1
|
Macamo ED, Mkhize-Kwitshana ZL, Mthombeni J, Naidoo P. The Impact of HIV and Parasite Single Infection and Coinfection on Telomere Length: A Systematic Review. Curr Issues Mol Biol 2024; 46:7258-7290. [PMID: 39057072 PMCID: PMC11275449 DOI: 10.3390/cimb46070431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
HIV and parasite infections accelerate biological aging, resulting in immune senescence, apoptosis and cellular damage. Telomere length is considered to be one of the most effective biomarkers of biological aging. HIV and parasite infection have been reported to shorten telomere length in the host. This systematic review aimed to highlight work that explored the influence of HIV and parasite single infections and coinfection on telomere length. Using specific keywords related to the topic of interest, an electronic search of several online databases (Google Scholar, Web of Science, Scopus, Science Direct and PubMed) was conducted to extract eligible articles. The association between HIV infection or parasite infection and telomere length and the association between HIV and parasite coinfection and telomere length were assessed independently. The studies reported were mostly conducted in the European countries. Of the 42 eligible research articles reviewed, HIV and parasite single infections were independently associated with telomere length shortening. Some studies found no association between antiretroviral therapy (ART) and telomere length shortening, while others found an association between ART and telomere length shortening. No studies reported on the association between HIV and parasite coinfection and telomere length. HIV and parasite infections independently accelerate telomere length shortening and biological aging. It is possible that coinfection with HIV and parasites may further accelerate telomere length shortening; however, this is a neglected field of research with no reported studies to date.
Collapse
Affiliation(s)
- Engelinah D. Macamo
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela Medical School Campus, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Zilungile L. Mkhize-Kwitshana
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela Medical School Campus, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
- Department of Biomedical Sciences, Doorfontein Campus, University of Johannesburg, Johannesburg 1710, South Africa
- Biomedical Sciences Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Johannesburg 1710, South Africa
| | - Julian Mthombeni
- Department of Biomedical Sciences, Doorfontein Campus, University of Johannesburg, Johannesburg 1710, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela Medical School Campus, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| |
Collapse
|
2
|
Perera DJ, Koger-Pease C, Paulini K, Daoudi M, Ndao M. Beyond schistosomiasis: unraveling co-infections and altered immunity. Clin Microbiol Rev 2024; 37:e0009823. [PMID: 38319102 PMCID: PMC10938899 DOI: 10.1128/cmr.00098-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by the helminth Schistosoma spp. and has the second highest global impact of all parasites. Schistosoma are transmitted through contact with contaminated fresh water predominantly in Africa, Asia, the Middle East, and South America. Due to the widespread prevalence of Schistosoma, co-infection with other infectious agents is common but often poorly described. Herein, we review recent literature describing the impact of Schistosoma co-infection between species and Schistosoma co-infection with blood-borne protozoa, soil-transmitted helminths, various intestinal protozoa, Mycobacterium, Salmonella, various urinary tract infection-causing agents, and viral pathogens. In each case, disease severity and, of particular interest, the immune landscape, are altered as a consequence of co-infection. Understanding the impact of schistosomiasis co-infections will be important when considering treatment strategies and vaccine development moving forward.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Cal Koger-Pease
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Kayla Paulini
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Mohamed Daoudi
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
3
|
Sharma A, Noon JB, Kontodimas K, Garo LP, Platten J, Quinton LJ, Urban JF, Reinhardt C, Bosmann M. IL-27 Enhances γδ T Cell–Mediated Innate Resistance to Primary Hookworm Infection in the Lungs. THE JOURNAL OF IMMUNOLOGY 2022; 208:2008-2018. [PMID: 35354611 PMCID: PMC9012701 DOI: 10.4049/jimmunol.2000945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/09/2022] [Indexed: 11/19/2022]
