1
|
Chu C, Huang Y, Cao L, Ji S, Zhu B, Shen Q. Role of macrophages in peritoneal dialysis-associated peritoneal fibrosis. Ren Fail 2025; 47:2474203. [PMID: 40044628 PMCID: PMC11884102 DOI: 10.1080/0886022x.2025.2474203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
Peritoneal dialysis (PD) can be used as renal replacement therapy when chronic kidney disease (CKD) progresses to end-stage renal disease. However, peritoneal fibrosis (PF) is a major cause of PD failure. Studies have demonstrated that PD fluid contains a significantly larger numbers of macrophages compared with the healthy individuals. During PD, macrophages can secrete cytokines to keep peritoneal tissue in sustained low-grade inflammation, and participate in the regulation of fibrosis-related signaling pathways, such as NF-κB, TGF-β/Smad, IL4/STAT6, and PI3K/AKT. A series of basic pathological changes occurs in peritoneal tissues, including epithelial mesenchymal transformation, overgeneration of neovasculature, and abnormal deposition of extracellular matrix. This review focuses on the role of macrophages in promoting PF during PD, summarizes the targets of macrophage-related inhibition of fibrosis, and provides new ideas for clinical research on delaying PF, maintaining the function and integrity of peritoneum, prolonging duration of PD as a renal replacement modality, and achieving longer survival in CKD patients.
Collapse
Affiliation(s)
- Chenling Chu
- Department of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Ying Huang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Department of Public Health and Preventive Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luxi Cao
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shuiyu Ji
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Bin Zhu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Quanquan Shen
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Department of Nephrology, Zhejiang Provincial People’s Hospital Bijie Hospital, Bijie, Guizhou, China
| |
Collapse
|
2
|
Lyu G, Liao H, Li R. Ferroptosis and renal fibrosis: mechanistic insights and emerging therapeutic targets. Ren Fail 2025; 47:2498629. [PMID: 40329437 PMCID: PMC12057793 DOI: 10.1080/0886022x.2025.2498629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 05/08/2025] Open
Abstract
Ferroptosis is a regulated, iron-dependent form of cell death driven by lipid peroxidation and distinct from apoptosis, necroptosis, and pyroptosis. Recent studies implicate ferroptosis as a central contributor to the pathogenesis of renal fibrosis, a hallmark of chronic kidney disease associated with high morbidity and progression to end-stage renal failure. This review synthesizes current evidence linking ferroptotic signaling to fibrotic remodeling in the kidney, focusing on iron metabolism dysregulation, glutathione peroxidase 4 (GPX4) inactivation, lipid peroxide accumulation, and ferroptosis-regulatory pathways such as FSP1-CoQ10-NAD(P)H and GCH1-BH4. We detail how ferroptosis in tubular epithelial cells modulates pro-fibrotic cytokine release, macrophage recruitment, and TGF-β1-driven extracellular matrix deposition. Moreover, we explore ferroptosis as a therapeutic vulnerability in renal fibrosis, highlighting promising agents including iron chelators, GPX4 activators, anti-lipid peroxidants, and exosome-based gene delivery systems. By consolidating emerging preclinical data, this review provides a comprehensive mechanistic framework and identifies translational opportunities for targeting ferroptosis in fibrotic kidney disease.
Collapse
Affiliation(s)
- Guangna Lyu
- The Nephrology Department of Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, China
- The Second People’s Hospital of Shanxi Province, Taiyuan, China
| | - Hui Liao
- The Drug Clinical Trial Institution of Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, China
| | - Rongshan Li
- The Nephrology Department of Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Zhang Z, Zhang Q, Wang Y. CAF-mediated tumor vascularization: From mechanistic insights to targeted therapies. Cell Signal 2025; 132:111827. [PMID: 40288665 DOI: 10.1016/j.cellsig.2025.111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Cancer-associated fibroblasts (CAFs) are a major component of the tumor microenvironment (TME) and play a crucial role in tumor progression. The biological properties of tumors, such as drug resistance, vascularization, immunosuppression, and metastasis are closely associated with CAFs. During tumor development, CAFs contribute to tumor progression by remodeling the extracellular matrix (ECM), inhibiting immune cell function, promoting angiogenesis, and facilitating tumor cell growth, invasion, and metastasis. Studies have shown that CAFs can promote endothelial cell proliferation by directly secreting cytokines such as vascular endothelial growth factor (VEGF) and fibroblast Growth Factor (FGF), as well as through exosomes. CAFs also secrete the chemokine stromal cell-derived factor 1 (SDF-1) to recruit endothelial progenitor cells (EPCs) into the peripheral blood and guide their migration to the tumor periphery. Additionally, CAFs can induce tumor cells to transform into "endothelial cells" that participate in vascular wall formation. However, the precise mechanisms remain to be further investigated. Due to their widespread presence in various solid tumors and their tumor-promoting function, CAFs are emerging as therapeutic targets. In this review, we summarize the specific mechanisms through which CAFs promote angiogenesis and outline current therapeutic strategies targeting CAF-induced vascularization, ongoing clinical trials targeting CAFs, and discuss potential future treatment approaches. We hope this will contribute to the advancement of CAF-targeted tumor treatment strategies.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Qing Zhang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Yang Wang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
4
|
Chai H, Yao S, Gao Y, Hu Q, Su W. Developments in the connection between epithelial‑mesenchymal transition and endoplasmic reticulum stress (Review). Int J Mol Med 2025; 56:102. [PMID: 40341397 PMCID: PMC12081031 DOI: 10.3892/ijmm.2025.5543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/22/2025] [Indexed: 05/10/2025] Open
Abstract
Endoplasmic reticulum stress (ERS) and epithelial‑mesenchymal transition (EMT) have important roles in fibrosis and tumour development. Moderate ERS activates cellular defence mechanisms in response to noxious stimuli; however, sustained or overly strong ERS induces apoptosis. In this disease process, EMT induces epithelial cells to acquire the ability to migrate and invade. Reportedly, ERS directly or indirectly regulates EMT processes through multiple mechanisms (such as key transcription factors, signalling pathways, ferroptosis, autophagy and oxidative stress), and both processes form a complex network of interactions. Given the critical roles of ERS and EMT in disease, targeted intervention of these two processes has emerged as a potential therapeutic strategy. In the present study, the molecular interaction mechanism of ERS and EMT was systematically explored, research progress in fibrotic and neoplastic diseases was reviewed and the potential application prospects of related targeted therapies were examined, which may provide new ideas for the development of drugs to reverse fibrosis and treat tumours.
Collapse
Affiliation(s)
- Hongyu Chai
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Ya Gao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qian Hu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Wei Su
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
5
|
Wang JH, Li M, Xie PF, Si JY, Feng ZJ, Tang CF, Li JM. Procyanidin C1 ameliorates aging-related skin fibrosis through targeting EGFR to inhibit TGFβ/SMAD pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156787. [PMID: 40315640 DOI: 10.1016/j.phymed.2025.156787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/03/2025] [Accepted: 04/17/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Aging-related skin fibrosis (SF) is a complex condition with limited treatment options. Procyanidin C1 (PCC1), a natural polyphenolic compound with demonstrated senolytic activity, has emerged as a potential therapeutic agent for fibrotic disorders through its selective elimination of senescent cells. However, its therapeutic efficacy and mechanisms in aging-related SF remain unclear. PURPOSE This study aimed to investigate the mechanisms of PCC1 in aging-related SF. RESULTS In D-galactose-induced L929 cells, PCC1 treatment significantly attenuated the expression of both senescence-associated markers (IL-1β, P16, P21 and LMNB1) and fibrosis-related markers (α-SMA, LOXL2 and COL1). Network pharmacology and experimental validation (molecular docking, DARTS, CETSA, MST) identified EGFR as a primary target, with PCC1 directly binding to and inhibiting EGFR phosphorylation. Furthermore, PCC1 treatment effectively down-regulated TGFβ1 expression and suppressed SMAD2/3 phosphorylation in D-galactose-induced L929 cells. Notably, PCC1 blocked NSC228155-induced EGFR phosphorylation and inhibited ERK/MAPK, AKT/mTOR and TGFβ/SMAD pathway activation. In bleomycin-induced SF mice, PCC1 significantly attenuated epidermal hyperplasia, improved collagen structure, restored the collagen I/III ratio, and reduced EGFR phosphorylation along with TGFβ1 expression and SMAD2/3 phosphorylation. CONCLUSION This study elucidates that PCC1 exerts its anti-fibrotic effects through dual mechanisms: resistance to cellular senescence and modulation of fibroblast heterogeneity. By directly binding to EGFR and inhibiting its phosphorylation, PCC1 subsequently suppresses multiple downstream signaling cascades, ultimately ameliorating TGFβ/SMAD-mediated SF. These findings establish PCC1 as a promising therapeutic candidate for aging-related skin fibrosis, offering a novel approach through targeted EGFR inhibition and comprehensive pathway modulation.
Collapse
Affiliation(s)
- Jun-Han Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Min Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Peng-Fei Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jia-Yao Si
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Zhen-Jie Feng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chuan-Feng Tang
- State Key Laboratory of Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jian-Mei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
6
|
Li Y, Chen Y, Tang Y, Yang T, Zhou P, Miao L, Chen H, Deng Y. Breaking the barriers in effective and safe Toll-like receptor stimulation via nano-immunomodulators for potent cancer immunotherapy. J Control Release 2025; 382:113667. [PMID: 40157608 DOI: 10.1016/j.jconrel.2025.113667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/20/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Immunotherapy is an emerging strategy that awakens the intrinsic immune system for cancer treatment. Generally, successful immunotherapy of malignant tumours relies on the effective production of tumour-associated antigens and their lymph node delivery, antigen processing and presentation for T-cell activation, and the dismantling of the immunosuppressive tumour microenvironment. Toll-like receptor (TLR) agonists are potent stimulants in cancer immunotherapy, which can directly activate antigen-presenting cells (APCs) and further induce T cell activation for antitumour immune response and convert immunosuppressive tumour microenvironment to an immunogenic one for cooperative tumour ablation. However, TLR agonists for effective cancer immunotherapy have encountered essential challenges, such as insufficient immune activation and systemic side effects. In recent years, nano-immunomodulators with TLR agonists have been employed for tumour- and/or lymph node-targeted immune activation to improve the antitumour immune response and alleviate their systemic toxicities, providing a promising strategy for enhanced cancer immunotherapy. Herein, we introduce the recent progress in developing various TLR nano-immunomodulators for cancer immunotherapy via APC activation and tumour microenvironment remodelling. Upon elucidating the rational design principles of nano-immunomodulators, we elucidate the advancement of TLR nanoagonists to break the barriers in effective and safe Toll-like receptor stimulation for potent cancer immunotherapy.
Collapse
Affiliation(s)
- Yaoqi Li
- Department of Pharmacy, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yitian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yong'an Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou 215006, China.
| | - Huabing Chen
- Department of Pharmacy, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China.
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China.
| |
Collapse
|
7
|
Ding SY, Yang YX, Liu C, Quan XY, Zhao ZH, Jin CH. Synthesis and biological evaluation of sulfonamide derivatives containing imidazole moiety as ALK5 inhibitors. Mol Divers 2025; 29:2143-2156. [PMID: 39212874 DOI: 10.1007/s11030-024-10973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Four series of sulfonamide derivatives (13a-b, 14a-d, 15a-b, and 16a-d) were synthesized and evaluated for their activin receptor-like kinase 5 (ALK5) inhibitory activities. Of these, compounds 13b (IC50 = 0.130 μM) and 15a (IC50 = 0.130 μM) showed the highest inhibitory activities against ALK5 kinase, with activities similar to the positive control LY-2157299. Notably, we discovered that introduction of sulfonamide group at the 2-position of the central imidazole ring significantly increased ALK5 inhibitory activity. Compounds 13b and 15a did not show toxicity in A549 cells up to the maximum concentration of 50 μM, and effectively inhibited TGF-β1-induced Smad-signaling and cell motility in A549 cells. The results indicate that compounds 13b and 15a are worth of further development as anticancer agents.
