Schmidt
- Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Gunn Marit Aasvang
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Sadeer Al-Kindi
- Department of Medicine, University Hospitals, Harrington Heart & Vascular Institute, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Rainer Schulz
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Gießen, 35392, Gießen, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katie Frenis
- Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
10
|
Chen J, Braun D, Christidis T, Cork M, Rodopoulou S, Samoli E, Stafoggia M, Wolf K, Wu X, Yuchi W, Andersen ZJ, Atkinson R, Bauwelinck M, de Hoogh K, Janssen NA, Katsouyanni K, Klompmaker JO, Kristoffersen DT, Lim YH, Oftedal B, Strak M, Vienneau D, Zhang J, Burnett RT, Hoek G, Dominici F, Brauer M, Brunekreef B. Long-Term Exposure to Low-Level PM2.5 and Mortality: Investigation of Heterogeneity by Harmonizing Analyses in Large Cohort Studies in Canada, United States, and Europe. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127003. [PMID: 38039140 PMCID: PMC10691665 DOI: 10.1289/ehp12141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 08/10/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Studies across the globe generally reported increased mortality risks associated with particulate matter with aerodynamic diameter ≤ 2.5 μ m (PM 2.5 ) exposure with large heterogeneity in the magnitude of reported associations and the shape of concentration-response functions (CRFs). We aimed to evaluate the impact of key study design factors (including confounders, applied exposure model, population age, and outcome definition) on PM 2.5 effect estimates by harmonizing analyses on three previously published large studies in Canada [Mortality-Air Pollution Associations in Low Exposure Environments (MAPLE), 1991-2016], the United States (Medicare, 2000-2016), and Europe [Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), 2000-2016] as much as possible. METHODS We harmonized the study populations to individuals 65 + years of age, applied the same satellite-derived PM 2.5 exposure estimates, and selected the same sets of potential confounders and the same outcome. We evaluated whether differences in previously published effect estimates across cohorts were reduced after harmonization among these factors. Additional analyses were conducted to assess the influence of key design features on estimated risks, including adjusted covariates and exposure assessment method. A combined CRF was assessed with meta-analysis based on the extended shape-constrained health impact function (eSCHIF). RESULTS More than 81 million participants were included, contributing 692 million person-years of follow-up. Hazard ratios and 95% confidence intervals (CIs) for all-cause mortality associated with a 5 - μ g / m 3 increase in PM 2.5 were 1.039 (1.032, 1.046) in MAPLE, 1.025 (1.021, 1.029) in Medicare, and 1.041 (1.014, 1.069) in ELAPSE. Applying a harmonized analytical approach marginally reduced difference in the observed associations across the three studies. Magnitude of the association was affected by the adjusted covariates, exposure assessment methodology, age of the population, and marginally by outcome definition. Shape of the CRFs differed across cohorts but generally showed associations down to the lowest observed PM 2.5 levels. A common CRF suggested a monotonically increased risk down to the lowest exposure level. https://doi.org/10.1289/EHP12141.
Collapse
Affiliation(s)
- Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Danielle Braun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Tanya Christidis
- Health Analysis Division, Statistics Canada, Ottawa, Ontario, Canada
| | - Michael Cork
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodstrian University of Athens, Athens, Greece
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodstrian University of Athens, Athens, Greece
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Xiao Wu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Weiran Yuchi
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Zorana J. Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Richard Atkinson
- Population Health Research Institute, St George’s, University of London, London, UK
| | - Mariska Bauwelinck
- Interface Demography, Department of Sociology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicole A.H. Janssen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodstrian University of Athens, Athens, Greece
- MRC Center for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, London, UK
| | - Jochem O. Klompmaker
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Doris Tove Kristoffersen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Bente Oftedal
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Maciej Strak
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jiawei Zhang
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Francesca Dominici
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Michael Brauer
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
11
|
Castro A, Künzli N, de Hoogh K, Kappeler R, Joss MK, Vienneau D, Röösli M. Mortality attributable to ambient fine particulate matter and nitrogen dioxide in Switzerland in 2019: Use of two-pollutant effect estimates. ENVIRONMENTAL RESEARCH 2023; 231:116029. [PMID: 37149029 DOI: 10.1016/j.envres.2023.116029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
INTRODUCTION Air pollution health risk assessments have traditionally used single-pollutant effect estimates for one proxy ambient air pollutant such as PM2.5. Two-pollutant effect estimates, i.e. adjusted for another correlated pollutant, theoretically enable the aggregation of pollutant-specific health effects minimizing double-counting. Our study aimed at estimating the adult mortality in Switzerland in 2019 attributable to PM2.5 from a single-pollutant effect estimate and to the sum of PM2.5 and NO2 from two-pollutant estimates; comparing the results with those from alternative global, European and Swiss effect estimates. METHODS For the single-pollutant approach, we used a PM2.5 summary estimate of European cohorts from the project ELAPSE, recommended by the European Respiratory Society and International Society for Environmental Epidemiology (ERS-ISEE). To derive the two-pollutant effect estimates, we applied ELAPSE-based conversion factors to ERS-ISEE PM2.5 and NO2 single-pollutant effect estimates. Additionally, we used World Health Organization 2021 Air Quality Guidelines as counterfactual scenario, exposure model data from 2019 and Swiss lifetables. RESULTS The single-pollutant effect estimate for PM2.5 (1.118 [1.060; 1.179] per 10 μg/m3) resulted in 2240 deaths (21,593 years of life lost). Using our derived two-pollutant effect estimates (1.023 [1.012; 1.035] per 10 μg/m3 PM2.5 adjusted for NO2 and 1.040 [1.023; 1.058] per 10 μg/m3 NO2 adjusted for PM2.5), we found 1977 deaths (19,071 years of life lost) attributable to PM2.5 and NO2 together (23% from PM2.5). Deaths using alternative effect estimates ranged from 1042 to 5059. DISCUSSION Estimated premature mortality attributable to PM2.5 alone was higher than to both PM2.5 and NO2 combined. Furthermore, the proportion of deaths from PM2.5 was lower than from NO2 in the two-pollutant approach. These seemingly paradoxical results, also found in some alternative estimates, are due to statistical imprecisions of underlying correction methods. Therefore, using two-pollutant effect estimates can lead to interpretation challenges in terms of causality.
Collapse
Affiliation(s)
- Alberto Castro
- Swiss Tropical Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | - Nino Künzli
- Swiss Tropical Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Kees de Hoogh
- Swiss Tropical Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Ron Kappeler
- Swiss Tropical Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Meltem Kutlar Joss
- Swiss Tropical Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Swiss Tropical Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|