1
|
Lu D, Huang L, Weng C. Unveiling the Novel Anti - Tumor Potential of Digitonin, a Steroidal Saponin, in Gastric Cancer: A Network Pharmacology and Experimental Validation Study. Drug Des Devel Ther 2025; 19:2653-2666. [PMID: 40206492 PMCID: PMC11980797 DOI: 10.2147/dddt.s504671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/15/2025] [Indexed: 04/11/2025] Open
Abstract
Background Gastric cancer (GC) remains a leading cause of cancer-related mortality, with limited effective treatment options for advanced stages. As a steroidal saponin with documented anti-neoplastic properties in multiple cancers, digitonin's mode of action in GC pathogenesis has yet to be fully elucidated. This research focused on exploring the potential of Digitonin in GC treatment using a combination of network pharmacology and experimental validation. Methods The inhibitory effects of Digitonin on the proliferation, invasion, and migration of gastric cancer cells were evaluated using CCK-8, colony formation, wound healing, and transwell assays. Key targets of Digitonin were identified through network pharmacology. Molecular docking and various experiments, including Western blot, immunofluorescence, and a subcutaneous xenograft model, were used for validation. Results Digitonin exhibited stronger cytotoxicity against GC cells and significantly inhibited GC cell proliferation, migration, and invasion. Network pharmacology analysis revealed that the core targets of Digitonin are involved in key cancer-related signaling pathways, including HIF-1α, Ras, and PI3K-Akt pathways, with HSP90AA1 and NFKB1 identified as central targets. Further molecular docking, Western blotting, and immunofluorescence experiments confirmed that Digitonin significantly suppressed the expression of HSP90AA1 and inhibited the nuclear translocation of NFKB1, inducing cell apoptosis. Additionally, a subcutaneous xenograft model of GC further validated that Digitonin effectively inhibited tumor growth. Conclusion Digitonin serves as a promising multi-target therapeutic agent for GC. This study underscores the potential of combining network pharmacology with traditional Chinese medicine to identify novel therapeutic targets and develop effective anti-cancer strategies. In addition, these findings suggest that digitonin could be a promising candidate for future clinical trials in GC treatment.
Collapse
MESH Headings
- Humans
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/pathology
- Stomach Neoplasms/metabolism
- Cell Proliferation/drug effects
- Saponins/pharmacology
- Saponins/chemistry
- Network Pharmacology
- Animals
- Drug Screening Assays, Antitumor
- Mice
- Dose-Response Relationship, Drug
- Cell Movement/drug effects
- Molecular Docking Simulation
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Mice, Inbred BALB C
- Mice, Nude
- Tumor Cells, Cultured
- Structure-Activity Relationship
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
- Molecular Structure
- Cell Line, Tumor
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/chemistry
- Apoptosis/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Dongdong Lu
- Department of Gastroenterology, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, 315000, People’s Republic of China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, 310000, People’s Republic of China
| | - Leijie Huang
- Department of Gastroenterology, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, 315000, People’s Republic of China
| | - Chunyan Weng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, 310000, People’s Republic of China
| |
Collapse
|
2
|
Song Z, Feng Z, Wang X, Li J, Zhang D. NFKB1 as a key player in Tumor biology: from mechanisms to therapeutic implications. Cell Biol Toxicol 2025; 41:29. [PMID: 39797972 PMCID: PMC11724797 DOI: 10.1007/s10565-024-09974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025]
Abstract
NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity. The study reveals the intricate connections between NFKB1 and tumors, highlighting its significant roles in invasion, metastasis, genomic stability, and metabolic changes. Through meta-analysis, it is evidenced that tumor specimens exhibit increased NFKB1 expression when compared to non-tumor specimens, although its association with cancer incidence requires further investigation. Analysis from the Gene Expression Omnibus (GEO) database suggests that high NFKB1 gene expression may not markedly impact tumor patient prognosis. The noticeable correlation between the NFKB1-94 ATTG promoter polymorphic sequence and elevated cancer susceptibility is highlighted across different genetic models. Furthermore, bioinformatics analysis uncovers NFKB1's association with the sensitivity to various anticancer drugs and its central involvement in crucial BP like the cell cycle, cytoskeleton assembly, and cellular senescence. Overall, NFKB1's expression and polymorphisms are significantly linked to tumor risk, prognosis, and treatment response, highlighting its prospect as a forthcoming aim for cancer treatment. This study offers a robust foundation for further exploration of NFKB1's mechanisms and the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Zixuan Song
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China
| | - Zheng Feng
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoxue Wang
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingying Li
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dandan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.
| |
Collapse
|
3
|
Qing G, Yuan Z. Identification of key genes in gout and atherosclerosis and construction of molecular regulatory networks. Front Cardiovasc Med 2024; 11:1471633. [PMID: 39677038 PMCID: PMC11638179 DOI: 10.3389/fcvm.2024.1471633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024] Open
Abstract
Background Gout is a type of chronic inflammatory disease linked to the accumulation of monosodium urate crystals, leading to arthritis. Studies have shown that patients with gout are more likely to develop atherosclerosis, but the specific mechanisms involved remain unknown. The purpose of the research was to explore the key molecules and potential mechanisms between gout and atherosclerosis. Methods Gene expression profiles for gout as well as atherosclerosis were obtained from the Gene Expression Omnibus (GEO) database, then differential analysis was utilized to identify common differentially expressed genes (DEGs) between the two diseases. The analysis of functional enrichment was conducted to investigate the biological processes that the DEGs might be involved in. The Cytoscape software was utilized to develop a protein-protein interaction (PPI) network as well as identify hub genes, while LASSO analysis was employed to select key genes. The TRRUST database was utilized to forecast transcription factors (TFs), and the miRTarBase database was utilized to forecast miRNAs. Results Four key genes, CCL3, TNF, CCR2, and CCR5, were identified. The receiver operating characteristic (ROC) curves showed that the areas under ROC curve (AUC) for these four key genes in both gout and atherosclerosis were greater than 0.9. The analysis of functional enrichment revealed that the DEGs were primarily involved in "regulation of T-cell activation", "chemokine signaling pathway", and other biological processes. The TRRUST prediction results indicated that RELA and NFKB1 are common regulatory transcription factors for CCR2, CCR5, CCL3, and TNF. The miRTarBase prediction results showed that hsa-miR-203a-3p is a common regulatory miRNA for TNF and CCR5. Conclusion This study preliminarily explored the potential key molecules and mechanisms between gout and atherosclerosis. These findings provide new insights for further research into identifying potential biomarkers and clinical treatment strategies for these two diseases.
Collapse
|
4
|
Cheng-Mei W, Luo G, Liu P, Ren W, Yang S. Potential Biomarkers in Myocardial Fibrosis: A Bioinformatic Analysis. Arq Bras Cardiol 2024; 121:e20230674. [PMID: 39699450 DOI: 10.36660/abc.20230674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 08/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Myocardial fibrosis (MF) occurs throughout the onset and progression of cardiovascular disease, and early diagnosis of MF is beneficial for improving cardiac function, but there is a lack of research on early biomarkers of MF. OBJECTIVES Utilizing bioinformatics techniques, we identified potential biomarkers for MF. METHODS Datasets related to MF were sourced from the GEO database. After processing the data, differentially expressed genes were screened. Differentially expressed genes were enriched, and subsequently, protein-protein interaction (PPI) was performed to analyze the differential genes. The associated miRNAs and transcription factors were predicted for these core genes. Finally, ROC validation was performed on the core genes to determine their specificity and sensitivity as potential biomarkers. The level of significance adopted was 5% (p < 0.05). RESULTS A total of 91 differentially expressed genes were identified, and PPI analysis yielded 31 central genes. Enrichment analysis showed that apoptosis, collagen, extracellular matrix, cell adhesion, and inflammation were involved in MF. One hundred and forty-two potential miRNAs were identified. the transcription factors JUN, NF-κB1, SP1, RELA, serum response factor (SRF), and STAT3 were enriched in most of the core targets. Ultimately, IL11, GADD45B, GDF5, NOX4, IGFBP3, ACTC1, MYOZ2, and ITGB8 had higher diagnostic accuracy and sensitivity in predicting MF based on ROC curve analysis. CONCLUSION Eight genes, IL11, GADD45B, GDF5, NOX4, IGFBP3, ACTC1, MYOZ2, and ITGB8, can serve as candidate biomarkers for MF. Processes such as cellular apoptosis, collagen protein synthesis, extracellular matrix formation, cellular adhesion, and inflammation are implicated in the development of MF.
Collapse
Affiliation(s)
- Wang Cheng-Mei
- Beibei Traditional Chinese Medicine Hospital, Chongqing - China
| | - Gang Luo
- The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan - China
| | - Ping Liu
- The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan - China
| | - Wei Ren
- The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan - China
| | - Sijin Yang
- The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan - China
| |
Collapse
|
5
|
Zhang Q, Yang G, Chang R, Wang F, Han T, Tian J, Wang W. Time series analysis combined with transcriptome sequencing to explore characteristic genes and potential molecular mechanisms associated with ultrasound-guided microwave ablation of glioma. Int J Hyperthermia 2024; 41:2406889. [PMID: 39317933 DOI: 10.1080/02656736.2024.2406889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVE This study aimed to explore marker genes and their potential molecular mechanisms involved in US-guided MWA for glioma in mice. METHOD The differentially expressed genes (DEGs1 and DEGs2) and lncRNAs (DELs1 and DELs2) were obtained between Non (glioma tissues without MWA) and T0 groups (0h after MWA), as well as between Non and T24 groups (24h after MWA). The down-regulation cluster genes (CONDOWNDEGs) and upregulation cluster genes (CONUPDEGs) were identified by time series analysis. Candidate genes were obtained by overlapping CONDOWNDEGs with downregulation DEGs (DOWNDEGs)1 and DOWNDEGs2, as well as CONUPDEGs with up-regulation DEGs (UPDEGs)1 and UPDEGs2. The expressions of immune checkpoints and inflammatory factors, gene set enrichment analysis (GSEA), and protein subcellular localization were performed. The eXpression2Kinases (X2K), GeneMANIA, transcription factor (TF), and competing endogenous (ce) RNA regulatory networks were conducted. The expression of marker genes was validated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Five marker genes (IL32, VCAM1, IL34, NFKB1 and CXCL13) were identified, which were connected with immune-related functions. Two immune checkpoints (CD96 and TIGIT) and six inflammatory factors played key roles in US-guided MWA for glioma. ceRNA regulatory networks revealed that miR-625-5p, miR-625-3p, miR-31-5p and miR-671-5p were associated with target genes. qRT-PCR indicated both IL32, VCAM1, and NFKB1 were potential markers under US-guided MWA-related time series analysis. CONCLUSION The use of US-guided MWA might be a practical method for influencing the function of target genes, regulating time frames to decrease inflammation, and stimulating immune responses in glioma therapy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Cardiovascular and Cerebrovascular Disease Hospital, Yinchuan, China
| | - Guangfei Yang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ruijiao Chang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fuxia Wang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Cardiovascular and Cerebrovascular Disease Hospital, Yinchuan, China
| | - Tao Han
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jin Tian
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wen Wang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Cardiovascular and Cerebrovascular Disease Hospital, Yinchuan, China
| |
Collapse
|
6
|
da Silva IIFG, Nascimento DDQ, Barbosa AD, Souto FO, Maia MDMD, Crovella S, de Souza PRE, Sandrin-Garcia P. miRNAs and NFKB1 and TRAF6 target genes: The initial functional study in CD14+ monocytes in rheumatoid arthritis patients. Genet Mol Biol 2024; 47:e20230235. [PMID: 39058384 PMCID: PMC11274900 DOI: 10.1590/1678-4685-gmb-2023-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/10/2024] [Indexed: 07/28/2024] Open
Abstract
We predicted miRNAs with regulatory impact on NFKB1 and TRAF6 gene expression and selected the miR-194-5p, miR-124-3p, miR-9-5p, and miR-340-5p and their target genes for expression analyses on CD14+ monocytes from rheumatoid arthritis (RA) patients and healthy controls. Additionally, we evaluated the influence of genes and miRNA expression on RA patients' cytokine levels. No difference was observed in genes or miRNAs expression when compared to healthy controls and RA patients or clinical parameters. However, we found a significant difference between miR-194-5p and miR-9-5p levels (FC=-2.31; p=0.031; FC=-3.05;p=0.031, respectively) and non-prednisone users as compared to prednisone using patients. We conducted correlation analyses to identify the strength of the relationship between expression data and cytokine plasma levels. We observed a moderate positive correlation between miR-124-3p expression and IL-6 plasma levels (r=0.46; p=0.033). In addition, overexpression of miRNAs was concomitant to TRAF6 and NFKB1 genes as indicated by correlation analyses: TRAF6 and miR-194-5p (r=0.60;p<0.001) and miR-9-5p (r=0.63;p<0.001) and NFKB1 and miR-194-5p (r=0.72;p<0.001), miR-9-5p (r=0.72;p<0.001) and miR-340-5p (r=0.61;p<0.001). NFKB1 and TRAF6 genes and miRNAs monocyte expression do not appear to be related to RA but showed a significant difference in different groups of RA therapy. In addition, increased levels of miRNAs can be linked to concomitant overexpression of TRAF6 and NFKB1 in monocytes and act as its regulators.
