1
|
Kekić T, Milisavljević N, Troussier J, Tahir A, Debart F, Lietard J. Accelerated, high-quality photolithographic synthesis of RNA microarrays in situ. SCIENCE ADVANCES 2024; 10:eado6762. [PMID: 39083603 PMCID: PMC11290486 DOI: 10.1126/sciadv.ado6762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
Nucleic acid photolithography is the only microarray fabrication process that has demonstrated chemical versatility accommodating any type of nucleic acid. The current approach to RNA microarray synthesis requires long coupling and photolysis times and suffers from unavoidable degradation postsynthesis. In this study, we developed a series of RNA phosphoramidites with improved chemical and photochemical protection of the 2'- and 5'-OH functions. In so doing, we reduced the coupling time by more than half and the photolysis time by a factor of 4. Sequence libraries that would otherwise take over 6 hours to synthesize can now be prepared in half the time. Degradation is substantially lowered, and concomitantly, hybridization signals can reach over seven times those of the previous state of the art. Under those conditions, high-density RNA microarrays and RNA libraries can now be synthesized at greatly accelerated rates. We also synthesized fluorogenic RNA Mango aptamers on microarrays and investigated the effect of sequence mutations on their fluorogenic properties.
Collapse
Affiliation(s)
- Tadija Kekić
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | | | - Joris Troussier
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Amina Tahir
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Françoise Debart
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jory Lietard
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
2
|
Danzer B, Jukic M, Dunkel A, Andersen G, Lieder B, Schaudy E, Stadlmayr S, Lietard J, Michel T, Krautwurst D, Haller B, Knolle P, Somoza M, Lingor P, Somoza V. Impaired metal perception and regulation of associated human foliate papillae tongue transcriptome in long-COVID-19. Sci Rep 2024; 14:15408. [PMID: 38965271 PMCID: PMC11224223 DOI: 10.1038/s41598-024-66079-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
Chemosensory impairment is an outstanding symptom of SARS-CoV-2 infections. We hypothesized that measured sensory impairments are accompanied by transcriptomic changes in the foliate papillae area of the tongue. Hospital personnel with known SARS-CoV-2 immunoglobulin G (IgG) status completed questionnaires on sensory perception (n = 158). A subcohort of n = 141 participated in forced choice taste tests, and n = 43 participants consented to donate tongue swabs of the foliate papillae area for whole transcriptome analysis. The study included four groups of participants differing in IgG levels (≥ 10 AU/mL = IgG+; < 10 AU/mL = IgG-) and self-reported sensory impairment (SSI±). IgG+ subjects not detecting metallic taste had higher IgG+ levels than IgG+ participants detecting iron gluconate (p = 0.03). Smell perception was the most impaired biological process in the transcriptome data from IgG+/SSI+ participants subjected to gene ontology enrichment. IgG+/SSI+ subjects demonstrated lower expression levels of 166 olfactory receptors (OR) and 9 taste associated receptors (TAS) of which OR1A2, OR2J2, OR1A1, OR5K1 and OR1G1, as well as TAS2R7 are linked to metallic perception. The question raised by this study is whether odorant receptors on the tongue (i) might play a role in metal sensation, and (ii) are potential targets for virus-initiated sensory impairments, which needs to be investigated in future functional studies.
Collapse
Affiliation(s)
- Barbara Danzer
- School of Life Science, Technical University of Munich, Freising, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Mateo Jukic
- Department of Neurology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Gaby Andersen
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Barbara Lieder
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Clinical Nutrition, University of Hohenheim, Stuttgart, Germany
| | - Erika Schaudy
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Sarah Stadlmayr
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jory Lietard
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Timm Michel
- School of Life Science, Technical University of Munich, Freising, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Dietmar Krautwurst
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Bernhard Haller
- Institute of AI and Informatics in Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Percy Knolle
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Mark Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Chair of Food Chemistry and Molecular Sensory Science, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Paul Lingor
- Department of Neurology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Veronika Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
- Chair of Nutritional Systems Biology, School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
3
|
Schaudy E, Ibañez-Redín G, Parlar E, Somoza MM, Lietard J. Nonaqueous Oxidation in DNA Microarray Synthesis Improves the Oligonucleotide Quality and Preserves Surface Integrity on Gold and Indium Tin Oxide Substrates. Anal Chem 2024; 96:2378-2386. [PMID: 38285499 PMCID: PMC10867803 DOI: 10.1021/acs.analchem.3c04166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
Nucleic acids attached to electrically conductive surfaces are very frequently used platforms for sensing and analyte detection as well as for imaging. Synthesizing DNA on these uncommon substrates and preserving the conductive layer is challenging as this coating tends to be damaged by the repeated use of iodine and water, which is the standard oxidizing medium following phosphoramidite coupling. Here, we thoroughly investigate the use of camphorsulfonyl oxaziridine (CSO), a nonaqueous alternative to I2/H2O, for the synthesis of DNA microarrays in situ. We find that CSO performs equally well in producing high hybridization signals on glass microscope slides, and CSO also protects the conductive layer on gold and indium tin oxide (ITO)-coated slides. DNA synthesis on conductive substrates with CSO oxidation yields microarrays of quality approaching that of conventional glass with intact physicochemical properties.
Collapse
Affiliation(s)
- Erika Schaudy
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Gisela Ibañez-Redín
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Etkin Parlar
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Mark M. Somoza
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, Freising 85354, Germany
- Chair
of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, Freising 85354, Germany
| | - Jory Lietard
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| |
Collapse
|
4
|
Das A, Santhosh S, Giridhar M, Behr J, Michel T, Schaudy E, Ibáñez-Redín G, Lietard J, Somoza MM. Dipodal Silanes Greatly Stabilize Glass Surface Functionalization for DNA Microarray Synthesis and High-Throughput Biological Assays. Anal Chem 2023; 95:15384-15393. [PMID: 37801728 PMCID: PMC10586054 DOI: 10.1021/acs.analchem.3c03399] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
Glass is by far the most common substrate for biomolecular arrays, including high-throughput sequencing flow cells and microarrays. The native glass hydroxyl surface is modified by using silane chemistry to provide appropriate functional groups and reactivities for either in situ synthesis or surface immobilization of biologically or chemically synthesized biomolecules. These arrays, typically of oligonucleotides or peptides, are then subjected to long incubation times in warm aqueous buffers prior to fluorescence readout. Under these conditions, the siloxy bonds to the glass are susceptible to hydrolysis, resulting in significant loss of biomolecules and concomitant loss of signal from the assay. Here, we demonstrate that functionalization of glass surfaces with dipodal silanes results in greatly improved stability compared to equivalent functionalization with standard monopodal silanes. Using photolithographic in situ synthesis of DNA, we show that dipodal silanes are compatible with phosphoramidite chemistry and that hybridization performed on the resulting arrays provides greatly improved signal and signal-to-noise ratios compared with surfaces functionalized with monopodal silanes.
