1
|
Xu B, Huang Y, Yu D, Chen Y. Advancements of ROS-based biomaterials for sensorineural hearing loss therapy. Biomaterials 2025; 316:123026. [PMID: 39705924 DOI: 10.1016/j.biomaterials.2024.123026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Sensorineural hearing loss (SNHL) represents a substantial global health challenge, primarily driven by oxidative stress-induced damage within the auditory system. Excessive reactive oxygen species (ROS) play a pivotal role in this pathological process, leading to cellular damage and apoptosis of cochlear hair cells, culminating in irreversible hearing impairment. Recent advancements have introduced ROS-scavenging biomaterials as innovative, multifunctional platforms capable of mitigating oxidative stress. This comprehensive review systematically explores the mechanisms of ROS-mediated oxidative stress in SNHL, emphasizing etiological factors such as aging, acoustic trauma, and ototoxic medication exposure. Furthermore, it examines the therapeutic potential of ROS-scavenging biomaterials, positioning them as promising nanomedicines for targeted antioxidant intervention. By critically assessing recent advances in biomaterial design and functionality, this review thoroughly evaluates their translational potential for clinical applications. It also addresses the challenges and limitations of ROS-neutralizing strategies, while highlighting the transformative potential of these biomaterials in developing novel SNHL treatment modalities. This review advocates for continued research and development to integrate ROS-scavenging biomaterials into future clinical practice, aiming to address the unmet needs in SNHL management and potentially revolutionize the treatment landscape for this pervasive health issue.
Collapse
Affiliation(s)
- Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China; Shanghai Institute of Materdicine, Shanghai, 200012, China.
| |
Collapse
|
2
|
Li X, Li Y, Tehoungue A, Wang Q, Yan H, Zhang G, Zhang Y. An Antibacterial Hydrogel Based on Silk Sericin Cross-Linking Glycyrrhizic Acid and Silver for Infectious Wound Healing. Biomacromolecules 2025; 26:2356-2367. [PMID: 40100082 DOI: 10.1021/acs.biomac.4c01687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Bioactive hydrogels are garnering increasing interest in wound management due to their porous structural features and versatile intrinsic biological activities. Importantly, the antibacterial capacity is a crucial requirement for hydrogel dressings in chronically infected wounds. In this study, we report an antibacterial hydrogel constructed from silk sericin (SS) cross-linked with glycyrrhizic acid (GA) and integrated with silver ions (Ag+) to accelerate the healing of bacterial-infected wounds. The resultant sericin-glycyrrhizic acid-Ag+ hydrogel (SGA) demonstrates favorable mechanical properties, effectively preventing secondary injury to wounds. Moreover, in vitro studies indicated that the SGA hydrogel possesses excellent swelling ratios, degradability, and cytocompatibility, promoting cell growth and proliferation. Notably, the SGA hydrogel exhibited effective antibacterial activity against both Gram-positive and Gram-negative bacteria through the release of Ag+. In a Staphylococcus aureus-infected wound model, the SGA hydrogel efficiently eradicated bacteria, thus promoting wound repair. Overall, our work establishes a novel strategy for developing multifunctional hydrogel dressings based on natural materials for managing bacteria-infected wounds.
Collapse
Affiliation(s)
- Xiang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Yurong Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research CenterChinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Akoumay Tehoungue
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Qianyan Wang
- Liyuan Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Hui Yan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research CenterChinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Guozheng Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research CenterChinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yeshun Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research CenterChinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
3
|
Huang Z, Ma Y, Yang X, Yang X, Cheng Y, Zhang A. Ultrasound-switchable piezoelectric BiVO 4/fullerene heterostructure for on-demand ROS modulation in MRSA-infected diabetic wound healing. BIOMATERIALS ADVANCES 2025; 174:214307. [PMID: 40233477 DOI: 10.1016/j.bioadv.2025.214307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Persistent microbial infections and excessive reactive oxygen species (ROS) accumulation severely impede diabetic wound healing. Herein, we developed an ultrasound-switchable BiVO4/fullerene piezoelectric heterostructure via a one-pot solvothermal method, enabling on-demand transition between bactericidal action and ROS scavenging for treating infected diabetic wounds. Under 8-min ultrasound (US) irradiation, the heterojunction sonosensitizer leveraged piezoelectric polarization to generate substantial ROS in real-time through a narrowed energy band gap and enhanced charge carrier separation and migration efficiency, resulting in the disruption of bacterial membrane integrity and 99.9 % eradication of methicillin-resistant Staphylococcus aureus (MRSA). Upon US withdrawal, the sonosensitizer spontaneously transitioned to an antioxidative state through fullerene-mediated ROS scavenging, effectively neutralizing excess ROS and restoring cellular redox balance. In an MRSA-infected diabetic wound model, this ultrasound-responsive duality effectively suppressed bacterial proliferation, reduced inflammation, enhanced angiogenesis, and ultimately accelerated wound healing within 14 days. This ultrasound-switchable therapeutic strategy offers promising insights for managing drug-resistant infections and other ROS-mediated biomedical challenges.
Collapse
Affiliation(s)
- Zini Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Engineering Technology Research Centre of Energy Polymer Materials, South-Central Minzu University, Wuhan 430074, PR China
| | - Yihan Ma
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Engineering Technology Research Centre of Energy Polymer Materials, South-Central Minzu University, Wuhan 430074, PR China.
| | - Xinyi Yang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Engineering Technology Research Centre of Energy Polymer Materials, South-Central Minzu University, Wuhan 430074, PR China
| | - Xiaoping Yang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Engineering Technology Research Centre of Energy Polymer Materials, South-Central Minzu University, Wuhan 430074, PR China
| | - Yinjia Cheng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Engineering Technology Research Centre of Energy Polymer Materials, South-Central Minzu University, Wuhan 430074, PR China
| | - Aiqing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Engineering Technology Research Centre of Energy Polymer Materials, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
4
|
Chen Y, Cao Y, Cui P, Lu S. Mussel-Inspired Hydrogel Applied to Wound Healing: A Review and Future Prospects. Biomimetics (Basel) 2025; 10:206. [PMID: 40277605 DOI: 10.3390/biomimetics10040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
The application background of mussel-inspired materials is based on the unique underwater adhesive ability of marine mussels, which has inspired researchers to develop bionic materials with strong adhesion, self-healing ability, biocompatibility, and environmental friendliness. Specifically, 3, 4-dihydroxyphenylalanine (DOPA) in mussel byssus is able to form non-covalent forces on a variety of surfaces, which are critical for the mussel's underwater adhesion and enable the mussel-inspired material to dissipate energy and repair itself under external forces. Mussel-inspired hydrogels are ideal medical adhesive materials due to their unique physical and chemical properties, such as excellent tissue adhesion, hemostasis and bacteriostasis, biosafety, and plasticity. This paper reviewed chitosan, cellulose, hyaluronic acid, gelatin, alginate, and other biomedical materials and discussed the advanced functions of mussel-inspired hydrogels as wound dressings, including antibacterial, anti-inflammatory, and antioxidant properties, adhesion and hemostasis, material transport, self-healing, stimulating response, and so on. At the same time, the technical challenges and limitations of the biomimetic mussel hydrogel in biomedical applications were further discussed, and its potential solutions and future research developments in the field of biomedicine were highlighted.