Collapse
Affiliation(s)
- Shu-Yan Ding
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Yu-Xuan Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Chuang Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Xu-Yin Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Zi-Han Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
8
|
Diao JS, Du HC, Wu J, Han XN, Wu ML, Lai RG, Rahman MA, Shu MG. CD147 inhibition reduced fibronectin expression in TGF-β1-induced keloid fibroblasts by targeting Smad2 signaling pathway. Burns 2025; 51:107472. [PMID: 40319830 DOI: 10.1016/j.burns.2025.107472] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND CD147 is closely involved in the progression of fibrosis and tumor formation in various tissues, however, its role in keloid formation remains unknown. In this study, we investigate the expression of CD147 in keloids and explore its functional roles. METHODS CD147 expression in human keloid tissues was assessed using immunohistopathology and western blot analysis. Human keloid fibroblasts (KFs) were cultured and treated with TGF-β1 alone or in combination with the CD147 inhibitor AC-73. Western blot and immunofluorescence were employed to examine CD147 and fibronectin expression levels in KFs post-treatment. Additionally, the effect of CD147 inhibitor on Smad2 phosphorylation and fibronectin protein levels in TGF-β1-induced KFs was evaluated by western blot. Finally, a keloid-bearing nude mouse model was established to investigate the therapeutic effect of AC-73 in vivo. RESULTS CD147 expression was significantly higher in keloid tissues compared to normal skin. TGF-β1 treatment upregulated CD147 and fibronectin expressions in cultured KFs. Inhibition of CD147 with AC-73 reduced the expression levels of both CD147 and fibronectin in KFs. Additionally, AC-73 markedly attenuated TGF-β1-induced fibronectin expression and suppressed Smad2 phosphorylation. In the nude mouse model, AC-73 significantly reduced the gross weight of xenotransplanted keloid tissues. CONCLUSION These findings suggest that CD147 is closely involved in keloid progression. Inhibition of CD147 downregulates TGF-β1-induced fibronectin expression in KFs by targeting Smad2 signaling pathway. Thus, CD147 may serve as a promising therapeutic target for keloid treatment.
Collapse
Affiliation(s)
- Jian-Sheng Diao
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui-Cong Du
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juan Wu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin-Nan Han
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng-Lu Wu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rong-Guang Lai
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Md Atiqur Rahman
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Plastic Surgery, East West Medical College and Hospital, Turag, Dhaka, Bangladesh
| | - Mao-Guo Shu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
9
|
Zhuang X, Wang C, Ge Z, Wu M, Chen M, Chen Z, Hu J. MICAL1 Mediates TGF-β1-Induced Epithelial-to-Mesenchymal Transition and Metastasis of Hepatocellular Carcinoma by Activating Smad2/3. Cell Biochem Biophys 2025; 83:2589-2606. [PMID: 39954154 DOI: 10.1007/s12013-025-01668-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 02/17/2025]
Abstract
Epithelial-mesenchymal transition (EMT) induced by transforming growth factor-β (TGF-β) is involved in hepatocellular carcinoma (HCC) growth and metastasis. Our study aimed to investigate the role of molecules interacting with CasL 1 (MICAL1) in regulating TGF-β-triggered EMT in HCC and the related mechanisms. After detecting MICAL1 expression and prognostic value in HCC, in vitro assays including CCK-8 assay, EdU staining, flow cytometry assay, Transwell assay, western blotting, and RT-qPCR and in vivo metastasis assay was conducted to evaluate the influence of MICAL1 knockdown on the proliferation and apoptosis as well as TGF-β-induced EMT and metastasis of Huh7 and MHCC97H cells. MICAL1 was highly expressed in HCC, and its high expression was related to histological grade, TNM stage, and shorter overall survival of HCC patients. MICAL1 silencing suppressed proliferation, promoted apoptosis, and curbed TGF-β1-triggered cytoskeletal remodeling, EMT, and metastasis of HCC cells. MICAL1 knockdown impeded TGF-β1-induced upregulation in phosphorylated-Smad2/3 protein levels and reduced Smad2/3 mRNA levels in HCC cells. MICAL1 downregulation enhanced the polyubiquitination and proteasomal degradation of TβRI. Additionally, MICAL1 silencing suppressed tumor growth and lung metastasis in Huh7-derived xenograft mouse models. Collectively, MICAL1 knockdown impairs TGF-β1-stimulated EMT and metastasis of HCC cells by restraining Smad2/3 phosphorylation and activation.
Collapse
Affiliation(s)
- Xun Zhuang
- Department of Gastroenterology, The People's Hospital of Dan Yang, Zhenjiang, Jiangsu, PR China
| | - Chunrong Wang
- Department of Gastroenterology, The People's Hospital of Dan Yang, Zhenjiang, Jiangsu, PR China
| | - Zhenghui Ge
- Department of Gastroenterology, The People's Hospital of Dan Yang, Zhenjiang, Jiangsu, PR China
| | - Mengjie Wu
- Department of Gastroenterology, The People's Hospital of Dan Yang, Zhenjiang, Jiangsu, PR China
| | - Mengjiao Chen
- Department of Gastroenterology, The People's Hospital of Dan Yang, Zhenjiang, Jiangsu, PR China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Jianghong Hu
- Department of Gastroenterology, The People's Hospital of Dan Yang, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
10
|
Fang B, Lu Y, Li X, Wei Y, Ye D, Wei G, Zhu Y. Targeting the tumor microenvironment, a new therapeutic approach for prostate cancer. Prostate Cancer Prostatic Dis 2025; 28:260-269. [PMID: 38565910 DOI: 10.1038/s41391-024-00825-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND A growing number of studies have shown that in addition to adaptive immune cells such as CD8 + T cells and CD4 + T cells, various other cellular components within prostate cancer (PCa) tumor microenvironment (TME), mainly tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSCs), have been increasingly recognized as important modulators of tumor progression and promising therapeutic targets. OBJECTIVE In this review, we aim to delineate the mechanisms by which TAMs, CAFs and MDSCs interact with PCa cells in the TME, summarize the therapeutic advancements targeting these cells and discuss potential new therapeutic avenues. METHODS We searched PubMed for relevant studies published through December 10 2023 on TAMs, CAFs and MDSCs in PCa. RESULTS TAMs, CAFs and MDSCs play a critical role in the tumorigenesis, progression, and metastasis of PCa. Moreover, they substantially mediate therapeutic resistance against conventional treatments including anti-androgen therapy, chemotherapy, and immunotherapy. Therapeutic interventions targeting these cellular components have demonstrated promising effects in preclinical models and several clinical trials for PCa, when administrated alone, or combined with other anti-cancer therapies. However, the lack of reliable biomarkers for patient selection and incomplete understanding of the mechanisms underlying the interactions between these cellular components and PCa cells hinder their clinical translation and utility. CONCLUSION New therapeutic strategies targeting TAMs, CAFs, and MDSCs in PCa hold promising prospects. Future research endeavors should focus on a more comprehensive exploration of the specific mechanisms by which these cells contribute to PCa, aiming to identify additional drug targets and conduct more clinical trials to validate the safety and efficacy of these treatment strategies.
Collapse
Affiliation(s)
- Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Gonghong Wei
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
11
|
Ma L, Wang W, Gu L, Wang L. cPLA 2α on the influence of Th17 and its role in the formation of liver fibrosis. Cytotechnology 2025; 77:87. [PMID: 40206205 PMCID: PMC11977053 DOI: 10.1007/s10616-025-00750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025] Open
Abstract
This study primarily investigated the mechanism and pathways of the cPLA2α signaling pathway on Th17-mediated HSC activation and liver fibrosis, providing insights for clinical strategies to target HSC activation and delay the rapid progression of liver fibrosis. In vitro and in vivo model were established, and different concentrations of the cPLA2α inhibitor AACOCF3 were administered respectively for intervention. The expression of IL- 17 was detected by ELISA, and the expression of cPLA2α protein and HSC activation protein α-SMA index were detected by Western blot and immunofluorescence. In addition, observe the changes in the degree of liver fibrosis in mice through the pathological staining of mouse livers. In an in vitro system, Th17 could induce HSC activation. And after intervention, the results showed that the inhibitor could inhibit Th17 activation of HSC. Next, in an in vivo model, Th17 could also induce HSC activation. And after intervention, the results showed that the inhibitor could also inhibit HSC activation by Th17. Observation under liver pathological staining showed that the inflammation and staining were significantly reduced in the intervention group, suggesting a therapeutic effect of AACOCF3. Using in vitro and in vivo approaches, these data suggest that Th17 cells can promote the activation and proliferation of HSCs, which further exerts a role in promoting liver fibrosis. These data also suggest that the cPLA2α pathway may be involved in the activation of HSCs by Th17 cells and induce liver fibrosis mechanisms.
Collapse
Affiliation(s)
- Lina Ma
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 Shandong China
- Shandong First Medical University, Jinan, 250117 Shandong China
| | - Wei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 Shandong China
- Shandong First Medical University, Jinan, 250117 Shandong China
| | - Limin Gu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 Shandong China
- Shandong First Medical University, Jinan, 250117 Shandong China
| | - Liyun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 Shandong China
| |
Collapse
|
12
|
Fu Y, Yang Q, Xu N, Zhang X. MiRNA affects the advancement of breast cancer by modulating the immune system's response. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167759. [PMID: 40037267 DOI: 10.1016/j.bbadis.2025.167759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/05/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Breast cancer (BC), which is the most common tumor in women, has greatly endangered women's lives and health. Currently, patients with BC receive comprehensive treatments, including surgery, chemotherapy, radiotherapy, endocrine therapy, and targeted therapy. According to the latest research, the development of BC is closely related to the inflammatory immune response, and the immunogenicity of BC has steadily been recognized. As such, immunotherapy is one of the promising and anticipated forms of treatment for BC. The potential values of miRNA in the diagnosis and prognosis of BC have been established, and aberrant expression of associated miRNA can either facilitate or inhibit progression of BC. In the tumor immune microenvironment (TME), miRNAs are considered to be an essential molecular mechanism by which tumor cells interact with immunocytes and immunologic factors. Aberrant expression of miRNAs results in reprogramming of tumor cells actively, which may suppress the generation and activation of immunocytes and immunologic factors, avoid tumor cells apoptosis, and ultimately result in uncontrolled proliferation and deterioration. Therefore, through activating and regulating the immunocytes related to tumors and associated immunologic factors, miRNA can contribute to the advancement of BC. In this review, we assessed the function of miRNA and associated immune system components in regulating the advancement of BC, as well as the potential and viability of using miRNA in immunotherapy for BC.
Collapse
Affiliation(s)
- Yeqin Fu
- Zhejiang cancer hospital, Hangzhou, Zhejiang 310022, China; Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
| | - Qiuhui Yang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 310006, China
| | - Ning Xu
- Zhejiang cancer hospital, Hangzhou, Zhejiang 310022, China; School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Xiping Zhang
- Zhejiang cancer hospital, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
13
|
Zha Z, Ge F, Li N, Zhang S, Wang C, Gong F, Miao J, Chen W. Effects of Na V1.5 and Rac1 on the Epithelial-Mesenchymal Transition in Breast Cancer. Cell Biochem Biophys 2025; 83:1483-1494. [PMID: 39673684 PMCID: PMC12089171 DOI: 10.1007/s12013-024-01625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 12/16/2024]
Abstract
Breast cancer is a disease that seriously endangers the health of women. However, it is difficult to treat due to the emergence of metastasis and drug resistance. Exploring the metastasis mechanism of breast cancer is helpful to aim for the appropriate target. The epithelial-mesenchymal transition (EMT) is an important mechanism of breast cancer metastasis. Sodium channel 1.5(NaV1.5) and the GTPase Rac1 are factors related to the degree of malignancy of breast tumors. The expression of NaV1.5 and the activation of Rac1 are both involved in EMT. In addition, NaV1.5 can change the plasma membrane potential (Vm) by promoting the inflow of Na+ to depolarize the cell membrane, induce the activation of Rac1 and produce a cascade of reactions that lead to EMT in breast cancer cells; this sequence of events further induces the movement, migration and invasion of tumor cells and affects the prognosis of breast cancer patients. In this paper, the roles of NaV1.5 and Rac1 in EMT-mediated breast cancer progression were reviewed.