Abstract
IL-27 is a heterodimeric IL-12 family cytokine formed by noncovalent association of the promiscuous EBI3 subunit and selective p28 subunit. IL-27 is produced by mononuclear phagocytes and unfolds pleiotropic immune-modulatory functions through ligation to IL-27 receptor α (IL-27RA). Although IL-27 is known to contribute to immunity and to limit inflammation after various infections, its relevance for host defense against multicellular parasites is still poorly defined. Here, we investigated the role of IL-27 during infection with the soil-transmitted hookworm, Nippostrongylus brasiliensis, in its early host intrapulmonary life cycle. IL-27(p28) was detectable in bronchoalveolar lavage fluid of C57BL/6J wild-type mice on day 1 after s.c. inoculation. IL-27RA expression was most abundant on lung-invading γδ T cells. Il27ra-/- mice showed increased lung parasite burden together with aggravated pulmonary hemorrhage and higher alveolar total protein leakage as a surrogate for epithelial-vascular barrier disruption. Conversely, injections of recombinant mouse (rm)IL-27 into wild-type mice reduced lung injury and parasite burden. In multiplex screens, higher airway accumulations of IL-6, TNF-α, and MCP-3 (CCL7) were observed in Il27ra-/- mice, whereas rmIL-27 treatment showed a reciprocal effect. Importantly, γδ T cell numbers in airways were enhanced by endogenous or administered IL-27. Further analysis revealed a direct antihelminthic function of IL-27 on γδ T cells as adoptive intratracheal transfer of rmIL-27-treated γδ T cells during primary N. brasiliensis lung infection conferred protection in mice. In summary, this report demonstrates protective functions of IL-27 to control the early lung larval stage of hookworm infection.
Collapse
Affiliation(s)
- Arjun Sharma
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jason B Noon
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Konstantinos Kontodimas
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Lucien P Garo
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Johannes Platten
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lee J Quinton
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Joseph F Urban
- Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, U.S. Department of Agriculture, Beltsville, MD; and
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts;
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
4
|
Shakibapour M, Shojaie B, Yousofi Darani H. Immunization with Hydatid Cyst Wall Antigens Can Inhibit Breast Cancer through Changes in Serum Levels of Th1/Th2 Cytokines. Int J Prev Med 2020; 11:189. [PMID: 33815713 PMCID: PMC8000162 DOI: 10.4103/ijpvm.ijpvm_311_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/31/2019] [Indexed: 11/04/2022] Open
Abstract
Background Hydatid cysts are the larval stage of Echinococcus granulosus, which lead to humoral and cellular immune responses in hosts. Such immune responses play a key role in the inhibition of tumor growth and cancers. To test this hypothesis, it was attempted not only to examine the changes in serum level of some Th1 and Th2 cytokines but also to find relationships between the cytokines and cancer in 4T1 breast cancer-bearing mice immunized with hydatid cyst wall (HCW) antigens. Methods Six to eight-week-old Balb/c female mice were immunized with alum, PBS and HCW antigens, including crude extract of HCW (laminated layer) 28 and 27 kDa protein bands (upper and lower bands) and then challenged with 4T1 breast cancer cells. The amounts of IL2, TNF-α, IFN-γ (Th1 cytokines), and IL4 (Th2 cytokine) were estimated using ELISA. Correlations between these cytokines and cancer parameters (tumor growth, metastasis, and survival) were determined by Pearson's correlation coefficients. Results Overall, HCW antigens increased the amounts of IL2, TNF-α, IFN-γ, and IL4. Pearson's correlation coefficients indicated reverse relationships between changes in amounts of these cytokines and tumor growth/metastasis. However, except for IL-4, all cytokines had a direct relationship with mouse survival. Conclusions The results of this study indicated that the inhibition of breast tumor growth and metastasis and improvement of survival in 4T1 mice immunized with HCW antigens, especially laminated layer and 27 kDa protein band can occur through a rise in the levels of cytokines.
