1
|
Al-Bzour NN, Al-Bzour AN, Qasaymeh A, Saeed A, Chen L, Saeed A. Machine learning approach identifies inflammatory gene signature for predicting survival outcomes in hepatocellular carcinoma. Sci Rep 2024; 14:30328. [PMID: 39638834 PMCID: PMC11621542 DOI: 10.1038/s41598-024-81395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, often linked to chronic inflammation. Our study aimed to probe inflammation pathways at the genetic level and pinpoint biomarkers linked to HCC patient survival. METHODS We analyzed gene transcriptome data from 246 resectable stage I and II HCC patients from The Cancer Genome Atlas (TCGA). After selecting 917 inflammation-related genes (IRGs), we identified 104 differentially expressed genes (DEGs) through differential expression analysis. Two significant prognostic DEGs, S100A9 and PBK, were identified using LASSO and Cox regression, forming the basis of a risk score model. We conducted functional enrichment and immune landscape analyses, validated our findings on 170 patients from the GSE14520 dataset, and performed mutational analysis using TCGA somatic mutation data. RESULTS We analyzed 296 samples (246 HCC, 50 normal liver), showing significant survival differences between high and low-risk groups based on our risk score model. Functional enrichment analysis unveiled inflammation-associated pathways. Validation using the GSE14520 dataset confirmed our risk score's predictive ability, and we explored clinical correlations. CONCLUSION Our study delineates inflammation-related genomic changes in HCC, unveiling prognostic biomarkers with potential therapeutic implications. These findings deepen our understanding of HCC molecular mechanisms and may guide personalized therapeutic approaches, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Noor N Al-Bzour
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
| | - Ayah N Al-Bzour
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
| | - Abdelrahman Qasaymeh
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
| | - Azhar Saeed
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT, USA
| | - Lujia Chen
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Zhang Y, Luan M. Unraveling the role of PBK in glioblastoma: from molecular mechanisms to therapeutic targets. Ann Med Surg (Lond) 2024; 86:7147-7154. [PMID: 39649886 PMCID: PMC11623866 DOI: 10.1097/ms9.0000000000002708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/24/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND This study investigates the gene expression characteristics of glioma-initiating cells (GIC), an important subgroup of glioblastoma (GBM), after knockdown of PBK (PDZ-binding kinase). Differentially expressed genes (DEGs) between PBK knockdown GIC and control groups were screened through bioinformatics methods. The authors analyzed the mechanisms and roles of these DEGs in GBM tumorigenesis and patient prognosis. METHODS Microarray data (GSE53800) were obtained from the Gene Expression Omnibus (GEO) database, selecting 18 GIC cell line samples with or without PBK knockdown. Each control and knockdown group contained three samples. DEGs were screened using R software. GO enrichment analysis, KEGG pathway analysis, PPI network analysis, and hub gene identification were conducted to explore DEG mechanisms. Western blot analysis was also performed to detect EIF4E protein expression, one of the key hub genes, after PBK knockdown in the HS683 glioma cell line. RESULTS A total of 175 upregulated and 145 downregulated genes were identified. GO analysis showed that DEGs were mainly enriched in the positive regulation of cell proliferation, cell adhesion, and angiogenesis. KEGG pathway analysis revealed that DEGs were mainly involved in neuroactive ligand-receptor interactions, calcium signaling, and HIF-1 signaling pathways. Western blot results indicated that EIF4E was downregulated after PBK knockdown. CONCLUSION A group of genes, such as EIF4E, were closely associated with PBK expression and functions. These findings may provide insight into the molecular mechanism of PBK in GBM.
Collapse
Affiliation(s)
| | - Mingyuan Luan
- Medicine Faculty, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Zhuo S, Yang S, Chen S, Ding Y, Cheng H, Yang L, Wang K, Yang K. Unveiling the significance of cancer-testis antigens and their implications for immunotherapy in glioma. Discov Oncol 2024; 15:602. [PMID: 39472405 PMCID: PMC11522268 DOI: 10.1007/s12672-024-01449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
Glioma has a poor prognosis, which is attributable to its inherent characteristics and lack of specific treatments. Immunotherapy plays a pivotal role in the contemporary management of malignancies. Despite the initiation of numerous immunotherapy-based clinical trials, their effects on enhancing glioma prognosis remain limited, highlighting the need for innovative and effective therapeutic targets and strategies to address this challenge. Since the 1990s, there has been a growing interest in cancer-testis antigens (CTAs) present in normal mammalian testicular germ cells and placental trophoblast cells, which exhibit reactivated expression in various tumor types. Mechanisms such as DNA methylation, histone modification, transcriptional regulation, and alternative splicing influence the expression of CTAs in tumors. The distinct expression patterns and robust immunogenicity of CTAs are promising tumor biomarkers and optimal targets for immunotherapy. Previous reports have shown that multiple CTAs are present in gliomas and are closely related to prognosis. The expression of these antigens is also associated with the immune response in gliomas and the effectiveness of immunotherapy. Significantly, numerous clinical trials, with IL13RA2 as a representative CTA member, have assessed the immunotherapeutic potential of gliomas and have shown favorable clinical efficacy. This review provides a comprehensive overview of the regulation and function of CTAs, summarizes their expression and role in gliomas, emphasizes their importance as immunotherapy targets in gliomas, and discusses related challenges and future interventions.
Collapse
Affiliation(s)
- Shenghua Zhuo
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
- International Center for Aging and Cancer, Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
| | - Shuo Yang
- International Center for Aging and Cancer, Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Shenbo Chen
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Yueju Ding
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Honglei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Liangwang Yang
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Kai Wang
- International Center for Aging and Cancer, Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
| | - Kun Yang
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
| |
Collapse
|
4
|
Lin X, Liu J, Zhang N, Zhou D, Liu Y. Decoding the immune microenvironment: unveiling CD8 + T cell-related biomarkers and developing a prognostic signature for personalized glioma treatment. Cancer Cell Int 2024; 24:331. [PMID: 39354483 PMCID: PMC11443942 DOI: 10.1186/s12935-024-03517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Gliomas are aggressive brain tumors with poor prognosis. Understanding the tumor immune microenvironment (TIME) in gliomas is essential for developing effective immunotherapies. This study aimed to identify TIME-related biomarkers in glioma using bioinformatic analysis of RNA-seq data. METHODS In this study, we employed weighted gene co-expression network analysis (WGCNA) on bulk RNA-seq data to identify TIME-related genes. To identify prognostic genes, we performed univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses. Based on these genes, we constructed a prognostic signature and delineated risk groups. To validate the prognostic signature, external validation was conducted. RESULTS CD8 + T cell infiltration was strongly correlated with glioma patient prognosis. We identified 115 CD8 + T cell-related genes through integrative analysis of bulk-seq data. CDCA5, KIF11, and KIF4A were found to be significant immune-related genes (IRGs) associated with overall survival in glioma patients and served as independent prognostic factors. We developed a prognostic nomogram that incorporated these genes, age, gender, and grade, providing a reliable tool for clinicians to predict patient survival probabilities. The nomogram's predictions were supported by calibration plots, further validating its accuracy. CONCLUSION In conclusion, our study identifies CD8 + T cell infiltration as a strong predictor of glioma patient outcomes and highlights the prognostic value of genes. The developed prognostic nomogram, incorporating these genes along with clinical factors, provides a reliable tool for predicting patient survival probabilities and has important implications for personalized treatment decisions in glioma.
Collapse
Affiliation(s)
- Xiaofang Lin
- Laboratory Department of Zengcheng Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianqiang Liu
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ni Zhang
- Department of Physical Medicine and Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China.
| | - Dexiang Zhou
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China.
| | - Yakang Liu
- Department of Physical Medicine and Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Li D, Bao Q, Ren S, Ding H, Guo C, Gao K, Wan J, Wang Y, Zhu M, Xiong Y. Comprehensive Analysis of the Mechanism of Anoikis in Hepatocellular Carcinoma. Genet Res (Camb) 2024; 2024:8217215. [PMID: 39297018 PMCID: PMC11410409 DOI: 10.1155/2024/8217215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/25/2024] [Accepted: 08/10/2024] [Indexed: 09/21/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC), ranking as the second-leading cause of global mortality among malignancies, poses a substantial burden on public health worldwide. Anoikis, a type of programmed cell death, serves as a barrier against the dissemination of cancer cells to distant organs, thereby constraining the progression of cancer. Nevertheless, the mechanism of genes related to anoikis in HCC is yet to be elucidated. Methods This paper's data (TCGA-HCC) were retrieved from the database of the Cancer Genome Atlas (TCGA). Differential gene expression with prognostic implications for anoikis was identified by performing both the univariate Cox and differential expression analyses. Through unsupervised cluster analysis, we clustered the samples according to these DEGs. By employing the least absolute shrinkage and selection operator Cox regression analysis (CRA), a clinical predictive gene signature was generated from the DEGs. The Cell-Type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was used to determine the proportions of immune cell types. The external validation data (GSE76427) were procured from Gene Expression Omnibus (GEO) to verify the performance of the clinical prognosis gene signature. Western blotting and immunohistochemistry (IHC) analysis confirmed the expression of risk genes. Results In total, 23 prognostic DEGs were identified. Based on these 23 DEGs, the samples were categorized into four distinct subgroups (clusters 1, 2, 3, and 4). In addition, a clinical predictive gene signature was constructed utilizing ETV4, PBK, and SLC2A1. The gene signature efficiently distinguished individuals into two risk groups, specifically low and high, demonstrating markedly higher survival rates in the former group. Significant correlations were observed between the expression of these risk genes and a variety of immune cells. Moreover, the outcomes from the validation cohort analysis aligned consistently with those obtained from the training cohort analysis. The results of Western blotting and IHC showed that ETV4, PBK, and SLC2A1 were upregulated in HCC samples. Conclusion The outcomes of this paper underscore the effectiveness of the clinical prognostic gene signature, established utilizing anoikis-related genes, in accurately stratifying patients. This signature holds promise in advancing the development of personalized therapy for HCC.
Collapse
Affiliation(s)
- Dongqian Li
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Qian Bao
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Shiqi Ren
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Haoxiang Ding
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Chengfeng Guo
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Kai Gao
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Jian Wan
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Yao Wang
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - MingYan Zhu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Yicheng Xiong
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
6
|
Zeng F, Du S, Wu M, Dai C, Li J, Wang J, Hu G, Cai P, Wang L. The oncogenic kinase TOPK upregulates in psoriatic keratinocytes and contributes to psoriasis progression by regulating neutrophils infiltration. Cell Commun Signal 2024; 22:386. [PMID: 39090602 PMCID: PMC11292866 DOI: 10.1186/s12964-024-01758-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND T-LAK cell-oriented protein kinase (TOPK) strongly promotes the malignant proliferation of cancer cells and is recognized as a promising biomarker of tumor progression. Psoriasis is a common inflammatory skin disease featured by excessive proliferation of keratinocytes. Although we have previously reported that topically inhibiting TOPK suppressed psoriatic manifestations in psoriasis-like model mice, the exact role of TOPK in psoriatic inflammation and the underlying mechanism remains elusive. METHODS GEO datasets were analyzed to investigate the association of TOPK with psoriasis. Skin immunohistochemical (IHC) staining was performed to clarify the major cells expressing TOPK. TOPK conditional knockout (cko) mice were used to investigate the role of TOPK-specific deletion in IMQ-induced psoriasis-like dermatitis in mice. Flow cytometry was used to analyze the alteration of psoriasis-related immune cells in the lesional skin. Next, the M5-induced psoriasis cell model was used to identify the potential mechanism by RNA-seq, RT-RCR, and western blotting. Finally, the neutrophil-neutralizing antibody was used to confirm the relationship between TOPK and neutrophils in psoriasis-like dermatitis in mice. RESULTS We found that TOPK levels were strongly associated with the progression of psoriasis. TOPK was predominantly increased in the epidermal keratinocytes of psoriatic lesions, and conditional knockout of TOPK in keratinocytes suppressed neutrophils infiltration and attenuated psoriatic inflammation. Neutrophils deletion by neutralizing antibody greatly diminished the suppressive effect of TOPK cko in psoriasis-like dermatitis in mice. In addition, topical application of TOPK inhibitor OTS514 effectively attenuated already-established psoriasis-like dermatitis in mice. Mechanismly, RNA-seq revealed that TOPK regulated the expression of some genes in the IL-17 signaling pathway, such as neutrophils chemokines CXCL1, CXCL2, and CXCL8. TOPK modulated the expression of neutrophils chemokines via activating transcription factors STAT3 and NF-κB p65 in keratinocytes, thereby promoting neutrophils infiltration and psoriasis progression. CONCLUSIONS This study identified a crucial role of TOPK in psoriasis by regulating neutrophils infiltration, providing new insights into the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Fanfan Zeng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shuaixian Du
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengjun Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chan Dai
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianyu Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinbiao Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guoyun Hu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pengcheng Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Zhang Q, Zheng F, Chen Y, Liang CL, Liu H, Qiu F, Liu Y, Huang H, Lu W, Dai Z. The TOPK Inhibitor HI-TOPK-032 Enhances CAR T-cell Therapy of Hepatocellular Carcinoma by Upregulating Memory T Cells. Cancer Immunol Res 2024; 12:631-643. [PMID: 38407902 DOI: 10.1158/2326-6066.cir-23-0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/10/2023] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are emerging as an effective antitumoral therapy. However, their therapeutic effects on solid tumors are limited because of their short survival time and the immunosuppressive tumor microenvironment. Memory T cells respond more vigorously and persist longer than their naïve/effector counterparts. Therefore, promoting CAR T-cell development into memory T cells could further enhance their antitumoral effects. HI-TOPK-032 is a T-LAK cell-originated protein kinase (TOPK)-specific inhibitor that moderately represses some types of tumors. However, it is unknown whether HI-TOPK-032 works on hepatocellular carcinoma (HCC) and whether it impacts antitumoral immunity. Using both subcutaneous and orthotopic xenograft tumor models of two human HCC cell lines, Huh-7 and HepG2, we found that HI-TOPK-032 significantly improved proliferation/persistence of CD8+ CAR T cells, as evidenced by an increase in CAR T-cell counts or frequency of Ki-67+CD8+ cells and a decrease in PD-1+LAG-3+TIM-3+CD8+ CAR T cells in vivo. Although HI-TOPK-032 did not significantly suppress HCC growth, it enhanced the capacity of CAR T cells to inhibit tumor growth. Moreover, HI-TOPK-032 augmented central memory CD8+ T cell (TCM) frequency while increasing eomesodermin expression in CD8+ CAR T cells in tumor-bearing mice. Moreover, it augmented CD8+ CAR TCM cells in vitro and reduced their expression of immune checkpoint molecules. Finally, HI-TOPK-032 inhibited mTOR activation in CAR T cells in vitro and in tumors, whereas overactivation of mTOR reversed the effects of HI-TOPK-032 on CD8+ TCM cells and tumor growth. Thus, our studies have revealed mechanisms underlying the antitumoral effects of HI-TOPK-032 while advancing CAR T-cell immunotherapy.