Collapse
Affiliation(s)
- Zhuocen Zha
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
- Oncology department, Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou, 550000, China
| | - Fei Ge
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Na Li
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Shijun Zhang
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Chenxi Wang
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Fuhong Gong
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Jingge Miao
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Wenlin Chen
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China.
| |
Collapse
|
14
|
Li J, Zhou Y, He S, Mao W, Han X, Zhang X, Wang Y. Inhibiting Effect of LIPUS on Epithelial-Mesenchymal Transition in Lens Epithelial Cells. Exp Eye Res 2025:110450. [PMID: 40449868 DOI: 10.1016/j.exer.2025.110450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/16/2025] [Accepted: 05/22/2025] [Indexed: 06/03/2025]
Abstract
To investigate the effect of low-intensity pulsed ultrasound (LIPUS) on epithelial-mesenchymal transition (EMT) in lens epithelial cells. EMT was induced using high glucose (HG) in SRA01/04 cells. Optimal parameters for LIPUS irradiation were determined by cell counting kit-8 assays and flow cytometry. Cell morphology was assessed by light microscopy, while cell migration ability was analyzed by a wound healing assay. Levels of specific proteins and the relationship between autophagy and the cytoskeleton were examined by immunofluorescence (IF) staining and Western blot (WB). Cytoskeletal structures were visualized by phalloidin staining and autophagosomes were quantified by transmission electron microscopy. EMT was successfully induced by HG treatment. Compared to the model group, LIPUS irradiation resulted in a change in cell morphology from spindle to oval, a significant decrease in cell migration area, and an increase in E-cadherin and LC3B/LC3A levels. In contrast, α-SMA and SQSTM1/P62 levels decreased, the number of autophagosomes increased and F-actin levels decreased in the LIPUS group. SRA01/04 cells treated with LIPUS irradiation after autophagy inhibitors 3-MA and CQ showed increased cell migration area compared to the 3-MA/CQ group; LC3B/LC3A levels decreased; SQSTM1/P62 and F-actin levels increased in the LIPUS + 3-MA/CQ group compared to 3-MA/CQ treatment alone. Colocalization of the cytoskeletal marker Arpc2 with the autophagy marker SQSTM1/P62 was also observed. After treatment with the cytoskeletal inhibitor CK666+LIPUS combination therapy, SQSTM1/P62 levels increased while LC3B/LC3A levels decreased. LIPUS inhibited HG-induced EMT by restoring autophagy, which appears to be associated with cytoskeletal remodeling.
Collapse
Affiliation(s)
- Junfen Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yiqing Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Sicheng He
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Wenjing Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xinbing Han
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xinyi Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yan Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Zhang L, Gan L, Lin Y, Mei Z, Liao S. FTO Promotes Hepatocellular Carcinoma Progression by Mediating m6A Modification of BUB1 and Targeting TGF-βR1 to Activate the TGF-β Signaling Pathway. J Clin Transl Hepatol 2025; 13:385-394. [PMID: 40385944 PMCID: PMC12078176 DOI: 10.14218/jcth.2025.00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/01/2025] [Accepted: 03/17/2025] [Indexed: 05/20/2025] Open
Abstract
Background and Aims Fat mass and obesity-associated protein (FTO) has been linked to various cancers, though its role in hepatocellular carcinoma (HCC) remains unclear. This study aimed to investigate FTO expression, its clinical relevance, functional role in HCC progression, and the underlying molecular mechanisms. Methods Quantitative reverse-transcription polymerase chain reaction and immunohistochemical analysis were used to assess FTO expression in HCC. Functional assays, including proliferation, invasion, and epithelial-mesenchymal transition studies, were conducted using HCC cell lines with FTO knockdown. N6-methyladenosine (m6A) RNA immunoprecipitation and RNA stability assays further elucidated the role of FTO in BUB1 mRNA methylation and stability. Co-immunoprecipitation studies were employed to confirm the interaction between BUB1 and TGF-βR1. In vivo studies in nude mice were conducted to evaluate tumor growth following FTO knockdown. Results FTO was significantly upregulated in HCC tissues compared to normal liver tissues, with higher expression observed in advanced tumor-node-metastasis stages and metastatic HCC. Elevated FTO correlated with poor overall survival in patients. Silencing FTO decreased HCC cell proliferation, colony formation, invasion, epithelial-mesenchymal transition, and tumor growth in nude mice. Mechanistically, FTO downregulation led to increased m6A modification of BUB1 mRNA, thereby promoting its degradation via the YTH domain family 2-dependent pathway and reducing BUB1 protein levels. Additionally, BUB1 physically interacted with TGF-βR1, activating downstream TGF-β signaling. Conclusions FTO is overexpressed in HCC and is associated with poor clinical outcomes. Mechanistically, FTO promotes HCC progression by stabilizing BUB1 mRNA through an m6A-YTH domain family 2-dependent pathway, which activates TGF-β signaling. Targeting the FTO-BUB1-TGF-βR1 regulatory network may offer a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Gastroenterology, Chongqing Jiangjin Central Hospital, Chongqing, China
| | - Li Gan
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Yuru Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Hu X, Jiang T, Wang J. Molecular subtype characteristics and development of prognostic model based on inflammation-related gene in lung adenocarcinoma. Discov Oncol 2025; 16:875. [PMID: 40407957 PMCID: PMC12102027 DOI: 10.1007/s12672-025-02513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/25/2025] [Indexed: 05/26/2025] Open
Abstract
As one of the leading causes of death worldwide, lung adenocarcinoma (LUAD) currently lacks satisfactory treatment outcomes. The inflammatory process, closely associated with the formation of the tumor microenvironment and immune evasion, plays a crucial role in LUAD development. This study utilized data from public databases to analyze inflammation-related genes (INF) associated with prognosis in LUAD. Based on differentially expressed INF, molecular subtypes of LUAD were identified. Subsequently, a novel INF scoring system was developed to establish a prognostic model for LUAD patients, assessing its independence and reliability. Comprehensive evaluations, including immune microenvironment infiltration features, somatic mutation characteristics, and differences in immune therapy responsiveness, were conducted to characterize the prognostic model associated with INF. We further selected MMP14 from the screened INF targets for further in vitro experiments. Experiments such as western blot, qRT-PCR, colony-forming assay and Transwell assay confirmed that downregulation of MMP14 could inhibit the cloning, proliferation and invasion of lung cancer cells, thus confirming the results of bioinformatics. Our findings provide evidence from a new perspective on the role of inflammation in LUAD and offer new insights for clinical precision and personalized therapy.
Collapse
Affiliation(s)
- Xuelei Hu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Tengfei Jiang
- Medical Laboratory Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Jinxiang Wang
- Department of Respiratory and Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
17
|
Cheng W, Zheng Y, Tang Q, Qi L, Shi Z, Yu Q, Li M, Wei X, Zhou Y, Jiang X. Discovery of Novel Cyclic Peptides as SMAD2-SMAD4 Interaction Inhibitors for the Treatment of Hepatic Fibrosis. J Med Chem 2025; 68:9958-9972. [PMID: 40320643 DOI: 10.1021/acs.jmedchem.4c02938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Hepatic fibrosis, characterized by the excessive deposition of the extracellular matrix, represents a common consequence of various chronic liver disorders. However, no specific drugs are available for antifibrotic therapy to date. SMAD2 is phosphorylated by transforming growth factor-β and subsequently binds to SMAD4 to generate a heteromeric complex, which then translocates into the nucleus and aggravates liver fibrosis. Herein, based on molecular docking simulation and structure-activity relationship study, we report the discovery of a novel cyclic peptide CMF9 that targets SMAD2 and potently interferes with the SMAD2-SMAD4 interaction. The subsequent in vivo and in vitro pharmacological studies demonstrated that CMF9 dramatically suppressed hepatic stellate cells activation and collagen synthesis, alleviating CCl4-induced hepatic inflammation and fibrosis. Overall, we first demonstrated that the novel cyclic peptide CMF9 could efficiently block the SMAD2-SMAD4 interaction via selectively inhibiting SMAD2 phosphorylation, providing a promising therapeutic strategy for targeting SMAD2 and an alternative candidate for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Wei Cheng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yawen Zheng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qinglin Tang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liang Qi
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zihan Shi
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qihong Yu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingmin Li
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Xianzhi Wei
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yifeng Zhou
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Xianxing Jiang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
18
|
Liu Y, Ran X, Zhou G, Liu Y, Tan W. Multivalent Aptamer Assembly Enhances Tumor-Specific Degradation of Transforming Growth Factor-Beta to Remodel the Stromal and Immunosuppressive Cancer Microenvironment. ACS NANO 2025; 19:18164-18175. [PMID: 40326636 DOI: 10.1021/acsnano.4c16628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Extracellular proteins like transforming growth factor-β (TGFβ) are crucial enforcers in the development of cancer stroma and the tumor immunosuppressive microenvironment. Lysosome-targeting chimera-mediated protein degradation appeared as a promising tool for extracellular signal interference but was limited by several lysosome-trafficking receptors and inadequate in vivo degradation efficiency. Here, we designed a multivalent aptamer assembly with a universal pattern to drag extracellular proteins (e.g., TGFβ1) for lysosome degradation with high tumor specificity. By accelerating cell recognition-internalization and lysosomal delivery, the assembly promoted TGFβ blockade and degradation in pancreatic cancer cells and pancreatic stellate cells (PSCs). In vivo, the assembly exhibited highly tumor-specific accumulation and prolonged retention, which resulted in efficient TGFβ inhibition, stromal remodeling, and reversed polarization of immunosuppressive cells in the tumor microenvironment, as well as synergic therapeutic effects when combined with gemcitabine or ovalbumin. Therefore, this study provides a feasible strategy to construct a multivalent aptamer assembly for tumor-specific extracellular protein degradation, after remodeling the tumor stromal and immunosuppressive microenvironment in a manner that enhances the effects of cancer chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyue Ran
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guangdong Zhou
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
19
|
Yan Y, Xing S, Liu J, Yan X, Guan Y, Jiang Z, Zhang W, Li X. Lycium barbarum glycopeptide reduces inflammation and fibrosis in corneal injury by modulating the NF-κB/NLRP3/IL-1 β signaling pathway and microRNA-21a-5p/SMAD7. Exp Eye Res 2025:110438. [PMID: 40398709 DOI: 10.1016/j.exer.2025.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/26/2025] [Accepted: 05/19/2025] [Indexed: 05/23/2025]
Abstract
Lycium barbarum glycopeptide (LbGp), derived from the Chinese medicinal plant Lycium barbarum, has demonstrated anti-inflammatory properties; however, its precise role and mechanism in corneal repair following injury remain elusive. The present research investigated the mechanisms and effects of LbGp on corneal repair following alkali burn injury using in vivo mouse models of corneal alkali burn and in vitro human keratocyte fibrosis models. Corneal inflammation, opacity, and epithelial defects were assessed via a slit lamp microscope. Results showed that LbGp-treated mice exhibited reduced edema, accelerated re-epithelialization, and decreased corneal opacity compared to the phosphate-buffered saline (PBS)-treated controls. Proteomic analysis revealed altered proteins enriched in the extracellular matrix among the control, injury, and LbGp treatment groups. Moreover, LbGp significantly attenuated TGFβ-1-induced myofibroblasts transdifferentiation from keratocytes. Consistently, LbGp treatment inhibited the upregulation of fibrosis markers (αSMA, fibronectin, and collagen III) at both the protein and mRNA levels after corneal alkali burns. LbGp also effectively suppressed the activation of the NF-κB/NLRP3/IL-1β signaling pathway and neutrophil infiltration following corneal alkali burn injury. Additionally, miR-21 was upregulated in TGFβ-1-stimulated keratocytes and in the alkali-burned mouse cornea. LbGp decreased miR-21 expression, while increasing expression of its target, Smad7, thereby dampening the TGFβ/Smad2/3 signaling pathway. This research demonstrates that LbGp promotes corneal healing by inhibiting inflammation and fibrosis after alkali burns, suggesting its potential as a supplementary therapy for corneal injury repair.