Collapse
Affiliation(s)
- Yanai Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yijia Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Pengyu Cui
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Shahzad S, Khan IU, Khalid I. α-Mangostin encapsulated gellan gum membranes for enhanced antibacterial, anti-inflammatory, antioxidant and wound healing activity. Int J Biol Macromol 2025; 308:142493. [PMID: 40139582 DOI: 10.1016/j.ijbiomac.2025.142493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Hydrogel membranes resemble biological tissues and currently there is a tremendous interest in their development as wound healing dressings. Alpha mangostin (α-MG), being a highly active xanthone is well recognized for its wound repair potential. However, because of its poor solubility and relatively brief retention time on cutaneous wound sites, its effectiveness on wounds is compromised. Herein, α-MG was incorporated in gellan gum (GG) based hydrogel membranes by solvent casting crosslinking technique and presented excellent antibacterial, antioxidant and anti-inflammatory effects. Prepared films demonstrated optimal thickness, flexibility, homogeneity and swelling capacity, characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometery (XRD) and scanning electron microscopy (SEM). Prepared films were hemocompatible and showed minimum toxicity against vero cells thus confirming their biocompatible nature thus fulfilling the requirements of an optimal wound dressing. Amid all the film formulations MG4 and MG8 presented superior antioxidant and antibacterial capabilities. In comparison to control, MG4 film significantly accelerated the healing process in vivo, promoted re-epithelization and reduced the levels of pro inflammatory and apoptotic cytokines. Taken together, this novel gellan gum based hydrogel membranes containing α-mangostin would be a useful pharmaceutical candidate for cutaneous wound healing.
Collapse
Affiliation(s)
- Sana Shahzad
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
6
|
Lin X, Zhang X, Wang Y, Chen W, Zhu Z, Wang S. Hydrogels and hydrogel-based drug delivery systems for promoting refractory wound healing: Applications and prospects. Int J Biol Macromol 2025; 285:138098. [PMID: 39608543 DOI: 10.1016/j.ijbiomac.2024.138098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Refractory wounds represent a significant health concern that presents considerable challenges within clinical practice. The healing process of refractory wounds, which involves various cell types and biologically active molecules, is dynamically influenced by multiple factors, including diabetes, infections, and inflammation. Owing to their hydrophilicity, biocompatibility, and capacity for drug loading, hydrogels have emerged as promising and innovative biomaterials for enhancing wound healing. In recent decades, hydrogels with inherent therapeutic properties have been identified. Moreover, advanced hydrogel-based drug delivery systems have been developed to facilitate the sustained and controlled release of therapeutic agents at the site of refractory wounds. This review aims to summarize recent advancements and applications of hydrogels, including those with intrinsic therapeutic properties and hydrogel-based drug delivery systems, in the treatment of refractory wounds. Additionally, we discuss the limitations associated with hydrogel applications and propose future perspectives, which will lead to ongoing efforts to optimize hydrogels as ideal biomaterials for refractory wound healing.
Collapse
Affiliation(s)
- Xuran Lin
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Xinge Zhang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Yuechen Wang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China.
| | - Zhikang Zhu
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China.
| | - Shoujie Wang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China; Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Zhou L, Zhang Y, Yi X, Chen Y, Li Y. Advances in proteins, polysaccharides, and composite biomaterials for enhanced wound healing via microenvironment management: A review. Int J Biol Macromol 2024; 282:136788. [PMID: 39490870 DOI: 10.1016/j.ijbiomac.2024.136788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Wound management is crucial yet imposes substantial social and economic burdens on patients and healthcare systems. The recent rapid advancements in biomaterials and manufacturing technology have created favorable conditions for expediting wound healing. This review examines the latest developments in biomacromolecule-based wound dressings, with a particular focus on proteins and polysaccharides, and their role in modulating the wound microenvironment. The importance of extracellular matrix (ECM)-inspired materials, such as hydrogels and biomimetic dressings, is emphasized. Additionally, this review explores the functionalization of wound dressings, emphasizing properties such as hemostatic capabilities, pain relief, antimicrobial activity, and innovative smart functions like electroceuticals and wound condition monitoring. The study integrates discussions on both the macroscopic healing outcomes and the microscopic pathophysiological mechanisms, highlighting recent advances in managing wound environments to expedite healing. Finally, the review critically assesses the challenges associated with the clinical translation of these wound-healing materials in the future.
Collapse
Affiliation(s)
- Lingyan Zhou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoli Yi
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yining Chen
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Zhang Y, Xu T, Li T, Chen H, Xu G, Hu W, Li Y, Dong Y, Liu Z, Han B. A three-phase strategy of bionic drug reservoir scaffold by 3D printing and layer-by-layer modification for chronic relapse management in traumatic osteomyelitis. Mater Today Bio 2024; 29:101356. [PMID: 39687799 PMCID: PMC11648807 DOI: 10.1016/j.mtbio.2024.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
We have developed a novel three-phase strategy for osteomyelitis treatment, structured into three distinct phases: the "strong antimicrobial" phase, the "monitoring and osteogenesis" phase and the "bone repair" phase. To implement this staged therapeutic strategy, we engineered a bionic drug reservoir scaffold carrying a dual-drug combination of antimicrobial peptides (AMPs) and simvastatin (SV). The scaffold integrated a bilayer gel drug-carrying structure, based on an induced membrane and combined with a 3D-printed rigid bone graft using a layer-by-layer modification strategy. The mechanical strength of the composite scaffold (73.40 ± 22.44 MPa) is comparable to that of cancellous bone. This scaffold enables controlled, sequential drug release through a spatial structure design and nanoparticle drug-carrying strategy. AMPs are released rapidly, with the release efficiency of 74.90 ± 8.19 % at 14 days (pH = 7.2), thus enabling rapid antimicrobial therapy. Meanwhile, SV is released over a prolonged period, with a release efficiency of 98.98 ± 0.05 % over 40 days in vitro simulations, promoting sustained osteogenesis and facilitating the treatment of intracellular infections by activating macrophage extracellular traps (METs). The antimicrobial, osteogenic and immunomodulatory effects of the scaffolds were verified through in vitro and in vivo experiments. It was demonstrated that composite scaffolds were able to combat the chronic recurrence of osteomyelitis after debridement, by providing rapid sterilization, stimulating METs formation, and supporting osteogenic repair.
Collapse
Affiliation(s)
- Yutong Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Tongtong Xu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Tieshu Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
- Changchun University of Chinese Medicine, Changchun, 130117, China
- Affiliated Hospital of Yangzhou University, Yangzhou, 225009, China
| | - Hening Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Guangzhe Xu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wenxin Hu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yongting Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yue Dong
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Zhihui Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Bing Han
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
9
|
Sarkhel S, Jaiswal A. Emerging Frontiers in In Situ Forming Hydrogels for Enhanced Hemostasis and Accelerated Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61503-61529. [PMID: 39479880 DOI: 10.1021/acsami.4c07108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
With a surge in the number of accidents and chronic wounds worldwide, there is a growing need for advanced hemostatic and wound care solutions. In this regard, in situ forming hydrogels have emerged as a revolutionary biomaterial due to their inherent properties, which include biocompatibility, biodegradability, porosity, and extracellular matrix (ECM)-like mechanical strength, that render them ideal for biomedical applications. This review demonstrates the advancements of in situ forming hydrogels, tracing their evolution from injectable to more sophisticated forms, such as sprayable and 3-D printed hydrogels. These hydrogels are designed to modulate the pathophysiology of wounds, enhancing hemostasis and facilitating wound repair. The review presents different methodologies for in situ forming hydrogel synthesis, spanning a spectrum of physical and chemical cross-linking techniques. Furthermore, it showcases the adaptability of hydrogels to the dynamic requirements of wound healing processes. Through a detailed discussion, this article sheds light on the multifunctional capabilities of these hydrogels such as their antibacterial, anti-inflammatory, and antioxidant properties. This review aims to inform and inspire continued advancement in the field, ultimately contributing to the development of sophisticated wound care solutions that meet the complexity of clinical needs.