Collapse
Affiliation(s)
- Isaura Isabelle Fonseca Gomes da Silva
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Genética e Biologia Molecular, Recife, PE, Brazil
- Instituto Keizo Asami, Recife, PE, Brazil
| | - Denise de Queiroga Nascimento
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Genética e Biologia Molecular, Recife, PE, Brazil
- Instituto Keizo Asami, Recife, PE, Brazil
| | - Alexandre Domingues Barbosa
- Policlínica Jamacy de Medeiros, Cabo de Santo Agostinho, PE, Brazil
- Universidade Federal de Pernambuco, Hospital das Clínicas, Recife, PE, Brazil
| | - Fabricio Oliveira Souto
- Instituto Keizo Asami, Recife, PE, Brazil
- Universidade Federal de Pernambuco, Centro Acadêmico do Agreste, Caruaru, PE, Brazil
| | | | - Sergio Crovella
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, PE, Brazil
| | | | - Paula Sandrin-Garcia
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Genética e Biologia Molecular, Recife, PE, Brazil
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, PE, Brazil
| |
Collapse
|
7
|
Wei PJ, Guo Z, Gao Z, Ding Z, Cao RF, Su Y, Zheng CH. Inference of gene regulatory networks based on directed graph convolutional networks. Brief Bioinform 2024; 25:bbae309. [PMID: 38935070 PMCID: PMC11209731 DOI: 10.1093/bib/bbae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Inferring gene regulatory network (GRN) is one of the important challenges in systems biology, and many outstanding computational methods have been proposed; however there remains some challenges especially in real datasets. In this study, we propose Directed Graph Convolutional neural network-based method for GRN inference (DGCGRN). To better understand and process the directed graph structure data of GRN, a directed graph convolutional neural network is conducted which retains the structural information of the directed graph while also making full use of neighbor node features. The local augmentation strategy is adopted in graph neural network to solve the problem of poor prediction accuracy caused by a large number of low-degree nodes in GRN. In addition, for real data such as E.coli, sequence features are obtained by extracting hidden features using Bi-GRU and calculating the statistical physicochemical characteristics of gene sequence. At the training stage, a dynamic update strategy is used to convert the obtained edge prediction scores into edge weights to guide the subsequent training process of the model. The results on synthetic benchmark datasets and real datasets show that the prediction performance of DGCGRN is significantly better than existing models. Furthermore, the case studies on bladder uroepithelial carcinoma and lung cancer cells also illustrate the performance of the proposed model.
Collapse
Affiliation(s)
- Pi-Jing Wei
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| | - Ziqiang Guo
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| | - Zhen Gao
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| | - Zheng Ding
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| | - Rui-Fen Cao
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| | - Yansen Su
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| | - Chun-Hou Zheng
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| |
Collapse
|
8
|
Tabasi H, Mollazadeh S, Fazeli E, Abnus K, Taghdisi SM, Ramezani M, Alibolandi M. Transitional Insight into the RNA-Based Oligonucleotides in Cancer Treatment. Appl Biochem Biotechnol 2024; 196:1685-1711. [PMID: 37402038 DOI: 10.1007/s12010-023-04597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Conventional cancer therapies with chemodrugs suffer from various disadvantages, such as irreversible side effects on the skin, heart, liver, and nerves with even fatal consequences. RNA-based therapeutic is a novel technology which offers great potential as non-toxic, non-infectious, and well-tolerable platform. Herein, we introduce different RNA-based platforms with a special focus on siRNA, miRNA, and mRNA applications in cancer treatment in order to better understand the details of their therapeutic effects. Of note, the co-delivery of RNAs with other distinct RNA or drugs has provided safe, efficient, and novel treatment modalities for cancer treatment.
Collapse
Affiliation(s)
- Hamed Tabasi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elham Fazeli
- Biomedicine Department, Aarhus University, Aarhus, Denmark
| | - Khalil Abnus
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Lu C, Xie L, Qiu S, Jiang T, Wang L, Chen Z, Xia Y, Lv J, Li Y, Li B, Gu C, Xu Z. Small Extracellular Vesicles Derived from Helicobacter Pylori-Infected Gastric Cancer Cells Induce Lymphangiogenesis and Lymphatic Remodeling via Transfer of miR-1246. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308688. [PMID: 37946695 DOI: 10.1002/smll.202308688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Lymph node metastasis (LNM) is a significant barrier to the prognosis of patients with gastric cancer (GC). Helicobacter pylori (H. pylori)-positive GC patients experience a higher rate of LNM than H. pylori-negative GC patients. However, the underlying mechanism remains unclear. Based on the findings of this study, H. pylori-positive GC patients have greater lymphangiogenesis and lymph node immunosuppression than H. pylori-negative GC patients. In addition, miR-1246 is overexpressed in the plasma small extracellular vesicles (sEVs) of H. pylori-positive GC patients, indicating a poor prognosis. Functionally, sEVs derived from GC cells infected with H. pylori deliver miR-1246 to lymphatic endothelial cells (LECs) and promote lymphangiogenesis and lymphatic remodeling. Mechanistically, miR-1246 suppresses GSK3β expression and promotes β-Catenin and downstream MMP7 expression in LECs. miR-1246 also stabilizes programmed death ligand-1 (PD-L1) by suppressing GSK3β and induces the apoptosis of CD8+ T cells. Overall, miR-1246 in plasma sEVs may be a novel biomarker and therapeutic target in GC-LNM.
Collapse
Affiliation(s)
- Chen Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Li Xie
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Shengkui Qiu
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Tianlu Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Luyao Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Zetian Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Jialun Lv
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Ying Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Chao Gu
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215000, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| |
Collapse
|
10
|
Liao Q, Xia W, Chen J, Wang K, Xiao E. Circular RNA DNAH14 molecular mechanism in an experimental model of hepatocellular carcinoma treated with Cobalt chloride to mimic the hypoxia-like response of transcatheter arterial chemoembolization. Sci Rep 2024; 14:1992. [PMID: 38263208 PMCID: PMC10805718 DOI: 10.1038/s41598-024-52578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/20/2024] [Indexed: 01/25/2024] Open
Abstract
Transcatheter arterial chemoembolization (TACE) is the primary local treatment for patients with unresectable hepatocellular carcinoma (HCC). Numerous studies have demonstrated the pivotal role of circular RNAs (circRNAs) in TACE efficacy. This study aimed to investigate the function of circular RNA DNAH14 (circDNAH14) in TACE for HCC and to elucidate its molecular mechanisms. To simulate hypoxia conditions experienced during TACE, HCC cells were treated with cobalt chloride. The expression levels of circDNAH14, microRNA-508-3p (miR-508-3p), and Prothymosin Alpha (PTMA) were modulated via transfection for knockdown or overexpression. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays, flow cytometry, and Transwell assays, along with epithelial-mesenchymal transition (EMT) evaluations, were employed to assess cell proliferation, apoptosis, invasion, migration, and EMT. The results indicated that hypoxia treatment downregulated the expression of circDNAH14 and PTMA while upregulating miR-508-3p. Such treatment suppressed HCC cell proliferation, invasion, migration, and EMT, and induced apoptosis. Knockdown of circDNAH14 or PTMA intensified the suppressive effects of hypoxia on the malignant behaviors of HCC cells. Conversely, upregulation of miR-508-3p or PTMA mitigated the effects of circDNAH14 overexpression and knockdown, respectively. Mechanistically, circDNAH14 was found to competitively bind to miR-508-3p, thereby regulating PTMA expression. In vivo, nude mouse xenograft experiments demonstrated that circDNAH14 knockdown augmented the hypoxia-induced suppression of HCC tumor growth. In conclusion, circDNAH14 mitigates the suppressive effects of hypoxia on HCC, both in vitro and in vivo, by competitively binding to miR-508-3p and regulating PTMA expression.
Collapse
Affiliation(s)
- Qiuling Liao
- Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Changsha City, 410011, Hunan Province, China
| | - Weiping Xia
- Department of Urology Surgery, Xiangya Hospital Central South University, No. 87 Xiangya Road, Kaifu District, Changsha City, 410008, Hunan Province, China
| | - Jiawen Chen
- Department of Urology Surgery, Xiangya Hospital Central South University, No. 87 Xiangya Road, Kaifu District, Changsha City, 410008, Hunan Province, China
| | - Kangning Wang
- Department of Urology Surgery, Xiangya Hospital Central South University, No. 87 Xiangya Road, Kaifu District, Changsha City, 410008, Hunan Province, China.
| | - Enhua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Changsha City, 410011, Hunan Province, China.
| |
Collapse
|
11
|
Chen B, Liu X, Yu P, Xie F, Kwan JSH, Chan WN, Fang C, Zhang J, Cheung AHK, Chow C, Leung GWM, Leung KT, Shi S, Zhang B, Wang S, Xu D, Fu K, Wong CC, Wu WKK, Chan MWY, Tang PMK, Tsang CM, Lo KW, Tse GMK, Yu J, To KF, Kang W. H. pylori-induced NF-κB-PIEZO1-YAP1-CTGF axis drives gastric cancer progression and cancer-associated fibroblast-mediated tumour microenvironment remodelling. Clin Transl Med 2023; 13:e1481. [PMID: 37983931 PMCID: PMC10659770 DOI: 10.1002/ctm2.1481] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common tumours in East Asia countries and is associated with Helicobacter pylori infection. H. pylori utilizes virulence factors, CagA and VacA, to up-regulate pro-inflammatory cytokines and activate NF-κB signaling. Meanwhile, the PIEZO1 upregulation and cancer-associated fibroblast (CAF) enrichment were found in GC progression. However, the mechanisms of PIEZO1 upregulation and its involvement in GC progression have not been fully elucidated. METHODS The CAF enrichment and clinical significance were investigated in animal models and primary samples. The expression of NF-κB and PIEZO1 in GC was confirmed by immunohistochemistry staining, and expression correlation was analysed in multiple GC datasets. GSEA and Western blot analysis revealed the YAP1-CTGF axis regulation by PIEZO1. The stimulatory effects of CTGF on CAFs were validated by the co-culture system and animal studies. Patient-derived organoid and peritoneal dissemination models were employed to confirm the role of the PIEZO1-YAP1-CTGF cascade in GC. RESULTS Both CAF signature and PIEZO1 were positively correlated with H. pylori infection. PIEZO1, a mechanosensor, was confirmed as a direct downstream of NF-κB to promote the transformation from intestinal metaplasia to GC. Mechanistic studies revealed that PIEZO1 transduced the oncogenic signal from NF-κB into YAP1 signaling, a well-documented oncogenic pathway in GC progression. PIEZO1 expression was positively correlated with the YAP1 signature (CTGF, CYR61, and c-Myc, etc.) in primary samples. The secreted CTGF by cancer cells stimulated the CAF infiltration to form a stiffened collagen-enrichment microenvironment, thus activating PIEZO1 to form a positive feedback loop. Both PIEZO1 depletion by shRNA and CTGF inhibition by Procyanidin C1 enhanced the efficacy of 5-FU in suppressing the GC cell peritoneal metastasis. CONCLUSION This study elucidates a novel driving PIEZO1-YAP1-CTGF force, which opens a novel therapeutic avenue to block the transformation from precancerous lesions to GC. H. pylori-NF-κB activates the PIEZO1-YAP1-CTGF axis to remodel the GC microenvironment by promoting CAF infiltration. Targeting PIEZO1-YAP1-CTGF plus chemotherapy might serve as a potential therapeutic option to block GC progression and peritoneal metastasis.