Collapse
Affiliation(s)
- Yarong Yan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Shulei Xing
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Jinghua Liu
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China; Nankai University affiliated Eye Hospital, Tianjin, China
| | - Xinlin Yan
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China; Nankai University affiliated Eye Hospital, Tianjin, China
| | - Yi Guan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Zhixin Jiang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China; Nankai University affiliated Eye Hospital, Tianjin, China
| | - Wei Zhang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China; Nankai University affiliated Eye Hospital, Tianjin, China
| | - Xuan Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China; Nankai University affiliated Eye Hospital, Tianjin, China.
| |
Collapse
|
20
|
Ahn D, Lee HK, Bae SH, Na H, Choi KC. Downregulation of transforming growth factor-β2 enhances the chemosensitivity to gemcitabine with diminished metastasis in pancreatic cancers. Biomed Pharmacother 2025; 188:118151. [PMID: 40378770 DOI: 10.1016/j.biopha.2025.118151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/27/2025] [Accepted: 05/07/2025] [Indexed: 05/19/2025] Open
Abstract
Pancreatic cancer is characterized by high rates of metastasis, recurrence, and chemoresistance, contributing to its poor prognosis. Transforming growth factor-β2 (TGF-β2), a member of the TGF-β family, plays a pivotal role in promoting cancer cell metastasis and mediating chemoresistance, particularly in advanced stages of tumor progression. However, the precise role of TGF-β in chemoresistance and metastasis in pancreatic cancer has not been studied yet. In the current study, we investigated the potential of human TGF-β2 antisense oligonucleotides (TGF-β2i) to enhance the chemosensitivity to gemcitabine in pancreatic cancer, using human pancreatic cancer cell lines (hPCCs; PANC-1, MIA PaCa-2, and AsPC-1), a co-culture model with human pancreatic stellate cells (hPSCs), a cancer-associated fibroblast-integrated pancreatic cancer organoid model (CIPCO), and an orthotopic xenograft mouse model. TGF-β2i decreased cell proliferation, migration, and viability in hPCCs, and its combination with gemcitabine exhibited a synergistic effect in PANC-1 and MIA PaCa-2 cells. Flow cytometry demonstrated a decrease in CD44 +CD24 +EpCAMHigh cancer stem-like cell populations following TGF-β2i treatment. In co-culture models, hPSCs-induced enhancement of hPCCs migration was attenuated by TGF-β2i. In the CIPCOs, TGF-β2i suppressed the gemcitabine-induced expression of extracellular matrix components such as COL1A1 and VIM. Furthermore, in an orthotopic mouse model generated by co-inoculating hPCCs and hPSCs into the pancreatic wall, co-treatment of TGF-β2i with gemcitabine significantly delayed tumor growth and metastasis to the liver compared to vehicle control. These findings suggest that TGF-β2i enhances chemosensitivity and suppresses metastatic properties by regulating both tumor-intrinsic and -extrinsic factors, indicating that targeting TGF-β2 could be a promising strategy for managing pancreatic cancer.
Collapse
Affiliation(s)
- Dohee Ahn
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Hong Kyu Lee
- Department of Companion Animal Health, College of Biomedical Science & Health, Inje University, Gimhae, Gyeongsangnam-do 50834, Republic of Korea
| | - Sang Hyeok Bae
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Hwayoung Na
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
21
|
Ma M, Chu Z, Quan H, Li H, Zhou Y, Han Y, Li K, Pan W, Wang DY, Yan Y, Shu Z, Qiao Y. Natural products for anti-fibrotic therapy in idiopathic pulmonary fibrosis: marine and terrestrial insights. Front Pharmacol 2025; 16:1524654. [PMID: 40438605 PMCID: PMC12116445 DOI: 10.3389/fphar.2025.1524654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/29/2025] [Indexed: 06/01/2025] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronic fibrotic interstitial lung disease (ILD) of unknown etiology, characterized by increasing incidence and intricate pathogenesis. Current FDA-approved drugs suffer from significant side effects and limited efficacy, highlighting the urgent need for innovative therapeutic agents for IPF. Natural products (NPs), with their multi-target and multifaceted properties, present promising candidates for new drug development. This review delineates the anti-fibrotic pathways and targets of various natural products based on the established pathological mechanisms of IPF. It encompasses over 20 compounds, including flavonoids, saponins, polyphenols, terpenoids, natural polysaccharides, cyclic peptides, deep-sea fungal alkaloids, and algal proteins, sourced from both terrestrial and marine environments. The review explores their potential roles in mitigating pulmonary fibrosis, such as inhibiting inflammatory responses, protecting against lipid peroxidation damage, suppressing mesenchymal cell activation and proliferation, inhibiting fibroblast migration, influencing the synthesis and secretion of pro-fibrotic factors, and regulating extracellular matrix (ECM) synthesis and degradation. Additionally, it covers various in vivo and in vitro disease models, methodologies for analyzing marker expression and signaling pathways, and identifies potential new therapeutic targets informed by the latest research on IPF pathogenesis, as well as challenges in bioavailability and clinical translation. This review aims to provide essential theoretical and technical insights for the advancement of novel anti-pulmonary fibrosis drugs.
Collapse
Affiliation(s)
- Meiting Ma
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Zhengqi Chu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Hongyu Quan
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Hanxu Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Yuran Zhou
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yanhong Han
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Kefeng Li
- Faculty of Applied Sciences, Macao Polytechnic University, Macau, Macao SAR, China
| | - Wenjun Pan
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Yan Yan
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Zunpeng Shu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Yongkang Qiao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| |
Collapse
|
22
|
Khan A, Sisodiya S, Aftab M, Tanwar P, Hussain S, Gupta V. Mechanisms and Therapeutic Strategies for Endocrine Resistance in Breast Cancer: A Comprehensive Review and Meta-Analysis. Cancers (Basel) 2025; 17:1653. [PMID: 40427153 PMCID: PMC12109706 DOI: 10.3390/cancers17101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 05/29/2025] Open
Abstract
Background: As per recent scenarios, drug resistance is a significant challenge in treating breast cancer for several reasons, such as genetic mutations, altered signaling pathways, and tumor microenvironment. Endocrine resistance is one of the biggest significant barriers to treatment, particularly in hormone receptor-positive (HR+) breast cancers, which depends on estrogen or progesterone signaling for growth. While therapies such as tamoxifen, aromatase inhibitors, and selective estrogen receptor degraders (SERDs) have effectively targeted these pathways, many patients develop resistance, rendering them less effective over time, which is driving a need for innovative therapeutics to treat breast cancer and overcome drug resistance and better treatment outcomes. Recent studies suggest that combining the different therapies, including immunotherapy, targeted therapy, chemotherapy, etc., with endocrine therapy, may bypass the endocrine resistance. Methodology: We conducted a comprehensive systematic review and meta-analysis examining the molecular mechanisms of endocrine resistance and evaluating randomized clinical trial outcomes, overall survival and progression-free survival in endocrine-resistant breast cancer patients treated with endocrine therapy, targeted therapy, immunotherapy, or chemotherapy. Results: We have analyzed 35 randomized clinical trial studies for different therapies along with combination therapy, and our results demonstrated that supplementary or additional therapies in endocrine resistance breast cancer patients have better progression-free and overall survival. Conclusions: The current study has demonstrated that combination therapies may have good survival results and patient outcomes in endocrine resistance. Also, This review sheds light on current challenges in drug resistance and the future direction of cancer treatment through a comprehensive analysis of these emerging treatment approaches to improve patient outcomes.
Collapse
Affiliation(s)
- Asiya Khan
- Multidisciplinary Research Unit, Government Institute of Medical Sciences, Greater Noida 201310, India;
- Department of Pathology, Government Institute of Medical Sciences, Greater Noida 201310, India
| | - Sandeep Sisodiya
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR—National Institute of Cancer Prevention and Research, Ministry of Health and Family Welfare, Government of India, Noida 201301, India; (S.S.); (M.A.)
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune 412115, India
| | - Mehreen Aftab
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR—National Institute of Cancer Prevention and Research, Ministry of Health and Family Welfare, Government of India, Noida 201301, India; (S.S.); (M.A.)
| | - Pranay Tanwar
- Lab Oncology Unit, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Showket Hussain
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR—National Institute of Cancer Prevention and Research, Ministry of Health and Family Welfare, Government of India, Noida 201301, India; (S.S.); (M.A.)
| | - Vivek Gupta
- Department of Pathology, Government Institute of Medical Sciences, Greater Noida 201310, India
| |
Collapse
|
23
|
Zhao S, Zhang Y, Meng X, Wang Y, Li Y, Li H, Zhao X, Yang P, Liu S, Yang C. INHBA + macrophages and Pro-inflammatory CAFs are associated with distinctive immunosuppressive tumor microenvironment in submucous Fibrosis-Derived oral squamous cell carcinoma. BMC Cancer 2025; 25:857. [PMID: 40355814 PMCID: PMC12067746 DOI: 10.1186/s12885-025-14261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Transcriptomic and metabolic profiles of tumor cells and stromal cells in oral squamous cell carcinoma (OSCC)-derived from oral submucosal fibrosis (OSF) (ODSCC) have been reported. However, the complex intercellular regulatory network within the tumor immunosuppressive microenvironment (TISME) in ODSCC remains poorly elucidated. Here, we utilized single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) data from GEO database and multiple immunofluorescence staining (mIF) to reveal distinctive TISME of ODSCC. Results found that compared to OSCC without OSF history (NODSCC), OSCC derived from OSF (ODSCC) showed a significant increase in exhausted CD8+T and Treg cells (Ro/e > 1, p < 0.05) and a decrease in cytotoxic T (CTL) (Ro/e < 1). ODSCC enriched in more Inhibin subunit beta A+ Macrophages (INHBA+Mac) and Proinflammatory Cancer-associated Fibroblast (iCAF) versus NODSCC. INHBA+Mac possessed strongest immune-suppressive functions, evidenced by highest immune checkpoint scores, lowest MHC scores and highest expression of SPP1 among macrophages. Moreover, INHBA+Mac in ODSCC presented stronger immune-suppressive functions than that in NODSCC. iCAF differentially highly expressed INHBA and enriched in immune-related pathways and collagen/ECM pathways across CAF subsets, and possessed stronger immune-suppressive functions, as shown by up-regulated gene expression of TDO2, IDO1 and DUSP4 in ODSCC versus in NODSCC. Furthermore, INHBA expression was higher in ODSCC than in NODSCC (p < 0.01). The classic OSF-inducing molecule arecoline significantly increases the expression of INHBA (p < 0.0001) in vitro experiments stimulating THP-1 cells. ST analysis revealed a close co-location of INHBA+Mac, iCAF and Treg and SpaGene identified INHBA-ACVR1/ACVR2A/ACVR2B interaction regions overlapping with distribution of three types of cells. Collectively, ODSCC shows a more severe TISME and potentially poorer sensitivity to immunotherapy than NODSCC. The increased INHBA+Mac and iCAF in ODSCC are associated with the observed more severe TISME. The upregulated INHBA in ODSCC and its interaction with INHBA-ACVR1/ACVR2A/ACVR2B may mediate the modulation effect of INHBA+ Mac and iCAF on Treg differentiation and functionality.
Collapse
Affiliation(s)
- Simin Zhao
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu Zhang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoqin Meng
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Ye Wang
- Department of Stomatology, Shandong Provincial Hospital, Shandong Provincial Hospital Affiliated to Shandong First Medical University &Department of Stomatology, Shandong University, Jinan, Shandong, China
| | - Yahui Li
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Hao Li
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Xingyu Zhao
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
- Department of Plastic, Aesthetic, and Burn Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, China
| | - Shaopeng Liu
- Department of Stomatology, Shandong Provincial Hospital, Shandong Provincial Hospital Affiliated to Shandong First Medical University &Department of Stomatology, Shandong University, Jinan, Shandong, China.
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
24
|
Mohammed A, Atkin SL, Brennan E. Dysregulation of microRNA (miRNA) Due to Phthalate/Phthalate Metabolite Exposure and Associated Health Effects: A Narrative Review. J Xenobiot 2025; 15:72. [PMID: 40407536 PMCID: PMC12101272 DOI: 10.3390/jox15030072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/26/2025] Open
Abstract
Phthalates, a group of synthetic non-persistent organic chemicals commonly used as solvents and plasticisers, have been associated with a range of detrimental health effects. These endocrine disrupting chemicals (ECDs) may exert their effects through epigenetic changes such as altered microRNA (miRNA) expression. miRNAs are short non-coding endogenous RNA transcripts that are preferentially expressed in various tissues and cell types and can circulate in body fluids, thereby regulating gene expression and acting as mediators for intercellular communication. As miRNAs mostly target protein-coding transcripts, they are involved in nearly all networks that regulate developmental and pathological processes. In this review, we provide an overview of human, in vivo and in vitro studies assessing altered miRNA expression due to phthalate exposure and their biological effects. Importantly, this study suggests that the mechanism of phthalate action may in part be mediated by epigenetic changes, affecting a large number of different proteins. This is indicative that alterations in miRNA expression induced by phthalate exposure are then implicated in a wide range of health conditions, including reproductive dysfunction, oncogenesis, metabolic disorders, and neurodevelopmental outcomes. Exposure to phthalates and their metabolites predominantly results in the upregulation of miRNAs. Dysregulation of miR-34a, miR-15b, miR-141, miR-184, miR-19a, miR-125, and miR-let-7 were observed across several studies. More research involving human participants combined with mechanistic studies integrating mRNA target analysis would be beneficial in understanding the downstream effects of phthalate exposure on gene expression and grasping the broader biological implications.