Collapse
Affiliation(s)
- Mahshid Shakibapour
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrokh Shojaie
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Hossein Yousofi Darani
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Clerc M, Babayan SA, Fenton A, Pedersen AB. Age affects antibody levels and anthelmintic treatment efficacy in a wild rodent. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 8:240-247. [PMID: 30923672 PMCID: PMC6423487 DOI: 10.1016/j.ijppaw.2019.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/25/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022]
Abstract
The role of the host immune system in determining parasite burdens and mediating within-host parasite interactions has traditionally been studied in highly controlled laboratory conditions. This does, however, not reflect the diversity of individuals living in nature, which is often characterised by significant variation in host demography, such as host age, sex, and infection history. Whilst studies using wild hosts and parasites are beginning to give insights into the complex relationships between immunity, parasites and host demography, the cause-and-effect relationships often remain unknown due to a lack of high resolution, longitudinal data. We investigated the infection dynamics of two interacting gastrointestinal parasites of wild wood mice (Apodemus sylvaticus), the nematode Heligmosomoides polygyrus and the coccidian Eimeria hungaryensis, in order to assess the links between infection, coinfection, and the immunological dynamics of two antibodies (IgG1 and IgA). In an anthelmintic treatment experiment, mice were given a single oral dose of an anthelmintic treatment, or control dose, and then subsequently followed longitudinally over a period of 7–15 days to measure parasite burdens and antibody levels. Anthelmintic treatment successfully reduced burdens of H. polygyrus, but had no significant impact on E. hungaryensis. Treatment efficacy was driven by host age, with adult mice showing stronger reductions in burdens compared to younger mice. We also found that the relationship between H. polygyrus-specific IgG1 and nematode burden changed from positive in young mice to negative in adult mice. Our results highlight that a key host demographic factor like age could account for large parts of the variation in nematode burden and nematode-specific antibody levels observed in a naturally infected host population, possibly due to different immune responses in young vs. old animals. Given the variable success in community-wide de-worming programmes in animals and humans, accounting for the age-structure of a population could increase overall efficacy. Anthelmintic treatment reveals strong force of infection for H. polygyrus in wild wood mice. Anthelmintic treatment is more successful in younger compared to older mice. Relationship between IgG1 and H. polygyrus burden reverts with host age.
Collapse
Affiliation(s)
- Melanie Clerc
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK.,MRC Centre for Inflammation Research, Queen´s Medical Research Institute, University of Edinburgh UK, EH16 4TJ, UK
| | - Simon A Babayan
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andy Fenton
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Amy B Pedersen
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| |
Collapse
|
6
|
Wangala B, Gantin RG, Voßberg PS, Vovor A, Poutouli WP, Komlan K, Banla M, Köhler C, Soboslay PT. Inflammatory and regulatory CCL and CXCL chemokine and cytokine cellular responses in patients with patent Mansonella perstans filariasis. Clin Exp Immunol 2019; 196:111-122. [PMID: 30561772 DOI: 10.1111/cei.13251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