Collapse
Affiliation(s)
- Qunfang Zhang
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Fang Zheng
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Yuchao Chen
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Chun-Ling Liang
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Huazhen Liu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Feifei Qiu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Yunshan Liu
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Hongfeng Huang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Weihui Lu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Zhenhua Dai
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
8
|
Sun L, Yue H, Fang H, Li R, Li S, Wang J, Tu P, Meng F, Yan W, Zhang J, Bignami E, Jeon K, Kidane B, Zhang P. The role and mechanism of PDZ binding kinase in hypobaric and hypoxic acute lung injury. J Thorac Dis 2024; 16:2082-2101. [PMID: 38617778 PMCID: PMC11009593 DOI: 10.21037/jtd-24-188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
Background Acute lung injury (ALI) caused by hypobaric hypoxia (HH) is frequently observed in high-altitude areas, and it is one of the leading causes of death in high-altitude-related diseases due to its rapid onset and progression. However, the pathogenesis of HH-related ALI (HHALI) remains unclear, and effective treatment approaches are currently lacking. Methods A new mouse model of HHALI developed by our laboratory was used as the study subject (Chinese patent No. ZL 2021 1 1517241 X). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the messenger RNA (mRNA) expression levels of PDZ-binding kinase (PBK), sirtuin 1 (SIRT1), and PTEN-induced kinase 1 (PINK1) in mouse lung tissue. Hematoxylin and eosin staining was used to observe the main types of damage and damaged cells in lung tissue, and the lung injury score was used for quantification. The wet-dry (W/D) ratio was used to measure lung water content. Enzyme-linked immunosorbent assay was used to detect changes in inflammatory factors and oxidative stress markers in the lungs. Western blotting verified the expression of various mitochondrial autophagy-related proteins. The 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi-dazoylcarbocyanine iodide (JC-1) method was used determined the health status of mitochondria based on changes in mitochondrial membrane potential. Transmission electron microscopy was used to directly observe the morphology of mitochondria. Multicolor immunofluorescence was used to observe the levels of mitochondrial autophagy markers. Other signaling pathways and molecular mechanisms that may play a role in epithelial cells were analyzed via through RNA sequencing. Results Low pressure and hypoxia caused pathological changes in mouse lung tissue, mainly ALI, leading to increased levels of inflammatory factors and intensified oxidative stress response in the lungs. Overexpression of PBK was found to alleviate HHALI, and activation of the p53 protein was shown to abrogate this therapeutic effect, while activation of SIRT1 protein reactivated this therapeutic effect. The therapeutic effect of PBK on HHALI is achieved via the activation of mitochondrial autophagy. Finally, RNA sequencing demonstrated that besides mitochondrial autophagy, PBK also exerts other functions in HHALI. Conclusions Overexpression of PBK inhibits the expression of p53 and activates SIRT1-PINK1 axis mediated mitochondrial autophagy to alleviate HHALI.
Collapse
Affiliation(s)
- Linao Sun
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Haoran Yue
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Fang
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Runze Li
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shicong Li
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianyao Wang
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Pengjie Tu
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Fei Meng
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Wang Yan
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinxia Zhang
- Xianrenchang (Tianjin) Medical Technology Co., Ltd., Tianjin, China
| | - Elena Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Kyeongman Jeon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Biniam Kidane
- Section of Thoracic Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
9
|
Kato M, Ota A, Ono T, Karnan S, Hyodo T, Rahman ML, Hasan MN, Onda M, Kondo S, Ito K, Furuhashi A, Hayashi T, Konishi H, Tsuzuki S, Hosokawa Y, Kazaoka Y. PDZ-binding kinase inhibitor OTS514 suppresses the proliferation of oral squamous carcinoma cells. Oral Dis 2024; 30:223-234. [PMID: 36799330 DOI: 10.1111/odi.14533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE PDZ-binding kinase (PBK) has been reported as a poor prognostic factor and is a promising molecular target for anticancer therapeutics. Here, we aimed to investigate the effect of specific PBK inhibitor OTS514 on the survival of OSCC cells. METHODS Four OSCC cell lines (HSC-2, HSC-3, SAS, and OSC-19) were used to examine the effect of OTS514 on cell survival and apoptosis. DNA microarray analysis was conducted to investigate the effect of OTS514 on gene expression in OSCC cells. Gene set enrichment analysis was performed to identify molecular signatures related to the antiproliferative effect of OTS514. RESULTS OTS514 decreased the cell survival of OSCC cells dose-dependently, and administration of OTS514 readily suppressed the HSC-2-derived tumor growth in immunodeficient mice. Treatment with OTS514 significantly increased the number of apoptotic cells and caspase-3/7 activity. Importantly, OTS514 suppressed the expression of E2F target genes with a marked decrease in protein levels of E2F1, a transcriptional factor. Moreover, TP53 knockdown attenuated OTS514-induced apoptosis. CONCLUSION OTS514 suppressed the proliferation of OSCC cells by downregulating the expression of E2F target genes and induced apoptosis by mediating the p53 signaling pathway. These results highlight the clinical application of PBK inhibitors in the development of molecular-targeted therapeutics against OSCC.
Collapse
Affiliation(s)
- Mikako Kato
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Takayuki Ono
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Md Lutfur Rahman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Muhammad Nazmul Hasan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Maho Onda
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Sayuri Kondo
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Kunihiro Ito
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Akifumi Furuhashi
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Tomio Hayashi
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yoshiaki Kazaoka
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| |
Collapse
|
10
|
Begagić E, Pugonja R, Bečulić H, Čeliković A, Tandir Lihić L, Kadić Vukas S, Čejvan L, Skomorac R, Selimović E, Jaganjac B, Juković-Bihorac F, Jusić A, Pojskić M. Molecular Targeted Therapies in Glioblastoma Multiforme: A Systematic Overview of Global Trends and Findings. Brain Sci 2023; 13:1602. [PMID: 38002561 PMCID: PMC10669565 DOI: 10.3390/brainsci13111602] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
This systematic review assesses current molecular targeted therapies for glioblastoma multiforme (GBM), a challenging condition with limited treatment options. Using PRISMA methodology, 166 eligible studies, involving 2526 patients (61.49% male, 38.51% female, with a male-to-female ratio of 1.59/1), were analyzed. In laboratory studies, 52.52% primarily used human glioblastoma cell cultures (HCC), and 43.17% employed animal samples (mainly mice). Clinical participants ranged from 18 to 100 years, with 60.2% using combined therapies and 39.8% monotherapies. Mechanistic categories included Protein Kinase Phosphorylation (41.6%), Cell Cycle-Related Mechanisms (18.1%), Microenvironmental Targets (19.9%), Immunological Targets (4.2%), and Other Mechanisms (16.3%). Key molecular targets included Epidermal Growth Factor Receptor (EGFR) (10.8%), Mammalian Target of Rapamycin (mTOR) (7.2%), Vascular Endothelial Growth Factor (VEGF) (6.6%), and Mitogen-Activated Protein Kinase (MEK) (5.4%). This review provides a comprehensive assessment of molecular therapies for GBM, highlighting their varied efficacy in clinical and laboratory settings, ultimately impacting overall and progression-free survival in GBM management.
Collapse
Affiliation(s)
- Emir Begagić
- Department of General Medicine, School of Medicine, Unversity of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
| | - Ragib Pugonja
- Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
- Department of General Medicine, Primary Health Care Center, Nikole Šubića Zrinjskog bb., 72260 Busovača, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of General Medicine, Primary Health Care Center, Nikole Šubića Zrinjskog bb., 72260 Busovača, Bosnia and Herzegovina
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Amila Čeliković
- Department of General Medicine, School of Medicine, Unversity of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
| | - Lejla Tandir Lihić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Samra Kadić Vukas
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Lejla Čejvan
- Department of General Medicine, School of Medicine, Unversity of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
| | - Rasim Skomorac
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
- Department of Surgery, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Edin Selimović
- Department of Surgery, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Belma Jaganjac
- Department of Histology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (B.J.)
| | - Fatima Juković-Bihorac
- Department of Histology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (B.J.)
- Department of Pathology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
- Department of Pathology, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Aldin Jusić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany
| |
Collapse
|
11
|
Chinyama HA, Wei L, Mokgautsi N, Lawal B, Wu ATH, Huang HS. Identification of CDK1, PBK, and CHEK1 as an Oncogenic Signature in Glioblastoma: A Bioinformatics Approach to Repurpose Dapagliflozin as a Therapeutic Agent. Int J Mol Sci 2023; 24:16396. [PMID: 38003585 PMCID: PMC10671581 DOI: 10.3390/ijms242216396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and lethal primary brain tumor whose median survival is less than 15 months. The current treatment regimen comprising surgical resectioning, chemotherapy with Temozolomide (TMZ), and adjuvant radiotherapy does not achieve total patient cure. Stem cells' presence and GBM tumor heterogeneity increase their resistance to TMZ, hence the poor overall survival of patients. A dysregulated cell cycle in glioblastoma enhances the rapid progression of GBM by evading senescence or apoptosis through an over-expression of cyclin-dependent kinases and other protein kinases that are the cell cycle's main regulatory proteins. Herein, we identified and validated the biomarker and predictive properties of a chemoradio-resistant oncogenic signature in GBM comprising CDK1, PBK, and CHEK1 through our comprehensive in silico analysis. We found that CDK1/PBK/CHEK1 overexpression drives the cell cycle, subsequently promoting GBM tumor progression. In addition, our Kaplan-Meier survival estimates validated the poor patient survival associated with an overexpression of these genes in GBM. We used in silico molecular docking to analyze and validate our objective to repurpose Dapagliflozin against CDK1/PBK/CHEK1. Our results showed that Dapagliflozin forms putative conventional hydrogen bonds with CDK1, PBK, and CHEK1 and arrests the cell cycle with the lowest energies as Abemaciclib.
Collapse
Affiliation(s)
- Harold A. Chinyama
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Li Wei
- Department of Neurosurgery, Wan Fang Hospital, Taipei Medical University, No.111, Sec. 3, Xinglong Rd., Taipei 11696, Taiwan;
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
| | - Ntlotlang Mokgautsi
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan;
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Bashir Lawal
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - Alexander T. H. Wu
- PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan;
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
12
|
Zeng F, Lu H, Wu M, Dai C, Li J, Wang J, Hu G. Topical application of TOPK inhibitor OTS514 suppresses psoriatic progression by inducing keratinocytes cell cycle arrest and apoptosis. Exp Dermatol 2023; 32:1823-1833. [PMID: 37578092 DOI: 10.1111/exd.14909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
T-LAK cell-oriented protein kinase (TOPK) potently promotes malignant proliferation of tumour cells and is considered as a maker of tumour progression. Psoriasis is a common inflammatory skin disease characterized by abnormal proliferation of keratinocytes. However, the role of TOPK in psoriasis has not been well elucidated. This study aims to investigate the expression and role of TOPK in psoriasis, and the role of TOPK inhibitor in psoriasis attenuation. Gene Expression Omnibus datasets derived from psoriasis patients and psoriatic model mice were screened for analysis. Skin specimens from psoriasis patients were collected for TOPK immunohistochemical staining to investigate the expression and localization of TOPK. Next, psoriatic mice model was established to further confirm TOPK expression pattern. Then, TOPK inhibitor was applied to investigate the role of TOPK in psoriasis progression. Finally, cell proliferation assay, apoptosis assay and cell cycle analysis were performed to investigate the potential mechanism involved. Our study showed that TOPK was upregulated in the lesions of both psoriasis patients and psoriatic model mice, and TOPK levels were positively associated with psoriasis progression. TOPK was upregulated in psoriatic lesions and expressed predominantly by epidermal keratinocytes. In addition, TOPK levels in epidermal keratinocytes were positively correlated with epidermal hyperplasia. Furthermore, topical application of TOPK inhibitor OTS514 obviously alleviated disease severity and epidermal hyperplasia. Mechanismly, inhibiting TOPK induces G2/M phase arrest and apoptosis of keratinocytes, thereby attenuating epidermal hyperplasia and disease progression. Collectively, this study identifies that upregulation of TOPK in keratinocytes promotes psoriatic progression, and inhibiting TOPK attenuates epidermal hyperplasia and psoriatic progression.