Collapse
Affiliation(s)
- Aamer Mohammed
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| | - Stephen L. Atkin
- School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| | - Edwina Brennan
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| |
Collapse
|
25
|
Xu J, Shi P, Yang L, Cui H. Basic mechanism of mobilizing cell movement during invasion of glioblastoma and target selection of targeted therapy. J Adv Res 2025:S2090-1232(25)00286-3. [PMID: 40345646 DOI: 10.1016/j.jare.2025.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/09/2025] [Accepted: 04/27/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM), also known as glioblastoma multiforme, is a rapidly growing and highly invasive malignant tumor. Due to the inability to clearly distinguish between glioblastoma and normal tissue, surgery cannot achieve safe resection, often leading to poor patient prognosis and inevitable tumor recurrence. According to previous studies, GBM invasion is related to intercellular adhesion, matrix degradation, extracellular matrix and its related adhesion molecules, as well as the molecular matrix of protein hydrolases in the microenvironment of GBM cells and stromal cells. AIM OF REVIEW The aim is to enhance our understanding of the molecular mechanisms underlying GBM invasion and to advance research on targeted therapies for inhibiting GBM invasion. KEY SCIENTIFIC CONCEPTS OF REVIEW This article describes the protein hydrolases that may affect GBM cell invasion, changes in the cytoskeleton during motility, and the regulatory mechanisms of intracellular signaling pathways in GBM invasion. In addition, we also explored the possibility of targeted therapy against invasion related molecules in GBM.
Collapse
Affiliation(s)
- Jie Xu
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Pengfei Shi
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China.
| | - Liqun Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China.
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China.
| |
Collapse
|
26
|
Pei D, Ma Z, Qiu Y, Wang M, Wang Z, Liu X, Zhang L, Zhang Z, Li R, Yan D. MRI-based machine learning reveals proteasome subunit PSMB8-mediated malignant glioma phenotypes through activating TGFBR1/2-SMAD2/3 axis. MOLECULAR BIOMEDICINE 2025; 6:28. [PMID: 40335825 PMCID: PMC12058589 DOI: 10.1186/s43556-025-00268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 05/09/2025] Open
Abstract
Gliomas are the most prevalent and aggressive neoplasms of the central nervous system, representing a major challenge for effective treatment and patient prognosis. This study identifies the proteasome subunit beta type-8 (PSMB8/LMP7) as a promising prognostic biomarker for glioma. Using a multiparametric radiomic model derived from preoperative magnetic resonance imaging (MRI), we accurately predicted PSMB8 expression levels. Notably, radiomic prediction of poor prognosis was highly consistent with elevated PSMB8 expression. Our findings demonstrate that PSMB8 depletion not only suppressed glioma cell proliferation and migration but also induced apoptosis via activation of the transforming growth factor beta (TGF-β) signaling pathway. This was supported by downregulation of key receptors (TGFBR1 and TGFBR2). Furthermore, interference with PSMB8 expression impaired phosphorylation and nuclear translocation of SMAD2/3, critical mediators of TGF-β signaling. Consequently, these molecular alterations resulted in reduced tumor progression and enhanced sensitivity to temozolomide (TMZ), a standard chemotherapeutic agent. Overall, our findings highlight PSMB8's pivotal role in glioma pathophysiology and its potential as a prognostic marker. This study also demonstrates the clinical utility of MRI radiomics for preoperative risk stratification and pre-diagnosis. Targeted inhibition of PSMB8 may represent a therapeutic strategy to overcome TMZ resistance and improve glioma patient outcomes.
Collapse
Affiliation(s)
- Dongling Pei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zeyu Ma
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yuning Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Minkai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zilong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Ran Li
- School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
27
|
Togami K, Kanehira Y, Nakamura Y, Ishii H, Abe R, Yamamoto A, Takehara K, Yasuda M, Tada H, Chono S. Pirfenidone encapsulated in succinylated gelatin-coated liposomes exhibits sustained antifibrotic effects in vitro models of renal, pulmonary, and hepatic fibrosis. J Pharm Sci 2025; 114:103819. [PMID: 40345528 DOI: 10.1016/j.xphs.2025.103819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025]
Abstract
Fibrosis is characterized by excessive extracellular matrix accumulation, leading to organ dysfunction and irreversible damage in advanced stages. Challenges in sustaining drug levels within fibrotic lesions with the currently used antifibrotic therapies, including pirfenidone, often necessitate high drug doses that can cause systemic side effects. Here, we introduce a succinylated gelatin (SG)-coated liposome (SG-lip) system, which enhances pirfenidone retention and enables enzyme-responsive release at sites of fibrosis in an in vitro model. The SG coating, which ensures high collagen-binding affinity, is degraded by matrix metalloproteinases, which are overexpressed in fibrotic tissues, allowing targeted drug release. In vitro experiments using NRK-49F (kidney fibroblasts), WI-38 (lung fibroblasts), and RI-T (hepatic stellate cells) cultured on collagen I gel, SG-lip prolongs drug retention and sustains localized release at sites of fibrosis. In experiments simulating transient drug exposure by washing away the residual pirfenidone after treatment, pirfenidone-loaded SG-lip significantly inhibit fibroblast proliferation, invasion, and myofibroblast differentiation. Our enzyme-triggered drug delivery system enhances the antifibrotic efficacy of pirfenidone, with the potential to reduce systemic exposure and associated side effects. These findings highlight SG-lip as a promising platform for targeted antifibrotic therapy, offering a novel strategy to improve treatment of fibrosis.
Collapse
Affiliation(s)
- Kohei Togami
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan; Creation Research Institute of Life Science in KITA-no-DAICHI, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan; Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Hokkaido Pharmaceutical University, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8590, Japan.
| | - Yukimune Kanehira
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Hokkaido Pharmaceutical University, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8590, Japan
| | - Yuki Nakamura
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Hirotsugu Ishii
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Ryota Abe
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Akiyoshi Yamamoto
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Kanako Takehara
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Mio Yasuda
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Hitoshi Tada
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan; Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Hokkaido Pharmaceutical University, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8590, Japan
| | - Sumio Chono
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan; Creation Research Institute of Life Science in KITA-no-DAICHI, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan; Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Hokkaido Pharmaceutical University, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8590, Japan
| |
Collapse
|
28
|
Fang L, Peng H, Tan Z, Deng N, Peng X. The Role of Gut Microbiota on Intestinal Fibrosis in Inflammatory Bowel Disease and Traditional Chinese Medicine Intervention. J Inflamm Res 2025; 18:5951-5967. [PMID: 40357383 PMCID: PMC12067688 DOI: 10.2147/jir.s504827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder of the intestine, frequently complicated by intestinal fibrosis. As fibrosis progresses, it can result in luminal stricture and compromised intestinal function, significantly diminishing patients' quality of life. Emerging evidence suggests that gut microbiota and their metabolites contribute to the pathogenesis of IBD-associated intestinal fibrosis by influencing inflammation and modulating immune responses. This review systematically explores the mechanistic link between gut microbiota and intestinal fibrosis in IBD and evaluates the therapeutic potential of traditional Chinese medicine (TCM) interventions. Relevant studies were retrieved from PubMed, Web of Science, Embase, Scopus, CNKI, Wanfang, and VIP databases. Findings indicate that TCM, including Chinese herbal prescriptions and bioactive constituents, can modulate gut microbiota composition and microbial metabolites, ultimately alleviating intestinal fibrosis through anti-inflammatory, immunemodulatory, and anti-fibrotic mechanisms. These insights highlight the potential of TCM as a promising strategy for targeting gut microbiota in the management of IBD-associated fibrosis.
Collapse
Affiliation(s)
- Leyao Fang
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Huiyi Peng
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Zhoujin Tan
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Na Deng
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Xinxin Peng
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
29
|
Salvatore M, Marin MP. Fibrosis and cancer intersection. J Transl Med 2025; 23:508. [PMID: 40329349 PMCID: PMC12057068 DOI: 10.1186/s12967-025-06520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Affiliation(s)
- Mary Salvatore
- Jacobi Medical Center, Department of Radiology Bronx, New York, NY, USA.
| | - Monica Pernia Marin
- Department of Neuro-Oncology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
30
|
Zhang J, Yin Y, Wang B, Chen J, Yang H, Li T, Chen Y. Discovery of novel small molecules targeting TGF-β signaling for the treatment of non-small cell lung cancer. Eur J Med Chem 2025; 289:117442. [PMID: 40081103 DOI: 10.1016/j.ejmech.2025.117442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/25/2025] [Accepted: 02/22/2025] [Indexed: 03/15/2025]
Abstract
Acquired resistance to tyrosine kinase inhibitors (TKIs) has become a significant challenge in cancer therapy, underscoring the urgent need for developing alternative therapeutic targets to relieve it. Targeting TGF-β signaling pathway has been emerging as a promising antitumor strategy due to its pivotal role in cancer progression and metastasis. Our previous study identified YR-290 as an anticancer molecule through inhibiting TGF-β signaling, but its poor solubility limited its subsequent development. To addressed the limitations, a new series of YR-290 analogues containing hydrophilic moieties were synthesized and evaluated to improve solubility and potency. The optimal compound 8dc, whose solubility also promoted over 4.7-fold compared to YR-290, showed significant inhibition with IC50 values of 0.05 and 0.09 μM in A549 and NCI-H441, respectively. In addition, 8dc remarkably exhibited anti-NSCLC activities in colony formation, migration and invasion with a concentration-dependent manner in vitro. It also affected cell cycle and induced cell apoptosis in A549 cells. More importantly, 8dc suppressed tumor growth in vivo with minimum toxicity. Mechanism study showed that 8dc exerted anticancer bioactivity by inhibition against TGF-β signaling.
Collapse
Affiliation(s)
- Jie Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yichen Yin
- School of Clinical Medicine, Ningxia Medical University, Ningxia, 750004, China; Key Laboratory of Fertility Maintenance Ministry of Education, Ningxia Medical University, Ningxia, 750004, China
| | - Baozhen Wang
- School of Clinical Medicine, Ningxia Medical University, Ningxia, 750004, China; Key Laboratory of Fertility Maintenance Ministry of Education, Ningxia Medical University, Ningxia, 750004, China
| | - Jing Chen
- School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China; Key Laboratory of Fertility Maintenance Ministry of Education, Ningxia Medical University, Ningxia, 750004, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Tao Li
- Department of Surgical Oncology, Tumor Hospital, The General Hospital of Ningxia Medical University, Ningxia, China.
| | - Yihua Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products and Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
31
|
Berends AMA, Wardenaar R, van den Bos H, Tijhuis AE, Links TP, Feelders RA, Hofland LJ, Kruijff S, Pacak K, Spierings DCJ, Kerstens MN, Foijer F. Single-cell chromosome and bulk transcriptome analysis as a diagnostic tool to differentiate between localized and metastatic pheochromocytoma and sympathetic paraganglioma. Oncogene 2025:10.1038/s41388-025-03391-3. [PMID: 40319142 DOI: 10.1038/s41388-025-03391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/16/2025] [Accepted: 04/01/2025] [Indexed: 05/07/2025]
Abstract
Approximately 10-20% of patients with pheochromocytoma or sympathetic paraganglioma (PPGL) develop metastatic disease, most often as metachronous lesions. Unfortunately, there is a lack of accurate biomarkers that can predict the biologic behavior of a PPGL at the initial diagnosis. We investigated tumor samples from patients with PPGL and a diagnosis of either localized or metastatic disease with synchronous or metachronous metastases and performed a comprehensive molecular analysis through application of single-cell whole-genome sequencing and bulk transcriptome analysis, including variant detection analysis of RNA sequences. We found that PPGL displayed complex karyotypes with recurrent aneuploidies and substantial cell-to-cell karyotype variability, indicating ongoing chromosomal instability (CIN) in both localized and metastatic tumors. Transcriptome analysis on the other hand revealed several differences between localized and metastatic PPGL including TNFα and TGFβ signaling in metastatic PPGL that were already detectable in primary tumor samples of initially non-metastatic-appearing PPGLs that developed metachronous metastases. Altogether our findings indicate that while localized and metastatic PPGL in general have comparable genomic landscapes, they do show transcriptional differences that are already detectable in primary tumor PPGL before development of metastases. This finding could provide an important tool for improvement of patient stratification at initial diagnosis.