Mansonella perstans (Mp) filariasis is present in large populations in sub-Saharan Africa, and to what extent patent Mp infection modulates the expression of immunity in patients, notably their cellular cytokine and chemokine response profile, remains not well known. We studied the spontaneous and inducible cellular production of chemokines (C-X-C motif) ligand 9 (CXCL9) [monokine induced by interferon (IFN)-γ (MIG)], CXCL-10 [inducible protein (IP)-10], chemokine (C-C motif) ligand 24 (CCL24) (eotaxin-2), CCL22 [macrophage-derived chemokine (MDC)], CCL13 [monocyte chemotactic protein-4 (MCP-4)], CCL18 [pulmonary and activation-regulated chemokine (PARC)], CCL17 [thymus- and activation-regulated chemokine (TARC)] and interleukin (IL)-27 in mansonelliasis patients (Mp-PAT) and mansonelliasis-free controls (CTRL). Freshly isolated peripheral mononuclear blood cells (PBMC) were stimulated with helminth, protozoan and bacterial antigens and mitogen [phytohaemagglutinin (PHA)]. PBMC from Mp-PAT produced spontaneously (without antigen stimulation) significantly higher levels of eotaxin-2, IL-27, IL-8, MCP-4 and MDC than cells from CTRL, while IFN-γ-IP-10 was lower in Mp-PAT. Helminth antigens activated IL-27 and MCP-4 only in CTRL, while Ascaris antigen, Onchocerca antigen, Schistosoma antigen, Entamoeba antigen, Streptococcus antigen, Mycobacteria antigen and PHA stimulated MIG release in CTRL and Mp-PAT. Notably, Entamoeba antigen and PHA strongly depressed (P < 0·0001) eotaxin-2 (CCL24) production in both study groups. Multiple regression analyses disclosed in Mp-PAT and CTRL dissimilar cellular chemokine and cytokine production levels being higher in Mp-PAT for CCL24, IL-27, IL-8, MCP-4, MDC and PARC (for all P < 0·0001), at baseline (P < 0·0001), in response to Entamoeba histolytica strain HM1 antigen (EhAg) (P < 0·0001), Onchocerca volvulus adult worm-derived antigen (OvAg) (P = 0·005), PHA (P < 0·0001) and purified protein derivative (PPD) (P < 0·0001) stimulation. In Mp-PAT with hookworm co-infection, the cellular chemokine production of CXCL10 (IP-10) was diminished. In summary, the chemokine and cytokine responses in Mp-PAT were in general not depressed, PBMC from Mp-PAT produced spontaneously and selectively inducible inflammatory and regulatory chemokines and cytokines at higher levels than CTRL and such diverse and distinctive reactivity supports that patent M. perstans infection will not polarize innate and adaptive cellular immune responsiveness in patients.
Collapse
Affiliation(s)
- B Wangala
- National Institute of Hygiene, Onchocerciasis Reference Laboratory, Sokodé, Togo
| | - R G Gantin
- National Institute of Hygiene, Onchocerciasis Reference Laboratory, Sokodé, Togo.,Institute for Tropical Medicine, University Clinics of Tübingen, Tübingen, Germany
| | - P S Voßberg
- National Institute of Hygiene, Onchocerciasis Reference Laboratory, Sokodé, Togo.,Institute for Tropical Medicine, University Clinics of Tübingen, Tübingen, Germany
| | - A Vovor
- Centre Hospitalier Universitaire Sylvanus Olympio, Laboratory for Hematology, Université de Lomé, Togo
| | - W P Poutouli
- Faculté de Sciences, Université de Lomé, Lomé, Togo
| | - K Komlan
- National Institute of Hygiene, Onchocerciasis Reference Laboratory, Sokodé, Togo
| | - M Banla
- National Institute of Hygiene, Onchocerciasis Reference Laboratory, Sokodé, Togo.,Centre Hospitalier Universitaire Campus, Université de Lomé, Togo
| | - C Köhler
- Institute for Tropical Medicine, University Clinics of Tübingen, Tübingen, Germany
| | - P T Soboslay
- National Institute of Hygiene, Onchocerciasis Reference Laboratory, Sokodé, Togo.,Institute for Tropical Medicine, University Clinics of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Lo AC, Faye B, Gyan BA, Amoah LE. Plasmodium and intestinal parasite perturbations of the infected host's inflammatory responses: a systematic review. Parasit Vectors 2018; 11:387. [PMID: 29970128 PMCID: PMC6031113 DOI: 10.1186/s13071-018-2948-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/12/2018] [Indexed: 01/03/2023] Open
Abstract
Co-infection of malaria and intestinal parasites is widespread in sub-Saharan Africa and causes severe disease especially among the poorest populations. It has been shown that an intestinal parasite (helminth), mixed intestinal helminth or Plasmodium parasite infection in a human induces a wide range of cytokine responses, including anti-inflammatory, pro-inflammatory as well as regulatory cytokines. Although immunological interactions have been suggested to occur during a concurrent infection of helminths and Plasmodium parasites, different conclusions have been drawn on the influence this co-infection has on cytokine production. This review briefly discusses patterns of selected cytokine (IL-6, IL-8, IL-10, TNF-α and INF-γ) responses associated with infections caused by Plasmodium, intestinal parasites as well as a Plasmodium-helminth co-infection.