Collapse
Affiliation(s)
- Fanfan Zeng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Lu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjun Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chan Dai
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianyu Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinbiao Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoyun Hu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Cun Y, An S, Zheng H, Lan J, Chen W, Luo W, Yao C, Li X, Huang X, Sun X, Wu Z, Hu Y, Li Z, Zhang S, Wu G, Yang M, Tang M, Yu R, Liao X, Gao G, Zhao W, Wang J, Li J. Specific Regulation of m 6A by SRSF7 Promotes the Progression of Glioblastoma. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:707-728. [PMID: 34954129 PMCID: PMC10787126 DOI: 10.1016/j.gpb.2021.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/06/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
Serine/arginine-rich splicing factor 7 (SRSF7), a known splicing factor, has been revealed to play oncogenic roles in multiple cancers. However, the mechanisms underlying its oncogenic roles have not been well addressed. Here, based on N6-methyladenosine (m6A) co-methylation network analysis across diverse cell lines, we find that the gene expression of SRSF7 is positively correlated with glioblastoma (GBM) cell-specific m6A methylation. We then indicate that SRSF7 is a novel m6A regulator, which specifically facilitates the m6A methylation near its binding sites on the mRNAs involved in cell proliferation and migration, through recruiting the methyltransferase complex. Moreover, SRSF7 promotes the proliferation and migration of GBM cells largely dependent on the presence of the m6A methyltransferase. The two m6A sites on the mRNA for PDZ-binding kinase (PBK) are regulated by SRSF7 and partially mediate the effects of SRSF7 in GBM cells through recognition by insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Together, our discovery reveals a novel role of SRSF7 in regulating m6A and validates the presence and functional importance of temporal- and spatial-specific regulation of m6A mediated by RNA-binding proteins (RBPs).
Collapse
Affiliation(s)
- Yixian Cun
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Sanqi An
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Biosafety Level-3 Laboratory, Life Sciences Institute, Guangxi Medical University, Nanning 530020, China
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Lan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenfang Chen
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Wanjun Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chengguo Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xincheng Li
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Huang
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Sun
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Zehong Wu
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yameng Hu
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ziwen Li
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuxia Zhang
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Geyan Wu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Meisongzhu Yang
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Miaoling Tang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruyuan Yu
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinyi Liao
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guicheng Gao
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinkai Wang
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Jun Li
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
14
|
Muzyka L, Goff NK, Choudhary N, Koltz MT. Systematic Review of Molecular Targeted Therapies for Adult-Type Diffuse Glioma: An Analysis of Clinical and Laboratory Studies. Int J Mol Sci 2023; 24:10456. [PMID: 37445633 DOI: 10.3390/ijms241310456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Gliomas are the most common brain tumor in adults, and molecularly targeted therapies to treat gliomas are becoming a frequent topic of investigation. The current state of molecular targeted therapy research for adult-type diffuse gliomas has yet to be characterized, particularly following the 2021 WHO guideline changes for classifying gliomas using molecular subtypes. This systematic review sought to characterize the current state of molecular target therapy research for adult-type diffuse glioma to better inform scientific progress and guide next steps in this field of study. A systematic review was conducted in accordance with PRISMA guidelines. Studies meeting inclusion criteria were queried for study design, subject (patients, human cell lines, mice, etc.), type of tumor studied, molecular target, respective molecular pathway, and details pertaining to the molecular targeted therapy-namely the modality, dose, and duration of treatment. A total of 350 studies met the inclusion criteria. A total of 52 of these were clinical studies, 190 were laboratory studies investigating existing molecular therapies, and 108 were laboratory studies investigating new molecular targets. Further, a total of 119 ongoing clinical trials are also underway, per a detailed query on clinicaltrials.gov. GBM was the predominant tumor studied in both ongoing and published clinical studies as well as in laboratory analyses. A few studies mentioned IDH-mutant astrocytomas or oligodendrogliomas. The most common molecular targets in published clinical studies and clinical trials were protein kinase pathways, followed by microenvironmental targets, immunotherapy, and cell cycle/apoptosis pathways. The most common molecular targets in laboratory studies were also protein kinase pathways; however, cell cycle/apoptosis pathways were the next most frequent target, followed by microenvironmental targets, then immunotherapy pathways, with the wnt/β-catenin pathway arising in the cohort of novel targets. In this systematic review, we examined the current evidence on molecular targeted therapy for adult-type diffuse glioma and discussed its implications for clinical practice and future research. Ultimately, published research falls broadly into three categories-clinical studies, laboratory testing of existing therapies, and laboratory identification of novel targets-and heavily centers on GBM rather than IDH-mutant astrocytoma or oligodendroglioma. Ongoing clinical trials are numerous in this area of research as well and follow a similar pattern in tumor type and targeted pathways as published clinical studies. The most common molecular targets in all study types were protein kinase pathways. Microenvironmental targets were more numerous in clinical studies, whereas cell cycle/apoptosis were more numerous in laboratory studies. Immunotherapy pathways are on the rise in all study types, and the wnt/β-catenin pathway is increasingly identified as a novel target.
Collapse
Affiliation(s)
- Logan Muzyka
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nicolas K Goff
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nikita Choudhary
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Michael T Koltz
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| |
Collapse
|
15
|
Wu W, Xu J, Gao D, Xie Z, Chen W, Li W, Yuan Q, Duan L, Zhang Y, Yang X, Chen Y, Dong Z, Liu K, Jiang Y. TOPK promotes the growth of esophageal cancer in vitro and in vivo by enhancing YB1/eEF1A1 signal pathway. Cell Death Dis 2023; 14:364. [PMID: 37328464 PMCID: PMC10276051 DOI: 10.1038/s41419-023-05883-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/30/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
T-LAK-originated protein kinase (TOPK), a dual specificity serine/threonine kinase, is up-regulated and related to poor prognosis in many types of cancers. Y-box binding protein 1 (YB1) is a DNA/RNA binding protein and serves important roles in multiple cellular processes. Here, we reported that TOPK and YB1 were both highly expressed in esophageal cancer (EC) and correlated with poor prognosis. TOPK knockout effectively suppressed EC cell proliferation and these effects were reversible by rescuing YB1 expression. Notably, TOPK phosphorylated YB1 at Thr 89 (T89) and Ser 209 (S209) amino acid residues, then the phosphorylated YB1 bound with the promoter of the eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) to activate its transcription. Consequently, the AKT/mTOR signal pathway was activated by up-regulated eEF1A1 protein. Importantly, TOPK inhibitor HI-TOPK-032 suppressed the EC cell proliferation and tumor growth by TOPK/YB1/eEF1A1 signal pathway in vitro and in vivo. Taken together, our study reveals that TOPK and YB1 are essential for the growth of EC, and TOPK inhibitors may be applied to retard cell proliferation in EC. This study highlights the promising therapeutic potential of TOPK as a target for treatment of EC.
Collapse
Affiliation(s)
- Wenjie Wu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Jialuo Xu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Dan Gao
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenliang Xie
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Chen
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Li
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Qiang Yuan
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Lina Duan
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Yuhan Zhang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Xiaoxiao Yang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Yingying Chen
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ziming Dong
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kangdong Liu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Research Center of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, 450052, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, 450000, China.
| | - Yanan Jiang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Research Center of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
16
|
Giambra M, Di Cristofori A, Valtorta S, Manfrellotti R, Bigiogera V, Basso G, Moresco RM, Giussani C, Bentivegna A. The peritumoral brain zone in glioblastoma: where we are and where we are going. J Neurosci Res 2023; 101:199-216. [PMID: 36300592 PMCID: PMC10091804 DOI: 10.1002/jnr.25134] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 10/01/2022] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and invasive primary brain tumor. Current therapies are not curative, and patients' outcomes remain poor with an overall survival of 20.9 months after surgery. The typical growing pattern of GBM develops by infiltrating the surrounding apparent normal brain tissue within which the recurrence is expected to appear in the majority of cases. Thus, in the last decades, an increased interest has developed to investigate the cellular and molecular interactions between GBM and the peritumoral brain zone (PBZ) bordering the tumor tissue. The aim of this review is to provide up-to-date knowledge about the oncogenic properties of the PBZ to highlight possible druggable targets for more effective treatment of GBM by limiting the formation of recurrence, which is almost inevitable in the majority of patients. Starting from the description of the cellular components, passing through the illustration of the molecular profiles, we finally focused on more clinical aspects, represented by imaging and radiological details. The complete picture that emerges from this review could provide new input for future investigations aimed at identifying new effective strategies to eradicate this still incurable tumor.
Collapse
Affiliation(s)
- Martina Giambra
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Andrea Di Cristofori
- PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Silvia Valtorta
- Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Roberto Manfrellotti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Vittorio Bigiogera
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Gianpaolo Basso
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rosa Maria Moresco
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy
| | - Carlo Giussani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
17
|
Li F, Liu C, Nong W, Lin L, Ge Y, Luo B, Xiao S, Zhang Q, Xie X. Identification of potential biomarkers in cancer testis antigens for glioblastoma. Am J Transl Res 2023; 15:799-816. [PMID: 36915736 PMCID: PMC10006807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/16/2022] [Indexed: 03/16/2023]
Abstract
OBJECTIVE To screen and validate cancer testis antigens (CTAs) as potential biomarkers and explore their molecular mechanisms in glioblastoma (GBM). METHODS Ribonucleic acid sequencing (RNA-seq) and bioinformatics analyses were utilized to screen the highly expressed CTAs in GBM. Correlation analysis was used to identify potential biomarkers associated with tumor purity and prognosis. Immunohistochemistry was applied for detection of protein expression. Protein-protein interaction (PPI) network construction, functional enrichment analysis, and binding domain prediction were performed to investigate the underlying molecular mechanisms of GBM. RESULTS A total of 8 highly expressed CTAs were identified in GBM. One of them was PDZ-binding kinase (PBK). PBK messenger RNA (mRNA) was most highly expressed in GBM and associated with tumor purity and prognosis, PBK protein expression was also significantly increased in GBM tissues and correlated with p53 expression. Functional enrichment analysis revealed that the PBK related genes were predominantly enriched in cell cycle pathway with 38 genes enriched. The proteins encoding by these 38 genes were performed by binding domain prediction analysis, which demonstrated 15 proteins interacting with PBK. Most of these proteins were up regulated in GBM. CONCLUSION PBK is highly expressed in GBM. It may serve as a potential biomarker for GBM targeting therapy and the cell cycle modulator by interacting with certain key molecules of cell cycle in GBM.
Collapse
Affiliation(s)
- Feng Li
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi, China.,Postdoctoral Research Station, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China
| | - Weixia Nong
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China.,Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region Nanning, Guangxi, China
| | - Lina Lin
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China
| | - Yingying Ge
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China.,Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region Nanning, Guangxi, China
| | - Bin Luo
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China.,Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region Nanning, Guangxi, China
| | - Shaowen Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi, China
| | - Qingmei Zhang
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China.,Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region Nanning, Guangxi, China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China.,Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region Nanning, Guangxi, China
| |
Collapse
|
18
|
Wang H, Zhu X, Zhao Y, Zang Y, Zhang J, Kang Y, Yang Z, Lin P, Zhang L, Zhang S. Markov State Models Underlying the N-Terminal Premodel of TOPK/PBK. J Phys Chem B 2022; 126:10662-10671. [PMID: 36512332 DOI: 10.1021/acs.jpcb.2c06559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lymphokine-activated killer T-cell-originated protein kinase (TOPK) is a potential target for cancer therapy. To explore the micromechanism, we proposed the N-terminal premodel (NTPM) of the TOPK monomer via homology modeling and molecular dynamic simulations and analyzed the conformational dynamics by Markov state model analysis. The electronegative insert (ENI) motif of the NTPM can be opened with a small probability under wild type, regulated by the so-called "N-C" interaction zone consisting of the N-terminal head, the coil between β3-strand and αC-helix, and the ENI motif. Glutamate substitution at threonine residue 9 or tyrosine residue 74 promotes the closed-open transition, revealing the details of phosphorylation. Allosteric effects induce functionally relevant structural changes, such as increased structural flexibility and active sites, which are thought to be necessary for further activation or binding. These findings provide rational structural templates for designing state-dependent inhibitors and give insight into the molecular regulatory mechanisms of TOPK monomers.