Collapse
Affiliation(s)
- Arya Das
- Technical
University of Munich, Germany, TUM School
of Natural Sciences, Boltzmannstraße 10, 85748 Garching, Germany
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, 85354 Freising, Germany
| | - Santra Santhosh
- Technical
University of Munich, Germany, TUM School
of Natural Sciences, Boltzmannstraße 10, 85748 Garching, Germany
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, 85354 Freising, Germany
| | - Maya Giridhar
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, 85354 Freising, Germany
| | - Jürgen Behr
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, 85354 Freising, Germany
| | - Timm Michel
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, 85354 Freising, Germany
- Technical
University of Munich, Germany, TUM School
of Life Sciences, Alte
Akademie 8, 85354 Freising, Germany
| | - Erika Schaudy
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Gisela Ibáñez-Redín
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Jory Lietard
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Mark M. Somoza
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, 85354 Freising, Germany
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Chair
of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| |
Collapse
|
5
|
Schaudy E, Lietard J. In situ enzymatic template replication on DNA microarrays. Methods 2023; 213:33-41. [PMID: 37001684 DOI: 10.1016/j.ymeth.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
DNA microarrays are very useful tools to study the realm of nucleic acids interactions at high throughput. The conventional approach to microarray synthesis employs phosphoramidite chemistry and yields unmodified DNA generally attached to a surface at the 3' terminus. Having a freely accessible 3'-OH instead of 5'-OH is desirable too, and being able to introduce nucleoside analogs in a combinatorial manner is highly relevant in the context of nucleic acid therapeutics and in aptamer research. Here, we describe an enzymatic approach to the synthesis of high-density DNA microarrays that can also contain chemical modifications. The method uses a standard DNA microarray, to which a DNA primer is covalently bound through photocrosslinking. The extension of the primer with a DNA polymerase yields double-stranded DNA but is also amenable to the incorporation of modified dNTPs. Further processing with T7 exonuclease, which catalyzes the degradation of DNA in a specific (5'→3') direction, results in template strand removal. Overall, the method produces surface-bound natural and non-natural DNA oligonucleotides, is applicable to commercial microarrays and paves the way for the preparation of combinatorial, chemically modified aptamer libraries.
Collapse
|
6
|
Kekić T, Lietard J. An 8-bit monochrome palette of fluorescent nucleic acid sequences for DNA-based painting. NANOSCALE 2022; 14:17528-17533. [PMID: 36416340 PMCID: PMC9730302 DOI: 10.1039/d2nr05269e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The ability to regulate, maintain and reproduce fluorogenic properties is a fundamental prerequisite of modern molecular diagnostics, nanotechnology and bioimaging. The sequence-dependence of the fluorescence properties in fluorophores commonly used in nucleic acid labelling is here being exploited to assemble a color scale in 256 shades of green Cy3 fluorescence. Using photolithography, we synthesize microarrays of labeled nucleic acids that can accurately reproduce 8-bit monochrome graphics by mapping color to fluorescence intensity and sequence. This DNA-based painting approach paves the way for a full RGB scale array fabrication process.
Collapse
Affiliation(s)
- Tadija Kekić
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Jory Lietard
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
7
|
Kekić T, Lietard J. Sequence-dependence of Cy3 and Cy5 dyes in 3' terminally-labeled single-stranded DNA. Sci Rep 2022; 12:14803. [PMID: 36045146 PMCID: PMC9428881 DOI: 10.1038/s41598-022-19069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Fluorescence is an ideal tool to see and manipulate nucleic acids, and engage in their rich and complex biophysical properties. Labeling is the preferred approach to track and quantify fluorescence with nucleic acids and cyanine dyes are emblematic in this context. The fluorescent properties of cyanine dyes are known to be sequence-dependent, with purines in the immediate vicinity increasing the fluorescence intensity of Cy3 and Cy5 dyes, and the ability of nucleobases to modulate the photophysical properties of common fluorophores may influence fluorescence measurements in critical assays such as FISH, qPCR or high-throughput sequencing. In this paper, we comprehensively map the sequence-dependence of Cy3 and Cy5 dyes in 3'-fluorescently labeled single-stranded DNA by preparing the complete permutation library of the 5 consecutive nucleotides immediately adjacent to the dye, or 1024 sequences. G-rich motifs dominate the high fluorescence range, while C-rich motifs lead to significant quenching, an observation consistent with 5'-labeled systems. We also uncover GCGC patterns in the extreme top range of fluorescence, a feature specific to 3'-Cy3 and Cy5 oligonucleotides. This study represents the final piece in linking nucleotide identity to fluorescence changes for Cy3, Cy5 and fluorescein in all 3', 5', single-stranded and double-stranded DNA formats.
Collapse
Affiliation(s)
- Tadija Kekić
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Schaudy E, Hölz K, Lietard J, Somoza MM. Simple synthesis of massively parallel RNA microarrays via enzymatic conversion from DNA microarrays. Nat Commun 2022; 13:3772. [PMID: 35773271 PMCID: PMC9246885 DOI: 10.1038/s41467-022-31370-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
RNA catalytic and binding interactions with proteins and small molecules are fundamental elements of cellular life processes as well as the basis for RNA therapeutics and molecular engineering. In the absence of quantitative predictive capacity for such bioaffinity interactions, high throughput experimental approaches are needed to sufficiently sample RNA sequence space. Here we report on a simple and highly accessible approach to convert commercially available customized DNA microarrays of any complexity and density to RNA microarrays via a T7 RNA polymerase-mediated extension of photocrosslinked methyl RNA primers and subsequent degradation of the DNA templates.
Collapse
Affiliation(s)
- Erika Schaudy
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Kathrin Hölz
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Mark M Somoza
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354, Freising, Germany.
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354, Freising, Germany.
| |
Collapse
|
9
|
Lietard J, Ameur D, Somoza MM. Sequence-dependent quenching of fluorescein fluorescence on single-stranded and double-stranded DNA. RSC Adv 2022; 12:5629-5637. [PMID: 35425544 PMCID: PMC8982050 DOI: 10.1039/d2ra00534d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Fluorescein is commonly used to label macromolecules, particularly proteins and nucleic acids, but its fluorescence is known to be strongly dependent on its direct chemical environment.