Collapse
Affiliation(s)
- Annika M A Berends
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - René Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andréa E Tijhuis
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Thera P Links
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Richard A Feelders
- Department of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Leo J Hofland
- Department of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Schelto Kruijff
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD, USA
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel N Kerstens
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Dai Y, Wang C, Xiao Y, Tan Y, Ye Y, Liu Y, Zeng Q, Tan J. Jiawei Danxuan Koukang and its key component Quercetin intervened in OSF carcinogenesis by inhibiting the AR/eIF5A2 signaling pathway-mediated EMT. Arch Oral Biol 2025; 173:106194. [PMID: 39961149 DOI: 10.1016/j.archoralbio.2025.106194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/17/2025] [Accepted: 02/09/2025] [Indexed: 04/13/2025]
Abstract
OBJECTIVE This work aims to investigate the mechanism of Jiawei Danxuan Koukang (JDK) and Quercetin in oral submucous fibrosis (OSF) carcinogenesis. DESIGN We established an OSF model for rats by injecting Arecoline into the oral mucosa of rats to study the impact of JDK and Quercetin on the progression of OSF and OSCC. Then, the viability, proliferation, and migration ability of Arecoline-induced hOMF, CAL27 and SCC-25 cells in JDK and quercetin intervention were detected. RESULTS The oral mucosal epithelial cells of OSF model and OSF rats were atrophy and thinning, α-SMA, CollageI, Vimentin, Snail, AR and eukaryotic translation initiation factor 5A2 (eIF5A2) expression increased apparently, and E-cadherin expression decreased. The intervention of JDK and Quercetin reversed the changes in oral mucosal epithelial cells and OSF rats. The levels of AR in CAL27 and SCC-25 cells were higher than those in hOMF cells, and Arecoline intervention increased the levels of AR in hOMF, CAL27 and SCC-25 cells. Overexpression of AR up-regulated eIF5A2 to enhance the viability, proliferation and migration of hOMF, CAL27 and SCC-25 cells, and promoted EMT. Quercetin reversed changes in cell feature, and EMT levels in oe-AR intervention. CONCLUSIONS JDK and Quercetin inhibited OSF carcinogenesis by inhibiting the AR/eIF5A2 signal-mediated EMT.
Collapse
Affiliation(s)
- Yuzhe Dai
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Chenwei Wang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yanbo Xiao
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yisi Tan
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yao Ye
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yue Liu
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qianqi Zeng
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jin Tan
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
33
|
Sarlak S, Pagès G, Luciano F. Enhancing radiotherapy techniques for Triple-Negative breast cancer treatment. Cancer Treat Rev 2025; 136:102939. [PMID: 40286498 DOI: 10.1016/j.ctrv.2025.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Breast cancer is the most prevalent cancer among women worldwide, with various subtypes that require distinct treatment approaches. Among these, Triple-Negative Breast Bancer (TNBC) is recognized as the most aggressive form, often associated with poor prognosis due to its lack of targeted therapeutic options. This review specifically focuses on Radiotherapy (RT) as a treatment modality for TNBC, evaluating recent advancements and ongoing challenges, particularly the issue of radioresistance. RT remains an essential part in the management of breast cancer, including TNBC. Over the years, multiple improvements have been made to enhance RT effectiveness and minimize resistance. The introduction of advanced techniques such as Stereotactic Body Radiation Therapy (SBRT) and Stereotactic Radiosurgery (SRS) has significantly improved precision and reduced toxicity. More recently, proton radiation therapy, a novel RT modality, has been introduced, offering enhanced dose distribution and reducing damage to surrounding healthy tissues. Despite these technological advancements, a subset of TNBC patients continues to exhibit resistance to RT, leading to recurrence and poor treatment outcomes. To overcome radioresistance, there is an increasing interest in combining RT with targeted therapeutic agents that sensitize cancer cells to radiation. Radiosensitizing drugs have been explored to enhance the efficacy of RT by making cancer cells more susceptible to radiation-induced damage. Potential candidates include DNA damage repair inhibitors, immune checkpoint inhibitors, and small-molecule targeted therapies that interfere with key survival pathways in TNBC cells. In conclusion, while RT remains a crucial modality for TNBC treatment, radioresistance remains a significant challenge. Future research should focus on optimizing RT techniques while integrating radiosensitizing agents to improve treatment efficacy. By combining RT with targeted drug therapy, a more effective and personalized treatment approach can be developed, ultimately improving patient outcomes and reducing recurrence rates in TNBC.
Collapse
Affiliation(s)
- Saharnaz Sarlak
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| | - Gilles Pagès
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| | - Frédéric Luciano
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| |
Collapse
|
34
|
Niu M, Wang YZ, Deng XM, Wu X, Hua ZY, Lv TT. Tryptanthrin alleviate lung fibrosis via suppression of MAPK/NF-κB and TGF-β1/SMAD signaling pathways in vitro and in vivo. Toxicol Appl Pharmacol 2025; 498:117285. [PMID: 40089192 DOI: 10.1016/j.taap.2025.117285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF), a progressive interstitial lung disease of unknown etiology, remains a therapeutic challenge with limited treatment options. This study investigates the therapeutic potential and molecular mechanisms of Tryptanthrin, a bioactive indole quinazoline alkaloid derived from Isatis tinctoria L., in pulmonary fibrosis. In a bleomycin-induced murine IPF model, Tryptanthrin administration (5 and 10 mg/kg/day for 28 days) significantly improved pulmonary function parameters and attenuated histological evidence of fibrosis. Mechanistic analysis revealed dual pathway modulation: Tryptanthrin suppressed MAPK/NF-κB signaling through inhibition of phosphorylation events, subsequently reducing pulmonary levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6). Concurrently, it attenuated TGF-β1/Smad pathway activation by decreasing TGF-β1 expression and Smad2/3 phosphorylation, thereby downregulating fibrotic markers including COL1A1, α-smooth muscle actin (α-SMA), and fibronectin in lung tissues. Complementary in vitro studies using Lipopolysaccharide (LPS) or TGF-β1-stimulated NIH3T3 fibroblasts confirmed these anti-inflammatory and anti-fibrotic effects through analogous pathway inhibition. Our findings demonstrate that Tryptanthrin exerts therapeutic effects against pulmonary fibrosis via coordinated modulation of both inflammatory (MAPK/NF-κB) and fibrotic (TGF-β1/Smad) signaling cascades, suggesting its potential as a novel multi-target therapeutic agent for IPF management.
Collapse
Affiliation(s)
- Min Niu
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China.
| | | | - Xiang-Min Deng
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China
| | - Xin Wu
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China
| | - Zheng-Ying Hua
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China
| | - Ting-Ting Lv
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China
| |
Collapse
|
35
|
Arrigo A, Cremona O, Aragona E, Casoni F, Consalez G, Dogru RM, Hauck SM, Antropoli A, Bianco L, Parodi MB, Bandello F, Grosche A. Müller cells trophism and pathology as the next therapeutic targets for retinal diseases. Prog Retin Eye Res 2025; 106:101357. [PMID: 40254246 DOI: 10.1016/j.preteyeres.2025.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Müller cells are a crucial retinal cell type involved in multiple regulatory processes and functions that are essential for retinal health and functionality. Acting as structural and functional support for retinal neurons and photoreceptors, Müller cells produce growth factors, regulate ion and fluid homeostasis, and facilitate neuronal signaling. They play a pivotal role in retinal morphogenesis and cell differentiation, significantly contributing to macular development. Due to their radial morphology and unique cytoskeletal organization, Müller cells act as optical fibers, efficiently channeling photons directly to the photoreceptors. In response to retinal damage, Müller cells undergo specific gene expression and functional changes that serve as a first line of defense for neurons, but can also lead to unwarranted cell dysfunction, contributing to cell death and neurodegeneration. In some species, Müller cells can reactivate their developmental program, promoting retinal regeneration and plasticity-a remarkable ability that holds promising therapeutic potential if harnessed in mammals. The crucial and multifaceted roles of Müller cells-that we propose to collectively call "Müller cells trophism"-highlight the necessity of maintaining their functionality. Dysfunction of Müller cells, termed "Müller cells pathology," has been associated with a plethora of retinal diseases, including age-related macular degeneration, diabetic retinopathy, vitreomacular disorders, macular telangiectasia, and inherited retinal dystrophies. In this review, we outline how even subtle disruptions in Müller cells trophism can drive the pathological cascade of Müller cells pathology, emphasizing the need for targeted therapies to preserve retinal health and prevent disease progression.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Ottavio Cremona
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Emanuela Aragona
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Casoni
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo Consalez
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rüya Merve Dogru
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, 80939, Germany
| | - Alessio Antropoli
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Bianco
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Francesco Bandello
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
36
|
Li B, Qi J, Cao Y, Long Y, Wei Z, Wang W, Hu S, Wang Y, Zhu Q, Hu X, Sun Z, Zhu J, Ye T, Yao Y, Meng Y, Bian X, Dong X, Guan H, Huang Y, Sun Y. From Invaginating Site to Deep Lesion: Spatial Transcriptomics Unravels Ectopic Endometrial Penetration Features in Adenomyosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411752. [PMID: 40190183 PMCID: PMC12120721 DOI: 10.1002/advs.202411752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/28/2025] [Indexed: 06/01/2025]
Abstract
Adenomyosis, characterized by clinical intractability, significantly impacts female fertility and life quality due to the absence of definitive diagnostic markers and effective treatment options. The invagination theory is a primary hypothesis for adenomyosis, but the underlying molecular mechanisms remain unclear. In this study, a spatial transcriptional landscape of adenomyosis with an evident invagination structure is mapped from the endometrial invaginating site to ectopic lesions utilizing spatial transcriptomics and single-cell RNA sequencing. In addition, the authors employ bulk RNA sequencing deconvolution to assess the significance of core spatial ecotypes, use histological techniques to target specific cell types, and conduct in vitro experiments for validation. At the invagination site, SFRP5+ epithelial cells promote endometrial proliferation and angiogenesis through secretion of IHH. During the invading process, ESR1+ smooth muscle cells (SMCs) facilitate invasion by creating migratory tracts via collagen degradation. Within deep lesions, CNN1+ stromal fibroblasts induce fibrosis by undergoing a fibroblast-to-myofibroblast transition (FMT) in response to pathologic profibrogenic signals in the microenvironment of lesions. This work offers an in-depth understanding of the molecular mechanisms underlying the pathological processes of adenomyosis with invagination. Furthermore, this work introduces the first transcriptomics web source of adenomyosis, which is expected to be a valuable resource for subsequent research.
Collapse
Affiliation(s)
- Boyu Li
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Jia Qi
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yumeng Cao
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yijing Long
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Zhe Wei
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Wang‐Sheng Wang
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Shuanggang Hu
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yuan Wang
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Qinling Zhu
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Xiao Hu
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Zhe Sun
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Jie Zhu
- Department of Obstetrics and GynecologyRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
- Shanghai Key Laboratory of Gynecologic OncologyShanghai200127P. R. China
| | - Taiyang Ye
- Department of Obstetrics and GynecologyRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
- Shanghai Key Laboratory of Gynecologic OncologyShanghai200127P. R. China
| | - Yejie Yao
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yiwen Meng
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Xuejiao Bian
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Xinyi Dong
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Hengyu Guan
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yunfei Huang
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yun Sun
- Department of Reproductive MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| |
Collapse
|
37
|
Liu H, Dilger JP. Different strategies for cancer treatment: Targeting cancer cells or their neighbors? Chin J Cancer Res 2025; 37:289-292. [PMID: 40353083 PMCID: PMC12062981 DOI: 10.21147/j.issn.1000-9604.2025.02.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Affiliation(s)
- Hengrui Liu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1TN, UK
- Department of Oncology, University of Cambridge, Cambridge CB2 1TN, UK
| | - James P. Dilger
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
38
|
Mao Y, Xu W, Chen L, Liao H. Computational Drug Repurposing Screening Targeting Profibrotic Cytokine in Acute Respiratory Distress Syndrome. Cell Biochem Biophys 2025:10.1007/s12013-025-01762-x. [PMID: 40304856 DOI: 10.1007/s12013-025-01762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a severe lung disease with a high fatality rate and few treatment options. Targeting certain signalling pathways, notably the Transforming Growth Factor-beta (TGF-beta) signalling pathway, has emerged as a promising option for ARDS therapy. We identified TGF-beta Receptor 1 (TGFBR1) as a major target for ARDS treatment using the STRING and KEGG databases and validated TGFBR1's critical function in the TGF-beta signalling pathway, which is important in ARDS pathogenesis. To find prospective TGFBR1 inhibitors, we selected two FDA-approved medicines, Galunisertib and Vactosertib, which are established pharmacological profiles in cancer and fibrotic illnesses. Furthermore, the SwissSimilarity platform's ligand-based virtual screening revealed structurally related drugs in the DrugBank and ChEMBL databases. Among these, seven candidates were selected for further consideration. Molecular docking experiments found that DB08387 and CHEMBL14297639 had the strongest affinity for TGFBR1, creating strong hydrogen bonds at key sites. These findings point to their potential as TGFBR1 inhibitors in ARDS treatment. The pharmacokinetic screening revealed that most of the chosen compounds had favourable ADME features, with CHEMBL14297639 standing out for its low gastrointestinal absorption and limited cytochrome P450 inhibition. This study demonstrates the possibility of targeting TGFBR1 with Galunisertib, Vactosertib, and other prospective ARDS treatments. The findings lay the groundwork for additional experimental validation and the development of innovative therapeutics aimed at reducing ARDS severity.