Collapse
|
12
|
Ruan X, Huang Y, Geng L, Tian M, Liu Y, Tao M, Zheng X, Li P, Zhao M. Consistent analysis of differentially expressed genes across 7 cell types in papillary thyroid carcinoma. Comput Struct Biotechnol J 2023; 21:5337-5349. [PMID: 37954148 PMCID: PMC10637855 DOI: 10.1016/j.csbj.2023.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Single-cell transcriptome sequencing (scRNA-seq) provides a higher resolution of cellular differences than bulk RNA-seq, enabling the dissection of cell-type-specific responses to perturbations in papillary thyroid carcinoma (PTC). However, cellular genomic features are highly heterogeneous and have a large number of genes without any expression signals, which hinders the statistical power to identify differentially expressed genes and may generate many false-positive results. To overcome this challenge, we conducted an integrative analysis on two PTC scRNA-seq datasets and cross-validated consistent differential expression. By combining results from 32 common cell types in the two studies, we identified 31 consistently differentially expressed genes (DEGs) across seven cell types, including B cells, endothelial cells, epithelial cells, monocytes, NK cells, smooth muscle cells, and T cells. Functional enrichment analysis revealed that these genes are important for the adaptive immune response and autoimmune thyroid diseases. The additional disease-free survival analysis also confirmed that these 31 genes significantly affected patient survival time in large scale thyroid cancer cohort. Furthermore, we experimentally validated one of the top consistent DEGs as a potential biomarker gene of PTC epithelial cells, KRT7, which may be a upstream gene for the NF-κB signaling pathway. The result shows that KRT7 may promote thyroid cancer metastasis through the epithelial-mesenchymal transition and NF-κB signaling pathway. In summary, our single-cell transcriptome integration-based approach may provide insights into the important role of NF-κB in the underlying biology of the PTC.
Collapse
Affiliation(s)
- Xianhui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yue Huang
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lin Geng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Mengran Tian
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- School of Medicine, Nankai University, Tianjin, China
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Yu Liu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Mei Tao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Peng Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| |
Collapse
|
13
|
Shang Z, Luo Z, Wang Y, Liu Q, Xin Y, Zhang M, Li X, Zeng S, Yu L, Zhang X, Zhang Y. CircHIPK3 contributes to cisplatin resistance in gastric cancer by blocking autophagy-dependent ferroptosis. J Cell Physiol 2023; 238:2407-2424. [PMID: 37566605 DOI: 10.1002/jcp.31093] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Cisplatin is the first-line chemotherapy for gastric cancer (GC). However, its efficacy is dampened by the development of chemoresistance, which leads to poor prognosis in GC patients. Recently, evidence has revealed that circular RNAs (circRNAs) and dysregulation of autophagy-dependent ferroptosis play critical roles in cancer chemoresistance. Herein, for the first time we report that circHIPK3 has a vital role in GC cisplatin resistance. CircHIPK3 regulated cisplatin resistance by targeting autophagy and ferroptosis. In brief, knockdown circHIPK3 decreased GC cell cisplatin resistance by enhancing ferroptosis via the miR-508-3p/Bcl-2/beclin1/SLC7A11 axis. Taken together, our results demonstrate that ferroptosis is a promising strategy to ameliorate cisplatin resistance. Importantly, serum exosomal circHIPK3 could also be a noninvasive indicator to evaluate cisplatin resistance in GC.
Collapse
Affiliation(s)
- Ziqi Shang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Zhengdong Luo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Yifeng Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Qi Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Yiwei Xin
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Mengjiao Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Xinyang Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Shunjie Zeng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Longchen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| |
Collapse
|
14
|
Li S, Chen D, Zhang H, Yang Y, Huai J, Huang L, Fan K, Lin T, Ding B. Clinical significance of expression level of ZNF471 in gastric cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2023; 16:199-208. [PMID: 37693683 PMCID: PMC10492033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND As a tumor suppressor gene, zinc finger protein 471 (ZNF471) has an essential role in tumor occurrence and development. Due to promoter hypermethylation, it can be underexpressed or silenced in gastric cancer (GC) cell lines. In this study, we investigated relationships between clinical characteristics and ZNF471 expression levels in tissues of patients with GC. METHODS We used immunohistochemistry (IHC) to detect ZNF471 expression in paraffin tissue specimens, and quantitative real-time PCR (qRT-PCR) and western blot (WB) analysis to measure expression levels of ZNF471 in fresh tissue specimens. We analyzed relationships between ZNF471 expression levels and characteristics, such as tumor size, gender, age, TNM stage, and lymph node metastasis. RESULTS Immunohistochemistry revealed the expression of ZNF471 protein from paraffin blocks of GC tissues was significantly lower than that of adjacent tissues. Expression levels of ZNF471 mRNA and protein in fresh GC tissues were markedly lower than those in adjacent tissues and in normal gastric mucosal tissues from healthy subjects. ZNF471 expression was significantly correlated with tumor size, lymph node metastasis, and TNM stage (all P<0.05). There were no significant associations with gender, age, distant metastasis, or pathologic type. Expression of ZNF471 mRNA and protein was not significantly different between adjacent tissues of patients with GC and normal gastric mucosal tissue from healthy subjects. CONCLUSION ZNF471 functions as a tumor suppressor during the pathogenesis of GC. Thus, it is a promising biomarker for diagnosis and therapy of GC.
Collapse
Affiliation(s)
- Siyuan Li
- Postgraduate School, Wannan Medical CollegeWuhu 241000, Anhui, China
- Department of Gastroenterology, The First People’s Hospital of WuhuWuhu 241000, Anhui, China
| | - Diyang Chen
- Postgraduate School, Wannan Medical CollegeWuhu 241000, Anhui, China
| | - Huamin Zhang
- Health Services Policy and Management, Harbin Medical UniversityHarbin 150000, Heilongjiang, China
| | - Yong Yang
- Department of Gastroenterology, The First People’s Hospital of WuhuWuhu 241000, Anhui, China
| | - Jianguo Huai
- Department of Pathology, The First People’s Hospital of WuhuWuhu 241000, Anhui, China
| | - Linna Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Wannan Medical CollegeWuhu 241000, Anhui, China
| | - Kai Fan
- Postgraduate School, Wannan Medical CollegeWuhu 241000, Anhui, China
| | - Tongyuan Lin
- Department of Pharmacy, Division of Science and Education, The First People’s Hospital of WuhuWuhu 241000, Anhui, China
| | - Baijing Ding
- Department of Gastroenterology, The First People’s Hospital of WuhuWuhu 241000, Anhui, China
| |
Collapse
|
15
|
Huang Z, Wu C, Zhou W, Lu S, Tan Y, Wu Z, You R, Stalin A, Guo F, Zhang J, Liu P, Wang W, Duan X, You L, Wu J. Compound Kushen Injection inhibits epithelial-mesenchymal transition of gastric carcinoma by regulating VCAM1 induced by the TNF signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154984. [PMID: 37487253 DOI: 10.1016/j.phymed.2023.154984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/04/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Gastric carcinoma (GC) treatment needs to be developed rapidly. Compound Kushen Injection (CKI), a formula from traditional Chinese medicine, has been used clinically in combination with chemotherapy to treat GC with satisfactory results. However, the molecular mechanism by which CKI acts to cure GC is still unclear. METHODS In the present study, in vivo and in vitro experiments were used to assess the efficacy of CKI. Using ceRNA microarray and TMT technologies, the molecular mechanism of CKI was further investigated at the transcriptional and protein levels, and a bioinformatics approach was employed to investigate and functionally validate key CKI targets in GC. RESULTS When combined with cisplatin (DDP), CKI significantly increased its efficacy in preventing the proliferation and metastasis of GC cells and malignant-looking tumors in mice. High-throughput sequencing data and bioinformatics analysis showed that CKI regulated the TNF signaling pathway, epithelial-mesenchymal transition (EMT), with VCAM1 as a key target. The transcription factors CEBPB, JUN, RELA, NFKB1, the EMT mesenchymal-like cell markers N-cadherin and vimentin, as well as the expression of VCAM1 and its upstream signaling driver TNF, were all downregulated by CKI. In contrast, the expression of the EMT epithelial-like cell marker E-cadherin was upregulated. CONCLUSION CKI can effectively inhibit GC growth and metastasis, improve body's immunity, and protect normal tissues from damage. The molecular mechanism by which CKI inhibits metastasis of GC is by regulating VCAM1 induced by the TNF signaling pathway to inhibit EMT of GC. Our results provide an important clue to clarify precisely the multi-scale molecular mechanism of CKI in the treatment of GC.
Collapse
Affiliation(s)
- Zhihong Huang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chao Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Zhou
- Department of pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shan Lu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yingying Tan
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhishan Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rongli You
- Shanxi Zhendong Pharmaceutical Co., Ltd., Shanxi 47100, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fengying Guo
- School of Management, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingyuan Zhang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengyun Liu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- Shanxi Zhendong Pharmaceutical Co., Ltd., Shanxi 47100, China
| | - Xiaoxia Duan
- Beijing Zestbridge Medical Technology Co., Ltd., Beijing, 100176, China.
| | - Leiming You
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jiarui Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
16
|
Zhang J, Chen B, Li H, Wang Y, Liu X, Wong KY, Chan WN, Chan AK, Cheung AH, Leung KT, Dong Y, Pan Y, Ke H, Liang L, Zhou Z, Xiao J, Wong CC, Wu WK, Cheng AS, Ma BB, Yu J, Lo KW, Kang W. Cancer-associated fibroblasts potentiate colorectal cancer progression by crosstalk of the IGF2-IGF1R and Hippo-YAP1 signaling pathways. J Pathol 2023; 259:205-219. [PMID: 36373776 DOI: 10.1002/path.6033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. The tumor microenvironment exerts crucial effects in driving CRC progression. Cancer-associated fibroblasts (CAFs) serve as one of the most important tumor microenvironment components promoting CRC progression. This study aimed to elucidate the novel molecular mechanisms of CAF-secreted insulin-like growth factor (IGF) 2 in colorectal carcinogenesis. Our results indicated that IGF2 was a prominent factor upregulated in CAFs compared with normal fibroblasts. CAF-derived conditioned media (CM) promoted tumor growth, migration, and invasion of HCT 116 and DLD-1 cells. IGF1R expression is significantly increased in CRC, serving as a potent receptor in response to IGF2 stimulation and predicting unfavorable outcomes for CRC patients. Apart from the PI3K-AKT pathway, RNA-seq analysis revealed that the YAP1-target signature serves as a prominent downstream effector to mediate the oncogenic signaling of IGF2-IGF1R. By single-cell RNA sequencing (scRNA-seq) and immunohistochemical validation, IGF2 was found to be predominantly secreted by CAFs, whereas IGF1R was expressed mainly by cancer cells. IGF2 triggers the nuclear accumulation of YAP1 and upregulates YAP1 target signatures; however, these effects were abolished by either IGF1R knockdown or inhibition with picropodophyllin (PPP), an IGF1R inhibitor. Using CRC organoid and in vivo studies, we found that cotargeting IGF1R and YAP1 with PPP and verteporfin (VP), a YAP1 inhibitor, enhanced antitumor effects compared with PPP treatment alone. In conclusion, this study revealed a novel molecular mechanism by which CAFs promote CRC progression. The findings highlight the translational potential of the IGF2-IGF1R-YAP1 axis as a prognostic biomarker and therapeutic target for CRC. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jinglin Zhang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Hui Li
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yifei Wang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Xiaoli Liu
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Kit Yee Wong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Aden Ky Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Alvin Hk Cheung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yujuan Dong
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yi Pan
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Huixing Ke
- Department of Respiratory and Critical Care Medicine, China National Center of Gerontology, Bejing Hospital, Beijing, PR China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, PR China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Jianyong Xiao
- Department of Biochemistry, School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Chi Chun Wong
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - William Kk Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Alfred Sl Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Brigette By Ma
- State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | -
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
17
|
Li M, Huang Y, Xi H, Zhang W, Xiang Z, Wang L, Li X, Guo H. Circ_FOXP1 promotes the growth and survival of high glucose-treated human trophoblast cells through the regulation of miR-508-3p/SMAD family member 2 pathway. Endocr J 2022; 69:1067-1078. [PMID: 35545535 DOI: 10.1507/endocrj.ej21-0528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a health risk for pregnant women and infants. Emerging evidence suggests that the deregulation of circular RNAs (circRNAs) is associated with the progression of this disorder. The objective of this study was to investigate the role of circ_FOXP1 in GDM. Cell models of GDM were established by treating human trophoblast cells with high glucose (HG). The expression of circ_FOXP1, miR-508-3p and SMAD family member 2 (SMAD2) mRNA was detected by quantitative real-time PCR (qPCR). Cell proliferation was assessed by EdU assay and MTT assay, and cell cycle and cell apoptosis were determined by flow cytometry assay. The protein levels of proliferation- and apoptosis-related markers and SMAD2 were measured by western blot. The relationship between miR-508-3p and circ_FOXP1 or SMAD2 was validated by dual-luciferase reporter assay or pull-down assay. The expression of circ_FOXP1 was downregulated in HG-treated HTR-8/SVneo cells. Circ_FOXP1 overexpression promoted HG-inhibited HTR-8/SVneo cell proliferation and suppressed HG-induced HTR-8/SVneo cell cycle arrest and apoptosis. Circ_FOXP1 positively regulated the expression of SMAD2 by targeting miR-508-3p. MiR-508-3p was overexpressed in HG-treated HTR-8/SVneo cells, and its overexpression reversed the effects of circ_FOXP1 overexpression. MiR-508-3p inhibition also alleviated HG-induced HTR-8/SVneo cell injuries, while the knockdown of SMAD2 abolished these effects. Collectively, circ_FOXP1 promotes the growth and survival of HG-treated human trophoblast cells through the miR-508-3p/SMAD2 pathway, hinting that circ_FOXP1 was involved in GDM progression.