Collapse
Affiliation(s)
- Jory Lietard
- Institute of Inorganic Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Dominik Ameur
- Institute of Inorganic Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Mark M. Somoza
- Institute of Inorganic Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| |
Collapse
|
10
|
Tiroch J, Sterneder S, Di Pizio A, Lieder B, Hoelz K, Holik AK, Pignitter M, Behrens M, Somoza M, Ley JP, Somoza V. Bitter Sensing TAS2R50 Mediates the trans-Resveratrol-Induced Anti-inflammatory Effect on Interleukin 6 Release in HGF-1 Cells in Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13339-13349. [PMID: 33461297 DOI: 10.1021/acs.jafc.0c07058] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recent data have shown anti-inflammatory effects for trans-resveratrol (RSV) and rosmarinic acid (RA) in various immune-competent cell models through reduction of lipopolysaccharide (LPS)-induced interleukin 6 (IL-6) release. Because both compounds have been reported to taste bitter, we hypothesized an involvement of human bitter taste sensing receptors (TAS2Rs) on IL-6 release in LPS-treated human gingival fibroblasts (HGF-1). First, the bitter taste intensity of RSV and RA was compared in a sensory trial with 10 untrained panelists, of whom 90% rated a 50 ppm of RSV in water solution more bitter than 50 ppm of RA. A mean 19 ± 6% reduction of the RSV-induced bitter taste intensity was achieved by co-administration of 50 ppm of the bitter-masking, TAS2R43 antagonist homoeriodictyol (HED). Mechanistic experiments in a stably CRISPR-Cas9-edited TAS2R43ko gastric cell model revealed involvement of TAS2R43 in the HED-evoked effect on RSV-induced proton secretion, whereas the cellular response to RSV did not depend upon TAS2R43. Next, the IL-6 modulatory effect of 100 μM RSV was studied in LPS-treated immune-competent HGF-1 cells. After 6 h of treatment, RSV reduced the LPS-induced IL-6 gene expression and protein release by -46.2 ± 12.7 and -73.9 ± 2.99%, respectively. This RSV-evoked effect was abolished by co-administration of HED. Because real-time quantitative polymerase chain reaction analyses revealed a regulation of TAS2R50 in RSV with or without HED-treated HGF-1 cells, an siRNA knockdown approach of TAS2R50 was applied to verify TAS2R50 involvement in the RSV-induced reduction of the LPS-evoked IL-6 release in HGT-1 cells.
Collapse
Affiliation(s)
- Johanna Tiroch
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Sonja Sterneder
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Antonella Di Pizio
- Leibniz-Institute of Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Barbara Lieder
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Kathrin Hoelz
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Ann-Katrin Holik
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Maik Behrens
- Leibniz-Institute of Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Mark Somoza
- Leibniz-Institute of Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354 Freising, Germany
| | | | - Veronika Somoza
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Leibniz-Institute of Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
- Chair for Nutritional Systems Biology, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
11
|
Lietard J, Leger A, Erlich Y, Sadowski N, Timp W, Somoza MM. Chemical and photochemical error rates in light-directed synthesis of complex DNA libraries. Nucleic Acids Res 2021; 49:6687-6701. [PMID: 34157124 PMCID: PMC8266620 DOI: 10.1093/nar/gkab505] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022] Open
Abstract
Nucleic acid microarrays are the only tools that can supply very large oligonucleotide libraries, cornerstones of the nascent fields of de novo gene assembly and DNA data storage. Although the chemical synthesis of oligonucleotides is highly developed and robust, it is not error free, requiring the design of methods that can correct or compensate for errors, or select for high-fidelity oligomers. However, outside the realm of array manufacturers, little is known about the sources of errors and their extent. In this study, we look at the error rate of DNA libraries synthesized by photolithography and dissect the proportion of deletion, insertion and substitution errors. We find that the deletion rate is governed by the photolysis yield. We identify the most important substitution error and correlate it to phosphoramidite coupling. Besides synthetic failures originating from the coupling cycle, we uncover the role of imperfections and limitations related to optics, highlight the importance of absorbing UV light to avoid internal reflections and chart the dependence of error rate on both position on the array and position within individual oligonucleotides. Being able to precisely quantify all types of errors will allow for optimal choice of fabrication parameters and array design.
Collapse
Affiliation(s)
- Jory Lietard
- Institute of Inorganic Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Adrien Leger
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Norah Sadowski
- Johns Hopkins University, Department of Molecular Biology and Genetics, Baltimore, MD, USA
| | - Winston Timp
- Johns Hopkins University, Department of Molecular Biology and Genetics, Baltimore, MD, USA.,Johns Hopkins University, Departments of Biomedical Engineering, Molecular Biology and Genetics and Medicine, Division of Infectious Disease, Baltimore, MD, USA
| | - Mark M Somoza
- Institute of Inorganic Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.,Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany.,Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| |
Collapse
|
12
|
Holik AK, Schweiger K, Stoeger V, Lieder B, Reiner A, Zopun M, Hoi JK, Kretschy N, Somoza MM, Kriwanek S, Pignitter M, Somoza V. Gastric Serotonin Biosynthesis and Its Functional Role in L-Arginine-Induced Gastric Proton Secretion. Int J Mol Sci 2021; 22:5881. [PMID: 34070942 PMCID: PMC8199169 DOI: 10.3390/ijms22115881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Among mammals, serotonin is predominantly found in the gastrointestinal tract, where it has been shown to participate in pathway-regulating satiation. For the stomach, vascular serotonin release induced by gastric distension is thought to chiefly contribute to satiation after food intake. However, little information is available on the capability of gastric cells to synthesize, release and respond to serotonin by functional changes of mechanisms regulating gastric acid secretion. We investigated whether human gastric cells are capable of serotonin synthesis and release. First, HGT-1 cells, derived from a human adenocarcinoma of the stomach, and human stomach specimens were immunostained positive for serotonin. In HGT-1 cells, incubation with the tryptophan hydroxylase inhibitor p-chlorophenylalanine reduced the mean serotonin-induced fluorescence signal intensity by 27%. Serotonin release of 147 ± 18%, compared to control HGT-1 cells (set to 100%) was demonstrated after treatment with 30 mM of the satiating amino acid L-Arg. Granisetron, a 5-HT3 receptor antagonist, reduced this L-Arg-induced serotonin release, as well as L-Arg-induced proton secretion. Similarly to the in vitro experiment, human antrum samples released serotonin upon incubation with 10 mM L-Arg. Overall, our data suggest that human parietal cells in culture, as well as from the gastric antrum, synthesize serotonin and release it after treatment with L-Arg via an HTR3-related mechanism. Moreover, we suggest not only gastric distension but also gastric acid secretion to result in peripheral serotonin release.