Collapse
Affiliation(s)
- Sanchita Sarkhel
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075 Himachal Pradesh, India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075 Himachal Pradesh, India
| |
Collapse
|
10
|
Dong Q, Xiong S, Ai J, Zhang Z, Zhou Y. Metal–phenolic nanozyme based microneedle patch with antibacterial and antioxidant for infected wound healing. Eur Polym J 2024; 220:113500. [DOI: 10.1016/j.eurpolymj.2024.113500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
11
|
Shi R, Zhu Y, Chen Y, Lin Y, Shi S. Advances in DNA nanotechnology for chronic wound management: Innovative functional nucleic acid nanostructures for overcoming key challenges. J Control Release 2024; 375:155-177. [PMID: 39242033 DOI: 10.1016/j.jconrel.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Chronic wound management is affected by three primary challenges: bacterial infection, oxidative stress and inflammation, and impaired regenerative capacity. Conventional treatment methods typically fail to deliver optimal outcomes, thus highlighting the urgency to develop innovative materials that can address these issues and improve efficacy. Recent advances in DNA nanotechnology have garnered significant interest, particularly in the field of functional nucleic acid (FNA) nanomaterials, owing to their exceptional biocompatibility, programmability, and therapeutic potential. Among them, FNAs with unique nanostructures have garnered considerable attention. First, they inherit the biological properties of FNAs, including biocompatibility, reactive oxygen species (ROS)-scavenging capabilities, and modulation of cellular functions. Second, based on a precise design, these nanostructures exhibit superior physical properties, stability, and cellular uptake. Third, by leveraging the programmability of DNA strands, FNA nanostructures can be customized to accommodate therapeutic nucleic acids, peptides, and small-molecule drugs, thereby enabling a stable and controlled drug delivery system. These unique characteristics enable the use of FNA nanostructures to effectively address the major challenges in chronic wound management. This review focuses on various FNA nanostructures, including tetrahedral framework nucleic acids (tFNAs), DNA hydrogels, DNA origami, and rolling-circle amplification (RCA) DNA assembly. Additionally, a summary of recent advancements in their design and application for chronic wound management as well as insights for future research in this field are provided.
Collapse
Affiliation(s)
- Ruijianghan Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yujie Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yang Chen
- Department of Pediatric Surgery, Department of Liver Surgery & Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China.
| |
Collapse
|
12
|
Zhou Z, Chen Z, Ji C, Wu C, Li J, Ma Y, Jin S, Fang X, Wu Y, Xun J, Xiao S, Wang S, Zheng Y. A dopamine-assisted antioxidative in situ-forming hydrogel with photothermal therapy for enhancing scarless burn wound healing. CHEMICAL ENGINEERING JOURNAL 2024; 498:155389. [DOI: 10.1016/j.cej.2024.155389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
13
|
Huang C, Zhang Z, Fang Y, Huang K, Zhao Y, Huang H, Wu J. Cost-effective and natural-inspired lotus root/GelMA scaffolds enhanced wound healing via ROS scavenging, angiogenesis and reepithelialization. Int J Biol Macromol 2024; 278:134496. [PMID: 39128742 DOI: 10.1016/j.ijbiomac.2024.134496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Skin wounds, prevalent and fraught with complications, significantly impact individuals and society. Wound healing encounters numerous obstacles, such as excessive reactive oxygen species (ROS) production and impaired angiogenesis, thus promoting the development of chronic wound. Traditional clinical interventions like hemostasis, debridement, and surgery face considerable challenges, including the risk of secondary infections. While therapies designed to scavenge excess ROS and enhance proangiogenic properties have shown effectiveness in wound healing, their clinical adoption is hindered by high costs, complex manufacturing processes, and the potential for allergic reactions. Lotus root, distinguished by its natural micro and macro porous architecture, exhibits significant promise as a tissue engineering scaffold. This study introduced a novel scaffold based on hybridization of lotus root-inspired and Gelatin Methacryloyl (GelMA), verified with satisfactory physicochemical properties, biocompatibility, antioxidative capabilities and proangiogenic abilities. In vivo tests employing a full-thickness wound model revealed that these scaffolds notably enhanced micro vessel formation and collagen remodeling within the wound bed, thus accelerating the healing process. Given the straightforward accessibility of lotus roots and the cost-effective production of the scaffolds, the novel scaffolds with ROS scavenging, pro-angiogenesis and re-epithelialization abilities are anticipated to have clinical applicability for various chronic wounds.
Collapse
Affiliation(s)
- Chunlin Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhen Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yifei Fang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Keqing Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yi Zhao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China; Division of Life Science, The Hong Kong University of Science and Technology, 999077, Hong Kong, China.
| |
Collapse
|
14
|
Ma X, Fu X, Meng J, Li H, Wang F, Shao H, Liu Y, Liu F, Zhang D, Chi B, Miao J. A low-swelling alginate hydrogel with antibacterial hemostatic and radical scavenging properties for open wound healing. Biomed Mater 2024; 19:065010. [PMID: 39255828 DOI: 10.1088/1748-605x/ad792c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
Development of a low-cost and biocompatible hydrogel dressing with antimicrobial, antioxidant, and low swelling properties is important for accelerating wound healing. Here, a multifunctional alginate hydrogel dressing was fabricated using the D-(+)-gluconic acidδ-lactone/CaCO3system. The addition of hyaluronic acid and tannic acid (TA) provides the alginate hydrogel with anti-reactive oxygen species (ROS), hemostatic, and pro-wound healing properties. Notably, soaking the alginate hydrogel in a poly-ϵ-lysine (EPL) aqueous solution enables the alginate hydrogel to be di-crosslinked with EPL through electrostatic interactions, forming a dense network resembling 'armor' on the surface. This simple one-step soaking strategy provides the alginate hydrogel with antibacterial and anti-swelling properties. Swelling tests demonstrated that the cross-sectional area of the fully swollen multifunctional alginate hydrogel was only 1.3 times its initial size, thus preventing excessive wound expansion caused by excessive swelling. After 5 h ofin vitrorelease, only 7% of TA was cumulatively released, indicating a distinctly slow-release behavior. Furthermore, as evidenced by the removal of 2,2-diphenyl-1-picrylhydrazyl free radicals, this integrated alginate hydrogel systems demonstrate a notable capacity to eliminate ROS. Full-thickness skin wound repair experiment and histological analysis of the healing site in mice demonstrate that the developed multifunctional alginate hydrogels have a prominent effect on extracellular matrix formation and promotion of wound closure. Overall, this study introduces a cost-effective and convenient multifunctional hydrogel dressing with high potential for clinical application in treating open wounds.