Collapse
Affiliation(s)
- Mingqun Li
- Department of Gynecology and Obstetrics, Xiangyang NO.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Yuqin Huang
- Department of Gynecology and Obstetrics, Xiangyang NO.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Hongli Xi
- Department of Gynecology and Obstetrics, Xiangyang NO.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Wei Zhang
- Department of Gynecology and Obstetrics, Xiangyang NO.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Ziwu Xiang
- Department of Pathology, Xiangyang NO.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Lingyun Wang
- Department of Central Laboratory, Xiangyang No.1 Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Xuanyu Li
- Department of Gynecology and Obstetrics, Xiangyang NO.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Hongyan Guo
- Department of Gynecology and Obstetrics, Xiangyang NO.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| |
Collapse
|
18
|
Yu Q, Xiu Z, Jian Y, Zhou J, Chen X, Chen X, Chen C, Chen H, Yang S, Yin L, Zeng W. microRNA-497 prevents pancreatic cancer stem cell gemcitabine resistance, migration, and invasion by directly targeting nuclear factor kappa B 1. Aging (Albany NY) 2022; 14:5908-5924. [PMID: 35896012 PMCID: PMC9365558 DOI: 10.18632/aging.204193] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
Abstract
Objectives: Cancer stem cells (CSCs) comprise a small population of cells in cancerous tumors and play a critical role in tumor resistance to chemotherapy. miRNAs have been reported to enhance the sensitivity of pancreatic cancer to chemotherapy. However, the underlying molecular mechanism requires better understanding. Methods: Cell viability and proliferation were examined with CCK8 assays. Quantitative real-time polymerase chain reaction was executed to assess mRNA expression. StarBase database was used to select the target genes of miRNA, which were further affirmed by dual luciferase assay. Transwell assay was used to analyze cell invasion and migration. Results: We proved that miR-497 could be obviously downregulated in pancreatic cancer tissues and CSCs from Aspc-1 and Bxpc-3 cells. In addition, inhibition of miR-497 evidently accelerated pancreatic CSC gemcitabine resistance, migration and invasion. Moreover, we revealed that nuclear factor kappa B 1 (NFκB1) was prominently upregulated in pancreatic cancer tissues and pancreatic CSCs, and NFκB1 was also identified as a direct target of miR-497. Furthermore, we demonstrated that overexpression of NFκB1 could also notably promote the viability, migration, and invasion of gemcitabine-treated pancreatic CSCs, but this effect could be partially abolished by miR-497 overexpression. Conclusions: Those findings suggest that miR-497 overexpression could suppress gemcitabine resistance and the metastasis of pancreatic CSCs and non-CSCs by directly targeting NFκB1.
Collapse
Affiliation(s)
- Qiangfeng Yu
- The Second Department of General Surgery, Zhuhai People's Hospital, Zhuhai 51900, Guangdong, China
| | - Zhe Xiu
- Department of Hepatobiliary Surgery, The Second Hospital of Longyan, Longyan 364000, Fujian, China
| | - Yizeng Jian
- Department of Hepatobiliary Surgery, The Second Hospital of Longyan, Longyan 364000, Fujian, China
| | - Jianyin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen 361000, Fujian, China
| | - Xiaopeng Chen
- Department of Hepatobiliary Surgery, The Second Hospital of Longyan, Longyan 364000, Fujian, China
| | - Xiang Chen
- The Third Department of Surgery, The Second Hospital of Longyan, Longyan 364000, Fujian, China
| | - Chunxiang Chen
- Department of Science and Education, The Second Hospital of Longyan, Longyan 364000, Fujian, China
| | - Hongbao Chen
- Department of Pathology, The Second Hospital of Longyan, Longyan 364000, Fujian, China
| | - Sijia Yang
- The Second Department of General Surgery, Zhuhai People's Hospital, Zhuhai 51900, Guangdong, China
| | - Libo Yin
- The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenzhou 317500, Zhejiang, China
| | - Wenlong Zeng
- Department of Hepatobiliary Surgery, The Second Hospital of Longyan, Longyan 364000, Fujian, China
| |
Collapse
|
19
|
LncRNA MAFG-AS1 promotes the malignant phenotype of ovarian cancer by upregulating NFKB1-dependent IGF1. Cancer Gene Ther 2022; 29:277-291. [PMID: 34035482 DOI: 10.1038/s41417-021-00306-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 01/24/2021] [Accepted: 02/03/2021] [Indexed: 02/04/2023]
Abstract
Long non-coding RNAs (lncRNAs) were recently recognized to vitally function in a variety of cancer cellular events, including epithelial-mesenchymal transition (EMT), invasion, and migration, particularly in ovarian cancer (OC). Herein, we sought to investigate the potential role of MAFG-AS1 in the malignant behaviors of OC cells. The binding affinity between MAFG-AS1, miR-339-5p, NFKB1 or IGF1 was characterized so as to identify the underlying mechanism of corresponding their interactions. We conducted MAFG-AS1 overexpression or knockdown along with NFKB1 and IGF1 silencing to examine their effects on the EMT, migration, and invasion of OC cells. Tumors were xenografted in nude mice to validate the in vitro findings. Our data showed significantly high expression pattern of MAFG-AS1 in the OC tissues and cells. Further mechanistic investigations revealed that MAFG-AS1 upregulated the IGF1 expression pattern through recruitment of NFKB1, whereas MAFG-AS1 upregulated the NFKB1 expression pattern through binding to miR-339-5p. Thus, MAFG-AS1 overexpression accelerated the EMT, invasion, and migration of OC cells, which could be annulled by silencing of IGF1 or NFKB1. Besides, our in vitro findings were successfully recapitulated in the xenograft mice. These results determined that MAFG-AS1 stimulated the OC malignant progression by upregulating the NFKB1-mediated IGF1 via miR-339-5p, thus highlighting a novel potential therapeutic target against OC.
Collapse
|
20
|
Janjua KA, Shahzad R, Shehzad A. Development of Novel Cancer Biomarkers for Diagnosis and Prognosis. CANCER BIOMARKERS IN DIAGNOSIS AND THERAPEUTICS 2022:277-343. [DOI: 10.1007/978-981-16-5759-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Wang X, Xu L, Yu Y, Fu Y. LncRNA RP5-857K21.7 inhibits PDGF-BB-induced proliferation and migration of airway smooth muscle cells through the miR-508-3p/PI3K/AKT/mTOR axis. Autoimmunity 2021; 55:65-73. [PMID: 34913773 DOI: 10.1080/08916934.2021.1998895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The continuous increase in the prevalence of asthma poses a threat to human health. Despites numerous researches, the understanding of asthma development still remain elusive, hindering the development of effective treatment. Here, we explored the role of lncRNA RP5-857K21.7 (RP5-857K21.7) in the development of asthma and its potential molecular mechanism of regulation. Airway smooth muscle cells (ASMCs) were isolated and cultured after which some of the cells were induced with PDGF-BB to build an asthma cell model, and then, qRT-PCR analysis was used to measure the expression level of RP5-857K21.7 in the cell model. Result shows that the RP5-857K21.7 is significantly downregulated in PDGF-BB-induced ASMCs cells. Through CCK-8, transwell, and flow cytometry assay, we examined the functional impact of RP5-857K21.7 on the proliferation, migration, and apoptosis of the ASMCs, respectively, and found that the overexpression of RP5-857K21.7 markedly inhibit PDGF-BB-induced ASMCs cell proliferation, migration and induce apoptosis. Bioinformatics analysis predicted that the RP5-857K21.7 could sponge miR-508-3p and result was validated through a dual-luciferase reporter assay, biotinylated RNA pull-down assay, and RIP-qRT-PCR analysis. Mechanistically, RP5-857K21.7 regulates the PI3K/AKT/mTOR pathway by endogenously sponging miR-508-3p to inhibit PDGF-BB-induced ASMCs cell proliferation, migration and induce apoptosis. The current research suggests that the RP5-857K21.7 and its associated molecular pathway (miR-508-3p/PI3K/AKT/mTOR axis) might be a useful therapeutic target for the treatment of asthma disease.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Geratology, Yantai Yuhuangding Hospital, Yantai, China
| | - Lingfen Xu
- Department of General Medicine, Qinghai Province People's Hospital, Xining, China
| | - Yong Yu
- Urinary surgery, Qinghai Province People's Hospital, Xining, China
| | - Yimin Fu
- Department of Geratology, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
22
|
NF-κB in Gastric Cancer Development and Therapy. Biomedicines 2021; 9:biomedicines9080870. [PMID: 34440074 PMCID: PMC8389569 DOI: 10.3390/biomedicines9080870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is considered one of the most common causes of cancer-related death worldwide and, thus, a major health problem. A variety of environmental factors including physical and chemical noxae, as well as pathogen infections could contribute to the development of gastric cancer. The transcription factor nuclear factor kappa B (NF-κB) and its dysregulation has a major impact on gastric carcinogenesis due to the regulation of cytokines/chemokines, growth factors, anti-apoptotic factors, cell cycle regulators, and metalloproteinases. Changes in NF-κB signaling are directed by genetic alterations in the transcription factors themselves, but also in NF-κB signaling molecules. NF-κB actively participates in the crosstalk of the cells in the tumor micromilieu with divergent effects on the heterogeneous tumor cell and immune cell populations. Thus, the benefits/consequences of therapeutic targeting of NF-κB have to be carefully evaluated. In this review, we address recent knowledge about the mechanisms and consequences of NF-κB dysregulation in gastric cancer development and therapy.
Collapse
|
23
|
Han Y, Xia K, Su T. Exploration of the Important Role of Microfibril-Associated Protein 4 Gene in Oral Squamous Cell Carcinoma. Med Sci Monit 2021; 27:e931238. [PMID: 34210950 PMCID: PMC8259352 DOI: 10.12659/msm.931238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is a common tumor of the head and neck. Its treatment usually requires multiple modalities. Currently, there are no molecular biomarkers to guide these treatment strategies. Studies have shown that microfibril-associated protein 4 (MFAP4) is potentially useful for non-invasive assessment of various diseases; however, its biological function in tumors is still unknown. In this study, we propose that MFAP4 is a new prognostic target for OSCC. Material/Methods First, we collected OSCC data (GSE25099 and GSE30784 datasets) from the Gene Expression Omnibus (GEO) database and compared the differential expression of MFAP4 gene between the patients (tumor) and normal (control) groups. The comparison was done with University of California Santa Cruz Xena (https://xenabrowser.net/Datapages/), and we calculated the difference in MFAP4 gene expression between normal and tumor tissues in a pan-cancer analysis. Then, we compared the 2 groups with high and low expression of MFAP4 gene in terms of tumor mutation burden (TMB), miRNA regulation, and immune cell infiltration. Results We found that the expression of MFAP4 gene was significantly decreased in tumors. Our research also showed that high expression of MFAP4 was related to better prognosis of patients and may be related to tumor gene mutation, miRNA regulation, and infiltration of different immune cells. Conclusions Our work provides evidence that expression of MFAP4 can be used as a prognostic biomarker for risk stratification of OSCC patients and elaborates on its relation with the regulation of TMB, miRNAs, and immune cell infiltration.