Collapse
Affiliation(s)
- He Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xun Zhu
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Yongjian Zang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Jianwen Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Ying Kang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Peng Lin
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an710032, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| |
Collapse
|
19
|
Zhang H, Huang Y, Yang E, Gao X, Zou P, Sun J, Tian Z, Bao M, Liao D, Ge J, Yang Q, Li X, Zhang Z, Luo P, Jiang X. Identification of a Fibroblast-Related Prognostic Model in Glioma Based on Bioinformatics Methods. Biomolecules 2022; 12:biom12111598. [PMID: 36358948 PMCID: PMC9687522 DOI: 10.3390/biom12111598] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Glioma is the most common primary tumor of the central nervous system with a high lethality rate. This study aims to mine fibroblast-related genes with prognostic value and construct a corresponding prognostic model. Methods: A glioma-related TCGA (The Cancer Genome Atlas) cohort and a CGGA (Chinese Glioma Genome Atlas) cohort were incorporated into this study. Variance expression profiling was executed via the “limma” R package. The “clusterProfiler” R package was applied to perform a GO (Gene Ontology) analysis. The Kaplan–Meier (K–M) curve, LASSO regression analysis, and Cox analyses were implemented to determine the prognostic genes. A fibroblast-related risk model was created and affirmed by independent cohorts. We derived enriched pathways between the fibroblast-related high- and low-risk subgroups using gene set variation analysis (GSEA). The immune infiltration cell and the stromal cell were calculated using the microenvironment cell populations-counter (MCP-counter) method, and the immunotherapy response was assessed with the SubMap algorithm. The chemotherapy sensitivity was estimated using the “pRRophetic” R package. Results: A total of 93 differentially expressed fibroblast-related genes (DEFRGs) were uncovered in glioma. Seven prognostic genes were filtered out to create a fibroblast-related gene signature in the TCGA-glioma cohort training set. We then affirmed the fibroblast-related risk model via TCGA-glioma cohort and CGGA-glioma cohort testing sets. The Cox regression analysis proved that the fibroblast-related risk score was an independent prognostic predictor in prediction of the overall survival of glioma patients. The fibroblast-related gene signature revealed by the GSEA was applicable to the immune-relevant pathways. The MCP-counter algorithm results pointed to significant distinctions in the tumor microenvironment between fibroblast-related high- and low-risk subgroups. The SubMap analysis proved that the fibroblast-related risk score could predict the clinical sensitivity of immunotherapy. The chemotherapy sensitivity analysis indicated that low-risk patients were more sensitive to multiple chemotherapeutic drugs. Conclusion: Our study identified prognostic fibroblast-related genes and generated a novel risk signature that could evaluate the prognosis of glioma and offer a theoretical basis for clinical glioma therapy.
Collapse
Affiliation(s)
- Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yutao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Erwan Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Peng Zou
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Jidong Sun
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zhicheng Tian
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Mingdong Bao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Dan Liao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Junmiao Ge
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Qiuzi Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xin Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zhuoyuan Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Biochemistry and Molecular Biology, College of Life Science, Northwest University, Xi’an 710127, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (P.L.); (X.J.)
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (P.L.); (X.J.)
| |
Collapse
|
20
|
Deng Y, Wen H, Yang H, Zhu Z, Huang Q, Bi Y, Wang P, Zhou M, Guan J, Zhang W, Li M. Identification of PBK as a hub gene and potential therapeutic target for medulloblastoma. Oncol Rep 2022; 48:125. [PMID: 35593307 PMCID: PMC9164263 DOI: 10.3892/or.2022.8336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Medulloblastoma (MB) is the most frequent malignant brain tumor in pediatrics. Since the current standard of care for MB consisting of surgery, cranio-spinal irradiation and chemotherapy often leads to a high morbidity rate, a number of patients suffer from long-term sequelae following treatment. Targeted therapies hold the promise of being more effective and less toxic. Therefore, the present study aimed to identify hub genes with an upregulated expression in MB and to search for potential therapeutic targets from these genes. For this purpose, gene expression profile datasets were obtained from the Gene Expression Omnibus database and processed using R 3.6.0 software to screen differentially expressed genes (DEGs) between MB samples and normal brain tissues. A total of 282 upregulated and 436 downregulated DEGs were identified. Functional enrichment analysis revealed that the upregulated DEGs were predominantly enriched in the cell cycle, DNA replication and cell division. The top 10 hub genes were identified from the protein-protein interaction network of upregulated genes, and one identified hub gene [PDZ binding kinase (PBK)] was selected for further investigation due to its possible role in the pathogenesis of MB. The aberrant expression of PBK in MB was verified in additional independent gene expression datasets. Survival analysis demonstrated that a higher expression level of PBK was significantly associated with poorer clinical outcomes in non-Wingless MBs. Furthermore, targeting PBK with its inhibitor, HI-TOPK-032, impaired the proliferation and induced the apoptosis of two MB cell lines, with the diminished phosphorylation of downstream effectors of PBK, including ERK1/2 and Akt, and the activation of caspase-3. Hence, these results suggest that PBK may be a potential prognostic biomarker and a novel candidate of targeted therapy for MB.
Collapse
Affiliation(s)
- Yuhao Deng
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Huantao Wen
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Hanjie Yang
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Zhengqiang Zhu
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Qiongzhen Huang
- Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yuewei Bi
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Pengfei Wang
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Ming Zhou
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jianwei Guan
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Wangming Zhang
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Min Li
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
21
|
The role of T-LAK cell-originated protein kinase in targeted cancer therapy. Mol Cell Biochem 2022; 477:759-769. [PMID: 35037144 DOI: 10.1007/s11010-021-04329-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
Targeted therapy has gradually become the first-line clinical tumor therapy due to its high specificity and low rate of side effects. TOPK (T-LAK cell-originated protein kinase), a MAP kinase, is highly expressed in various tumor tissues, while it is rarely expressed in normal tissues, with the exceptions of testicular germ cells and some fetal tissues. It can promote cancer cell proliferation and migration and is also related to drug resistance. Therefore, TOPK is considered a good therapeutic target. Moreover, a number of studies have shown that targeting TOPK can inhibit the proliferation of cancer cells and promote their apoptosis. Here, we discussed the biological functions of TOPK in cancer and summarized its tumor-related signaling network and known TOPK inhibitors. Finally, the role of TOPK in targeted cancer therapy was concluded, and future research directions for TOPK were assessed.
Collapse
|
22
|
Thanindratarn P, Wei R, Dean DC, Singh A, Federman N, Nelson SD, Hornicek FJ, Duan Z. T-LAK cell-originated protein kinase (TOPK): an emerging prognostic biomarker and therapeutic target in osteosarcoma. Mol Oncol 2021; 15:3721-3737. [PMID: 34115928 PMCID: PMC8637563 DOI: 10.1002/1878-0261.13039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/12/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
T-lymphokine-activated killer (T-LAK) cell-originated protein kinase (TOPK) is an emerging target with critical roles in various cancers; however, its expression and function in osteosarcoma remain unexplored. We evaluated TOPK expression using RNA sequencing and gene expression data from public databases (TARGET-OS, CCLE, GTEx, and GENT2) and immunohistochemistry in an osteosarcoma tissue microarray (TMA). TOPK gene expression was significantly higher in osteosarcoma than normal tissues and directly correlated with shorter overall survival. TOPK was overexpressed in 83.3% of the osteosarcoma specimens within our TMA and all osteosarcoma cell lines, whereas normal osteoblast cells had no aberrant expression. High expression of TOPK associated with metastasis, disease status, and shorter overall survival. Silencing of TOPK with small interfering RNA (siRNA) decreased cell viability, and inhibition with the selective inhibitor OTS514 suppressed osteosarcoma cell proliferation, migration, colony-forming ability, and spheroid growth. Enhanced chemotherapeutic sensitivity and a synergistic effect were also observed with the combination of OTS514 and either doxorubicin or cisplatin in osteosarcoma cell lines. Taken together, our study demonstrated that TOPK is a potential prognostic biomarker and therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Pichaya Thanindratarn
- Department of Orthopaedic SurgerySarcoma Biology LaboratoryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Department of Orthopedic SurgeryChulabhorn HospitalHRH Princess Chulabhorn College of Medical ScienceChulabhorn Royal AcademyBangkokThailand
| | - Ran Wei
- Department of Orthopaedic SurgerySarcoma Biology LaboratoryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Musculoskeletal Tumor CenterBeijing Key Laboratory of Musculoskeletal TumorPeking University People’s HospitalBeijingChina
| | - Dylan C. Dean
- Department of Orthopaedic SurgerySarcoma Biology LaboratoryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Arun Singh
- Sarcoma ServiceDivision of Hematology‐OncologyDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Noah Federman
- Department of PediatricsMattel Children’s HospitalDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- UCLA’s Jonsson Comprehensive Cancer CenterLos AngelesCAUSA
| | - Scott D. Nelson
- Department of PathologyUniversity of CaliforniaLos AngelesCAUSA
| | - Francis J. Hornicek
- Department of Orthopaedic SurgerySarcoma Biology LaboratoryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Zhenfeng Duan
- Department of Orthopaedic SurgerySarcoma Biology LaboratoryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
23
|
Aranza-Martínez A, Sánchez-Pérez J, Brito-Elias L, López-Camarillo C, Cantú de León D, Pérez-Plasencia C, López-Urrutia E. Non-Coding RNAs Associated With Radioresistance in Triple-Negative Breast Cancer. Front Oncol 2021; 11:752270. [PMID: 34804940 PMCID: PMC8599982 DOI: 10.3389/fonc.2021.752270] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
The resistance that Triple-Negative Breast Cancer (TNBC), the most aggressive breast cancer subtype, develops against radiotherapy is a complex phenomenon involving several regulators of cell metabolism and gene expression; understanding it is the only way to overcome it. We focused this review on the contribution of the two leading classes of regulatory non-coding RNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), against ionizing radiation-based therapies. We found that these regulatory RNAs are mainly associated with DNA damage response, cell death, and cell cycle regulation, although they regulate other processes like cell signaling and metabolism. Several regulatory RNAs regulate multiple pathways simultaneously, such as miR-139-5p, the miR-15 family, and the lncRNA HOTAIR. On the other hand, proteins such as CHK1 and WEE1 are targeted by several regulatory RNAs simultaneously. Interestingly, the study of miRNA/lncRNA/mRNA regulation axes increases, opening new avenues for understanding radioresistance. Many of the miRNAs and lncRNAs that we reviewed here can be used as molecular markers or targeted by upcoming therapeutic options, undoubtedly contributing to a better prognosis for TNBC patients.
Collapse
Affiliation(s)
- Alberto Aranza-Martínez
- Laboratorio de Genómica Funcional, Facultad de Estudios Superiores Iztacala Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
| | - Julio Sánchez-Pérez
- Laboratorio de Genómica Funcional, Facultad de Estudios Superiores Iztacala Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
| | - Luis Brito-Elias
- Laboratorio de Genómica Funcional, Facultad de Estudios Superiores Iztacala Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - David Cantú de León
- Dirección de Investigación, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica Funcional, Facultad de Estudios Superiores Iztacala Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Eduardo López-Urrutia
- Laboratorio de Genómica Funcional, Facultad de Estudios Superiores Iztacala Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
| |
Collapse
|
24
|
Huang H, Lee MH, Liu K, Dong Z, Ryoo Z, Kim MO. PBK/TOPK: An Effective Drug Target with Diverse Therapeutic Potential. Cancers (Basel) 2021; 13:cancers13092232. [PMID: 34066486 PMCID: PMC8124186 DOI: 10.3390/cancers13092232] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer is a major public health problem worldwide, and addressing its morbidity, mortality, and prevalence is the first step towards appropriate control measures. Over the past several decades, many pharmacologists have worked to identify anti-cancer targets and drug development strategies. Within this timeframe, many natural compounds have been developed to inhibit cancer growth by targeting kinases, such as AKT, AURKA, and TOPK. Kinase assays and computer modeling are considered to be effective and powerful tools for target screening, as they can predict physical interactions between small molecules and their bio-molecular targets. In the present review, we summarize the inhibitors and compounds that target TOPK and describe its role in cancer progression. The extensive body of research that has investigated the contribution of TOPK to cancer suggests that it may be a promising target for cancer therapy. Abstract T-lymphokine-activated killer cell-originated protein kinase (TOPK, also known as PDZ-binding kinase or PBK) plays a crucial role in cell cycle regulation and mitotic progression. Abnormal overexpression or activation of TOPK has been observed in many cancers, including colorectal cancer, triple-negative breast cancer, and melanoma, and it is associated with increased development, dissemination, and poor clinical outcomes and prognosis in cancer. Moreover, TOPK phosphorylates p38, JNK, ERK, and AKT, which are involved in many cellular functions, and participates in the activation of multiple signaling pathways related to MAPK, PI3K/PTEN/AKT, and NOTCH1; thus, the direct or indirect interactions of TOPK make it a highly attractive yet elusive target for cancer therapy. Small molecule inhibitors targeting TOPK have shown great therapeutic potential in the treatment of cancer both in vitro and in vivo, even in combination with chemotherapy or radiotherapy. Therefore, targeting TOPK could be an important approach for cancer prevention and therapy. Thus, the purpose of the present review was to consider and analyze the role of TOPK as a drug target in cancer therapy and describe the recent findings related to its role in tumor development. Moreover, this review provides an overview of the current progress in the discovery and development of TOPK inhibitors, considering future clinical applications.