Collapse
Affiliation(s)
- Xuebin Ma
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Xiao Fu
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250021, People's Republic of China
| | - Jianwen Meng
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Hongmei Li
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Fang Wang
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Huarong Shao
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Yang Liu
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Fei Liu
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Daizhou Zhang
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, People's Republic of China
| |
Collapse
|
15
|
Wu S, Zhou Z, Li Y, Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024; 10:e37031. [PMID: 39286219 PMCID: PMC11403009 DOI: 10.1016/j.heliyon.2024.e37031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions. Conventional treatments merely afford symptomatic alleviation or retard the disease's advancement, devoid of the capacity to effectuate further restitution of compromised vasculature and nerves. An escalating body of research underscores the prominence of mesenchymal stem cells (MSCs) owing to their paracrine attributes and anti-inflammatory prowess, rendering them a focal point in the realm of chronic wound healing. Presently, MSCs have been validated as a highly promising cellular therapeutic approach for DFU, capable of effectuating cellular repair, epithelialization, granulation tissue formation, and neovascularization by means of targeted differentiation, angiogenesis promotion, immunomodulation, and paracrine activities, thereby fostering wound healing. The secretome of MSCs comprises cytokines, growth factors, chemokines, alongside exosomes harboring mRNA, proteins, and microRNAs, possessing immunomodulatory and regenerative properties. The present study provides a systematic exposition on the etiology of DFU and elucidates the intricate molecular mechanisms and diverse functionalities of MSCs in the context of DFU treatment, thereby furnishing pioneering perspectives aimed at harnessing the therapeutic potential of MSCs for DFU management and advancing wound healing processes.
Collapse
Affiliation(s)
- ShuHui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ZhongSheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Tong Q, Yi Z, Ma L, Tan Y, Liu D, Cao X, Ma X, Li X. Microenvironment-Responsive Antibacterial, Anti-Inflammatory, and Antioxidant Pickering Emulsion Stabilized by Curcumin-Loaded Tea Polyphenol Particles for Accelerating Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44467-44484. [PMID: 39140414 DOI: 10.1021/acsami.4c08717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Multiphase Pickering emulsions, including two or more active agents, are of great importance to effectively manage complicated wounds. However, current strategies based on Pickering emulsions are still unsatisfying since they involve only stabilization by inactive particles and encapsulation of the hydrophobic drugs in the oil phase. Herein, thyme essential oil (TEO) was encapsulated in the shell of functional tea polyphenol (TP)-curcumin (Cur) nanoparticles (TC NPs) to exemplarily develop a novel Pickering emulsion (TEO/TC PE). Hydrophobic Cur was loaded with hydrophilic TP to obtain TC NPs, and under homogenization, these TC NPs adsorbed on the surface of TEO droplets to form a stable core-shell structure. Owing to such an oil-in-water (O/W) structure, the sequential release of the first Cur from pH-responsive disintegrated TC NPs and then the leaked TEO from the emulsion yielded synergetic functions of TEO/TC PE, leading to enhanced antibacterial, biofilm elimination, antioxidant, and anti-inflammatory activities. This injectable TEO/TC PE was applied to treat the infected full-thickness skin defects, and satisfactory wound healing effects were achieved with rapid angiogenesis, collagen deposition, and skin regeneration. The present TEO/TC PE constituted entirely of plant-sourced active products is biosafe and expected to spearhead the future development of novel wound dressings.
Collapse
Affiliation(s)
- Qiulan Tong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yunfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Danni Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xiaoyu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xiaomin Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, P.R. China
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
17
|
Cao H, Wang M, Ding J, Lin Y. Hydrogels: a promising therapeutic platform for inflammatory skin diseases treatment. J Mater Chem B 2024; 12:8007-8032. [PMID: 39045804 DOI: 10.1039/d4tb00887a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Inflammatory skin diseases, such as psoriasis and atopic dermatitis, pose significant health challenges due to their long-lasting nature, potential for serious complications, and significant health risks, which requires treatments that are both effective and exhibit minimal side effects. Hydrogels offer an innovative solution due to their biocompatibility, tunability, controlled drug delivery capabilities, enhanced treatment adherence and minimized side effects risk. This review explores the mechanisms that guide the design of hydrogel therapeutic platforms from multiple perspectives, focusing on the components of hydrogels, their adjustable physical and chemical properties, and their interactions with cells and drugs to underscore their clinical potential. We also examine various therapeutic agents for psoriasis and atopic dermatitis that can be integrated into hydrogels, including traditional drugs, novel compounds targeting oxidative stress, small molecule drugs, biologics, and emerging therapies, offering insights into their mechanisms and advantages. Additionally, we review clinical trial data to evaluate the effectiveness and safety of hydrogel-based treatments in managing psoriasis and atopic dermatitis under complex disease conditions. Lastly, we discuss the current challenges and future opportunities for hydrogel therapeutics in treating psoriasis and atopic dermatitis, such as improving skin barrier penetration and developing multifunctional hydrogels, and highlight emerging opportunities to enhance long-term safety and stability.
Collapse
Affiliation(s)
- Huali Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
- Department of Dermatology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ming Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Jianwei Ding
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
18
|
Ji M, Zhan F, Qiu X, Liu H, Liu X, Bu P, Zhou B, Serda M, Feng Q. Research Progress of Hydrogel Microneedles in Wound Management. ACS Biomater Sci Eng 2024; 10:4771-4790. [PMID: 38982708 PMCID: PMC11322915 DOI: 10.1021/acsbiomaterials.4c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Microneedles are a novel drug delivery system that offers advantages such as safety, painlessness, minimally invasive administration, simplicity of use, and controllable drug delivery. As a type of polymer microneedle with a three-dimensional network structure, hydrogel microneedles (HMNs) possess excellent biocompatibility and biodegradability and encapsulate various therapeutic drugs while maintaining drug activity, thus attracting significant attention. Recently, they have been widely employed to promote wound healing and have demonstrated favorable therapeutic effects. Although there are reviews about HMNs, few of them focus on wound management. Herein, we present a comprehensive overview of the design and preparation methods of HMNs, with a particular emphasis on their application status in wound healing, including acute wound healing, infected wound healing, diabetic wound healing, and scarless wound healing. Finally, we examine the advantages and limitations of HMNs in wound management and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Ming Ji
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Fangbiao Zhan
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Xingan Qiu
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hong Liu
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Xuezhe Liu
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Pengzhen Bu
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Bikun Zhou
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Maciej Serda
- Institute
of Chemistry, University of Silesia in Katowice, Katowice 40-006, Poland
| | - Qian Feng
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
19
|
Zhou S, Zhang X, Ni W, He Y, Li M, Wang C, Bai Y, Zhang H, Yao M. An Immune-Regulating Polysaccharide Hybrid Hydrogel with Mild Photothermal Effect and Anti-Inflammatory for Accelerating Infected Wound Healing. Adv Healthc Mater 2024; 13:e2400003. [PMID: 38711313 DOI: 10.1002/adhm.202400003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/24/2024] [Indexed: 05/08/2024]
Abstract
Bacterial infections and excessive inflammation present substantial challenges for clinical wound healing. Hydrogels with mild photothermal (PTT) effects have emerged as promising agents owing to their dual actions: positive effects on cells and negative effects on bacteria. Here, an injectable self-healing hydrogel of oxidized konjac glucomannan/arginine-modified chitosan (OKGM/CS-Arg, OC) integrated with protocatechualdehyde-@Fe (PF) nanoparticles capable of effectively absorbing near-infrared radiation is synthesized successfully. The OC/PF hydrogels exhibit excellent mechanical properties, biocompatibility, and antioxidant activity. Moreover, in synergy with PTT, OC/PF demonstrates potent antibacterial effects while concurrently stimulating cell migration and new blood vessel formation. In methicillin-resistant Staphylococcus aureus-infected full-thickness mouse wounds, the OC/PF hydrogel displays remarkable antibacterial and anti-inflammatory activities, and accelerates wound healing by regulating the wound immune microenvironment and promoting M2 macrophage polarization. Consequently, the OC/PF hydrogel represents a novel therapeutic approach for treating multidrug-resistant bacterial infections and offers a technologically advanced solution for managing infectious wounds in clinical settings.