Collapse
Affiliation(s)
- Ann-Katrin Holik
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (A.-K.H.); (K.S.); (B.L.); (M.Z.); (M.P.)
| | - Kerstin Schweiger
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (A.-K.H.); (K.S.); (B.L.); (M.Z.); (M.P.)
| | - Verena Stoeger
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (V.S.); (J.K.H.)
| | - Barbara Lieder
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (A.-K.H.); (K.S.); (B.L.); (M.Z.); (M.P.)
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (V.S.); (J.K.H.)
| | - Angelika Reiner
- Pathologisch-Bakteriologisches Institut, Sozialmedizinisches Zentrum Ost- Donauspital, Langobardenstraße 122, 1220 Vienna, Austria;
| | - Muhammet Zopun
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (A.-K.H.); (K.S.); (B.L.); (M.Z.); (M.P.)
| | - Julia K. Hoi
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (V.S.); (J.K.H.)
| | - Nicole Kretschy
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (N.K.); (M.M.S.)
| | - Mark M. Somoza
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (N.K.); (M.M.S.)
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Str. 34, 85345 Freising, Germany
| | - Stephan Kriwanek
- Chirurgische Abteilung, Sozialmedizinisches Zentrum Ost- Donauspital, Langobardenstraße 122, 1220 Vienna, Austria;
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (A.-K.H.); (K.S.); (B.L.); (M.Z.); (M.P.)
| | - Veronika Somoza
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (A.-K.H.); (K.S.); (B.L.); (M.Z.); (M.P.)
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (V.S.); (J.K.H.)
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Str. 34, 85345 Freising, Germany
- Nutritional Systems Biology, School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85345 Freising, Germany
| |
Collapse
|
13
|
Lai Q, Dong B, Nie K, Shi H, Liang B, Liu Z. Synthesis and Characterisation of Photolabile SPhNPPOC-Protected (R)-MiniPEG Containing Chiral γ-Peptide Nucleic Acid Monomers. Aust J Chem 2021. [DOI: 10.1071/ch20017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptide nucleic acid (PNA) microarrays are expected to be developed as a new generation of gene detection tools. However, poor water solubility and the limitation of the sequence design of achiral PNA probes mainly hinder their application. Accordingly, (R)-diethylene glycol containing a chiral PNA (miniPEG-γPNA) has been developed to solve these problems. Light-directed synthesis is an effective method to fabricate high-density microarrays. Thiophenyl-2-(2-nitrophenyl)propoxycarbonyl (SPhNPPOC) is a newly synthesised photolabile protective group with high photolytic efficiency. Protecting the PNA monomers with SPhNPPOC may improve the preparation process of PNA microarrays by light-directed synthesis in terms of shortening the deprotection time and restraining side reactions. In this article, SPhNPPOC/carbobenzoxy (Cbz)-protected chiral miniPEG-γPNA monomers are synthesised, and the photo-deprotection rate is approximately twice that of a 2-(2-nitrophenyl)propyloxycarbonyl (NPPOC)-protected monomer. The monomers are expected to be used for the efficient and rapid fabrication of chiral miniPEG-γPNA microarrays through a photolithographic strategy.
Collapse
|
14
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
15
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
16
|
Schaudy E, Somoza MM, Lietard J. l-DNA Duplex Formation as a Bioorthogonal Information Channel in Nucleic Acid-Based Surface Patterning. Chemistry 2020; 26:14310-14314. [PMID: 32515523 PMCID: PMC7702103 DOI: 10.1002/chem.202001871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 01/02/2023]
Abstract
Photolithographic in situ synthesis of nucleic acids enables extremely high oligonucleotide sequence density as well as complex surface patterning and combined spatial and molecular information encoding. No longer limited to DNA synthesis, the technique allows for total control of both chemical and Cartesian space organization on surfaces, suggesting that hybridization patterns can be used to encode, display or encrypt informative signals on multiple chemically orthogonal levels. Nevertheless, cross-hybridization reduces the available sequence space and limits information density. Here we introduce an additional, fully independent information channel in surface patterning with in situ l-DNA synthesis. The bioorthogonality of mirror-image DNA duplex formation prevents both cross-hybridization on chimeric l-/d-DNA microarrays and also results in enzymatic orthogonality, such as nuclease-proof DNA-based signatures on the surface. We show how chimeric l-/d-DNA hybridization can be used to create informative surface patterns including QR codes, highly counterfeiting resistant authenticity watermarks, and concealed messages within high-density d-DNA microarrays.
Collapse
Affiliation(s)
- Erika Schaudy
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaAlthanstraße 14, UZA II1090ViennaAustria
| | - Mark M. Somoza
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaAlthanstraße 14, UZA II1090ViennaAustria
- Chair of Food Chemistry and Molecular and Sensory ScienceTechnical University of MunichLise-Meitner-Straße 3485354FreisingGermany
- Leibniz-Institute for Food Systems BiologyTechnical University of MunichLise-Meitner-Straße 3485354FreisingGermany
| | - Jory Lietard
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaAlthanstraße 14, UZA II1090ViennaAustria
| |
Collapse
|
17
|
Antkowiak PL, Lietard J, Darestani MZ, Somoza MM, Stark WJ, Heckel R, Grass RN. Low cost DNA data storage using photolithographic synthesis and advanced information reconstruction and error correction. Nat Commun 2020; 11:5345. [PMID: 33093494 PMCID: PMC7582880 DOI: 10.1038/s41467-020-19148-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/29/2020] [Indexed: 12/02/2022] Open
Abstract
Due to its longevity and enormous information density, DNA is an attractive medium for archival storage. The current hamstring of DNA data storage systems-both in cost and speed-is synthesis. The key idea for breaking this bottleneck pursued in this work is to move beyond the low-error and expensive synthesis employed almost exclusively in today's systems, towards cheaper, potentially faster, but high-error synthesis technologies. Here, we demonstrate a DNA storage system that relies on massively parallel light-directed synthesis, which is considerably cheaper than conventional solid-phase synthesis. However, this technology has a high sequence error rate when optimized for speed. We demonstrate that even in this high-error regime, reliable storage of information is possible, by developing a pipeline of algorithms for encoding and reconstruction of the information. In our experiments, we store a file containing sheet music of Mozart, and show perfect data recovery from low synthesis fidelity DNA.