Collapse
Affiliation(s)
- Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea;
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanamdo 58245, Korea;
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou 450001, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou 450001, China
| | - Zeayoung Ryoo
- School of Life Science, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (Z.R.); (M.O.K.); Tel.: +82-54-530-1234 (M.O.K.)
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea;
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Correspondence: (Z.R.); (M.O.K.); Tel.: +82-54-530-1234 (M.O.K.)
| |
Collapse
|
25
|
Inactivation of TOPK Caused by Hyperglycemia Blocks Diabetic Heart Sensitivity to Sevoflurane Postconditioning by Impairing the PTEN/PI3K/Akt Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6657529. [PMID: 33986917 PMCID: PMC8093075 DOI: 10.1155/2021/6657529] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 01/14/2023]
Abstract
The cardioprotective effect of sevoflurane postconditioning (SPostC) is lost in diabetes that is associated with cardiac phosphatase and tensin homologue on chromosome 10 (PTEN) activation and phosphoinositide 3-kinase (PI3K)/Akt inactivation. T-LAK cell-originated protein kinase (TOPK), a mitogen-activated protein kinase- (MAPKK-) like serine/threonine kinase, has been shown to inactivate PTEN (phosphorylated status), which in turn activates the PI3K/Akt signaling (phosphorylated status). However, the functions of TOPK and molecular mechanism underlying SPostC cardioprotection in nondiabetes but not in diabetes remain unknown. We presumed that SPostC exerts cardioprotective effects by activating PTEN/PI3K/Akt through TOPK in nondiabetes and that impairment of TOPK/PTEN/Akt blocks diabetic heart sensitivity to SPostC. We found that in the nondiabetic C57BL/6 mice, SPostC significantly attenuated postischemic infarct size, oxidative stress, and myocardial apoptosis that was accompanied with enhanced p-TOPK, p-PTEN, and p-Akt. These beneficial effects of SPostC were abolished by either TOPK kinase inhibitor HI-TOPK-032 or PI3K/Akt inhibitor LY294002. Similarly, SPostC remarkably attenuated hypoxia/reoxygenation-induced cardiomyocyte damage and oxidative stress accompanied with increased p-TOPK, p-PTEN, and p-Akt in H9c2 cells exposed to normal glucose, which were canceled by either TOPK inhibition or Akt inhibition. However, either in streptozotocin-induced diabetic mice or in H9c2 cells exposed to high glucose, the cardioprotective effect of SPostC was canceled, accompanied by increased oxidative stress, decreased TOPK phosphorylation, and impaired PTEN/PI3K/Akt signaling. In addition, TOPK overexpression restored posthypoxic p-PTEN and p-Akt and decreased cell death and oxidative stress in H9c2 cells exposed to high glucose, which was blocked by PI3K/Akt inhibition. In summary, SPostC prevented myocardial ischemia/reperfusion injury possibly through TOPK-mediated PTEN/PI3K/Akt activation and impaired activation of this signaling pathway may be responsible for the loss of SPostC cardioprotection by SPostC in diabetes.
Collapse
|
26
|
Cao H, Yang M, Yang Y, Fang J, Cui Y. PBK/TOPK promotes chemoresistance to oxaliplatin in hepatocellular carcinoma cells by regulating PTEN. Acta Biochim Biophys Sin (Shanghai) 2021; 53:584-592. [PMID: 33772548 DOI: 10.1093/abbs/gmab028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 11/14/2022] Open
Abstract
Oxaliplatin (OXA) resistance limits the efficiency of treatment for hepatocellular carcinoma (HCC). Studies have shown that the PDZ-binding kinase (PBK) plays important roles in tumors. However, the role of PBK in HCC is still a problem. In this study, we explored whether PBK is involved in the chemoresistance to OXA in HCC. Expressions of PBK in six HCC cell lines and one human hepatocytes line were determined by real-time quantitative PCR and western blot analysis. SNU-182 and HepG2 cells were chosen to induce OXA resistance. PBK was silenced or overexpressed in OXA-resistant and sensitive cell lines. Then, cell proliferation, migration, and invasion were measured by cholecystokinin-8 assay and Transwell assay, respectively. The Cancer Genome Atlas dataset showed that PBK is highly expressed in HCC and signifies poor prognosis to patient with HCC. Results showed that expression of PBK in HCC cells was significantly higher than that in THLE2 cells, and it was further increased in OXA-resistant HCC cells. Silencing of PBK promoted the sensitivity of drug-resistant HCC cells to OXA. Overexpression of PBK relieved the apoptosis induced by OXA and promoted the migration and invasion of OXA-sensitive HCC cells. Thus, this study revealed that high PBK expression is correlated with OXA resistance in HCC cells, which may provide a promising therapeutic target for treating HCC.
Collapse
Affiliation(s)
- Hongmin Cao
- Oncology Department, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| | - Mei Yang
- Oncology Department, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| | - Yufeng Yang
- Department of Pathology, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| | - Jiayan Fang
- Oncology Department, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| | - Yejia Cui
- Department of Clinical Laboratory, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| |
Collapse
|
27
|
Ma J, Xing B, Cao Y, He X, Bennett KE, Tong C, An C, Hojnacki T, Feng Z, Deng S, Ling S, Xie G, Wu Y, Ren Y, Yu M, Katona BW, Li H, Naji A, Hua X. Menin-regulated Pbk controls high fat diet-induced compensatory beta cell proliferation. EMBO Mol Med 2021; 13:e13524. [PMID: 33821572 PMCID: PMC8103087 DOI: 10.15252/emmm.202013524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic beta cells undergo compensatory proliferation in the early phase of type 2 diabetes. While pathways such as FoxM1 are involved in regulating compensatory beta cell proliferation, given the lack of therapeutics effectively targeting beta cell proliferation, other targetable pathways need to be identified. Herein, we show that Pbk, a serine/threonine protein kinase, is essential for high fat diet (HFD)‐induced beta cell proliferation in vivo using a Pbk kinase deficiency knock‐in mouse model. Mechanistically, JunD recruits menin and HDAC3 complex to the Pbk promoter to reduce histone H3 acetylation, leading to epigenetic repression of Pbk expression. Moreover, menin inhibitor (MI) disrupts the menin–JunD interaction and augments Pbk transcription. Importantly, MI administration increases beta cell proliferation, ameliorating hyperglycemia, and impaired glucose tolerance (IGT) in HFD‐induced diabetic mice. Notably, Pbk is required for the MI‐induced beta cell proliferation and improvement of IGT. Together, these results demonstrate the repressive role of the menin/JunD/Pbk axis in regulating HFD‐induced compensatory beta cell proliferation and pharmacologically regulating this axis may serve as a novel strategy for type 2 diabetes therapy.
Collapse
Affiliation(s)
- Jian Ma
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bowen Xing
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yan Cao
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xin He
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kate E Bennett
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chao Tong
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Chiying An
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Taylor Hojnacki
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zijie Feng
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sunbin Deng
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunbin Ling
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gengchen Xie
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yuan Wu
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yue Ren
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ming Yu
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bryson W Katona
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hongzhe Li
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ali Naji
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xianxin Hua
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
28
|
Ma H, Han F, Yan X, Qi G, Li Y, Li R, Yan S, Yuan C, Song K, Kong B. PBK promotes aggressive phenotypes of cervical cancer through ERK/c-Myc signaling pathway. J Cell Physiol 2021; 236:2767-2781. [PMID: 33184870 DOI: 10.1002/jcp.30134] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Cervical cancer is the fourth most frequent cancer in women worldwide. PDZ-binding kinase (PBK) is proven to promote the malignant behaviors of various carcinomas. However, its functional roles and oncogenic mechanisms in cervical cancer are poorly understood. In this study, we reported that PBK was highly expressed in cervical cancer tissues. PBK promoted the proliferation, metastasis, and cisplatin resistance of cervical cancer cells. OTS514, a specific PBK inhibitor, could significantly suppress proliferation and metastasis of cervical cancer cells in vitro and in a xenograft model. Besides, OTS514 could enhance cisplatin-based chemosensitivity in cervical cancer cells. Mechanistically, PBK promoted the expression and stabilization of c-Myc through phosphorylating ERK1/2. OTS514 suppressed the phosphorylation of ERK1/2 and the transcriptional activity of c-Myc. Furthermore, inhibition of the ERK signal pathway by U0126 reversed the increased proliferation and metastasis induced by overexpression of PBK. Exogenous expression of c-Myc counteracted the decreased proliferation and metastasis evoked by knockdown of PBK. In conclusion, PBK promoted the malignant progression of cervical cancer through ERK/c-Myc signal pathway. PBK might be a promising molecular target for cervical cancer treatment.
Collapse
Affiliation(s)
- Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Department of Oncology, Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Fang Han
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaohui Yan
- Department of Infectious Diseases, Binzhou People's Hospital, Binzhou, China
| | - Gonghua Qi
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rongrong Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Department of Oncology, Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Shi Yan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Department of Oncology, Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Department of Oncology, Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Department of Oncology, Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Department of Oncology, Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
29
|
Yang Y, Wu ZX, Wang JQ, Teng QX, Lei ZN, Lusvarghi S, Ambudkar SV, Chen ZS, Yang DH. OTS964, a TOPK Inhibitor, Is Susceptible to ABCG2-Mediated Drug Resistance. Front Pharmacol 2021; 12:620874. [PMID: 33658942 PMCID: PMC7917255 DOI: 10.3389/fphar.2021.620874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/08/2021] [Indexed: 01/12/2023] Open
Abstract
OTS964 is a potent T-LAK cell-originated protein kinase (TOPK) inhibitor. Herein, we investigated the interaction of OTS964 and multidrug resistance (MDR)-associated ATP-binding cassette sub-family G member 2 (ABCG2). The cell viability assay indicated that the effect of OTS964 is limited in cancer drug-resistant and transfected cells overexpressing ABCG2. We found that the known ABCG2 transporter inhibitor has the ability to sensitize ABCG2-overexpressing cells to OTS964. In mechanism-based studies, OTS964 shows inhibitory effect on the efflux function mediated by ABCG2, and in turn, affects the pharmacokinetic profile of other ABCG2 substrate-drugs. Furthermore, OTS964 upregulates ABCG2 protein expression, resulting in enhanced resistance to ABCG2 substrate-drugs. The ATPase assay demonstrated that OTS964 stimulates ATPase activity of ABCG2 in a concentration-dependent manner. The computational molecular docking analysis combined with results from ATPase assay suggested that OTS964 interacts with drug-binding pocket of ABCG2 and has substrate-like behaviors. Thus, OTS964 is an MDR-susceptible agent due to its interactions with ABCG2, and overexpression of ABCG2 transporter may attenuate its therapeutic effect in cancer cells.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
30
|
PBK/TOPK: A Therapeutic Target Worthy of Attention. Cells 2021; 10:cells10020371. [PMID: 33670114 PMCID: PMC7916869 DOI: 10.3390/cells10020371] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence supports the role of PDZ-binding kinase (PBK)/T-lymphokine-activated killer-cell-originated protein kinase (TOPK) in mitosis and cell-cycle progression of mitotically active cells, especially proliferative malignant cells. PBK/TOPK was confirmed to be associated with the development, progression, and metastasis of malignancies. Therefore, it is a potential therapeutic target in cancer therapy. Many studies have been conducted to explore the clinical applicability of potent PBK/TOPK inhibitors. However, PBK/TOPK has also been shown to be overexpressed in normal proliferative cells, including sperm and neural precursor cells in the subventricular zone of the adult brain, as well as under pathological conditions, such as ischemic tissues, including the heart, brain, and kidney, and plays important roles in their physiological functions, including proliferation and self-renewal. Thus, more research is warranted to further our understanding of PBK/TOPK inhibitors before we can consider their applicability in clinical practice. In this study, we first review the findings, general features, and signaling mechanisms involved in the regulation of mitosis and cell cycle. We then review the functions of PBK/TOPK in pathological conditions, including tumors and ischemic conditions in the heart, brain, and kidney. Finally, we summarize the advances in potent and selective inhibitors and describe the potential use of PBK/TOPK inhibitors in clinical settings.