Collapse
Affiliation(s)
- Ying Han
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China (mainland)
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China (mainland)
| | - Tong Su
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital Central South University, Changsha, Hunan, China (mainland).,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China (mainland).,Research Center of Oral and Maxillofacial Tumors, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
24
|
Abstract
Gastric cancer (GC) is one of the most common malignant tumors. The mechanism of how GC develops is vague, and therapies are inefficient. The function of microRNAs (miRNAs) in tumorigenesis has attracted the attention from many scientists. During the development of GC, miRNAs function in the regulation of different phenotypes, such as proliferation, apoptosis, invasion and metastasis, drug sensitivity and resistance, and stem-cell-like properties. MiRNAs were evaluated for use in diagnostic and prognostic predictions and exhibited considerable accuracy. Although many problems exist for the application of therapy, current studies showed the antitumor effects of miRNAs. This paper reviews recent advances in miRNA mechanisms in the development of GC and the potential use of miRNAs in the diagnosis and treatment of GC.
Collapse
|
25
|
Ma Y, Chen SS, Jiang F, Ma RY, Wang HL. Bioinformatic analysis and validation of microRNA-508-3p as a protective predictor by targeting NR4A3/MEK axis in pulmonary arterial hypertension. J Cell Mol Med 2021; 25:5202-5219. [PMID: 33942991 PMCID: PMC8178270 DOI: 10.1111/jcmm.16523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) featured a debilitating progressive disorder. Here, we intend to determine diagnosis‐valuable biomarkers for PAH and decode the fundamental mechanisms of the biological function of these markers. Two mRNA microarray profiles (GSE70456 and GSE117261) and two microRNA microarray profiles (GSE55427 and GSE67597) were mined from the Gene Expression Omnibus platform. Then, we identified the differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs), respectively. Besides, we investigated online miRNA prediction tools to screen the target gene of DEMs. In this study, 185 DEGs and three common DEMs were screened as well as 1266 target genes of the three DEMs were identified. Next, 16 overlapping dysregulated genes from 185 DEGs and 1266 target gene were obtained. Meanwhile, we constructed the miRNA gene regulatory network and determined miRNA‐508‐3p‐NR4A3 pair for deeper exploring. Experiment methods verified the functional expression of miR‐508‐3p in PAH and its signalling cascade. We observed that ectopic miR‐508‐3p expression promotes proliferation and migration of pulmonary artery smooth muscle cell (PASMC). Bioinformatic, dual‐luciferase assay showed NR4A3 represents directly targeted gene of miR‐508‐3p. Mechanistically, we demonstrated that down‐regulation of miR‐508‐3p advances PASMC proliferation and migration via inducing NR4A3 to activate MAPK/ERK kinase signalling pathway. Altogether, our research provides a promising diagnosis of predictor and therapeutic avenues for patients in PAH.
Collapse
Affiliation(s)
- Yi Ma
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Shu-Shu Chen
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Fen Jiang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ru-Yi Ma
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Huan-Liang Wang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China.,Shenzhen Research Institute of Shandong University, Shenzhen, China
| |
Collapse
|
26
|
Regulation of Nuclear Factor-KappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis? Cancer Lett 2021; 509:63-80. [PMID: 33838282 DOI: 10.1016/j.canlet.2021.03.025] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/18/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The nuclear factor-kappaB (NF-κB) signaling pathway is considered as a potential therapeutic target in cancer therapy. It has been well established that transcription factor NF-κB is involved in regulating physiological and pathological events including inflammation, immune response and differentiation. Increasing evidences suggest that deregulated NF-κB signaling can enhance cancer cell proliferation, metastasis and also mediate radio-as well as chemo-resistance. On the contrary, non-coding RNAs (ncRNAs) have been found to modulate NF-κB signaling pathway under different settings. MicroRNAs (miRNAs) can dually inhibit/induce NF-κB signaling thereby affecting the growth and migration of cancer cells. Furthermore, the response of cancer cells to radiotherapy and chemotherapy may also be regulated by miRNAs. Regulation of NF-κB by miRNAs may be mediated via binding to 3/-UTR region. Interestingly, anti-tumor compounds can increase the expression of tumor-suppressor miRNAs in inhibiting NF-κB activation and the progression of cancers. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can also effectively modulate NF-κB signaling thus affecting tumorigenesis. It is noteworthy that several studies have demonstrated that lncRNAs and circRNAs can affect miRNAs in targeting NF-κB activation. They can act as competing endogenous RNA (ceRNA) thereby reducing miRNA expression to induce NF-κB activation that can in turn promote cancer progression and malignancy.
Collapse
|
27
|
Yoshida K, Yokoi A, Yamamoto Y, Kajiyama H. ChrXq27.3 miRNA cluster functions in cancer development. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:112. [PMID: 33766100 PMCID: PMC7992321 DOI: 10.1186/s13046-021-01910-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) regulate the expression of their target genes post-transcriptionally; thus, they are deeply involved in fundamental biological processes. miRNA clusters contain two or more miRNA-encoding genes, and these miRNAs are usually coexpressed due to common expression mechanisms. Therefore, miRNA clusters are effective modulators of biological pathways by the members coordinately regulating their multiple target genes, and an miRNA cluster located on the X chromosome q27.3 region has received much attention in cancer research recently. In this review, we discuss the novel findings of the chrXq27.3 miRNA cluster in various types of cancer. The chrXq27.3 miRNA cluster contains 30 mature miRNAs synthesized from 22 miRNA-encoding genes in an ~ 1.3-Mb region. The expressions of these miRNAs are usually negligible in many normal tissues, with the male reproductive system being an exception. In cancer tissues, each miRNA is dysregulated, compared with in adjacent normal tissues. The miRNA-encoding genes are not uniformly distributed in the region, and they are further divided into two groups (the miR-506-514 and miR-888-892 groups) according to their location on the genome. Most of the miRNAs in the former group are tumor-suppressive miRNAs that are further downregulated in various cancers compared with normal tissues. miR-506-3p in particular is the most well-known miRNA in this cluster, and it has various tumor-suppressive functions associated with the epithelial–mesenchymal transition, proliferation, and drug resistance. Moreover, other miRNAs, such as miR-508-3p and miR-509-3p, have similar tumor-suppressive effects. Hence, the expression of these miRNAs is clinically favorable as prognostic factors in various cancers. However, the functions of the latter group are less understood. In the latter group, miR-888-5p displays oncogenic functions, whereas miR-892b is tumor suppressive. Therefore, the functions of the miR-888–892 group are considered to be cell type- or tissue-specific. In conclusion, the chrXq27.3 miRNA cluster is a critical regulator of cancer progression, and the miRNAs themselves, their regulatory mechanisms, and their target genes might be promising therapeutic targets.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-cho 65, Showa-ku, Nagoya, 466-8550, Japan.,Institute for Advanced Research, Nagoya University, Nagoya, Japan.,Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-cho 65, Showa-ku, Nagoya, 466-8550, Japan. .,Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-cho 65, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
28
|
Wu J, Zhang Y, Li M. Identification of genes and miRNAs in paclitaxel treatment for breast cancer. Gynecol Endocrinol 2021; 37:65-71. [PMID: 32988253 DOI: 10.1080/09513590.2020.1822801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
AIM Paclitaxel is a microtubule-stabilizing drug that has therapeutic effect on breast cancer. However, the molecular mechanism of paclitaxel on breast cancer has not been elucidated. MATERIALS AND METHODS Microarray data of GSE114403, including 50 pretreatment and 50 posttreatment samples, were downloaded from public database. The differentially expressed genes (DEGs) between pretreatment and posttreatment were identified, followed by functional enrichment analysis. Then, protein-protein interaction (PPI) network and transcription factor (TF)-miRNA-mRNA network were constructed. Finally, the survival analysis of hub genes was performed. RESULTS A total of 107 DEGs were screened from pretreatment versus posttreatment. Genes were significantly enriched in GO terms such as inflammatory response, and pathways like cytokine-cytokine receptor interaction pathway. CXCL2, PTGS2, and ATF3 were considered as hub genes in PPI network. TFs such as FOXA2, NFE2L2, as well as miRNAs like has-miR-508-3p and has-miR-584 also played role in the paclitaxel treatment. Additionally, survival analysis revealed that breast cancer patients with high expression level of CXCL2, PTGS2, and ATF3 had longer survival time. CONCLUSION In summary, we demonstrated that CXCL2, PTGS2, and ATF3 might be diagnostic and therapeutic molecular biomarkers for breast cancer. These findings might provide further insights into the pathophysiology of breast cancer, as well as enhance our understanding of the anticancer effects of paclitaxel.
Collapse
Affiliation(s)
- Jie Wu
- Key Laboratory of Hydrodynamics (Ministry of Education), School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yijian Zhang
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Maolan Li
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| |
Collapse
|
29
|
Kipkeeva F, Muzaffarova T, Korotaeva A, Nikulin M, Grishina K, Mansorunov D, Apanovich P, Karpukhin A. MicroRNA in Gastric Cancer Development: Mechanisms and Biomarkers. Diagnostics (Basel) 2020; 10:E891. [PMID: 33142817 PMCID: PMC7692123 DOI: 10.3390/diagnostics10110891] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is one of the most common and difficult diseases to treat. The study of signaling pathway regulation by microRNA provides information on the mechanisms of GC development and is the basis for biomarker creation. In this study, a circuit of microRNA interactions with signaling pathways was constructed. The microRNAs, associated with metastasis and chemoresistance, are described. In most cases, microRNAs in GC regulate the Wnt/β-catenin, PI3K/AKT/mTOR, RAS/RAF/ERK/MAPK, NF-kB, TGF-β, and JAK/STAT pathways. Part of the microRNA acts on several target genes that function in different pathways. This often leads to an intensification of the induced processes. MicroRNAs have also been described that have the opposite effect on different pathways, causing different functional consequences. By acting on several target genes, or genes associated with several pathways, microRNAs can function in a signaling network. MicroRNAs associated with metastasis most often interact with the Wnt/β-catenin pathway. MicroRNAs affecting chemoresistance, in most cases, affect the regulators of apoptosis and are associated with the PI3K/AKT/mTOR pathway. The characteristics of microRNAs proposed as candidates for GC biomarkers were analyzed. The currently developed diagnostic and prognostic panels of microRNAs are also considered.
Collapse
Affiliation(s)
- Fatimat Kipkeeva
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Tatyana Muzaffarova
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Alexandra Korotaeva
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Maxim Nikulin
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia;
| | - Kristina Grishina
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Danzan Mansorunov
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Pavel Apanovich
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Alexander Karpukhin
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| |
Collapse
|
30
|
FGF18-FGFR2 signaling triggers the activation of c-Jun-YAP1 axis to promote carcinogenesis in a subgroup of gastric cancer patients and indicates translational potential. Oncogene 2020; 39:6647-6663. [PMID: 32934314 PMCID: PMC7581496 DOI: 10.1038/s41388-020-01458-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/16/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022]
Abstract
Fibroblast growth factor receptor type 2 (FGFR2) has emerged as a key oncogenic factor that regulates gastric cancer (GC) progression, but the underlying mechanism of FGF–FGFR2 signaling pathway remains largely unknown. To identify the potential molecular mechanisms of the oncogenic FGFR2 in gastric carcinogenesis and convey a novel therapeutic strategy, we profiled the FGFR alterations and analyzed their clinical associations in TCGA and Hong Kong GC cohorts. We found that FGFR2 overexpression in GC cell lines and primary tumors predicted poor survival and was associated with advanced stages of GC. Functionally, growth abilities and cell cycle progression of GC were inhibited by inactivation of ERK–MAPK signal transduction after FGFR2 knockdown, while apoptosis was promoted. Meanwhile, the first-line anti-cancer drug sensitivity was enhanced. RNA-seq analysis further revealed that YAP1 signaling serves as a significant downstream modulator and mediates the oncogenic signaling of FGFR2. When stimulating FGFR2 by rhFGF18, we observed intensified F-actin, nuclear accumulation of YAP1, and overexpression of YAP1 targets, but these effects were attenuated by either FGFR2 depletion or AZD4547 administration. Additionally, the FGF18–FGFR2 signaling upregulated YAP1 expression through activating c-Jun, an effector of MAPK signaling. In our cohort, 28.94% of GC cases were characterized as FGFR2, c-Jun, and YAP1 co-positive and demonstrated worse clinical outcomes. Remarkably, we also found that co-targeting FGFR2 and YAP1 by AZD4547 and Verteporfin synergistically enhanced the antitumor effects in vitro and in vivo. In conclusion, we have identified the oncogenic FGF–FGFR2 regulates YAP1 signaling in GC. The findings also highlight the translational potential of FGFR2–c-Jun–YAP1 axis, which may serve as a prognostic biomarker and therapeutic target for GC.