Collapse
Affiliation(s)
- Philipp L Antkowiak
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland
| | - Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, A-1090, Vienna, Austria
| | - Mohammad Zalbagi Darestani
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Mark M Somoza
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, A-1090, Vienna, Austria
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354, Freising, Germany
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354, Freising, Germany
| | - Wendelin J Stark
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland
| | - Reinhard Heckel
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA.
- Department of Electrical and Computer Engineering, Technical University of Munich, Theresienstr. 90, 80333, Munich, Germany.
| | - Robert N Grass
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland.
| |
Collapse
|
18
|
Stoeger V, Holik AK, Hölz K, Dingjan T, Hans J, Ley JP, Krammer GE, Niv MY, Somoza MM, Somoza V. Bitter-Tasting Amino Acids l-Arginine and l-Isoleucine Differentially Regulate Proton Secretion via T2R1 Signaling in Human Parietal Cells in Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3434-3444. [PMID: 31891507 DOI: 10.1021/acs.jafc.9b06285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aimed at identifying whether the bitter-tasting amino acids l-arginine (l-ARG) and l-isoleucine (l-ILE) differentially regulate mechanisms of gastric acid secretion in human parietal cells (HGT-1 cells) via activation of bitter taste sensing receptors (T2Rs). In a first set of experiments, involvement of T2Rs in l-ARG and l-ILE-modulated proton secretion was demonstrated by co-treatment of HGT-1 cells with T2R antagonists. Subsequent whole genome screenings by means of cDNA arrays revealed T2R1 as a prominent target for both amino acids. Next, the functional role of T2R1 was verified by means of a T2R1 CRISPR-Cas9 knock-out approach. Here, the effect of l-ARG on proton secretion decreased by 65.7 ± 21.9% and the effect of l-ILE increased by 93.2 ± 24.1% in HGT-1 T2R1 ko versus HGT-1 wt cells (p < 0.05). Overall, our results indicate differential effects of l-ARG and l-ILE on proton secretion in HGT-1 cells and our molecular docking studies predict distinct binding for these amino acids in the binding site of T2R1. Further studies will elucidate whether the mechanism of differential effects involves structure-specific ligand-biased signaling of T2R1 or additional cellular targets.
Collapse
Affiliation(s)
| | | | | | - Tamir Dingjan
- Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Joachim Hans
- Symrise AG Global Innovation Cosmetic Ingredient Research, Research & Technology Flavors Division, P.O. Box 1253, Holzminden 37603, Germany
| | - Jakob P Ley
- Symrise AG Global Innovation Cosmetic Ingredient Research, Research & Technology Flavors Division, P.O. Box 1253, Holzminden 37603, Germany
| | - Gerhard E Krammer
- Symrise AG Global Innovation Cosmetic Ingredient Research, Research & Technology Flavors Division, P.O. Box 1253, Holzminden 37603, Germany
| | - Masha Y Niv
- Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | | | | |
Collapse
|
19
|
Hölz K, Pavlic A, Lietard J, Somoza MM. Specificity and Efficiency of the Uracil DNA Glycosylase-Mediated Strand Cleavage Surveyed on Large Sequence Libraries. Sci Rep 2019; 9:17822. [PMID: 31780717 PMCID: PMC6883067 DOI: 10.1038/s41598-019-54044-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
Uracil-DNA glycosylase (UDG) is a critical DNA repair enzyme that is well conserved and ubiquitous in nearly all life forms. UDG protects genomic information integrity by catalyzing the excision from DNA of uracil nucleobases resulting from misincorporation or spontaneous cytosine deamination. UDG-mediated strand cleavage is also an important tool in molecular biotechnology, allowing for controlled and location-specific cleavage of single- and double DNA chemically or enzymatically synthesized with single or multiple incorporations of deoxyuridine. Although the cleavage mechanism is well-understood, detailed knowledge of efficiency and sequence specificity, in both single and double-stranded DNA contexts, has so far remained incomplete. Here we use an experimental approach based on the large-scale photolithographic synthesis of uracil-containing DNA oligonucleotides to comprehensively probe the context-dependent uracil excision efficiency of UDG.
Collapse
Affiliation(s)
- Kathrin Hölz
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Angelina Pavlic
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| | - Mark M Somoza
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
- Chair of Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354, Freising, Germany.
| |
Collapse
|
20
|
Zaunschirm M, Pignitter M, Kopic A, Keßler C, Hochkogler C, Kretschy N, Somoza MM, Somoza V. Exposure of Human Gastric Cells to Oxidized Lipids Stimulates Pathways of Amino Acid Biosynthesis on a Genomic and Metabolomic Level. Molecules 2019; 24:molecules24224111. [PMID: 31739445 PMCID: PMC6891525 DOI: 10.3390/molecules24224111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 01/05/2023] Open
Abstract
The Western diet is characterized by a high consumption of heat-treated fats and oils. During deep-frying processes, vegetable oils are subjected to high temperatures which result in the formation of lipid peroxidation products. Dietary intake of oxidized vegetable oils has been associated with various biological effects, whereas knowledge about the effects of structurally-characterized lipid peroxidation products and their possible absorption into the body is scarce. This study investigates the impact of linoleic acid, one of the most abundant polyunsaturated fatty acids in vegetable oils, and its primary and secondary peroxidation products, 13-HpODE and hexanal, on genomic and metabolomic pathways in human gastric cells (HGT-1) in culture. The genomic and metabolomic approach was preceded by an up-to-six-hour exposure study applying 100 µM of each test compound to the apical compartment in order to quantitate the compounds’ recovery at the basolateral side. Exposure of HGT-1 cells to either 100 µM linoleic acid or 100 µM 13-HpODE resulted in the formation of approximately 1 µM of the corresponding hydroxy fatty acid, 13-HODE, in the basolateral compartment, whereas a mean concentration of 0.20 ± 0.13 µM hexanal was quantitated after an equivalent application of 100 µM hexanal. An integrated genomic and metabolomic pathway analysis revealed an impact of the linoleic acid peroxidation products, 13-HpODE and hexanal, primarily on pathways related to amino acid biosynthesis (p < 0.05), indicating that peroxidation of linoleic acid plays an important role in the regulation of intracellular amino acid biosynthesis.