Collapse
|
31
|
Zhu K, Cheng X, Wang S, Zhang H, Zhang Y, Wang X, Chen Y, Wu J. PBK/TOPK Inhibitor Suppresses the Progression of Prolactinomas. Front Endocrinol (Lausanne) 2021; 12:706909. [PMID: 35126305 PMCID: PMC8815076 DOI: 10.3389/fendo.2021.706909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 12/20/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Prolactinoma is the most common type of pituitary tumors, and its resultant tumor occupying and hormone disturbance greatly damage the health of patients. In this study, we investigated a protein kinase-PDZ Binding Kinase (PBK)/T-LAK Cell-Originated Protein Kinase (TOPK) as a candidate protein regulating prolactin (PRL) secretion and tumor growth of prolactinomas. METHODS Downloaded prolactinoma transcriptome dataset from Gene Expression Omnibus (GEO) database, and screened differentially expressed genes (DEGs) between normal pituitary tissues and prolactinoma tissues. Then, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs were performed, a protein-protein interaction (PPI) network was constructed and the hub genes were identified. After a literature search, TOPK was presumed as an candidate target regulating the prolactinoma. We found a specific inhibitor of TOPK to investigate its effects on the proliferation, migration, apoptosis and PRL secretion of pituitary tumor cells. Finally, the regulation of TOPK inhibitor on its downstream target-p38 Mitogen Activated Protein Kinase (p38 MAPK) was detected to explore the potential mechanism. RESULTS A total of 361 DEGs were identified, and 20 hub genes were screened out. TOPK inhibitor HI-TOPK-032 could suppress the proliferation & migration and induce apoptosis of pituitary tumor cells in vitro, and reduce PRL secretion and tumor growth in vivo. HI-TOPK-032 also inhibited the phosphorylation level of the downstream target p38 MAPK, suggesting that TOPK inhibitors regulate the development of prolactinoma by mediating p38 MAPK. CONCLUSION Our study of identification and functional validation of TOPK suggests that this candidate can be a promising molecular target for prolactinoma treatment.
Collapse
Affiliation(s)
- Kejing Zhu
- Department of Pharmacy, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, Wuhan, China
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- School of Medicine, Xiangyang Polytechnic, Xiangyang, China
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xueting Cheng
- The Second Clinical College, Wuhan University, Wuhan, China
| | - Shuman Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Hong Zhang
- Department of Pharmacy, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, Wuhan, China
| | - Yu Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiong Wang
- Department of Pharmacy, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, Wuhan, China
- *Correspondence: Xiong Wang, ; Yonggang Chen, ; Jinhu Wu,
| | - Yonggang Chen
- Department of Pharmacy, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, Wuhan, China
- *Correspondence: Xiong Wang, ; Yonggang Chen, ; Jinhu Wu,
| | - Jinhu Wu
- Department of Pharmacy, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, Wuhan, China
- *Correspondence: Xiong Wang, ; Yonggang Chen, ; Jinhu Wu,
| |
Collapse
|
32
|
Thanindratarn P, Dean DC, Nelson SD, Hornicek FJ, Duan Z. T-LAK cell-originated protein kinase (TOPK) is a Novel Prognostic and Therapeutic Target in Chordoma. Cell Prolif 2020; 53:e12901. [PMID: 32960500 PMCID: PMC7574876 DOI: 10.1111/cpr.12901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Objectives To assess the expression, prognostic value, and functionality of T‐lymphokine‐activated killer (T‐LAK) cell‐originated protein kinase (TOPK) in chordoma pathogenesis. Materials and Methods TOPK expression in chordoma was assessed via immunohistochemical staining of a tissue microarray (TMA) and correlated with patient clinicopathology. TOPK expression in chordoma cell lines and fresh patient tissues was then evaluated by Western blot. TOPK small interfering RNA (siRNA) and the specific inhibitor OTS514 were applied to determine the roles of TOPK in chordoma pathogenicity. The effect of TOPK expression on chordoma cell clonogenicity was also investigated using clonogenic assays. A 3D cell culture model was utilized to mimic in vivo environment to validate the effect of TOPK inhibition on chordoma cells. Results TOPK was highly expressed in 78.2% of the chordoma specimens in the TMA and all chordoma cell lines. High TOPK expression significantly correlated with metastasis, recurrence, disease status and shorter overall survival. Knockdown of TOPK with specific siRNA resulted in significantly decrease chordoma cell viability. Inhibition of TOPK with OTS514 significantly inhibited chordoma cell growth and proliferation, colony‐forming capacity and ex vivo spheroid growth. Conclusions High expression of TOPK is an important predictor of poor prognosis in chordoma. Inhibition of TOPK resulted in significantly decrease chordoma cell proliferation and increase apoptosis. Our results indicate TOPK as a novel prognostic biomarker and therapeutic target for chordoma.
Collapse
Affiliation(s)
- Pichaya Thanindratarn
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Orthopedic Surgery, Chulabhorn hospital, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Dylan C Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
33
|
Pan Z, Li L, Qian Y, Ge X, Hu X, Zhang Y, Ge M, Huang P. The differences of regulatory networks between papillary and anaplastic thyroid carcinoma: an integrative transcriptomics study. Cancer Biol Ther 2020; 21:853-862. [PMID: 32887540 DOI: 10.1080/15384047.2020.1803009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Unlike papillary thyroid cancer (PTC), anaplastic thyroid carcinoma (ATC) is extremely aggressive and rapidly lethal without effective therapies. However, the differences of master regulators and regulatory networks between PTC and ATC remain unclear. Methods: Three representative datasets comprising 32 ATC, 69 PTC, and 78 normal thyroid tissue samples were combined to form a large dataset. Differentially expressed genes (DEGs) were identified and enriched by limma package and gene set enrichment analysis, respectively. Subsequently, protein-protein interaction network and transcription factors (TFs) regulatory network were constructed to identify gene modules and master regulators. Further, master regulators were validated by RT-PCR and western blot. Finally, Kaplan-Meier plotter was applied to evaluate their prognostic values. Results: A total of 560 DEGs were identified as ATC-specific malignant signature. The regulatory network analysis showed that nine master regulators were significantly correlated with three gene modules and potentially regulated the expression of DEGs in three gene modules, respectively. Furthermore, CREB3L1, FOSL2, E2F1 and CAT were significantly associated with overall survival of thyroid cancer patients. FOXM1, FOSL2, MYBL2, AVEN and E2F1 were unfavorable factors of recurrence-free survival (RFS), while CAT was a favorable factor of RFS. RT-PCR and western blot confirmed that six TFs were obviously up-regulated in ATC tissues/cell line as compared with PTC and normal thyroid tissues/cell lines, respectively. In addition, 19 ATC-specific kinases were identified to illustrate the potential post-translational modification. Conclusions: Our findings provide a comprehensive insight into malignant mechanism of ATC, which may indicate their value in the future investigation of ATC.
Collapse
Affiliation(s)
- Zongfu Pan
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou, China
| | - Lu Li
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, China
| | - Yangyang Qian
- Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital , Hangzhou, China
| | - Xinyang Ge
- Student Council Blood Drive Committee, Heartland Christian School , Columbiana, OH, USA
| | - Xiaoping Hu
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou, China
| | - Yiwen Zhang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou, China
| | - Minghua Ge
- Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital , Hangzhou, China
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou, China
| |
Collapse
|
34
|
A novel loss-of-function mutation of PBK associated with human kidney stone disease. Sci Rep 2020; 10:10282. [PMID: 32581305 PMCID: PMC7314804 DOI: 10.1038/s41598-020-66936-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/12/2020] [Indexed: 01/17/2023] Open
Abstract
Kidney stone disease (KSD) is a prevalent disorder that causes human morbidity worldwide. The etiology of KSD is heterogeneous, ranging from monogenic defect to complex interaction between genetic and environmental factors. Since mutations of genes responsible for KSD in a majority of families are still unknown, our group is identifying mutations of these genes by means of genomic and genetic analyses. In this study, we identified a novel loss-of-function mutation of PBK, encoding the PDZ binding kinase, that was found to be associated with KSD in an affected Thai family. Glycine (Gly) substituted by arginine (Arg) at position 43 (p.Gly43Arg) in PBK cosegregated with the disease in affected members of this family, but was absent in 180 normal control subjects from the same local population. Gly43 is highly evolutionarily conserved in vertebrates, and its substitution affects protein structure by alterations in H-bond forming patterns. This p.Gly43Arg substitution results in instability of the variant PBK protein as examined in HEK293T cells. The variant PBK protein (p.Gly43Arg) demonstrated decreased kinase activity to phosphorylate p38 MAPK as analyzed by immunoblotting and antibody microarray techniques. Taken together, these findings suggest a possible new mechanism of KSD associated with pathogenic PBK variation.
Collapse
|
35
|
Kierulf-Vieira KS, Sandberg CJ, Waaler J, Lund K, Skaga E, Saberniak BM, Panagopoulos I, Brandal P, Krauss S, Langmoen IA, Vik-Mo EO. A Small-Molecule Tankyrase Inhibitor Reduces Glioma Stem Cell Proliferation and Sphere Formation. Cancers (Basel) 2020; 12:cancers12061630. [PMID: 32575464 PMCID: PMC7352564 DOI: 10.3390/cancers12061630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
Evidence suggests that the growth and therapeutic resistance of glioblastoma (GBM) may be enabled by a population of glioma stem cells (GSCs) that are regulated by typical stem cell pathways, including the WNT/β-catenin signaling pathway. We wanted to explore the effect of treating GSCs with a small-molecule inhibitor of tankyrase, G007-LK, which has been shown to be a potent modulator of the WNT/β-catenin and Hippo pathways in colon cancer. Four primary GSC cultures and two primary adult neural stem cell cultures were treated with G007-LK and subsequently evaluated through the measurement of growth characteristics, as well as the expression of WNT/β-catenin and Hippo signaling pathway-related proteins and genes. Treatment with G007-LK decreased in vitro proliferation and sphere formation in all four primary GSC cultures in a dose-dependent manner. G007-LK treatment altered the expression of key downstream WNT/β-catenin and Hippo signaling pathway-related proteins and genes. Finally, cotreatment with the established GBM chemotherapeutic compound temozolomide (TMZ) led to an additive reduction in sphere formation, suggesting that WNT/β-catenin signaling may contribute to TMZ resistance. These observations suggest that tankyrase inhibition may serve as a supplement to current GBM therapy, although more work is needed to determine the exact downstream mechanisms involved.
Collapse
Affiliation(s)
- Kirsten Strømme Kierulf-Vieira
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (C.J.S.); (E.S.); (B.M.S.); (I.A.L.); (E.O.V.-M.)
- Norwegian Stem Cell Center, Oslo University Hospital, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Correspondence:
| | - Cecilie Jonsgar Sandberg
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (C.J.S.); (E.S.); (B.M.S.); (I.A.L.); (E.O.V.-M.)
- Norwegian Stem Cell Center, Oslo University Hospital, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
| | - Jo Waaler
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (J.W.); (K.L.); (S.K.)
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 OSLO, Norway
| | - Kaja Lund
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (J.W.); (K.L.); (S.K.)
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 OSLO, Norway
| | - Erlend Skaga
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (C.J.S.); (E.S.); (B.M.S.); (I.A.L.); (E.O.V.-M.)
- Norwegian Stem Cell Center, Oslo University Hospital, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
| | - Birthe Mikkelsen Saberniak
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (C.J.S.); (E.S.); (B.M.S.); (I.A.L.); (E.O.V.-M.)
- Norwegian Stem Cell Center, Oslo University Hospital, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, P.O. Box 49534 Nydalen, 0424 Oslo, Norway; (I.P.); (P.B.)
| | - Petter Brandal
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, P.O. Box 49534 Nydalen, 0424 Oslo, Norway; (I.P.); (P.B.)
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, P.O. Box 49534 Nydalen, 0424 Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
| | - Stefan Krauss
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (J.W.); (K.L.); (S.K.)
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 OSLO, Norway
| | - Iver Arne Langmoen
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (C.J.S.); (E.S.); (B.M.S.); (I.A.L.); (E.O.V.-M.)
- Norwegian Stem Cell Center, Oslo University Hospital, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
| | - Einar Osland Vik-Mo
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (C.J.S.); (E.S.); (B.M.S.); (I.A.L.); (E.O.V.-M.)