Collapse
Affiliation(s)
- ShengZhe Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xueliang Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei Ni
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430000, P. R. China
| | - Yu He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Ming Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Caixia Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Yubing Bai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Hao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, P. R. China
| |
Collapse
|
20
|
Pu C, Wang Y, Li Y, Wang Y, Li L, Xiang H, Sun Q, Yong Y, Yang H, Jiang K. Nano-enzyme functionalized hydrogels promote diabetic wound healing through immune microenvironment modulation. Biomater Sci 2024; 12:3851-3865. [PMID: 38899957 DOI: 10.1039/d4bm00348a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Non-healing diabetic wounds often culminate in amputation and mortality. The main pathophysiological features in diabetic wounds involve the accumulation of M1-type macrophages and excessive oxidative stress. In this study, we engineered a nano-enzyme functionalized hydrogel by incorporating a magnesium ion-doped molybdenum-based polymetallic oxide (Mg-POM), a novel bioactive nano-enzyme, into a GelMA hydrogel, to obtain the GelMA@Mg-POM system to enhance diabetic wound healing. GelMA@Mg-POM was crosslinked using UV light, yielding a hydrogel with a uniformly porous three-dimensional mesh structure. In vitro experiments showed that GelMA@Mg-POM extraction significantly enhanced human umbilical vein endothelial cell (HUVEC) migration, scavenged ROS, improved the inflammatory microenvironment, induced macrophage reprogramming towards M2, and promoted HUVEC regeneration of CD31 and fibroblast regeneration of type I collagen. In in vivo experiments, diabetic rat wounds treated with GelMA@Mg-POM displayed enhanced granulation tissue genesis and collagen production, as evidenced by HE and Masson staining. Immunohistochemistry demonstrated the ability of GelMA@Mg-POM to mitigate macrophage-associated inflammatory responses and promote angiogenesis. Overall, these findings suggest that GelMA@Mg-POM holds significant promise as a biomaterial for treating diabetic wounds.
Collapse
Affiliation(s)
- Chaoyu Pu
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China.
| | - Yong Wang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China.
| | - Yuling Li
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China.
| | - Yi Wang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China.
| | - Linfeng Li
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China.
| | - Honglin Xiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China.
| | - Qiyuan Sun
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China.
| | - Yuan Yong
- School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Hanfeng Yang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China.
| | - Ke Jiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China.
| |
Collapse
|
21
|
Gao Y, Wang X, Fan C. Advances in graphene-based 2D materials for tendon, nerve, bone/cartilage regeneration and biomedicine. iScience 2024; 27:110214. [PMID: 39040049 PMCID: PMC11261022 DOI: 10.1016/j.isci.2024.110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Two-dimensional (2D) materials, especially graphene-based materials, have important implications for tissue regeneration and biomedicine due to their large surface area, transport properties, ease of functionalization, biocompatibility, and adsorption capacity. Despite remarkable progress in the field of tissue regeneration and biomedicine, there are still problems such as unclear long-term stability, lack of in vivo experimental data, and detection accuracy. This paper reviews recent applications of graphene-based materials in tissue regeneration and biomedicine and discusses current issues and prospects for the development of graphene-based materials with respect to promoting the regeneration of tendons, neuronal cells, bone, chondrocytes, blood vessels, and skin, as well as applications in sensing, detection, anti-microbial activity, and targeted drug delivery.
Collapse
Affiliation(s)
- Yuxin Gao
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xu Wang
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Orthopaedics, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Orthopaedics, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
22
|
Bhowmik S, Baral B, Rit T, Jha HC, Das AK. Design and synthesis of a nucleobase functionalized peptide hydrogel: in vitro assessment of anti-inflammatory and wound healing effects. NANOSCALE 2024; 16:13613-13626. [PMID: 38958597 DOI: 10.1039/d4nr01149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Over the past several years, a significant increase in the expanding field of biomaterial sciences has been observed due to the development of biocompatible materials based on peptide derivatives that have intrinsic therapeutic potential. In this report, we synthesized nucleobase functionalized peptide derivatives (NPs). Hydrogelation in the synthesized NPs was induced by increasing their hydrophobicity with an aromatic moiety. The aggregation behavior of the NPs was analyzed by performing molecular dynamics simulations and DOSY NMR experiments. We performed circular dichroism (CD), thioflavin-T binding and PXRD to characterize the supramolecular aggregation in the NP1 hydrogel. The mechanical strength of the NP1 hydrogel was tested by performing rheological experiments. TEM and SEM experiments were performed to investigate the morphology of the NP1 hydrogel. The biocompatibility of the newly synthesized NP1 hydrogel was investigated using McCoy and A549 cell lines. The hemolytic activity of the NP1 hydrogel was examined in human blood cells. The stability of the newly formed NP1 hydrogel was examined using proteinase K and α-chymotrypsin. The NP1 hydrogel was used for in vitro wound healing. Western blotting, qRT-PCR and DCFDA assay were performed to determine the anti-inflammatory activity of the NP1 hydrogel. The synthesized NP1 hydrogel also exhibits antibacterial efficacy.
Collapse
Affiliation(s)
- Sourav Bhowmik
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Budhadev Baral
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Tanmay Rit
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| |
Collapse
|
23
|
Mutavdzin Krneta S, Gopcevic K, Stankovic S, Jakovljevic Uzelac J, Todorovic D, Labudovic Borovic M, Rakocevic J, Djuric D. Insights into the Cardioprotective Effects of Pyridoxine Treatment in Diabetic Rats: A Study on Cardiac Oxidative Stress, Cardiometabolic Status, and Cardiovascular Biomarkers. Diagnostics (Basel) 2024; 14:1507. [PMID: 39061644 PMCID: PMC11275822 DOI: 10.3390/diagnostics14141507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The aims of this study were to examine the effects of pyridoxine administration on the activities of cardiac antioxidant stress enzymes superoxide dismutase (SOD) and catalase (CAT) and enzyme indicators of cardiometabolic status, lactate and malate dehydrogenase (LDH, MDH), as well as LDH and MDH isoforms' distribution in the cardiac tissue of healthy and diabetic Wistar male rats. Experimental animals were divided into five groups: C1-control (0.9% sodium chloride-NaCl-1 mL/kg, intraperitoneally (i.p.), 1 day); C2-second control (0.9% NaCl 1 mL/kg, i.p., 28 days); DM-diabetes mellitus (streptozotocin 100 mg/kg in 0.9% NaCl, i.p., 1 day); P-pyridoxine (7 mg/kg, i.p., 28 days); and DM + P-diabetes mellitus and pyridoxine (streptozotocin 100 mg/kg, i.p., 1 day and pyridoxine 7 mg/kg, i.p., 28 days). Pyridoxine treatment reduced CAT and MDH activity in diabetic rats. In diabetic rats, the administration of pyridoxine increased LDH1 and decreased LDH4 isoform activities, as well as decreased peroxisomal MDH and increased mitochondrial MDH activities. Our findings highlight the positive effects of pyridoxine administration on the complex interplay between oxidative stress, antioxidant enzymes, and metabolic changes in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Slavica Mutavdzin Krneta
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.J.U.); (D.T.); (D.D.)