Collapse
|
31
|
Barth DA, Drula R, Ott L, Fabris L, Slaby O, Calin GA, Pichler M. Circulating Non-coding RNAs in Renal Cell Carcinoma-Pathogenesis and Potential Implications as Clinical Biomarkers. Front Cell Dev Biol 2020; 8:828. [PMID: 33042985 PMCID: PMC7523432 DOI: 10.3389/fcell.2020.00828] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Liquid biopsy-the determination of circulating cells, proteins, DNA or RNA from biofluids through a "less invasive" approach-has emerged as a novel approach in all cancer entities. Circulating non-(protein) coding RNAs including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and YRNAs can be passively released by tissue or cell damage or actively secreted as cell-free circulating RNAs, bound to lipoproteins or carried by exosomes. In renal cell carcinoma (RCC), a growing body of evidence suggests circulating non-coding RNAs (ncRNAs) such as miRNAs, lncRNAs, and YRNAs as promising and easily accessible blood-based biomarkers for the early diagnosis of RCC as well as for the prediction of prognosis and treatment response. In addition, circulating ncRNAs could also play a role in RCC pathogenesis and progression. This review gives an overview over the current study landscape of circulating ncRNAs and their involvement in RCC pathogenesis as well as their potential utility as future biomarkers in RCC diagnosis and treatment.
Collapse
Affiliation(s)
- Dominik A Barth
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, Graz, Austria.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rares Drula
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Research Centre for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Leonie Ott
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linda Fabris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, Graz, Austria.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
32
|
Zeng Z, Zhang X, Li D, Li J, Yuan J, Gu L, Xiong X. Expression, Location, Clinical Implication, and Bioinformatics Analysis of RNASET2 in Gastric Adenocarcinoma. Front Oncol 2020; 10:836. [PMID: 32528897 PMCID: PMC7256199 DOI: 10.3389/fonc.2020.00836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/28/2020] [Indexed: 11/14/2022] Open
Abstract
Background: In addition to exploiting its ribonuclease capacity, Ribonuclease T2 (RNASET2) has been reported to exert anti-angiogenic and anti-tumorigenic effects in several tumors. However, the role of RNASET2 in gastric adenocarcinoma (GAC) remains unclear. The purpose of this study was to explore the expression, location, and clinical implications of RNASET2 in GAC. Methods: Data of RNASET2 mRNA expression in GAC and normal gastric mucosa tissues were extracted from three GSE series and 388 TCGA samples and reanalyzed. Genome-wide CRISPR/Cas9 proliferation screening datasets were used to investigate cell growth changes after RNASET2 knockout in 19 GAC cell lines. The biological processes involved in RNASET2 were studied by the bioinformatics analysis. Furthermore, the corresponding experiments including immunohistochemical staining, clinicopathological features analysis, survival curve, microvessel density detection, cell viability assay, and colony formation assay were performed to validate the expression and function of RNASET2 in GAC. Results: An abundance of RNASET2 was present in the fundus glands and pylorus glands of the normal gastric mucosa. RNASET2 mRNA and protein were down-regulated in GAC compared with adjacent non-cancerous or normal gastric mucosa tissues. The expression of RNASET2 mRNA and protein in early GAC was higher than that in advanced GAC. 79/134 gene sets involved in the early GAC pathway were enriched in the RNASET2 mRNA high expression group. Genome-wide shRNA and CRISPR/Cas9 proliferation screening showed that knockdown or knockout of RNASET2 could not significantly promote GAC cell growth. AlamarBlue cell viability assay and colony formation assay in AGS cells further validated these results. Clinicopathologic features and survival analysis demonstrated that RNASET2 protein was significantly correlated with tumor cell differentiation, Lauren's classification, and TM4SF1 protein expression, but not correlated with lymph nodal metastasis and patient's prognosis. Microvessel density detection indicated that no significant correlation was found between the expression of RNASET2 protein and the angiogenesis of GAC. Conclusions: Down-regulation of RNASET2 in GAC was only the consequence of the GAC, instead of the driver. The expression of RNASET2 could be regarded as a good biomarker for identifying the early stage of GAC.
Collapse
Affiliation(s)
- Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Zhang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin Li
- Department of Biomedical informatics, The Ohio State University, Columbus, OH, United States
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Guo F, Zhang K, Li M, Cui L, Liu G, Yan Y, Tian W, Teng F, Zhang Y, Gao C, Gao J, Wang Y, Xue F. miR‑508‑3p suppresses the development of ovarian carcinoma by targeting CCNA2 and MMP7. Int J Oncol 2020; 57:264-276. [PMID: 32377701 PMCID: PMC7252466 DOI: 10.3892/ijo.2020.5055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological tumor, and the 5‑year survival rate is only ~40%. The poor survival rate is due to cancer diagnosis at an advanced stage, when the tumor has metastasized. A better understanding of the molecular pathogenesis of tumor growth and metastasis is needed to improve patient prognosis. MicroRNAs (miRs) regulate carcinogenesis and development of cancers. However, the role of miR‑508‑3p in ovarian cancer remains largely unknown. Thus, the present study aimed to investigate the possible functions of miR‑508‑3p in the modulation of development of ovarian cancer. The results of the present study demonstrated that miR‑508‑3p mimics inhibited ovarian cancer cell proliferation, migration and invasion. Reporter gene assay results demonstrated that miR‑508‑3p suppressed cancer cell proliferation by directly targeting the 3'‑untranslated region (UTR) of cyclin A2 (CCNA2) and suppressed migration and invasion by directly targeting the 3'‑UTR of matrix metalloproteinase 7 (MMP7). In addition, high CCNA2 and MMP7 expression levels were associated with low miR‑508‑3p expression in ovarian cancer tissues. Furthermore, miR‑508‑3p and CCNA2 were independent predictors for overall survival in patients with ovarian cancer. To the best of our knowledge, this is the first study to demonstrated that miR‑508‑3p suppressed ovarian cancer development by directly targeting CCNA2 and MMP7. The results of this study suggested the potential value of miR‑508‑3p and CCNA2 as prognostic indicators and therapeutics for ovarian cancer.
Collapse
Affiliation(s)
- Fei Guo
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Kai Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Meiyue Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lei Cui
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Guoyan Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ye Yan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Fei Teng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yanfang Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jinping Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
34
|
Yan XY, Zhang JJ, Zhong XR, Yu SH, Xu L, Tian R, Sun LK, Su J. The LINC00365/SCGB2A1 (Mammaglobin B) Axis Down-Regulates NF-κB Signaling and Is Associated with the Progression of Gastric Cancer. Cancer Manag Res 2020; 12:621-631. [PMID: 32095083 PMCID: PMC6995300 DOI: 10.2147/cmar.s223699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE A lack of early diagnostic biomarkers and therapeutic targets has led to poor prognosis for gastric cancer patients. However, the analysis of cancer-associated genomic data has been shown to be effective in identifying potential markers. Recently, the long non-coding RNA LINC00365 and SCGB2A1 gene (as known as mammaglobin B) were predicted to be co-expressed in gastric cancer based on the Gene Expression Omnibus database. However, their precise role in gastric cancer tumors is still not clear. METHODS The expressions of LINC00365 and SCGB2A1 in gastric cancer tissues were investigated using qPCR and their expressions were detected in a gastric cancer tissue microarray by in situ hybridization and immunohistochemical staining. The functions of LINC00365 in BGC-823 and MGC-803 gastric cancer cells were tested using the MTT assay, flow cytometry, colony formation assay, EDU staining, immunofluorescence and luciferase assay. RESULTS We found that LINC00365 and SCGB2A1 mRNA were both expressed at low levels in 30 cases of gastric cancer. Gastric cancer tissue microarray analysis indicated that LINC00365 and SCGB2A1 were expressed at low levels in tumor tissue, and low expression of both factors correlated with shorter survival time. Functional studies showed that LINC00365 overexpression significantly inhibited gastric cancer cell viability through the impairment of proliferation rather than the promotion of apoptosis. Furthermore, overexpressed LINC00365 upregulated SCGB2A1 in gastric cancer cell lines. Immuno-fluorescence and luciferase assay analysis indicated that LINC00365 overexpression inhibited the NF-κB pro-survival signaling pathway. Consistent with the effects of LINC00365, SCGB2A1 upregulation also reduced cell survival and inactivated NF-κB. CONCLUSION Collectively, our findings revealed that SCGB2A1 may be the target coding protein regulated by LINC00365 in gastric cancer. LINC00365 and SCGB2A1 may function as tumor suppressors and may serve as potential prognostic and therapeutic markers in gastric cancer treatment.
Collapse
Affiliation(s)
- Xiao-Yu Yan
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Juan-Juan Zhang
- Department of Basic Medicine, HeXi University, Zhangye, Gansu734000, People’s Republic of China
| | - Xin-Ru Zhong
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Si-Hang Yu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Long Xu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Rui Tian
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Lian-Kun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Jing Su
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin130021, People’s Republic of China
| |
Collapse
|
35
|
Virakul S, Somparn P, Pisitkun T, van der Spek PJ, Dalm VASH, Paridaens D, van Hagen PM, Hirankarn N, Palaga T, Dik WA. Integrative Analysis of Proteomics and DNA Methylation in Orbital Fibroblasts From Graves' Ophthalmopathy. Front Endocrinol (Lausanne) 2020; 11:619989. [PMID: 33658982 PMCID: PMC7919747 DOI: 10.3389/fendo.2020.619989] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Graves' ophthalmopathy (GO) is a frequent extrathyroidal complication of Graves' hyperthyroidism. Orbital fibroblasts contribute to both orbital tissue inflammation and remodeling in GO, and as such are crucial cellular elements in active GO and inactive GO. However, so far it is largely unknown whether GO disease progression is associated with functional reprogramming of the orbital fibroblast effector function. Therefore, the aim of this study was to compare both the proteome and global DNA methylation patterns between orbital fibroblasts isolated from active GO, inactive GO and healthy controls. METHODS Orbital fibroblasts from inactive GO (n=5), active GO (n=4) and controls (n=5) were cultured and total protein and DNA was isolated. Labelled and fractionated proteins were analyzed with a liquid chromatography tandem-mass spectrometer (LC-MS/MS). Data are available via ProteomeXchange with identifier PXD022257. Furthermore, bisulphite-treated DNA was analyzed for methylation pattern with the Illumina Infinium Human Methylation 450K beadchip. In addition, RNA was isolated from the orbital fibroblasts for real-time quantitative (RQ)-PCR. Network and pathway analyses were performed. RESULTS Orbital fibroblasts from active GO displayed overexpression of proteins that are typically involved in inflammation, cellular proliferation, hyaluronan synthesis and adipogenesis, while various proteins associated with extracellular matrix (ECM) biology and fibrotic disease, were typically overexpressed in orbital fibroblasts from inactive GO. Moreover, orbital fibroblasts from active GO displayed hypermethylation of genes that linked to inflammation and hypomethylated genes that linked to adipogenesis and autoimmunity. Further analysis revealed networks that contained molecules to which both hypermethylated and hypomethylated genes were linked, including NF-κB, ERK1/2, Alp, RNA polymerase II, Akt and IFNα. In addition, NF-κB, Akt and IFNα were also identified in networks that were derived from the differentially expressed proteins. Generally, poor correlation between protein expression, DNA methylation and mRNA expression was observed. CONCLUSIONS Both the proteomics and DNA methylation data support that orbital fibroblasts from active GO are involved in inflammation, adipogenesis, and glycosaminoglycan production, while orbital fibroblasts from inactive disease are more skewed towards an active role in extracellular matrix remodeling. This switch in orbital fibroblast effector function may have therapeutic implications and further studies into the underlying mechanism are thus warranted.