- Norwegian Stem Cell Center, Oslo University Hospital, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
36
|
Wang L, Zhang Z, Ge R, Zhang J, Liu W, Mou K, Lv S, Mu X. Gossypetin Inhibits Solar-UV Induced Cutaneous Basal Cell Carcinoma Through Direct Inhibiting PBK/TOPK Protein Kinase. Anticancer Agents Med Chem 2020; 19:1029-1036. [PMID: 30827262 DOI: 10.2174/1871520619666190301123131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/23/2018] [Accepted: 02/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Skin photoaging, skin inflammation and skin cancer are related with excessive exposure to solar UV. PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK), a member of the serine/threonine protein kinase, which regulates the signaling cascades of p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal regulated kinase 1/2 (ERK1/2). PBK/TOPK plays a significant role in solar-UV-induced cutaneous basal cell carcinoma (BCC), and targeting PBK/TOPK can be supposed to treat and prevent cutaneous BCC. METHODS The pathological feature and the expression level of PBK/TOPK in cutaneous BCC tissues of human were studied in clinical samples. SUV-induced the phosphorylation of p38 MAPK and ERK1/2 were demonstrated ex vivo. Moreover, the interaction between Gossypetin and PBK/TOPK were detected by in vitro kinase assay and Microscale thermophoresis (MST) assay. Furthermore, the effect of Gossypetin to solar UV-induced the activity of PBK/TOPK were detected ex vivo and in vivo. RESULTS The clinical samples showed that the expression levels of PBK/TOPK, phosphor-p38 MAPK and phosphor- ERK1/2 were up-regulated in cutaneous BCC tissues of human. The expression of phosphor-p38 MAPK or phosphor-ERK1/2 increased in a dose and time dependent manner after solar UV treatment in HaCaT cells. MTT cytotoxicity assay results showed that Gossypetin has no effect on HaCaT cells. In vitro kinase assay and MST assay results showed that Gossypetin bound with PBK/TOPK and suppressed PBK/TOPK activity. Ex vivo results showed Gossypetin inhibited solar UV-induced phosphorylation of PBK/TOPK, p38 MAPK, ERK1/2 and H2AX by suppressing PBK/TOPK activity. In vivo test results indicated that Gossypetin suppressed solar UV-induced increase of PBK/TOPK, phosphor-p38 MAPK, phosphor-ERK1/2 and phosphor- H2AX in SKH-1 hairless mice. CONCLUSION Our data demonstrated that Gossypetin can alleviate solar-UV-induced cutaneous BCC by blocking PBK/TOPK, and Gossypetin could be a remarkable agent for treating solar-UV induced cutaneous basal cell carcinoma.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zixi Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Rui Ge
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jian Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wenli Liu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kuanhou Mou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shemin Lv
- Department of Biochemistry and Molecular Biology, Basic Medical Science of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xin Mu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
37
|
Mao P, Bao G, Wang YC, Du CW, Yu X, Guo XY, Li RC, Wang MD. PDZ-Binding Kinase-Dependent Transcriptional Regulation of CCNB2 Promotes Tumorigenesis and Radio-Resistance in Glioblastoma. Transl Oncol 2019; 13:287-294. [PMID: 31874375 PMCID: PMC6931196 DOI: 10.1016/j.tranon.2019.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 01/06/2023] Open
Abstract
Increasing evidence has indicated that PDZ binding kinase (PBK) promotes proliferation, invasion, and therapeutic resistance in a variety of cancer types. However, the physiological function and therapy-resistant role of PBK in GBM remain underexplored. In this study, PBK was identified as one of the most therapy-resistant genes with significantly elevated expression level in GBM. Moreover, the high expression level of PBK was essential for GBM tumorigenesis and radio-resistance both in vitro and in vivo. Clinically, aberrant activation of PBK was correlated with poor clinical prognosis. In addition, inhibition of PBK dramatically enhanced the efficacy of radiation therapy in GBM cells. Mechanically, PBK-dependent transcriptional regulation of CCNB2 was critical for tumorigenesis and radio-resistance in GBM cells. Collectively, PBK promotes tumorigenesis and radio-resistance in GBM and may serve as a novel therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Ping Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Gang Bao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yi-Chang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chang-Wang Du
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiao Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiao-Ye Guo
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Rui-Chun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mao-De Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
38
|
Stefka AT, Johnson D, Rosebeck S, Park JH, Nakamura Y, Jakubowiak AJ. Potent anti-myeloma activity of the TOPK inhibitor OTS514 in pre-clinical models. Cancer Med 2019; 9:324-334. [PMID: 31714026 PMCID: PMC6943155 DOI: 10.1002/cam4.2695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/30/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) continues to be considered incurable, necessitating new drug discovery. The mitotic kinase T‐LAK cell‐originated protein kinase/PDZ‐binding kinase (TOPK/PBK) is associated with proliferation of tumor cells, maintenance of cancer stem cells, and poor patient prognosis in many cancers. In this report, we demonstrate potent anti‐myeloma effects of the TOPK inhibitor OTS514 for the first time. OTS514 induces cell cycle arrest and apoptosis at nanomolar concentrations in a series of human myeloma cell lines (HMCL) and prevents outgrowth of a putative CD138+ stem cell population from MM patient‐derived peripheral blood mononuclear cells. In bone marrow cells from MM patients, OTS514 treatment exhibited preferential killing of the malignant CD138+ plasma cells compared with the CD138− compartment. In an aggressive mouse xenograft model, OTS964 given orally at 100 mg/kg 5 days per week was well tolerated and reduced tumor size by 48%‐81% compared to control depending on the initial graft size. FOXO3 and its transcriptional targets CDKN1A (p21) and CDKN1B (p27) were elevated and apoptosis was induced with OTS514 treatment of HMCLs. TOPK inhibition also induced loss of FOXM1 and disrupted AKT, p38 MAPK, and NF‐κB signaling. The effects of OTS514 were independent of p53 mutation or deletion status. Combination treatment of HMCLs with OTS514 and lenalidomide produced synergistic effects, providing a rationale for the evaluation of TOPK inhibition in existing myeloma treatment regimens.
Collapse
Affiliation(s)
- Andrew T Stefka
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - David Johnson
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Shaun Rosebeck
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jae-Hyun Park
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Yusuke Nakamura
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
39
|
PBK as a Potential Biomarker Associated with Prognosis of Glioblastoma. J Mol Neurosci 2019; 70:56-64. [DOI: 10.1007/s12031-019-01400-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/14/2019] [Indexed: 01/04/2023]
|
40
|
Kar A, Zhang Y, Yacob BW, Saeed J, Tompkins KD, Bagby SM, Pitts TM, Somerset H, Leong S, Wierman ME, Kiseljak-Vassiliades K. Targeting PDZ-binding kinase is anti-tumorigenic in novel preclinical models of ACC. Endocr Relat Cancer 2019; 26:765-778. [PMID: 31325906 PMCID: PMC6938568 DOI: 10.1530/erc-19-0262] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Abstract
Adrenocortical carcinoma (ACC) is an aggressive orphan malignancy with less than 35% 5-year survival and 75% recurrence. Surgery remains the primary therapy and mitotane, an adrenolytic, is the only FDA-approved drug with wide-range toxicities and poor tolerability. There are no targeted agents available to date. For the last three decades, H295R cell line and its xenograft were the only available preclinical models. We recently developed two new ACC patient-derived xenograft mouse models and corresponding cell lines (CU-ACC1 and CU-ACC2) to advance research in the field. Here, we have utilized these novel models along with H295R cells to establish the mitotic PDZ-binding kinase (PBK) as a promising therapeutic target. PBK is overexpressed in ACC samples and correlates with poor survival. We show that PBK is regulated by FOXM1 and targeting PBK via shRNA decreased cell proliferation, clonogenicity and anchorage-independent growth in ACC cell lines. PBK silencing inhibited pAkt, pp38MAPK and pHistone H3 altering the cell cycle. Therapeutically, targeting PBK with the small-molecule inhibitor HITOPK032 phenocopied PBK-specific modulation of pAkt and pHistone H3, but also induced apoptosis via activation of JNK. Consistent with in vitro findings, treatment of CU-ACC1 PDXs with HITOPK032 significantly reduced tumor growth by 5-fold (P < 0.01). Treated tumor tissues demonstrated increased rates of apoptosis and JNK activation, with decreased pAkt and Histone H3 phosphorylation, consistent with effects observed in ACC cell lines. Together these studies elucidate the mechanism of PBK in ACC tumorigenesis and establish the potential therapeutic potential of HITOPK032 in ACC patients.
Collapse
Affiliation(s)
- Adwitiya Kar
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Yu Zhang
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Betelehem W. Yacob
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Jordan Saeed
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Kenneth D. Tompkins
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Stacey M. Bagby
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Todd M. Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Hilary Somerset
- Department of Pathology, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Stephen Leong
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Margaret E. Wierman
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
- Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
- Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045
| |
Collapse
|
41
|
Lin A, Giuliano CJ, Palladino A, John KM, Abramowicz C, Yuan ML, Sausville EL, Lukow DA, Liu L, Chait AR, Galluzzo ZC, Tucker C, Sheltzer JM. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Transl Med 2019; 11:eaaw8412. [PMID: 31511426 PMCID: PMC7717492 DOI: 10.1126/scitranslmed.aaw8412] [Citation(s) in RCA: 429] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/19/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Ninety-seven percent of drug-indication pairs that are tested in clinical trials in oncology never advance to receive U.S. Food and Drug Administration approval. While lack of efficacy and dose-limiting toxicities are the most common causes of trial failure, the reason(s) why so many new drugs encounter these problems is not well understood. Using CRISPR-Cas9 mutagenesis, we investigated a set of cancer drugs and drug targets in various stages of clinical testing. We show that-contrary to previous reports obtained predominantly with RNA interference and small-molecule inhibitors-the proteins ostensibly targeted by these drugs are nonessential for cancer cell proliferation. Moreover, the efficacy of each drug that we tested was unaffected by the loss of its putative target, indicating that these compounds kill cells via off-target effects. By applying a genetic target-deconvolution strategy, we found that the mischaracterized anticancer agent OTS964 is actually a potent inhibitor of the cyclin-dependent kinase CDK11 and that multiple cancer types are addicted to CDK11 expression. We suggest that stringent genetic validation of the mechanism of action of cancer drugs in the preclinical setting may decrease the number of therapies tested in human patients that fail to provide any clinical benefit.
Collapse
Affiliation(s)
- Ann Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Christopher J Giuliano
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Ann Palladino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kristen M John
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Hofstra University, Hempstead, NY 11549, USA
| | - Connor Abramowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- New York Institute of Technology, Glen Head, NY 11545, USA
| | - Monet Lou Yuan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Syosset High School, Syosset, NY 11791, USA
| | - Erin L Sausville
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Devon A Lukow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Luwei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | - Clara Tucker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Jason M Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
42
|
Lu H, Xiao J, Ke C, Ni X, Xiu R, Tian Q, Pan H, Zou L, Wang F, Ma T, Ji X, Yuan P, Liu L, Zhang J, Jia W, Duan Q, Zhu F. TOPK inhibits autophagy by phosphorylating ULK1 and promotes glioma resistance to TMZ. Cell Death Dis 2019; 10:583. [PMID: 31378785 PMCID: PMC6680050 DOI: 10.1038/s41419-019-1805-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 01/06/2023]
Abstract
ULK1, the upper-most protein of the ULK1 complex, is emerging as a crucial node in autophagy induction. However, the regulation of ULK1 is not fully understood. In this study, we identified TOPK (T-LAK cell-originated protein kinase), an oncokinase, as a novel upstream kinase to phosphorylate ULK1. We found that TOPK could directly bind with and phosphorylate ULK1 at Ser469, Ser495, and Ser533. The phosphorylation of ULK1 at Ser469, Ser495, and Ser533 by TOPK decreased the activity and stability of ULK1. In addition, we want to examine the initiation of autophagy because the reduction activity of ULK1 reduces the occurrence of autophagy. We demonstrated that TOPK could inhibit the initiation and progression of autophagy in glioma cells. Furthermore, TOPK inhibition increased the sensitivity of glioma cells to temozolomide (TMZ). This discovery provides insight into the problem of TMZ-resistance in GBM treatment.
Collapse
Affiliation(s)
- Hui Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, PR China
| | - Juanjuan Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, PR China
| | - Changshu Ke
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, PR China
| | - Xiaofang Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, PR China
| | - Ruijuan Xiu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, PR China
| | - Qin Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, PR China
| | - Huaxiong Pan
- Department of Pathology, Union Hospital, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, PR China
| | - Ling Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, PR China
| | - Fei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, PR China
| | - Tengfei Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, PR China
| | - Xinying Ji
- Henan International Joint Laboratory of Nuclear Protein Regulation, Henan University Medical Center (HUMC), 475004, Kaifeng, Henan, PR China
| | - Ping Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, PR China
| | - Lin Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, PR China
| | - Jianmin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, PR China
| | - Wei Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, PR China.
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, PR China.
| | - Feng Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, PR China.
| |
Collapse
|
43
|
Yuan T, Qi B, Jiang Z, Dong W, Zhong L, Bai L, Tong R, Yu J, Shi J. Dual FLT3 inhibitors: Against the drug resistance of acute myeloid leukemia in recent decade. Eur J Med Chem 2019; 178:468-483. [PMID: 31207462 DOI: 10.1016/j.ejmech.2019.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/16/2019] [Accepted: 06/02/2019] [Indexed: 01/18/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant disease characterized by abnormal growth and differentiation of hematopoietic stem cells. Although the pathogenesis has not been fully elucidated, many specific gene mutations have been found in AML. Fms-like tyrosine kinase 3 (FLT3) is recognized as a drug target for the treatment of AML, and the activation mutations of FLT3 were found in about 30% of AML patients. Targeted inhibition of FLT3 receptor tyrosine kinase has shown promising results in the treatment of FLT3 mutation AML. Unfortunately, the therapeutic effects of FLT3 tyrosine kinase inhibitors used as AML monotherapy are usually accompanied by the high risk of resistance development within a few months after treatment. FLT3 dual inhibitors were generated with the co-inhibition of FLT3 and another target, such as CDK4, JAK2, MEK, Mer, Pim, etc., to solve the problems mentioned above. As a result, the therapeutic effect of the drug is significantly improved, while the toxic and side effects are reduced. Besides, the life quality of AML patients with FLT3 mutation has been effectively improved. In this paper, we reviewed the studies of dual FLT3 inhibitors that have been discovered in recent years for the treatment of AML.