| | - Kristina Gopcevic
- Institute of Chemistry in Medicine “Prof. Dr. Petar Matavulj”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sanja Stankovic
- Centre for Medical Biochemistry, University Clinical Centre of Serbia, 11000 Belgrade, Serbia;
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jovana Jakovljevic Uzelac
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.J.U.); (D.T.); (D.D.)
| | - Dušan Todorovic
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.J.U.); (D.T.); (D.D.)
| | - Milica Labudovic Borovic
- Institute of Histology and Embryology “Aleksandar Dj. Kostic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.L.B.); (J.R.)
| | - Jelena Rakocevic
- Institute of Histology and Embryology “Aleksandar Dj. Kostic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.L.B.); (J.R.)
| | - Dragan Djuric
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.J.U.); (D.T.); (D.D.)
| |
Collapse
|
24
|
Yuan B, Jiang X, Xie Z, Zhang X, Zhang J, Hong J. Organic photovoltaic biomaterial with fullerene derivatives for near-infrared light sensing in neural cells. Biointerphases 2024; 19:041001. [PMID: 39007691 DOI: 10.1116/6.0003279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/05/2024] [Indexed: 07/16/2024] Open
Abstract
Retinal degenerative diseases, which can lead to photoreceptor cell apoptosis, have now become the leading irreversible cause of blindness worldwide. In this study, we developed an organic photovoltaic biomaterial for artificial retinas, enabling neural cells to detect photoelectric stimulation. The biomaterial was prepared using a conjugated polymer donor, PCE-10, and a non-fullerene receptor, Y6, both known for their strong near-infrared light absorption capabilities. Additionally, a fullerene receptor, PC61BM, was incorporated, which possesses the ability to absorb reactive oxygen species. We conducted a comprehensive investigation into the microstructure, photovoltaic properties, and photothermal effects of this three-component photovoltaic biomaterial. Furthermore, we employed Rat adrenal pheochromocytoma cells (PC-12) as a standard neural cell model to evaluate the in vitro photoelectric stimulation effect of this photovoltaic biomaterial. The results demonstrate that the photovoltaic biomaterial, enriched with fullerene derivatives, can induce intracellular calcium influx in PC-12 cells under 630 nm (red light) and 780 nm (near-infrared) laser irradiation. Moreover, there were lower levels of oxidative stress and higher levels of mitochondrial activity compared to the non-PC61BM group. This photovoltaic biomaterial proves to be an ideal substrate for near-infrared photoelectrical stimulation of neural cells and holds promise for restoring visual function in patients with photoreceptor apoptosis.
Collapse
Affiliation(s)
- Bowei Yuan
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100089, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100089, China
| | - Xue Jiang
- Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Zijun Xie
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100089, China
| | - Xuanjun Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100089, China
| | - Jiaxin Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100089, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100089, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100089, China
| |
Collapse
|
25
|
Miao Y, Wei J, Chen X, Shi J, Zhang L, Wang L, Yang J, Ma L, Duan J. Evaluation of living bacterial therapy assisted by pH/reactive oxygen species dual-responsive sodium alginate-based hydrogel for wound infections. Int J Biol Macromol 2024; 271:132536. [PMID: 38777021 DOI: 10.1016/j.ijbiomac.2024.132536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
The enhancement of antimicrobial wound dressings is of utmost importance in light of the escalating risk of antibiotic resistance caused by excessive antibiotic usage. Conventional antimicrobial materials eradicate pathogenic bacteria while impeding the proliferation of beneficial bacteria during the management of wound infections, thereby disturbing the equilibrium of the skin micro-ecosystem and engendering recurrent cutaneous complications. Lactobacillus rhamnosus (L.rha) is a probiotic that can inhibit the growth of certain pathogenic bacteria by secreting a large number of metabolites. In this paper, we synthesized a cross-linker (SPBA) with a boric acid molecule from succinic acid and 4-(bromomethyl)phenylboronic acid, which formed a boric acid ester bond with a diol on the natural polysaccharide sodium alginate (SA), and obtained a pH/reactive oxygen species (ROS) dual-responsive hydrogel (SA-SPBA) for loading L.rha to treat wound infections. The SA-SPBA@L.rha hydrogel improves the survival of L.rha during storage and has good injectability as well as self-healing properties. The hydrogel showed good biocompatibility, the antimicrobial effect increases in a dose-dependent manner, and it has a certain antioxidant and anti-inflammatory capacity, accelerating wound repair. The use of SA-SPBA@L.rha hydrogel provides a safe and effective strategy for the repair of skin wound infections.
Collapse
Affiliation(s)
- Yu Miao
- Shannxi Key Laboratory of Nature Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shannxi, China
| | - Jielu Wei
- Shannxi Key Laboratory of Nature Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shannxi, China
| | - Xueqing Chen
- Shannxi Key Laboratory of Nature Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shannxi, China
| | - Jingru Shi
- Shannxi Key Laboratory of Nature Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shannxi, China
| | - Lingjiao Zhang
- Shannxi Key Laboratory of Nature Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shannxi, China
| | - Liping Wang
- Shannxi Key Laboratory of Nature Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shannxi, China
| | - Jialun Yang
- Shannxi Key Laboratory of Nature Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shannxi, China
| | - Lili Ma
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Jinyou Duan
- Shannxi Key Laboratory of Nature Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shannxi, China.
| |
Collapse
|
26
|
Hu Y, Yu L, Dai Q, Hu X, Shen Y. Multifunctional antibacterial hydrogels for chronic wound management. Biomater Sci 2024; 12:2460-2479. [PMID: 38578143 DOI: 10.1039/d4bm00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Chronic wounds have gradually evolved into a global health challenge, comprising long-term non-healing wounds, local tissue necrosis, and even amputation in severe cases. Accordingly, chronic wounds place a considerable psychological and economic burden on patients and society. Chronic wounds have multifaceted pathogenesis involving excessive inflammation, insufficient angiogenesis, and elevated reactive oxygen species levels, with bacterial infection playing a crucial role. Hydrogels, renowned for their excellent biocompatibility, moisture retention, swelling properties, and oxygen permeability, have emerged as promising wound repair dressings. However, hydrogels with singular functions fall short of addressing the complex requirements associated with chronic wound healing. Hence, current research emphasises the development of multifunctional antibacterial hydrogels. This article reviews chronic wound characteristics and the properties and classification of antibacterial hydrogels, as well as their potential application in chronic wound management.