Collapse
Affiliation(s)
- Yong Mao
- Department of Intensive Care Unit, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Intensive Care Unit, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Li Chen
- Department of Intensive Care Unit, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Handi Liao
- Department of Intensive Care Unit, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
39
|
Yang J, Han J. Comprehensive analysis based on IFN-γ and SASP related genes, bulk RNA and single-cell sequencing to evaluate the prognosis and immune landscape of stomach adenocarcinoma. Genes Genomics 2025:10.1007/s13258-025-01646-7. [PMID: 40293675 DOI: 10.1007/s13258-025-01646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) represents the predominant subtype of gastric cancer, known for its drug resistance, unfavorable prognosis, and low cure rates. IFN-γ serves as a cytokine generated by immune cells, instrumental in tumor immune clearance and essential to the tumor microenvironment. The aging-associated secretory phenotype (SASP) can modify the local tissue environment, facilitating gastric cancer progression and chemotherapy resistance. OBJECTIVE This study intends to identify STAD subtypes based on IFN-γ and SASP-related genes and to develop a risk prognostic model for predicting patient survival, tumor immune microenvironment, and responses to drug treatment. METHODS The genomic and clinical datasets originate from the Cancer Genome Atlas (TCGA) database, while the genes associated with IFN-γ and SASP come from pertinent scholarly articles. We discovered the prognostic genes linked to IFN-γ and SASP in STAD using Cox regression analysis. Next, we applied non-negative matrix factorization (NMF) to categorize LIHC into distinct molecular subtypes, identifying differentially expressed genes across these subtypes. Following this, we developed a predictive model using Cox and LASSO regression analyses to stratify patients into specific risk categories, validating the model to assess the prognostic significance of the identified signatures. Lastly, we integrated single-cell data to elucidate the immune landscape of STAD and identified potential drugs along with their sensitivity profiles. RESULTS We identified 17 prognostic genes related to IFN-γ and SASP, successfully classifying patients into two distinct molecular subtypes. These subtypes exhibited notable differences in immune profiles and prognostic outcomes. We pinpointed three differentially expressed genes to establish risk characteristics and created a prognostic model capable of accurately predicting patient outcomes. Our findings revealed a strong association between STAD and the extracellular matrix, low-risk group exhibited favorable prognosis, and may derive greater benefits from immunotherapy. CONCLUSION We developed a risk model using IFN-γ and SASP-associated genes to predict the prognosis of STAD patients more accurately. Additionally, we assessed the immune landscape of STAD by integrating bulk RNA and single-cell sequencing analyses. This approach may yield valuable insights for clinical decision-making and immunotherapy strategies in STAD.
Collapse
Affiliation(s)
- Jie Yang
- Department of Gastrointestinal Surgery, Xi'an Daxing Hospital, No.353 North Labor Road, Xi'an, 710016, Shanxi, China
| | - Junwei Han
- Department of Gastrointestinal Surgery, Xi'an Daxing Hospital, No.353 North Labor Road, Xi'an, 710016, Shanxi, China.
| |
Collapse
|
40
|
Yang Y, Zhao L, Gao F, Wu G, Luo Y, An M. Modulation of renal fibrosis-related signaling pathways by traditional Chinese medicine: molecular mechanisms and experimental evidence. Int Urol Nephrol 2025:10.1007/s11255-025-04532-z. [PMID: 40293615 DOI: 10.1007/s11255-025-04532-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Renal fibrosis (RF), characterized by excessive deposition of extracellular matrix leading to tissue damage and scar formation, represents a refractory disease and a pivotal pathological basis for the progression to end-stage renal disease. The pathogenesis of RF is intricate, prominently implicating multiple key signaling pathways, including adenosine monophosphate-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), transforming growth factor-β1/small mother against decapentaplegic (TGF-β1/Smad), toll-like receptor 4/nuclear factor kappa B (TLR4/NF-κB), wingless integrated/β-catenin (Wnt/β-catenin), hypoxia-inducible factor-1α (HIF-1α), Hedgehog, and mitogen-activated protein kinase (MAPK). The current Western medical practices primarily rely on supportive and replacement therapies, which are often costly and suboptimal in efficacy. In contrast, traditional Chinese medicine (TCM), with its inherent advantages of multi-target, multi-pathway, and multi-effect modulation, emerges as a promising new strategy for RF treatment. However, a systematic, comprehensive, and detailed summary of these advancements remains absent. Therefore, this review consolidates the recent research progress on TCM modulation of RF-related signaling pathways, aiming to provide a theoretical foundation for further investigations into RF and the development of TCM interventions.
Collapse
Affiliation(s)
- Yufei Yang
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - Longshan Zhao
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
- Department of Pharmacy, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Fengli Gao
- Department of Pharmacy, Second Affiliated Hospital of Baotou Medical College, Baotou, 014030, China
| | - Guodong Wu
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - Yiduo Luo
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - Ming An
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
41
|
Zhang Z, Lu M, Shen P, Xu T, Tan S, Tang H, Yu Z, Zhou J. TGFBI promotes EMT and perineural invasion of pancreatic cancer via PI3K/AKT pathway. Med Oncol 2025; 42:181. [PMID: 40286004 DOI: 10.1007/s12032-025-02736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Pancreatic cancer is a highly lethal malignancy, and perineural invasion (PNI) is a common pathological feature that significantly contributes to poor prognosis. Our research identified TGFBI as a key player in PNI development. The expression of TGFBI in tissue and cancer cells were detected by RT-qPCR, Western blot, Immunohistochemistry, and ELISA. The localization of TGFBI in cells was analyzed by Immunofluorescence staining (IF). The neural invasion ability of cancer cells were assessed by in vitro neural invasion model. Moreover, Western blot was used to investigate epithelial-mesenchymal transition (EMT) markers and PI3K/AKT pathway markers to elucidate the underlying mechanisms. Finally, an in vivo neural invasion model was used to verify the tumorigenic ability of the cancer cells in the sciatic nerve. Our findings highlight that TGFBI is up-regulated in PNI tissue and significantly correlates with poor prognosis in pancreatic cancer patients. Based on in vitro experiments, knockdown of TGFBI reduced neural invasion, as well as EMT, whereas rTGFBI exhibited the reverse effect. Knockdown of TGFBI reduced PI3K/AKT phosphorylation in Capan-2 and CFPAC-1. Moreover, PI3K inhibitor LY294002 was observed to counteract the effects of TGFBI on neural invasion, and EMT in Capan-2 and CFPAC-1. In vivo, knockdown of TGFBI inhibited tumor formation in the sciatic nerve of mice. Finally, we confirmed TGFBI as potential biomarker for PNI and prognosis of pancreatic cancer. Collectively, we concluded that TGFBI activates the PI3K-AKT pathway in pancreatic cancer cells, ultimately promoting EMT and leading to PNI.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Miao Lu
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Peiyuan Shen
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Tonglei Xu
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Siyuan Tan
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Haodong Tang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Zeqian Yu
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Jiahua Zhou
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China.
| |
Collapse
|
42
|
Jing H, Gao Y, Jing L, Yang H, Liu S. Recent advances in therapeutic use of transforming growth factor-beta inhibitors in cancer and fibrosis. Front Oncol 2025; 15:1489701. [PMID: 40352593 PMCID: PMC12061708 DOI: 10.3389/fonc.2025.1489701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 04/03/2025] [Indexed: 05/14/2025] Open
Abstract
Transforming growth factor-beta (TGF-β) has long been known to be associated with early embryonic development and organogenesis, immune supervision, and tissue repair and homeostasis in adults. TGF-β has complex roles in fibrosis and cancer that may be opposing at different stages of these diseases. Under pathological conditions, overexpression of TGF-β causes epithelial-mesenchymal transition, deposition of extracellular matrix, and formation of cancer-associated fibroblasts, leading to fibrotic disease or cancer. Fibroblasts, epithelial cells, and immune cells are the most common targets of TGF-β, while fibrosis and cancer are the most common TGF-β-associated diseases. Given the critical role of TGF-β and its downstream molecules in fibrosis and progression of cancer, therapies targeting TGF-β signaling appear to be a promising strategy. Preclinical and clinical studies have investigated therapies targeting TGF-β, including antisense oligonucleotides, monoclonal antibodies, and ligand traps. However, development of targeted TGF-β therapy has been hindered by systemic cytotoxicity. This review discusses the molecular mechanisms of TGF-β signaling and highlights targeted TGF-β therapy for cancer and fibrosis as a therapeutic strategy for related diseases.
Collapse
Affiliation(s)
- Hanhui Jing
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan Gao
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Linyuan Jing
- Department of Integrated Chinese and Western Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Hanyu Yang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
43
|
Guo Y, Deng F, Jiang Y, Cao G, Zhang Y, Liu G, Alimujiang M, Ayati M, Chen Y, Chen L, Lv S, Dou X. IL-37 Alleviates Sepsis-Induced Lung Injury by Inhibiting Inflammatory Response Through the TGF-β/Smad3 Pathway. Immunol Invest 2025:1-15. [PMID: 40270428 DOI: 10.1080/08820139.2025.2495958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Introduction: Sepsis is caused by an uncontrolled inflammatory response and immune dysfunction, with lung injury being the most common complication and one of the leading causes of death in clinically ill patients. Interleukin 37 (IL-37) is a multifunctional cytokine that plays a vital role in various pathophysiological processes, including inflammation, infection, and immunity.Methods: The study involved both clinical and animal experiments (establishing an animal model of sepsis-induced lung injury). Firstly, 50 patients with sepsis-induced lung injury and 50 healthy controls were included. In addition, a more in-depth study was conducted using animal models.Results: IL-37, IL-6, PCT, and CRP levels were significantly higher in the sepsis-induced lung injury group. Correlation analysis revealed that IL-37 significantly correlated with IL-6, PCT, and CRP levels. In animal experiments, IL-37 significantly attenuated CLP-induced pulmonary edema and cellular injury while reducing the levels of inflammatory factors IL-6 and TNF-α, as well as sepsis-related inflammatory markers PCT and CRP. Moreover, IL-37 significantly downregulated the expression levels of genes and proteins of apoptosis-related molecules Caspase-3 and Bax and pathway molecules TGF-β and Smad3. Discussion: The TGF-β/Smad3 pathway is involved in the process of IL-37 inhibiting inflammatory response and ameliorating sepsis-induced lung injury.
Collapse
Affiliation(s)
- Yufang Guo
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Feifei Deng
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
| | - Yali Jiang
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
- Ili & Jiangsu Joint Institute of Health, Yili, Xinjiang, P.R. China
| | - Guodong Cao
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Ili & Jiangsu Joint Institute of Health, Yili, Xinjiang, P.R. China
| | - Yixin Zhang
- Department of Critical Care Medicine, Medical School of Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Gaowu Liu
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
| | - Mayinur Alimujiang
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
| | - Mairhaba Ayati
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
| | - Yufeng Chen
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
| | - Lili Chen
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
| | - Su Lv
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
| | - Xueqin Dou
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
| |
Collapse
|
44
|
Balhara N, Yadav R, Chauhan MB. Role of signaling pathways in endometrial cancer. Mol Biol Rep 2025; 52:408. [PMID: 40257522 DOI: 10.1007/s11033-025-10523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Endometrial cancer (EC) is a prevalent gynecological malignancy with a complex molecular landscape, contributing to significant global morbidity and mortality. Dysregulated signaling pathways such as PI3K/AKT/mTOR and RAS/RAF/MEK drive EC progression by promoting uncontrolled cell proliferation, survival, angiogenesis, and metastasis. Mutations in genes like PTEN and PIK3CA further underpin tumor aggressiveness. Molecular alterations in these pathways not only serve as biomarkers for prognosis but also guide the formulation of targeted therapies, such as mTOR inhibitors and anti-angiogenic agents. While such therapies show promise, optimizing their efficacy and minimizing adverse effects requires further research. A comprehensive approach integrating early detection (e.g., addressing postmenopausal bleeding), preventive strategies (e.g., managing obesity), increasing diagnostic sensitivity (e.g., transvaginal ultrasound) and advanced molecularly tailored treatments (e.g., AI & ML) is critical to reducing the burden of this disease. By targeting key signaling pathways, leveraging AI-driven methodologies, and addressing treatment resistance, we can enhance patient outcomes, also mitigate the rising global impact of EC.