Collapse
Affiliation(s)
- Mathias Zaunschirm
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-14277-70621
| | - Antonio Kopic
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Claudia Keßler
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Christina Hochkogler
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Nicole Kretschy
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Mark Manuel Somoza
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Veronika Somoza
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
21
|
Lietard J, Damha MJ, Somoza MM. Large-Scale Photolithographic Synthesis of Chimeric DNA/RNA Hairpin Microarrays To Explore Sequence Specificity Landscapes of RNase HII Cleavage. Biochemistry 2019; 58:4389-4397. [PMID: 31631649 PMCID: PMC6838787 DOI: 10.1021/acs.biochem.9b00806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/09/2019] [Indexed: 12/21/2022]
Abstract
Ribonuclease HII (RNase HII) is an essential endoribonuclease that binds to double-stranded DNA with RNA nucleotide incorporations and cleaves 5' of the ribonucleotide at RNA-DNA junctions. Thought to be present in all domains of life, RNase HII protects genomic integrity by initiating excision repair pathways that protect the encoded information from rapid degradation. There is sparse evidence that the enzyme cleaves some substrates better than others, but a large-scale study is missing. Such large-scale studies can be carried out on microarrays, and we employ chemical photolithography to synthesize very large combinatorial libraries of fluorescently labeled DNA/RNA chimeric sequences that self-anneal to form hairpin structures that are substrates for Escherichia coli RNase HII. The relative activity is determined by the loss of fluorescence upon cleavage. Each substrate includes a double-stranded 5 bp variable region with one to five consecutive ribonucleotide substitutions. We also examined the effect of all possible single and double mismatches, for a total of >9500 unique structures. Differences in cleavage efficiency indicate some level of substrate preference, and we identified the 5'-dC/rC-rA-dX-3' motif in well-cleaved substrates. The results significantly extend known patterns of RNase HII sequence specificity and serve as a template using large-scale photolithographic synthesis to comprehensively map landscapes of substrate specificity of nucleic acid-processing enzymes.
Collapse
Affiliation(s)
- Jory Lietard
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria
| | - Masad J. Damha
- Department
of Chemistry, McGill University, 801 Rue Sherbrooke Ouest, Montreal, QC H3A
0B8, Canada
| | - Mark M. Somoza
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria
| |
Collapse
|
22
|
Hoi JK, Lieder B, Pignitter M, Hans J, Ley JP, Lietard J, Hoelz K, Somoza M, Somoza V. Identification of Cinnamaldehyde as Most Effective Fatty Acid Uptake Reducing Cinnamon-Derived Compound in Differentiated Caco-2 Cells Compared to Its Structural Analogues Cinnamyl Alcohol, Cinnamic Acid, and Cinnamyl Isobutyrate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11638-11649. [PMID: 31532204 DOI: 10.1021/acs.jafc.9b04274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Naturally occurring cinnamon compounds such as cinnamaldehyde (CAL) and structurally related constituents have been associated with antiobesity activities, although studies regarding the impact on intestinal fatty acid uptake are scarce. Here, we demonstrate the effects of CAL and structural analogues cinnamyl alcohol (CALC), cinnamic acid (CAC), and cinnamyl isobutyrate on mechanisms regulating intestinal fatty acid uptake in differentiated Caco-2 cells. CAL, CALC, and CAC (3000 μM) were found to decrease fatty acid uptake by 58.0 ± 8.83, 19.4 ± 8.98, and 21.9 ± 6.55%, respectively. While CAL and CALC at a concentration of 300 μM increased serotonin release 14.9 ± 3.00- and 2.72 ± 0.69-fold, respectively, serotonin alone showed no effect on fatty acid uptake. However, CAL revealed transient receptor potential channel A1-dependency in the decrease of fatty acid uptake, as well as in CAL-induced serotonin release. Overall, CAL was identified as the most potent of the cinnamon constituents tested.
Collapse
Affiliation(s)
| | | | | | - Joachim Hans
- Symrise AG , Muehlenfeldstraße 1 , Holzminden 37603 , Germany
| | - Jakob P Ley
- Symrise AG , Muehlenfeldstraße 1 , Holzminden 37603 , Germany
| | | | | | | | | |
Collapse
|
23
|
Hölz K, Schaudy E, Lietard J, Somoza MM. Multi-level patterning nucleic acid photolithography. Nat Commun 2019; 10:3805. [PMID: 31444344 PMCID: PMC6707258 DOI: 10.1038/s41467-019-11670-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
The versatile and tunable self-assembly properties of nucleic acids and engineered nucleic acid constructs make them invaluable in constructing microscale and nanoscale devices, structures and circuits. Increasing the complexity, functionality and ease of assembly of such constructs, as well as interfacing them to the macroscopic world requires a multifaceted and programmable fabrication approach that combines efficient and spatially resolved nucleic acid synthesis with multiple post-synthetic chemical and enzymatic modifications. Here we demonstrate a multi-level photolithographic patterning approach that starts with large-scale in situ surface synthesis of natural, modified or chimeric nucleic acid molecular structures and is followed by chemical and enzymatic nucleic acid modifications and processing. The resulting high-complexity, micrometer-resolution nucleic acid surface patterns include linear and branched structures, multi-color fluorophore labeling and programmable targeted oligonucleotide immobilization and cleavage.
Collapse
Affiliation(s)
- Kathrin Hölz
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), 1090, Vienna, Austria
| | - Erika Schaudy
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), 1090, Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), 1090, Vienna, Austria.
| | - Mark M Somoza
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), 1090, Vienna, Austria.
| |
Collapse
|
24
|
Holden MT, Smith LM. Encrypted Oligonucleotide Arrays for Molecular Authentication. ACS COMBINATORIAL SCIENCE 2019; 21:562-567. [PMID: 31276622 DOI: 10.1021/acscombsci.9b00088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Counterfeiting is an incredibly widespread problem, with some estimates placing its economic impact above 2% of worldwide GDP. The scale of the issue suggests that current preventive measures are either technologically insufficient or too impractical and costly to be widely adopted. High-density arrays of biomolecules are explored here as security devices that can be coupled to a valuable commodity as proof of its authenticity. Light-directed DNA array fabrication technology is used to synthesize arrays that are designed to resist analysis with sequencing-by-hybridization approaches. A relatively simple sequence design strategy forces a counterfeiter to undertake a prohibitively high number of complex experiments to decipher the array sequences employed.
Collapse
Affiliation(s)
- Matthew T. Holden
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
25
|
Liu WC, Watt AAR. Solvodynamic Printing As A High Resolution Printing Method. Sci Rep 2019; 9:10766. [PMID: 31341210 PMCID: PMC6656777 DOI: 10.1038/s41598-019-47105-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/15/2019] [Indexed: 11/09/2022] Open
Abstract
Printing techniques are becoming increasingly prevalent in modern manufacturing. However, its biggest drawback is the limit in printing resolution. In this paper, we present solvodynamic printing as a novel printing system which aims to improve print resolution by incorporating an additional immiscible carrier solvent into the ink delivery system. The resolution is improved due to the solvent-solvent interactions between the ink and the carrier solvent which alter the contact angle of the ink on the substrate and limit the printed feature size. We demonstrate the proof of concept of solvodynamic printing by printing silver nanoparticle inks on a polyethylene naphthalate substrate. Silver nanoparticle tracks with widths of 35.2 ± 7.0 μm were achieved using a 300 μm nozzle. This is equivalent to 11.7 ± 2.3% of the nozzle diameter. The result shows great potential in solvodynamic printing as not many modern printing techniques can achieve such nozzle to feature size ratios.