Collapse
Affiliation(s)
- Sita Virakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Research affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Research affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Peter J. van der Spek
- Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Virgil A. S. H. Dalm
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dion Paridaens
- Rotterdam Eye Hospital, Rotterdam, Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, Netherlands
| | - P. Martin van Hagen
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
- Rotterdam Eye Hospital, Rotterdam, Netherlands
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Willem A. Dik
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: Willem A. Dik,
| |
Collapse
|
36
|
Rojas A, Araya P, Gonzalez I, Morales E. Gastric Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1226:23-35. [PMID: 32030673 DOI: 10.1007/978-3-030-36214-0_2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A compelling body of evidence has demonstrated that gastric cancer has a very particular tumor microenvironment, a signature very suitable to promote tumor progression and metastasis. Recent investigations have provided new insights into the multiple molecular mechanisms, defined by genetic and epigenetic mechanisms, supporting a very active cross talk between the components of the tumor microenvironment and thus defining the fate of tumor progression. In this review, we intend to highlight the role of very active contributors at gastric cancer TME, particularly cancer-associated fibroblasts, bone marrow-derived cells, tumor-associated macrophages, and tumor-infiltrating neutrophils, all of them surrounded by an overtime changing extracellular matrix. In addition, the very active cross talk between the components of the tumor microenvironment, defined by genetic and epigenetic mechanisms, thus defining the fate of tumor progression, is also reviewed.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| | - Paulina Araya
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Ileana Gonzalez
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Erik Morales
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile
| |
Collapse
|
37
|
Nassef MZ, Kopp S, Melnik D, Corydon TJ, Sahana J, Krüger M, Wehland M, Bauer TJ, Liemersdorf C, Hemmersbach R, Infanger M, Grimm D. Short-Term Microgravity Influences Cell Adhesion in Human Breast Cancer Cells. Int J Mol Sci 2019; 20:E5730. [PMID: 31731625 PMCID: PMC6887954 DOI: 10.3390/ijms20225730] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
With the commercialization of spaceflight and the exploration of space, it is important to understand the changes occurring in human cells exposed to real microgravity (r-µg) conditions. We examined the influence of r-µg, simulated microgravity (s-µg, incubator random positioning machine (iRPM)), hypergravity (hyper-g), and vibration (VIB) on triple-negative breast cancer (TNBC) cells (MDA-MB-231 cell line) with the aim to study early changes in the gene expression of factors associated with cell adhesion, apoptosis, nuclear factor "kappa-light-chain-enhancer" of activated B-cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling. We had the opportunity to attend a parabolic flight (PF) mission and to study changes in RNA transcription in the MDA-MB cells exposed to PF maneuvers (29th Deutsches Zentrum für Luft- und Raumfahrt (DLR) PF campaign). PF maneuvers induced an early up-regulation of ICAM1, CD44 and ERK1 mRNAs after the first parabola (P1) and a delayed upregulation of NFKB1, NFKBIA, NFKBIB, and FAK1 after the last parabola (P31). ICAM-1, VCAM-1 and CD44 protein levels were elevated, whereas the NF-κB subunit p-65 and annexin-A2 protein levels were reduced after the 31st parabola (P31). The PRKCA, RAF1, BAX mRNA were not changed and cleaved caspase-3 was not detectable in MDA-MB-231 cells exposed to PF maneuvers. Hyper-g-exposure of the cells elevated the expression of CD44 and NFKBIA mRNAs, iRPM-exposure downregulated ANXA2 and BAX, whereas VIB did not affect the TNBC cells. The early changes in ICAM-1 and VCAM-1 and the rapid decrease in the NF-κB subunit p-65 might be considered as fast-reacting, gravity-regulated and cell-protective mechanisms of TNBC cells exposed to altered gravity conditions. This data suggest a key role for the detected gravity-signaling elements in three-dimensional growth and metastasis.
Collapse
Affiliation(s)
- Mohamed Zakaria Nassef
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Daniela Melnik
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.)
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.)
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Thomas J. Bauer
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Christian Liemersdorf
- Institute of Aerospace Medicine, Department of Gravitational Biology, German Aerospace Center, 51147 Cologne, Germany; (C.L.); (R.H.)
| | - Ruth Hemmersbach
- Institute of Aerospace Medicine, Department of Gravitational Biology, German Aerospace Center, 51147 Cologne, Germany; (C.L.); (R.H.)
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.Z.N.); (D.M.); (M.K.); (M.W.); (T.J.B.); (M.I.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.)
- Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering, Otto von Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
38
|
Liu S, Deng X, Zhang J. Identification of dysregulated serum miR-508-3p and miR-885-5p as potential diagnostic biomarkers of clear cell renal carcinoma. Mol Med Rep 2019; 20:5075-5083. [PMID: 31661117 PMCID: PMC6854552 DOI: 10.3892/mmr.2019.10762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/08/2019] [Indexed: 12/29/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common subtype, accounts for approximately 80% of all RCC cases. ccRCC patients typically present with an advanced stage at the time of diagnosis resulting in a poor patient prognosis. The present study aimed to identify novel potential microRNAs (miRNAs or miRs) in peripheral blood as biomarkers for the detection of ccRCC. Candidate miRNAs were selected through integrated analysis of the Gene Expression Omnibus (GEO) database, The Cancer Genome Atlas (TCGA) database, and from clinical samples. The expression levels of miRNAs were quantified using reverse transcription‑quantitative PCR. Receiver operating characteristic (ROC) curve analysis was used to explore the diagnostic values of the miRNAs. Bioinformatic analysis of candidate miRNAs was conducted by using the STRING database. After an integrated analysis of the GEO and TCGA databases, four miRNAs were found to be consistently dysregulated in ccRCC tissues. Then, their expression levels in serum and diagnostic utilities were further explored. We discovered that serum miR‑508‑3p and miR‑885‑5p were significantly dysregulated in ccRCC patients with marked diagnostic values. The area under the ROC curve (AUC) of serum miR‑508‑3p and miR‑885‑5p was 0.80 (95% CI, 0.73‑0.87) and 0.87 (95% CI, 0.79‑0.95), respectively. Functional enrichment analysis revealed that both miR‑508‑3p and miR‑885‑5p were closely associated with cellular metabolic processes. In conclusion, serum miR‑508‑3p and miR‑885‑5p are novel potential biomarkers for the diagnosis of ccRCC.
Collapse
Affiliation(s)
- Siming Liu
- Department of Urology, Zhoupu Hospital Affiliated with Shanghai University of Medicine and Health Sciences, Shanghai 200000, P.R. China
| | - Xiaojun Deng
- Department of Urology, Zhoupu Hospital Affiliated with Shanghai University of Medicine and Health Sciences, Shanghai 200000, P.R. China
| | - Jiong Zhang
- Department of Urology, Shanghai Putuo District Liqun Hospital, Shanghai 200000, P.R. China
| |
Collapse
|
39
|
Hu P, Zhou G, Zhang X, Song G, Zhan L, Cao Y. Long non-coding RNA Linc00483 accelerated tumorigenesis of cervical cancer by regulating miR-508-3p/RGS17 axis. Life Sci 2019; 234:116789. [DOI: 10.1016/j.lfs.2019.116789] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/23/2019] [Indexed: 12/25/2022]
|
40
|
Ma XY, Ma Y, Zhou H, Zhang HJ, Sun MJ. Identification of the lncRNA-miRNA-mRNA network associated with gastric cancer via integrated bioinformatics analysis. Oncol Lett 2019; 18:5769-5784. [PMID: 31788050 PMCID: PMC6865131 DOI: 10.3892/ol.2019.10922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to investigate the long non-coding RNA (lncRNA)-microRNA (miRNA)-mRNA regulatory network in gastric cancer (GC) using bioinformatics analysis. Two mRNA gene expression profiles, GSE79973 and GSE54129, and two miRNA expression profiles, GSE93415 and GSE78091, were downloaded from the Gene Expression Omnibus database. The differentially expressed mRNAs (DEMs) and the differentially expressed miRNAs (DEMis) were merged separately. Gene ontology and pathway enrichment analysis were conducted using the Database for Annotation, Visualization and Integrated Discovery. A protein-protein interaction (PPI) network was then constructed and the 10 top hub genes in the network were analyzed using the Search Tool for the Retrieval of Interacting Genes. The lncRNA-miRNA-mRNA networks were visualized using Cytoscape software. As a result, 158 shared DEMs (40 upregulated and 118 downregulated) were identified from two mRNA datasets. A total of 30 upregulated miRNAs and 1 downregulated miRNA functioned as DEMis. The PPI network consisted of 129 nodes and 572 interactions. The 10 top hub genes were selected by degree using Cytohubba, including Jun proto-oncogene, mitogen-activated protein kinase (MAPK)3, transforming growth factor-β1, Fos proto-oncogene, AP-1 transcription factor subunit, interleukin (IL)-8, MAPK1, RELA proto-oncogene nuclear factor-κB subunit, interferon regulatory factor 7, ubiquitin like modifier and vascular endothelial growth factor A. In the lncRNA-miRNA-mRNA network, a total of 1,215 regulatory associations were constructed using Cytoscape. In conclusion, the present study provides a novel perspective of the molecular mechanisms underlying GC by identifying the lncRNA-miRNA-mRNA regulatory network via bioinformatics analysis.
Collapse
Affiliation(s)
- Xiao-Yu Ma
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yu Ma
- Department of Nuclear Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Huan Zhou
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hui-Jing Zhang
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ming-Jun Sun
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
41
|
Li Z, Wong KY, Calin GA, Chng WJ, Chan GCF, Chim CS. Epigenetic silencing of miR-340-5p in multiple myeloma: mechanisms and prognostic impact. Clin Epigenetics 2019; 11:71. [PMID: 31064412 PMCID: PMC6505104 DOI: 10.1186/s13148-019-0669-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/25/2019] [Indexed: 12/31/2022] Open
Abstract
Background miR-340-5p, localized to 5q35, is a tumor suppressor miRNA implicated in multiple cancers. As a CpG island is present at the putative promoter region of its host gene, RNF130, we hypothesized that the intronic miR-340-5p is a tumor suppressor miRNA epigenetically silenced by promoter DNA methylation of its host gene in multiple myeloma. Results By pyrosequencing-confirmed methylation-specific PCR, RNF130/miR-340 was methylated in 8/15 (53.3%) myeloma cell lines but not normal plasma cells. Methylation correlated inversely with the expression of both miR-340-5p and RNF130. In completely methylated WL-2 and RPMI-8226R cells, 5-AzadC treatment led to demethylation and re-expression of miR-340-5p. In primary samples, RNF130/miR-340 methylation was detected in 4 (22.2%) monoclonal gammopathy of undetermined significance, 15 (23.8%) diagnostic myeloma, and 7 (23.3%) relapsed myeloma. RNF130/miR-340 methylation at diagnosis was associated with inferior overall survival (median 27 vs. 68 months; P = 3.944E−5). In WL-2 cells, overexpression of miR-340-5p resulted in reduced cellular proliferation [MTS, P = 0.002; verified in KMS-12-PE (P = 0.002) and RPMI-8226R (P = 2.623E−05) cells], increased cell death (trypan blue, P = 0.005), and enhanced apoptosis by annexin V-PI staining. Moreover, by qRT-PCR, overexpression of miR-340-5p led to repression of both known targets (CCND1 and NRAS) and bioinformatically predicted targets in MAPK signaling (MEKK1, MEKK2, and MEKKK3) and apoptosis (MDM4 and XIAP), hence downregulation of phospho-ERK1/2 and XIAP by Western blot. Furthermore, by qRT-PCR, in CD138-sorted primary samples (n = 37), miR-340-5p and XIAP were inversely correlated (P = 0.002). By luciferase assay, XIAP was confirmed as a direct target of miR-340-5p via targeting of the distal but not proximal seed region binding site. Conclusions Collectively, tumor-specific methylation-mediated silencing of miR-340-5p is likely an early event in myelomagenesis with adverse survival impact, via targeting multiple oncogenes in MAPK signaling and apoptosis, thereby a tumor suppressive miRNA in myeloma. Electronic supplementary material The online version of this article (10.1186/s13148-019-0669-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenhai Li
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Kwan Yeung Wong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong.