Collapse
Affiliation(s)
- Yungang Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Lu Yu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Qiang Dai
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Xiaohua Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Yuming Shen
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| |
Collapse
|
27
|
Cao H, Wang J, Hao Z, Zhao D. Gelatin-based biomaterials and gelatin as an additive for chronic wound repair. Front Pharmacol 2024; 15:1398939. [PMID: 38751781 PMCID: PMC11094280 DOI: 10.3389/fphar.2024.1398939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Disturbing or disrupting the regular healing process of a skin wound may result in its progression to a chronic state. Chronic wounds often lead to increased infection because of their long healing time, malnutrition, and insufficient oxygen flow, subsequently affecting wound progression. Gelatin-the main structure of natural collagen-is widely used in biomedical fields because of its low cost, wide availability, biocompatibility, and degradability. However, gelatin may exhibit diverse tailored physical properties and poor antibacterial activity. Research on gelatin-based biomaterials has identified the challenges of improving gelatin's poor antibacterial properties and low mechanical properties. In chronic wounds, gelatin-based biomaterials can promote wound hemostasis, enhance peri-wound antibacterial and anti-inflammatory properties, and promote vascular and epithelial cell regeneration. In this article, we first introduce the natural process of wound healing. Second, we present the role of gelatin-based biomaterials and gelatin as an additive in wound healing. Finally, we present the future implications of gelatin-based biomaterials.
Collapse
Affiliation(s)
- Hongwei Cao
- Department of Otorhinolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingren Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of China Medical University, Shenyang, China
| | - Zhanying Hao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Danyang Zhao
- Department of emergency Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Nam NN, Tran NKS, Nguyen TT, Trai NN, Thuy NP, Do HDK, Tran NHT, Trinh KTL. Classification and application of metal-based nanoantioxidants in medicine and healthcare. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:396-415. [PMID: 38633767 PMCID: PMC11022389 DOI: 10.3762/bjnano.15.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Antioxidants play an important role in the prevention of oxidative stress and have been widely used in medicine and healthcare. However, natural antioxidants have several limitations such as low stability, difficult long-term storage, and high cost of large-scale production. Along with significant advances in nanotechnology, nanomaterials have emerged as a promising solution to improve the limitations of natural antioxidants because of their high stability, easy storage, time effectiveness, and low cost. Among various types of nanomaterials exhibiting antioxidant activity, metal-based nanoantioxidants show excellent reactivity because of the presence of an unpaired electron in their atomic structure. In this review, we summarize some novel metal-based nanoantioxidants and classify them into two main categories, namely chain-breaking and preventive antioxidant nanomaterials. In addition, the applications of antioxidant nanomaterials in medicine and healthcare are also discussed. This review provides a deeper understanding of the mechanisms of metal-based nanoantioxidants and a guideline for using these nanomaterials in medicine and healthcare.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Applied Biology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Khoi Song Tran
- College of Korean Medicine, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Tan Tai Nguyen
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Ngoc Trai
- Applied Biology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Phuong Thuy
- Applied Biology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Vietnam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
29
|
Meng N, Zhou C, Sun Z, Chen X, Xiong S, Tao M, Qin Y, Hu K, Ma L, Tian D, Zhu F, Yang Y. Tailored gelatin methacryloyl-based hydrogel with near-infrared responsive delivery of Qiai essential oils boosting reactive oxygen species scavenging, antimicrobial, and anti-inflammatory activities for diabetic wound healing. Int J Biol Macromol 2024; 263:130386. [PMID: 38395288 DOI: 10.1016/j.ijbiomac.2024.130386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The management of diabetic wounds poses a substantial economic and medical burden for diabetic patients. Oxidative stress and persistent bacterial infections are considered to be the primary factors. Qiai essential oil (QEO) exhibits various pharmacological characteristics, including inflammatory-reducing, antibacterial, and antioxidant properties. Nevertheless, the hydrophobic nature and propensity for explosive release of this substance present constraints on its potential for future applications. Here, we developed a stimulus-responsive hydrogel to overcome the multiple limitations of QEO-based wound dressings. The QEO was encapsulated within graphene oxide (GO) through repeated extrusion using an extruder. Subsequently, QEO@GO nanoparticles were incorporated into a Gelatin-methacryloyl (GelMA) hydrogel. The QEO@GO-GelMA hydrogel demonstrated controlled release ablation, photothermal antibacterial effects, and contact ablation against two representative bacterial strains. It effectively reduced reactive oxygen species (ROS) generation, promoted angiogenesis, and decreased levels of the pro-inflammatory cytokine interleukin-6 (IL-6), thereby accelerating the healing process of diabetic wounds. In addition, in vitro and in vivo tests provided further evidence of the favorable biocompatibility of this multifunctional hydrogel dressing. Overall, the QEO@GO-GelMA hydrogel provides numerous benefits, encompassing antimicrobial properties, ROS-scavenging abilities, anti-inflammatory effects, and the capacity to expedite diabetic wound healing. These attributes make it an optimal choice for diabetic wound management.
Collapse
Affiliation(s)
- Na Meng
- Department of Cardiovascular Medicine, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Chuchao Zhou
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Zhiwei Sun
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Xiangru Chen
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Shaotang Xiong
- The Second People's Hospital of China Three Gorges University, The Second People's Hospital of Yichang, Hubei, China
| | - Mengjuan Tao
- Department of Clinical Laboratory, Wuhan Center for Clinical Laboratory, Wuhan, Hubei, China
| | - Yueyue Qin
- Department of Cardiovascular Medicine, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Keqiang Hu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Liya Ma
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Di Tian
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Department of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Fen Zhu
- Department of Cardiovascular Medicine, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China.
| | - Yanqing Yang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China.
| |
Collapse
|
30
|
Dong Y, Wang Z. ROS-scavenging materials for skin wound healing: advancements and applications. Front Bioeng Biotechnol 2023; 11:1304835. [PMID: 38149175 PMCID: PMC10749972 DOI: 10.3389/fbioe.2023.1304835] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023] Open
Abstract
The intricate healing process of skin wounds includes a variety of cellular and molecular events. Wound healing heavily relies on reactive oxygen species (ROS), which are essential for controlling various processes, including inflammation, cell growth, angiogenesis, granulation, and the formation of extracellular matrix. Nevertheless, an overabundance of reactive oxygen species (ROS) caused by extended oxidative pressure may result in the postponement or failure of wound healing. It is crucial to comprehend the function of reactive oxygen species (ROS) and create biomaterials that efficiently eliminate ROS to enhance the healing process of skin wounds. In this study, a thorough examination is presented on the role of reactive oxygen species (ROS) in the process of wound healing, along with an exploration of the existing knowledge regarding biomaterials employed for ROS elimination. In addition, the article covers different techniques and substances used in the management of skin wound. The future prospects and clinical applications of enhanced biomaterials are also emphasized, highlighting the potential of biomaterials that scavenge active oxygen to promote skin repair. This article seeks to enhance the understanding of the complex processes of ROS in the healing of wounds and the application of ROS-scavenging materials. Its objective is to create novel strategies for effective treatment skin wounds.