Collapse
Affiliation(s)
- Nikita Balhara
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Meenakshi B Chauhan
- Department of Obstetrics and Gynecology, PGIMS, Rohtak, Haryana, 124001, India
| |
Collapse
|
45
|
Zhang H, Zhuang Z, Hong L, Wang R, Xu J, Tang Y. The malignant signature gene of cancer-associated fibroblasts serves as a potential prognostic biomarker for colon adenocarcinoma patients. Front Immunol 2025; 16:1589678. [PMID: 40313961 PMCID: PMC12043632 DOI: 10.3389/fimmu.2025.1589678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/01/2025] [Indexed: 05/03/2025] Open
Abstract
Background Colon adenocarcinoma (COAD) is the most frequently occurring type of colon cancer. Cancer-associated fibroblasts (CAFs) are pivotal in facilitating tumor growth and metastasis; however, their specific role in COAD is not yet fully understood. This research utilizes single-cell RNA sequencing (scRNA-seq) to identify and validate gene markers linked to the malignancy of CAFs. Methods ScRNA-seq data was downloaded from a database and subjected to quality control, dimensionality reduction, clustering, cell annotation, cell communication analysis, and enrichment analysis, specifically focusing on fibroblasts in tumor tissues compared to normal tissues. Fibroblast subsets were isolated, dimensionally reduced, and clustered, then combined with copy number variation (CNV) inference and pseudotime trajectory analysis to identify genes related to malignancy. A Cox regression model was constructed based on these genes, incorporating LASSO analysis, nomogram construction, and validation.Subsequently, we established two FNDC5-knockdown cell lines and utilized colony formation and transwell assays to investigate the impact of FNDC5 on cellular biological behaviors. Results Using scRNA-seq data, we analyzed 8,911 cells from normal and tumor samples, identifying six distinct cell types. Cell communication analysis highlighted interactions between these cell types mediated by ligands and receptors. CNV analysis classified CAFs into three groups based on malignancy levels. Pseudo-time analysis identified 622 pseudotime-related genes and generated a forest plot using univariate Cox regression. Lasso regression identified the independent prognostic gene FNDC5, which was visualized in a nomogram. Kaplan-Meier survival analysis confirmed the prognostic value of FNDC5, showing associations with T stage and distant metastasis. In vitro experiment results demonstrated a strong association between FNDC5 expression levels and the proliferative, migratory, and invasive abilities of colon cancer cells. Conclusion We developed a risk model for genes related to the malignancy of CAFs and identified FNDC5 as a potential therapeutic target for COAD.
Collapse
Affiliation(s)
| | | | | | | | | | - Youyuan Tang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
46
|
Zhao Q, Jin M, Zhao Q, Wang Z, Zhao C, Xue X, Qiao X, Qu P, Han D, Tao R. Natural products in traditional Chinese medicine for renal fibrosis: a comprehensive review. Front Pharmacol 2025; 16:1560567. [PMID: 40308781 PMCID: PMC12041090 DOI: 10.3389/fphar.2025.1560567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Renal fibrosis represents the terminal pathological manifestation of most chronic kidney diseases, driving progressive loss of renal function. Natural products have emerged as promising therapeutic agents for preventing and ameliorating renal fibrosis due to their multi-target efficacy and favorable safety profiles. In this review, we conducted a comprehensive literature search on PubMed using the keywords "natural product" and "renal fibrosis" from 2004 to 2025, identifying 704 relevant articles. We systematically categorize and discuss the biological effects of key natural products and formulations with antifibrotic potential, focusing on five major classes: glycosides, flavonoids, phenolic compounds, anthraquinones, and terpenoids. Representative compounds from each category are highlighted for their mechanisms of action, including modulation of oxidative stress, inflammation, autophagy, and fibrosis signaling pathways. This review aims to provide a theoretical foundation for the development of natural product-based therapies to combat renal fibrosis, offering insights into their therapeutic potential and future research directions.
Collapse
Affiliation(s)
- Qianqian Zhao
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Meihua Jin
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Qiang Zhao
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Zhimei Wang
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Chun Zhao
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xiaocong Xue
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xikai Qiao
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Peng Qu
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Donghe Han
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Ran Tao
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| |
Collapse
|
47
|
Huang C, Wang L, Zhuo C, Chen W, Fan H, Hong Y, Zhang Y, Zhou D, Lin W, Zhang L, Zhao J, Chen S, Yu C, Ye Y. ID3 enhances PD-L1 expression by restructuring MYC to promote colorectal cancer immune evasion. Proc Natl Acad Sci U S A 2025; 122:e2423490122. [PMID: 40208940 PMCID: PMC12012548 DOI: 10.1073/pnas.2423490122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/12/2025] [Indexed: 04/12/2025] Open
Abstract
The inhibitor of DNA binding protein ID3 has been associated with the progression of colorectal cancer (CRC). Despite its significance, its specific role in the immune evasion strategies utilized by CRC remains unclear. RNA-seq analysis revealed that ID3 was positively associated with the PD-L1 immune checkpoint. We further demonstrated that tumor cell-expressed ID3 enhanced PD-L1 expression, suppressed the infiltration and activation of CD8+ T cells, and facilitated the immune evasion of CRC cells. Additionally, we found that knockdown of ID3 significantly enhanced the effectiveness of PD-L1 antibody blockade treatment in combating CRC, reduced the upregulation of PD-L1 induced by the antibody, and altered the immune microenvironment within CRC. Mechanistically, ID3 interacted with the transcription factor MYC and reconstructed the four-dimensional structure of MYC, thereby enhancing its binding affinity to the PD-L1 promoter and augmenting PD-L1 transcriptional activity. By integrating analysis of ChIP-seq, RNA-seq, and ImmPort gene sets, we found that ID3's DNA-assisted binding function was widespread and could either enhance or suppress gene transcription, not only affecting tumor immune escape through immune checkpoints but also regulating various cytokines and immune cells involved in tumor immunity. In conclusion, our study uncovers a mechanism by which ID3 promotes immune evasion in CRC and implicates that targeting ID3 may improve the efficacy of anti-PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Chuanzhong Huang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou350122, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou350014, People’s Republic of China
| | - Ling Wang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou350122, China
| | - Changhua Zhuo
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou350122, China
| | - Wenxin Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou350122, China
| | - Hongmei Fan
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou350122, China
| | - Yilin Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen361102, People’s Republic of China
| | - Yu Zhang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
| | - Dongmei Zhou
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou350122, China
| | - Wansong Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou350122, China
| | - Lingyu Zhang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou350122, China
| | - Jingjing Zhao
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
| | - Shuping Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou350122, China
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen361102, People’s Republic of China
| | - Yunbin Ye
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
| |
Collapse
|
48
|
Chen X, Chen B, Zhao H. Role of Neutrophils in Anti-Tumor Activity: Characteristics and Mechanisms of Action. Cancers (Basel) 2025; 17:1298. [PMID: 40282474 PMCID: PMC12025517 DOI: 10.3390/cancers17081298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
As one of the leading components in the immune system, neutrophils in the tumor microenvironment (TME) have received considerable attention in recent years. The tumor-killing effects of neutrophils in a variety of tumors have been reported. However, the functions of neutrophils in tumors remain to be completely elucidated, and both anti-tumor and tumor-promotion activities have been reported. This review focuses on the characteristics of neutrophils and their mechanisms of action in the TME, with an emphasis on their anti-tumor activity, including reactive oxygen species (ROS)-induced tumor killing, cytotoxic T lymphocytes (CTLs)-induced tumor killing, trogocytosis, cytotoxic enzymes, and trained immunity. Furthermore, the possible targets and methods of tumor treatment regimens for neutrophils are explored, with the aim of exploring the use of neutrophils in the future as a potential anti-tumor treatment strategy.
Collapse
Affiliation(s)
- Xin Chen
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an 710032, China;
| | - Bingdi Chen
- The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an 710032, China;
| |
Collapse
|
49
|
Sun Z, Zhao W, Fei X, He B, Shi L, Zhang Z, Cai S. Static magnetic field inhibits epithelial mesenchymal transition and metastasis of glioma. Sci Rep 2025; 15:12430. [PMID: 40216876 PMCID: PMC11992211 DOI: 10.1038/s41598-025-96047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Gliomas exhibit suboptimal responses to conventional treatments, with tumor cell migration remaining a significant challenge in therapy. Epithelial-mesenchymal transition (EMT) is crucial for glioma cell invasion, and transforming growth factor β1(TGF-β1) is a key factor promoting proliferation, migration, and EMT in glioblastoma (GBM). Although magnetic fields are widely used in the diagnosis and treatment of various diseases, their effects on EMT in glioma cells remain unclear. In this study, we investigated whether a static magnetic field (SMF) could inhibit EMT and metastasis in glioma cells. Cellular functional assays using the U251 and U87 glioma cell lines were performed to investigate their functional and phenotypic changes. Results showed that TGF-β1 treatment increased the invasion and migration capabilities of glioma cells, while simultaneously reducing apoptosis. However, when SMF was combined with TGF-β1 treatment, a significant reduction in cell migration and invasion was observed, along with an increase in apoptosis. Additionally, this combination treatment significantly decreased the protein expression of mesenchymal markers N-cadherin and β-catenin, as well as reduced the levels of the matrix metalloproteinase (MMP)-2. Collectively, these findings suggest that SMFs may attenuate glioma cell metastasis by inhibiting EMT. Therefore, SMFs could represent a promising therapeutic strategy for diminishing glioma metastasis.
Collapse
Affiliation(s)
- Ziyu Sun
- Department of Neurosurgery, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, People's Republic of China
| | - Wenxuan Zhao
- Department of Neurosurgery, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, People's Republic of China
| | - Xifeng Fei
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, People's Republic of China
| | - Bao He
- Department of Neurosurgery, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, People's Republic of China
| | - Lei Shi
- Department of Neurosurgery, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, People's Republic of China.
| | - Zhen Zhang
- Department of Radiology, Affiliated Kunshan Hospital of Jiangsu University, China Medical University, Gusu School Nanjing Medical University, Suzhou, People's Republic of China.
| | - Shizhong Cai
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
50
|
Zhang M, Zhang B. Extracellular matrix stiffness: mechanisms in tumor progression and therapeutic potential in cancer. Exp Hematol Oncol 2025; 14:54. [PMID: 40211368 PMCID: PMC11984264 DOI: 10.1186/s40164-025-00647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025] Open
Abstract
Tumor microenvironment (TME) is a complex ecosystem composed of both cellular and non-cellular components that surround tumor tissue. The extracellular matrix (ECM) is a key component of the TME, performing multiple essential functions by providing mechanical support, shaping the TME, regulating metabolism and signaling, and modulating immune responses, all of which profoundly influence cell behavior. The quantity and cross-linking status of stromal components are primary determinants of tissue stiffness. During tumor development, ECM stiffness not only serves as a barrier to hinder drug delivery but also promotes cancer progression by inducing mechanical stimulation that activates cell membrane receptors and mechanical sensors. Thus, a comprehensive understanding of how ECM stiffness regulates tumor progression is crucial for identifying potential therapeutic targets for cancer. This review examines the effects of ECM stiffness on tumor progression, encompassing proliferation, migration, metastasis, drug resistance, angiogenesis, epithelial-mesenchymal transition (EMT), immune evasion, stemness, metabolic reprogramming, and genomic stability. Finally, we explore therapeutic strategies that target ECM stiffness and their implications for tumor progression.
Collapse
Affiliation(s)
- Meiling Zhang
- School of Basic Medicine, China Three Gorges University, 8 Daxue Road, Yichang, 443002, Hubei, China
- Central Laboratory, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Bin Zhang
- School of Basic Medicine, China Three Gorges University, 8 Daxue Road, Yichang, 443002, Hubei, China.
- Central Laboratory, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China.
| |
Collapse
|