Collapse
Affiliation(s)
- Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Baowen Qi
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Wenjuan Dong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Zhong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lan Bai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jiying Yu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
44
|
Skaga E, Skaga IØ, Grieg Z, Sandberg CJ, Langmoen IA, Vik-Mo EO. The efficacy of a coordinated pharmacological blockade in glioblastoma stem cells with nine repurposed drugs using the CUSP9 strategy. J Cancer Res Clin Oncol 2019; 145:1495-1507. [PMID: 31028540 PMCID: PMC6527541 DOI: 10.1007/s00432-019-02920-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Constructed from a theoretical framework, the coordinated undermining of survival paths in glioblastoma (GBM) is a combination of nine drugs approved for non-oncological indications (CUSP9; aprepitant, auranofin, captopril, celecoxib, disulfiram, itraconazole, minocycline, quetiapine, and sertraline) combined with temozolomide (TMZ). The availability of these drugs outside of specialized treatment centers has led patients to embark on combination treatments without systematic follow-up. However, no experimental data on efficacy using the CUSP9 strategy in GBM have been reported. METHODS Using patient-derived glioblastoma stem cell (GSC) cultures from 15 GBM patients, we described stem cell properties of individual cultures, determined the dose-response relationships of the drugs in the CUSP9, and assessed the efficacy the CUSP9 combination with TMZ in concentrations clinically achievable. The efficacy was evaluated by cell viability, cytotoxicity, and sphere-forming assays in both primary and recurrent GSC cultures. RESULTS We found that CUSP9 with TMZ induced a combination effect compared to the drugs individually (p < 0.0001). Evaluated by cell viability and cytotoxicity, 50% of the GSC cultures displayed a high sensitivity to the drug combination. In clinical plasma concentrations, the effect of the CUSP9 with TMZ was superior to TMZ monotherapy (p < 0.001). The Wnt-signaling pathway has been shown important in GSC, and CUSP9 significantly reduces Wnt-activity. CONCLUSIONS Adding experimental data to the theoretical rationale of CUSP9, our results demonstrate that the CUSP9 treatment strategy can induce a combination effect in both treatment-naïve and pretreated GSC cultures; however, predicting response in individual cultures will require further profiling of GSCs.
Collapse
Affiliation(s)
- Erlend Skaga
- Vilhelm Magnus Laboratory, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway.
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway.
| | - Ida Ø Skaga
- Vilhelm Magnus Laboratory, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway
| | - Zanina Grieg
- Vilhelm Magnus Laboratory, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
| | - Cecilie J Sandberg
- Vilhelm Magnus Laboratory, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
| | - Iver A Langmoen
- Vilhelm Magnus Laboratory, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway
| | - Einar O Vik-Mo
- Vilhelm Magnus Laboratory, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway
| |
Collapse
|
45
|
Yang QX, Zhong S, He L, Jia XJ, Tang H, Cheng ST, Ren JH, Yu HB, Zhou L, Zhou HZ, Ren F, Hu ZW, Gong R, Huang AL, Chen J. PBK overexpression promotes metastasis of hepatocellular carcinoma via activating ETV4-uPAR signaling pathway. Cancer Lett 2019; 452:90-102. [PMID: 30914208 DOI: 10.1016/j.canlet.2019.03.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/28/2019] [Accepted: 03/20/2019] [Indexed: 01/04/2023]
Abstract
Invasion and metastasis are the predominant causes of lethal outcomes in patients with hepatocellular carcinoma (HCC). However, the molecular mechanism underlying the invasive or metastatic process are still insufficiently understood. Here, we first integrated several public databases and identified a novel protein kinase, PDZ-binding kinase (PBK) that was frequently upregulated and correlated with poor prognosis in patients with HCC. Gain- or loss-of-function analysis revealed that PBK promoted migration and invasion of HCC cells both in vitro and in vivo. Mechanistically, PBK enhanced uPAR expression by activating its promoter activity. Chromatin immunoprecipitation (ChIP) assay showed that ETV4 directly bound to the core region of uPAR promoter while PBK could enhance the binding of ETV4 to uPAR promoter. In orthotopic mouse model, PBK knockdown markedly inhibited the lung metastasis of HCC cells, while this effect was significantly restored by uPAR overexpression. Finally, there was a positive correlation between PBK and uPAR, ETV4 and uPAR in HCC clinical samples. Collectively, these findings revealed that PBK acted as a crucial kinase by promoting invasion and migration via the ETV4-uPAR signaling pathway, and it therefore could be a promising diagnostic biomarker and therapeutic target for HCC metastasis.
Collapse
Affiliation(s)
- Qiu-Xia Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shan Zhong
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lin He
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiao-Jiong Jia
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hua Tang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sheng-Tao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ji-Hua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hai-Bo Yu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Hong-Zhong Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Fang Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhong-Wen Hu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rui Gong
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ai-Long Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
46
|
Xu M, Xu S. PBK/TOPK overexpression and survival in solid tumors: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2019; 98:e14766. [PMID: 30855480 PMCID: PMC6417550 DOI: 10.1097/md.0000000000014766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/19/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The prognostic significance of PBK/TOPK overexpression in solid tumors remains controversial. Therefore, we carried out a meta-analysis to evaluate the impact of PBK/TOPK overexpression in solid tumors on patients' overall survival (OS) and disease-free survival (DFS). METHODS Relevant articles were identified through searching the PubMed, Embase and Web of Science up to May 2017. The pooled hazard ratio (HR) with 95% confidence interval (CI) was used to estimate the effects. RESULTS In this meta-analysis, 12 studies involving 1571 participants were included, PBK/TOPK overexpression was significantly associated with poor OS (pooled HR = 1.91, 95%CI = 1.22-3.00, P = .005) and short DFS (pooled HR = 1.95, 95%CI = 1.46-2.58, P < .001). CONCLUSIONS PBK/TOPK overexpression was associated with poor survival in human solid tumors which may be a valuable prognosis biomarker and a potential therapeutic target of solid tumors.
Collapse
|
47
|
Ma H, Li Y, Wang X, Wu H, Qi G, Li R, Yang N, Gao M, Yan S, Yuan C, Kong B. PBK, targeted by EVI1, promotes metastasis and confers cisplatin resistance through inducing autophagy in high-grade serous ovarian carcinoma. Cell Death Dis 2019; 10:166. [PMID: 30778048 PMCID: PMC6379381 DOI: 10.1038/s41419-019-1415-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/17/2019] [Accepted: 02/01/2019] [Indexed: 01/21/2023]
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most lethal type of gynecologic malignancy. Chemoresistance is the main reason for the poor prognosis of HGSOC. PDZ-binding kinase (PBK) promotes the malignant progression of various carcinomas. However, the roles and clinical significance of PBK in HGSOC remain unclear. Here, we reported that PBK was overexpressed in HGSOC tissues and cell lines. High PBK expression was associated with a poor prognosis, metastasis, and cisplatin resistance of HGSOC. Overexpression of PBK promoted autophagy and enhanced cisplatin resistance via the ERK/mTOR signaling pathway. Further study showed that inhibition of autophagy by chloroquine or bafilomycin A1 reversed PBK-induced cisplatin resistance. Overexpression of PBK decreased ovarian cancer responsiveness to cisplatin treatment through inducing autophagy in vivo. We also demonstrated that the PBK inhibitor OTS514 augmented the growth inhibition effect of cisplatin in vitro and in vivo. Moreover, ecotropic viral integration site-1 (EVI1) could regulate PBK expression through directly targeting the PBK promoter region. In conclusion, high PBK expression was correlated with a poor prognosis, metastasis, and cisplatin resistance through promoting autophagy in HGSOC. PBK might be a promising target for the early diagnosis and individual treatment of ovarian cancer.
Collapse
Affiliation(s)
- Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China.,Institute of Oncology, School of Medicine, Shandong University, 250012, Jinan, China
| | - Xiangxiang Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Gonghua Qi
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Rongrong Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Ning Yang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Min Gao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Shi Yan
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China. .,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China.
| |
Collapse
|
48
|
Transcriptome profiling reveals PDZ binding kinase as a novel biomarker in peritumoral brain zone of glioblastoma. J Neurooncol 2018; 141:315-325. [PMID: 30460633 DOI: 10.1007/s11060-018-03051-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/12/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Peritumoural brain zone (PT) of glioblastoma (GBM) is the area where tumour recurrence is often observed. We aimed to identify differentially regulated genes between tumour core (TC) and PT to understand the underlying molecular characteristics of infiltrating tumour cells in PT. METHODS 17 each histologically characterised TC and PT tissues of GBM along with eight control tissues were subjected to cDNA Microarray. PT tissues contained 25-30% infiltrating tumour cells. Data was analysed using R Bioconductor software. Shortlisted genes were validated using qRT-PCR. Expression of one selected candidate gene, PDZ Binding Kinase (PBK) was correlated with patient survival, tumour recurrence and functionally characterized in vitro using gene knock-down approach. RESULTS Unsupervised hierarchical clustering showed that TC and PT have distinct gene expression profiles compared to controls. Further, comparing TC with PT, we observed a significant overlap in gene expression profile in both, despite PT having fewer infiltrating tumour cells. qRT-PCR for 13 selected genes validated the microarray data. Expression of PBK was higher in PT as compared to TC and recurrent when compared to newly diagnosed GBM tumours. PBK knock-down showed a significant reduction in cell proliferation, migration and invasion with increase in sensitivity to radiation and Temozolomide treatment. CONCLUSIONS We show that several genes of TC are expressed even in PT contributing to the vulnerability of PT for tumour recurrence. PBK is identified as a novel gene up-regulated in PT of GBM with a strong role in conferring aggressiveness, including radio-chemoresistance, thus contributing to recurrence in GBM tumours.
Collapse
|
49
|
Hu QF, Gao TT, Shi YJ, Lei Q, Liu ZH, Feng Q, Chen ZJ, Yu LT. Design, synthesis and biological evaluation of novel 1-phenyl phenanthridin-6(5H)-one derivatives as anti-tumor agents targeting TOPK. Eur J Med Chem 2018; 162:407-422. [PMID: 30453248 DOI: 10.1016/j.ejmech.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 10/10/2018] [Accepted: 11/04/2018] [Indexed: 02/05/2023]
Abstract
T-lymphokine-activated killer cell-originated protein kinase (TOPK) is a serine-threonine mitogen-activated protein kinase that is highly expressed in many types of human cancer. Due to its important role in cancer progression, TOPK is becoming an attractive target in chemotherapeutic drug design. In this study, a series of 1-phenyl phenanthridin-6(5H)-one derivatives have been identified as a novel chemical class of TOPK inhibitors. Some of them displayed very potent anti-cancer activity with IC50s less than 100 nM, superior than reference compound OTS964. The most potent compound, 9g suppressed the growth of cancer cells by apoptosis and specifically inhibited the activities of TOPK. Oral administration of 9g effectively suppressed tumor growth with TGI >79.7% in colorectal cancer xenograft models, demonstrating superior efficacy compared to OTS964. Pharmacokinetic studies reveal its good oral bioavailability. Our findings therefore show that 9g is a specific inhibitor of TOPK both in vitro and in vivo that may be further developed as a potential therapeutic agent against colorectal cancer.
Collapse
Affiliation(s)
- Quan-Fang Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tian-Tao Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yao-Jie Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Qian Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhi-Hao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Qiang Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhen-Jia Chen
- Chengdu Chempartner Co., Ltd., 7th Floor, Building B3, Tianfu Life Science Park, No. 88, Keyuan South Road, Hi-Tech Zone, Chengdu, China
| | - Luo-Ting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
50
|
Herbert KJ, Ashton TM, Prevo R, Pirovano G, Higgins GS. T-LAK cell-originated protein kinase (TOPK): an emerging target for cancer-specific therapeutics. Cell Death Dis 2018; 9:1089. [PMID: 30356039 PMCID: PMC6200809 DOI: 10.1038/s41419-018-1131-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022]
Abstract
'Targeted' or 'biological' cancer treatments rely on differential gene expression between normal tissue and cancer, and genetic changes that render tumour cells especially sensitive to the agent being applied. Problems exist with the application of many agents as a result of damage to local tissues, tumour evolution and treatment resistance, or through systemic toxicity. Hence, there is a therapeutic need to uncover specific clinical targets which enhance the efficacy of cancer treatment whilst minimising the risk to healthy tissues. T-LAK cell-originated protein kinase (TOPK) is a MAPKK-like kinase which plays a role in cell cycle regulation and mitotic progression. As a consequence, TOPK expression is minimal in differentiated cells, although its overexpression is a pathophysiological feature of many tumours. Hence, TOPK has garnered interest as a cancer-specific biomarker and biochemical target with the potential to enhance cancer therapy whilst causing minimal harm to normal tissues. Small molecule inhibitors of TOPK have produced encouraging results as a stand-alone treatment in vitro and in vivo, and are expected to advance into clinical trials in the near future. In this review, we present the current literature pertaining to TOPK as a potential clinical target and describe the progress made in uncovering its role in tumour development. Firstly, we describe the functional role of TOPK as a pro-oncogenic kinase, followed by a discussion of its potential as a target for the treatment of cancers with high-TOPK expression. Next, we provide an overview of the current preclinical progress in TOPK inhibitor discovery and development, with respect to future adaptation for clinical use.
Collapse
Affiliation(s)
- Katharine J Herbert
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Thomas M Ashton
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Remko Prevo
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Giacomo Pirovano
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Geoff S Higgins
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|