Collapse
Affiliation(s)
- W C Liu
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, United Kingdom
| | - A A R Watt
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, United Kingdom.
| |
Collapse
|
26
|
|
27
|
Abstract
Chip-SIP is a stable isotope probing (SIP) method for linking microbial identity and function in mixed communities and is capable of analyzing multiple isotopes (13C, 15N, and 18O) simultaneously. This method uses a high-density microarray to separate taxon-specific 16S (or 18S) rRNA genes and a high sensitivity magnetic sector secondary ion mass spectrometer (SIMS) to determine the relative isotope incorporation of the rRNA at each probe location. Using a maskless array synthesizer (MAS), we synthesize multiple unique sequences to target hundreds of taxa at the ribosomal operational taxonomic unit (OTU) level on an array surface, and then analyze it with a NanoSIMS 50, using its high-spatial resolution imaging capability to generate isotope ratios for individual probes. The Chip-SIP method has been used in diverse systems, including surface marine and estuarine water, rhizosphere, and peat soils, to quantify taxon-specific relative incorporation of different substrates in complex microbial communities. Depending on the hypothesis and experimental design, Chip-SIP allows the user to compare the same community incorporating different substrates, different communities incorporating the same substrate(s), or quantify how a community responds to treatment effects, such as temperature or nutrient concentrations.
Collapse
|
28
|
Kumar S, Jain S, Dilbaghi N, Ahluwalia AS, Hassan AA, Kim KH. Advanced Selection Methodologies for DNAzymes in Sensing and Healthcare Applications. Trends Biochem Sci 2018; 44:190-213. [PMID: 30559045 DOI: 10.1016/j.tibs.2018.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
DNAzymes have been widely explored owing to their excellent catalytic activity in a broad range of applications, notably in sensing and biomedical devices. These newly discovered applications have built high hopes for designing novel catalytic DNAzymes. However, the selection of efficient DNAzymes is a challenging process but one that is of crucial importance. Initially, systemic evolution of ligands by exponential enrichment (SELEX) was a labor-intensive and time-consuming process, but recent advances have accelerated the automated generation of DNAzyme molecules. This review summarizes recent advances in SELEX that improve the affinity and specificity of DNAzymes. The thriving generation of new DNAzymes is expected to open the door to several healthcare applications. Therefore, a significant portion of this review is dedicated to various biological applications of DNAzymes, such as sensing, therapeutics, and nanodevices. In addition, discussion is further extended to the barriers encountered for the real-life application of these DNAzymes to provide a foundation for future research.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India; Department of Civil Engineering, College of Engineering, University of Nebraska at Lincoln, PO Box 886105, Lincoln, NE 68588-6105, USA.
| | - Shikha Jain
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India
| | | | - Ashraf Aly Hassan
- Department of Civil Engineering, College of Engineering, University of Nebraska at Lincoln, PO Box 886105, Lincoln, NE 68588-6105, USA
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
29
|
Hölz K, Hoi JK, Schaudy E, Somoza V, Lietard J, Somoza MM. High-Efficiency Reverse (5'→3') Synthesis of Complex DNA Microarrays. Sci Rep 2018; 8:15099. [PMID: 30305718 PMCID: PMC6180089 DOI: 10.1038/s41598-018-33311-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/26/2018] [Indexed: 11/18/2022] Open
Abstract
DNA microarrays are important analytical tools in genetics and have recently found multiple new biotechnological roles in applications requiring free 3' terminal hydroxyl groups, particularly as a starting point for enzymatic extension via DNA or RNA polymerases. Here we demonstrate the highly efficient reverse synthesis of complex DNA arrays using a photolithographic approach. The method is analogous to conventional solid phase synthesis but makes use of phosphoramidites with the benzoyl-2-(2-nitrophenyl)-propoxycarbonyl (BzNPPOC) photolabile protecting group on the 3'-hydroxyl group. The use of BzNPPOC, with more than twice the photolytic efficiency of the 2-(2-nitrophenyl)-propoxycarbonyl (NPPOC) previously used for 5'→3' synthesis, combined with additional optimizations to the coupling and oxidation reactions results in an approximately 3-fold improvement in the reverse synthesis efficiency of complex arrays of DNA oligonucleotides. The coupling efficiencies of the reverse phosphoramidites are as good as those of regular phosphoramidites, resulting in comparable yields. Microarrays of DNA surface tethered on the 5' end and with free 3' hydroxyl termini can be synthesized quickly and with similarly high stepwise coupling efficiency as microarrays using conventional 3'→5' synthesis.
Collapse
Affiliation(s)
- Kathrin Hölz
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Julia K Hoi
- Department of Physiological Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Erika Schaudy
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Veronika Somoza
- Department of Physiological Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| | - Mark M Somoza
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
30
|
Holik AK, Stöger V, Hölz K, Somoza MM, Somoza V. Impact of free N ε-carboxymethyllysine, its precursor glyoxal and AGE-modified BSA on serotonin release from human parietal cells in culture. Food Funct 2018; 9:3906-3915. [PMID: 29972203 PMCID: PMC6053975 DOI: 10.1039/c8fo01045e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023]
Abstract
Advanced glycation end products (AGEs) are frequently encountered in a western diet, in addition to their formation in vivo. N-Epsilon-carboxymethyllysine (CML), one of the chemically diverse compounds formed in the reaction between reducing carbohydrates and amines, is often used as a marker of advanced glycation, and has been shown to stimulate serotonin release from cells representing the central (SH-SY5Y cells) and the peripheral (Caco-2 cells) serotonin system in vitro. Here, we investigated the effect of glyoxal, free CML, and protein-linked AGE-BSA on serotonin release from human gastric tumour cells, which originate from an adenocarcinoma of the stomach and have recently been shown to be capable of serotonin synthesis and release. Microarray experiments showed both CML and glyoxal to alter genes associated with serotonin receptors. Furthermore, treatment with glyoxal resulted in a small change in RAGE expression while CML did not alter its expression. On a functional level, treatment with 500 μM CML increased extracellular serotonin content by 341 ± 241%, while treatment with 1 mg mL-1 AGE-BSA led to a reduction by 49 ± 11% compared to non-treated cells. The CML-induced serotonin release was reduced by the HTR3 antagonist granisetron. Incubation with the RAGE antagonist FPS-ZM1 abolished the effect of AGE-BSA on serotonin release, while no impact on CML-induced serotonin release was observed. Furthermore, treatment with 5 mM CML stimulated proton secretion as a functional outcome measure, assessed using a pH sensitive dye. Taken together, these results indicate a likely HTR3-mediated, RAGE-independent effect of free CML on serotonin release and a RAGE-dependent mechanism for the protein linked AGE-BSA.