Collapse
Affiliation(s)
- Aminata Colle Lo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- University Cheikh Anta DIOP, Dakar, Senegal
| | | | - Ben Adu Gyan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
8
|
González-Fernández D, Pons EDC, Rueda D, Sinisterra OT, Murillo E, Scott ME, Koski KG. C-reactive protein is differentially modulated by co-existing infections, vitamin deficiencies and maternal factors in pregnant and lactating indigenous Panamanian women. Infect Dis Poverty 2017; 6:94. [PMID: 28571565 PMCID: PMC5455098 DOI: 10.1186/s40249-017-0307-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 04/17/2017] [Indexed: 01/09/2023] Open
Abstract
Background The usefulness of C-reactive protein (CRP) as a non-specific marker of inflammation during pregnancy and lactation is unclear in impoverished populations where co-existing infections and vitamin deficiencies are common. Methods This cross-sectional study in Panama recruited 120 pregnant and 99 lactating Ngäbe-Buglé women from 14 communities in rural Panama. Obstetric history, indoor wood smoke exposure, fieldwork, BMI, vitamins A, B12, D, and folic acid, and inflammation markers (CRP, neutrophil/lymphocyte ratio (NLR), plateletcrit and cytokines) were measured. Multiple regressions explored both associations of CRP with other inflammatory markers and associations of CRP and elevated CRP based on trimester-specific cut-offs with maternal factors, infections and vitamin deficiencies. Results CRP was higher in pregnancy (51.4 ± 4.7 nmol/L) than lactation (27.8 ± 3.5 nmol/L) and was elevated above trimester specific cut-offs in 21% of pregnant and 30% of lactating women. Vitamin deficiencies were common (vitamin A 29.6%; vitamin D 68.5%; vitamin B12 68%; folic acid 25.5%) and over 50% of women had two or more concurrent deficiencies as well as multiple infections. Multiple regression models highlighted differences in variables associated with CRP between pregnancy and lactation. In pregnancy, CRP was positively associated with greater indoor wood smoke exposure, caries and hookworm and negatively associated with Ascaris and vaginal Lactobacillus and Bacteroides/Gardnerella scores. Consistent with this, greater wood smoke exposure, caries as well as higher diplococcal infection score increased the odds of trimester-elevated CRP concentrations whereas longer gestational age lowered the likelihood of a trimester-elevated CRP. During lactation, folic acid deficiency was associated with higher CRP whereas parity, number of eosinophils and Mobiluncus score were associated with lower CRP. Also, a higher BMI and Trichomonas vaginalis score increased the likelihood of an elevated CRP whereas higher parity and number of eosinophils were associated with lower likelihood of an elevated CRP. Conclusions Infections both raise and lower CRP concentrations in pregnant and lactating mothers. Only folic acid deficiency during lactation was associated with higher CRP concentrations. Caution is required when interpreting CRP concentrations in pregnant and lactating women who have co-existing nutrient deficiencies and multiple infections. Electronic supplementary material The online version of this article (doi:10.1186/s40249-017-0307-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Doris González-Fernández
- School of Dietetics and Human Nutrition, Macdonald Campus of McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | | | - Delfina Rueda
- "Comarca Ngäbe-Buglé" Health Region, Ministry of Health, San Félix, Chiriquí Province, Panama
| | - Odalis Teresa Sinisterra
- "Panamá Norte" Health Region, Ministry of Health, Las Cumbres Square, Transithmian Highway, Panama City, Panama
| | - Enrique Murillo
- Department of Biochemistry, University of Panama, Simón Bolivar Avenue (Transithmian Highway), Panama City, Panama.,Department of Biochemistry, University of Panama, Manuel Espinoza Batista and Jose De Fabrega Avenues, Panama City, Panama
| | - Marilyn E Scott
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3 V9, Canada
| | - Kristine G Koski
- School of Dietetics and Human Nutrition and Centre for Host-Parasite Interactions, Macdonald Campus, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3 V9, Canada.
| |
Collapse
|