| |
Collapse
|
42
|
Wang S, Ran L, Zhang W, Leng X, Wang K, Liu G, Song J, Wang Y, Zhang X, Wang Y, Zhang L, Ma Y, Liu K, Li H, Zhang W, Qin G, Song F. FOXS1 is regulated by GLI1 and miR-125a-5p and promotes cell proliferation and EMT in gastric cancer. Sci Rep 2019; 9:5281. [PMID: 30918291 PMCID: PMC6437149 DOI: 10.1038/s41598-019-41717-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer (GC) is the fourth most common malignant neoplasm and the second leading cause of cancer death. Identification of key molecular signaling pathways involved in gastric carcinogenesis and progression facilitates early GC diagnosis and the development of targeted therapies for advanced GC patients. Emerging evidence has revealed a close correlation between forkhead box (FOX) proteins and cancer development. However, the prognostic significance of forkhead box S1 (FOXS1) in patients with GC and the function of FOXS1 in GC progression remain undefined. In this study, we found that upregulation of FOXS1 was frequently detected in GC tissues and strongly correlated with an aggressive phenotype and poor prognosis. Functional assays confirmed that FOXS1 knockdown suppressed cell proliferation and colony numbers, with induction of cell arrest in the G0/G1 phase of the cell cycle, whereas forced expression of FOXS1 had the opposite effect. Additionally, forced expression of FOXS1 accelerated tumor growth in vivo and increased cell migration and invasion through promoting epithelial–mesenchymal transition (EMT) both in vitro and in vivo. Mechanistically, the core promoter region of FOXS1 was identified at nucleotides −660~ +1, and NFKB1 indirectly bind the motif on FOXS1 promoters and inhibit FOXS1 expression. Gene set enrichment analysis revealed that the FOXS1 gene was most abundantly enriched in the hedgehog signaling pathway and that GLI1 expression was significantly correlated with FOXS1 expression in GC. GLI1 directly bound to the promoter motif of FOXS1 and significantly decreased FOXS1 expression. Finally, we found that miR-125a-5p repressed FOXS1 expression at the translational level by binding to the 3′ untranslated region (UTR) of FOXS1. Together, these results suggest that FOXS1 can promote GC development and could be exploited as a diagnostic and prognostic biomarker for GC.
Collapse
Affiliation(s)
- Sen Wang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Longke Ran
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.,Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Wanfeng Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.,Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Xue Leng
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Kexin Wang
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Sichuan Province, 646000, China
| | - Geli Liu
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Song
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.,Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Yujing Wang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Xianqin Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Yitao Wang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Lian Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Ma
- Information Technology Office of Chongqing Medical University, Chongqing, 400016, China
| | - Kun Liu
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Haiyu Li
- Chongqing Public Health Medical Center, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guijun Qin
- Department of Endocrinology of the Frist Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Fangzhou Song
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China. .,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
43
|
Esfandi F, Ghafouri-Fard S, Oskooei VK, Taheri M. β-Secretase 1 and its Naturally Occurring Anti-Sense RNA are Down-Regulated in Gastric Cancer. Pathol Oncol Res 2019; 25:1627-1633. [DOI: 10.1007/s12253-019-00621-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
|
44
|
Delshad E, Shafiee M, Maghsoudi H, Shamsabadi F, Bahramian S. Identification of novel miRNAs with potential role in Gastric Cancer diagnosis: In silico procedure. Meta Gene 2019. [DOI: 10.1016/j.mgene.2018.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
45
|
Guo H, Ji F, Zhao X, Yang X, He J, Huang L, Zhang Y. MicroRNA-371a-3p promotes progression of gastric cancer by targeting TOB1. Cancer Lett 2019; 443:179-188. [DOI: 10.1016/j.canlet.2018.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
|
46
|
Genomic stability, anti-inflammatory phenotype, and up-regulation of the RNAseH2 in cells from centenarians. Cell Death Differ 2019; 26:1845-1858. [PMID: 30622304 DOI: 10.1038/s41418-018-0255-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 12/26/2022] Open
Abstract
Current literature agrees on the notion that efficient DNA repair favors longevity across evolution. The DNA damage response machinery activates inflammation and type I interferon signaling. Both pathways play an acknowledged role in the pathogenesis of a variety of age-related diseases and are expected to be detrimental for human longevity. Here, we report on the anti-inflammatory molecular make-up of centenarian's fibroblasts (low levels of IL-6, type 1 interferon beta, and pro-inflammatory microRNAs), which is coupled with low level of DNA damage (measured by comet assay and histone-2AX activation) and preserved telomere length. In the same cells, high levels of the RNAseH2C enzyme subunit and low amounts of RNAseH2 substrates, i.e. cytoplasmic RNA:DNA hybrids are present. Moreover, RNAseH2C locus is hypo-methylated and RNAseH2C knock-down up-regulates IL-6 and type 1 interferon beta in centenarian's fibroblasts. Interestingly, RNAseH2C locus is hyper-methylated in vitro senescent cells and in tissues from atherosclerotic plaques and breast tumors. Finally, extracellular vesicles from centenarian's cells up-regulate RNAseH2C expression and dampen the pro-inflammatory phenotype of fibroblasts, myeloid, and cancer cells. These data suggest that centenarians are endowed with restrained DNA damage-induced inflammatory response, that may facilitate their escape from the deleterious effects of age-related chronic inflammation.
Collapse
|
47
|
A Network Pharmacology Approach to Uncover the Potential Mechanism of Yinchensini Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2178610. [PMID: 30671125 PMCID: PMC6317126 DOI: 10.1155/2018/2178610] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/26/2018] [Accepted: 11/26/2018] [Indexed: 01/30/2023]
Abstract
Objective To predict and explore the potential mechanism of Yinchensini decoction (YCSND) based on systemic pharmacology. Method TCMSP database was searched for the active constituents and related target proteins of YCSND. Cytoscape 3.5.1 was used to construct the active ingredient-target interaction of YCSND and network topology analysis, with STRING online database for protein-protein interaction (PPI) network construction and analysis; and collection from the UniProt database of target protein gene name, with the DAVID database for the gene ontology (GO) functional analysis, KEGG pathway enrichment analysis mechanism and targets of YCSND. Results The results indicate the core compounds of YCSND, namely, kaempferol, 7-Methoxy-2-methyl isoflavone, and formononetin. And its core targets are prostaglandin G/H synthase 2, estrogen receptor, Calmodulin, heat shock protein HSP 90, etc. PPI network analysis shows that the key components of the active ingredients of YCSND are JUN, TP53, MARK1, RELA, MYC, and so on. The results of the GO analysis demonstrate that extracellular space, cytosol, and plasma membrane are the main cellular components of YCSND. Its molecular functions are mainly acting on enzyme binding, protein heterodimerization activity, and drug binding. The biological process of YCSND is focused on response to drug, positive regulation of transcription from RNA polymerase II promoter, the response to ethanol, etc. KEGG results suggest that the pathways, including pathways in cancer, hepatitis B, and pancreatic cancer, play a key role in YCSND. Conclusion YCSND exerts its drug effect through various signaling pathways and acts on kinds of targets. By system pharmacology, the potential role of drugs and the mechanism of action can be well predicted.
Collapse
|
48
|
Chen Q, Zeng X, Huang D, Qiu X. Identification of differentially expressed miRNAs in early-stage cervical cancer with lymph node metastasis across The Cancer Genome Atlas datasets. Cancer Manag Res 2018; 10:6489-6504. [PMID: 30568508 PMCID: PMC6276827 DOI: 10.2147/cmar.s183488] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background and aim Previous studies have suggested that lymph node metastasis (LNM) in early-stage cervical cancer (CESC) may affect the prognosis of patients and the outcomes of subsequent adjuvant therapy. However, research focused on miRNA expression in early-stage CESC patients with LNM remains limited. Therefore, it is necessary to identify prognostic miRNAs and determine their molecular mechanisms. Methods We evaluated the differentially expressed genes in early-stage CESC patients with LNM compared to patients without LNM and evaluated the prognostic significance of these differentially expressed genes by analyzing a public dataset from The Cancer Genome Atlas. Potential molecular mechanisms were investigated by gene ontology, the Kyoto Encyclopedia of Genes and Genomes, and protein–protein interaction network analyses. Results According to the The Cancer Genome Atlas data, hsa-miR-508, hsa-miR-509-2, and hsa-miR-526b expression levels were significantly lower in early-stage CESC patients with LNM than in patients without LNM. A multivariate analysis suggested that three miRNAs were prognostic factors for CESC (P<0.05). The target genes were identified to be involved in the MAPK, cAMP, PI3K/Akt, mTOR, and estrogen cancer signaling pathways. Protein–protein interaction network analysis showed that TP53, MMP1, NOTCH1, SMAD4, and NFKB1 were the most significant hub proteins. Conclusion Our results indicate that hsa-miR-508, hsa-miR-509-2, and hsa-miR-526b may be potential diagnostic biomarkers for early-stage CESC with LNM, and serve as prognostic predictors for patients with CESC.
Collapse
Affiliation(s)
- Qian Chen
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China,
| | - Dongping Huang
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China,
| | - Xiaoqiang Qiu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China,
| |
Collapse
|
49
|
Zhao L, Wang W, Xu L, Yi T, Zhao X, Wei Y, Vermeulen L, Goel A, Zhou S, Wang X. Integrative network biology analysis identifies miR-508-3p as the determinant for the mesenchymal identity and a strong prognostic biomarker of ovarian cancer. Oncogene 2018; 38:2305-2319. [PMID: 30478449 PMCID: PMC6755993 DOI: 10.1038/s41388-018-0577-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is a heterogeneous malignancy that poses tremendous clinical challenge. Based on unsupervised classification of whole-genome gene expression profiles, four molecular subtypes of ovarian cancer were recently identified. However, single-driver molecular events specific to these subtypes have not been clearly elucidated. We aim to characterize the regulatory mechanisms underlying the poor prognosis mesenchymal subtype of ovarian cancer using a systems biology approach, involving a variety of molecular modalities including gene and microRNA expression profiles. miR-508-3p emerged as the most powerful determinant that regulates a cascade of dysregulated genes in the mesenchymal subtype, including core genes involved in epithelial–mesenchymal transition (EMT) program. Moreover, miR-508-3p down-regulation, due to promoter hypermethylation, was directly correlated with metastatic behaviors in vitro and in vivo. Taken together, our multidimensional network analysis identified miR-508-3p as a master regulator that defines the mesenchymal subtype and provides a novel prognostic biomarker to improve management of this disease.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Wei Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Lian Xu
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tao Yi
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xia Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yuquan Wei
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Ajay Goel
- Center for Gastrointestinal Research and Center for Translational Genomics and Oncology, Baylor Scott and White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong. .,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
50
|
Concetti J, Wilson CL. NFKB1 and Cancer: Friend or Foe? Cells 2018; 7:cells7090133. [PMID: 30205516 PMCID: PMC6162711 DOI: 10.3390/cells7090133] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 12/30/2022] Open
Abstract
Current evidence strongly suggests that aberrant activation of the NF-κB signalling pathway is associated with carcinogenesis. A number of key cellular processes are governed by the effectors of this pathway, including immune responses and apoptosis, both crucial in the development of cancer. Therefore, it is not surprising that dysregulated and chronic NF-κB signalling can have a profound impact on cellular homeostasis. Here we discuss NFKB1 (p105/p50), one of the five subunits of NF-κB, widely implicated in carcinogenesis, in some cases driving cancer progression and in others acting as a tumour-suppressor. The complexity of the role of this subunit lies in the multiple dimeric combination possibilities as well as the different interacting co-factors, which dictate whether gene transcription is activated or repressed, in a cell and organ-specific manner. This review highlights the multiple roles of NFKB1 in the development and progression of different cancers, and the considerations to make when attempting to manipulate NF-κB as a potential cancer therapy.
Collapse
Affiliation(s)
- Julia Concetti
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE2 4HH, UK.
| | - Caroline L Wilson
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE2 4HH, UK.
| |
Collapse
|