Collapse
Affiliation(s)
- Ann-Katrin Holik
- Department of Physiological Chemistry
, Faculty of Chemistry
, University of Vienna
,
Althanstraße 14
, 1090 Vienna
, Austria
.
; Fax: +43 1 4277 9706
; Tel: +43 1 4227 70601
| | - Verena Stöger
- Christian Doppler Laboratory for Bioactive Aroma Compounds
, Faculty of Chemistry
, University of Vienna
,
Althanstraße 14
, 1090 Vienna
, Austria
| | - Kathrin Hölz
- Department of Inorganic Chemistry
, Faculty of Chemistry
, University of Vienna
,
Althanstraße 14
, 1090 Vienna
, Austria
| | - Mark M. Somoza
- Department of Inorganic Chemistry
, Faculty of Chemistry
, University of Vienna
,
Althanstraße 14
, 1090 Vienna
, Austria
| | - Veronika Somoza
- Department of Physiological Chemistry
, Faculty of Chemistry
, University of Vienna
,
Althanstraße 14
, 1090 Vienna
, Austria
.
; Fax: +43 1 4277 9706
; Tel: +43 1 4227 70601
- Christian Doppler Laboratory for Bioactive Aroma Compounds
, Faculty of Chemistry
, University of Vienna
,
Althanstraße 14
, 1090 Vienna
, Austria
| |
Collapse
|
31
|
Lietard J, Abou Assi H, Gómez-Pinto I, González C, Somoza MM, Damha MJ. Mapping the affinity landscape of Thrombin-binding aptamers on 2΄F-ANA/DNA chimeric G-Quadruplex microarrays. Nucleic Acids Res 2017; 45:1619-1632. [PMID: 28100695 PMCID: PMC5389548 DOI: 10.1093/nar/gkw1357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/28/2016] [Indexed: 01/13/2023] Open
Abstract
In situ fabricated nucleic acids microarrays are versatile and very high-throughput platforms for aptamer optimization and discovery, but the chemical space that can be probed against a given target has largely been confined to DNA, while RNA and non-natural nucleic acid microarrays are still an essentially uncharted territory. 2΄-Fluoroarabinonucleic acid (2΄F-ANA) is a prime candidate for such use in microarrays. Indeed, 2΄F-ANA chemistry is readily amenable to photolithographic microarray synthesis and its potential in high affinity aptamers has been recently discovered. We thus synthesized the first microarrays containing 2΄F-ANA and 2΄F-ANA/DNA chimeric sequences to fully map the binding affinity landscape of the TBA1 thrombin-binding G-quadruplex aptamer containing all 32 768 possible DNA-to-2΄F-ANA mutations. The resulting microarray was screened against thrombin to identify a series of promising 2΄F-ANA-modified aptamer candidates with Kds significantly lower than that of the unmodified control and which were found to adopt highly stable, antiparallel-folded G-quadruplex structures. The solution structure of the TBA1 aptamer modified with 2΄F-ANA at position T3 shows that fluorine substitution preorganizes the dinucleotide loop into the proper conformation for interaction with thrombin. Overall, our work strengthens the potential of 2΄F-ANA in aptamer research and further expands non-genomic applications of nucleic acids microarrays.
Collapse
Affiliation(s)
- Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria.,Department of Chemistry, McGill University, 801 Rue Sherbrooke O, Montréal, QC H3A 0B8, Canada
| | - Hala Abou Assi
- Department of Chemistry, McGill University, 801 Rue Sherbrooke O, Montréal, QC H3A 0B8, Canada
| | | | - Carlos González
- Instituto de Química Física 'Rocasolano', CSIC, 28006 Madrid, Spain
| | - Mark M Somoza
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria
| | - Masad J Damha
- Department of Chemistry, McGill University, 801 Rue Sherbrooke O, Montréal, QC H3A 0B8, Canada
| |
Collapse
|
32
|
Mohammadi-Kambs M, Hölz K, Somoza MM, Ott A. Hamming Distance as a Concept in DNA Molecular Recognition. ACS OMEGA 2017; 2:1302-1308. [PMID: 28474009 PMCID: PMC5410656 DOI: 10.1021/acsomega.7b00053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/17/2017] [Indexed: 06/07/2023]
Abstract
DNA microarrays constitute an in vitro example system of a highly crowded molecular recognition environment. Although they are widely applied in many biological applications, some of the basic mechanisms of the hybridization processes of DNA remain poorly understood. On a microarray, cross-hybridization arises from similarities of sequences that may introduce errors during the transmission of information. Experimentally, we determine an appropriate distance, called minimum Hamming distance, in which the sequences of a set differ. By applying an algorithm based on a graph-theoretical method, we find large orthogonal sets of sequences that are sufficiently different not to exhibit any cross-hybridization. To create such a set, we first derive an analytical solution for the number of sequences that include at least four guanines in a row for a given sequence length and eliminate them from the list of candidate sequences. We experimentally confirm the orthogonality of the largest possible set with a size of 23 for the length of 7. We anticipate our work to be a starting point toward the study of signal propagation in highly competitive environments, besides its obvious application in DNA high throughput experiments.
Collapse
Affiliation(s)
- Mina Mohammadi-Kambs
- Biological
Experimental Physics, Saarland University, Campus B2.1, 66123 Saarbrücken, Germany
| | - Kathrin Hölz
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria
| | - Mark M. Somoza
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria
| | - Albrecht Ott
- Biological
Experimental Physics, Saarland University, Campus B2.1, 66123 Saarbrücken, Germany
| |
Collapse
|
33
|
Hölz K, Lietard J, Somoza MM. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2017; 5:828-834. [PMID: 28066690 PMCID: PMC5209756 DOI: 10.1021/acssuschemeng.6b02175] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/21/2016] [Indexed: 05/12/2023]
Abstract
Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p-type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination.
Collapse
Affiliation(s)
| | | | - M. M. Somoza
- Institute of Inorganic Chemistry,
Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), A-1090 Vienna, Austria
| |
Collapse
|