Collapse
Affiliation(s)
- Yongkang Dong
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zheng Wang
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
31
|
Zhang J, Liu C, Li X, Liu Z, Zhang Z. Application of photo-crosslinkable gelatin methacryloyl in wound healing. Front Bioeng Biotechnol 2023; 11:1303709. [PMID: 38076425 PMCID: PMC10702353 DOI: 10.3389/fbioe.2023.1303709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/10/2023] [Indexed: 02/13/2025] Open
Abstract
Wound healing is a complex and coordinated biological process easily influenced by various internal and external factors. Hydrogels have immense practical importance in wound nursing because of their environmental moisturising, pain-relieving, and cooling effects. As photo-crosslinkable biomaterials, gelatine methacryloyl (GelMA) hydrogels exhibit substantial potential for tissue repair and reconstruction because of their tunable and beneficial properties. GelMA hydrogels have been extensively investigated as scaffolds for cell growth and drug release in various biomedical applications. They also hold great significance in wound healing because of their similarity to the components of the extracellular matrix of the skin and their favourable physicochemical properties. These hydrogels can promote wound healing and tissue remodelling by reducing inflammation, facilitating vascularisation, and supporting cell growth. In this study, we reviewed the applications of GelMA hydrogels in wound healing, including skin tissue engineering, wound dressing, and transdermal drug delivery. We aim to inspire further exploration of their potential for wound healing.
Collapse
Affiliation(s)
- Jinli Zhang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Guangzhou, China
| | - Changling Liu
- Department of Burns and Plastic Surgery, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Guangzhou, China
| | - Xiaojian Li
- Department of Burns and Plastic Surgery, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Guangzhou, China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Guangzhou, China
| | - Zhi Zhang
- Department of Burns and Plastic Surgery, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Guangzhou, China
| |
Collapse
|
32
|
Zhang Y, Kang J, Chen X, Zhang W, Zhang X, Yu W, Yuan WE. Ag nanocomposite hydrogels with immune and regenerative microenvironment regulation promote scarless healing of infected wounds. J Nanobiotechnology 2023; 21:435. [PMID: 37981675 PMCID: PMC10658971 DOI: 10.1186/s12951-023-02209-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Bacterial infection, complex wound microenvironment and persistent inflammation cause delayed wound healing and scar formation, thereby disrupting the normal function and appearance of skin tissue, which is one of the most problematic clinical issues. Although Ag NPs have a strong antibacterial effect, they tend to oxidize and form aggregates in aqueous solution, which reduces their antibacterial efficacy and increases their toxicity to tissues and organs. Current research on scar treatment is limited and mainly relies on growth factors and drugs to reduce inflammation and scar tissue formation. Therefore, there is a need to develop methods that effectively combine drug delivery, antimicrobial and anti-inflammatory agents to modulate the wound microenvironment, promote wound healing, and prevent skin scarring. RESULTS Herein, we developed an innovative Ag nanocomposite hydrogel (Ag NCH) by incorporating Ag nanoparticles (Ag NPs) into a matrix formed by linking catechol-modified hyaluronic acid (HA-CA) with 4-arm PEG-SH. The Ag NPs serve dual functions: they act as reservoirs for releasing Ag/Ag+ at the wound site to combat bacterial infections, and they also function as cross-linkers to ensure the sustained release of basic fibroblast growth factor (bFGF). The potent antibacterial effect of the Ag NPs embedded in the hydrogel against S.aureus was validated through comprehensive in vitro and in vivo analyses. The microstructural analysis of the hydrogels and the in vitro release studies confirmed that the Ag NCH possesses smaller pore sizes and facilitates a slower, more sustained release of bFGF. When applied to acute and infected wound sites, the Ag NCH demonstrated remarkable capabilities in reshaping the immune and regenerative microenvironment. It induced a shift from M1 to M2 macrophage polarization, down-regulated the expression of pro-inflammatory factors such as IL-6 and TNF-α, and up-regulated the expression of anti-inflammatory IL-10. Furthermore, the Ag NCH played a crucial role in regulating collagen deposition and alignment, promoting the formation of mature blood vessels, and significantly enhancing tissue reconstruction and scarless wound healing processes. CONCLUSIONS We think the designed Ag NCH can provide a promising therapeutic strategy for clinical applications in scarless wound healing and antibacterial therapy.
Collapse
Affiliation(s)
- Yihui Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| | - Jian Kang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| | - Xuan Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| | - Wenkai Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| | - Xiangqi Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| | - Wei Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| | - Wei-En Yuan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China.
| |
Collapse
|
33
|
Suter B, Anthis AHC, Zehnder A, Mergen V, Rosendorf J, Gerken LRH, Schlegel AA, Korcakova E, Liska V, Herrmann IK. Surgical Sealant with Integrated Shape-Morphing Dual Modality Ultrasound and Computed Tomography Sensors for Gastric Leak Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301207. [PMID: 37276437 PMCID: PMC10427398 DOI: 10.1002/advs.202301207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Postoperative anastomotic leaks are the most feared complications after gastric surgery. For diagnostics clinicians mostly rely on clinical symptoms such as fever and tachycardia, often developing as a result of an already fully developed, i.e., symptomatic, surgical leak. A gastric fluid responsive, dual modality, electronic-free, leak sensor system integrable into surgical adhesive suture support materials is introduced. Leak sensors contain high atomic number carbonates embedded in a polyacrylamide matrix, that upon exposure to gastric fluid convert into gaseous carbon dioxide (CO2 ). CO2 bubbles remain entrapped in the hydrogel matrix, leading to a distinctly increased echogenic contrast detectable by a low-cost and portable ultrasound transducer, while the dissolution of the carbonate species and the resulting diffusion of the cation produces a markedly reduced contrast in computed tomography imaging. The sensing elements can be patterned into a variety of characteristic shapes and can be combined with nonreactive tantalum oxide reference elements, allowing the design of shape-morphing sensing elements visible to the naked eye as well as artificial intelligence-assisted automated detection. In summary, shape-morphing dual modality sensors for the early and robust detection of postoperative complications at deep tissue sites, opening new routes for postoperative patient surveillance using existing hospital infrastructure is reported.
Collapse
Affiliation(s)
- Benjamin Suter
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process Engineering (IEPE)Department of Mechanical and Process Engineering (D‐MAVT)ETH ZurichSonneggstrasse 3Zürich8092Switzerland
- Particles‐Biology InteractionsDepartment of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Alexandre H. C. Anthis
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process Engineering (IEPE)Department of Mechanical and Process Engineering (D‐MAVT)ETH ZurichSonneggstrasse 3Zürich8092Switzerland
- Particles‐Biology InteractionsDepartment of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Anna‐Katharina Zehnder
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process Engineering (IEPE)Department of Mechanical and Process Engineering (D‐MAVT)ETH ZurichSonneggstrasse 3Zürich8092Switzerland
| | - Victor Mergen
- Diagnostic and Interventional RadiologyUniversity Hospital ZurichUniversity of ZurichRämistrasse 100Zürich8091Switzerland
| | - Jachym Rosendorf
- Department of SurgeryFaculty of Medicine in PilsenCharles UniversityAlej Svobody 923/80Pilsen32300Czech Republic
- Biomedical CenterFaculty of Medicine in PilsenCharles UniversityAlej Svobody 1655/76Pilsen32300Czech Republic
| | - Lukas R. H. Gerken
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process Engineering (IEPE)Department of Mechanical and Process Engineering (D‐MAVT)ETH ZurichSonneggstrasse 3Zürich8092Switzerland
- Particles‐Biology InteractionsDepartment of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Andrea A. Schlegel
- Department of Surgery and TransplantationSwiss HPB CentreUniversity Hospital ZurichRämistrasse 100Zurich8091Switzerland
- Fondazione IRCCS Ca' GrandaOspedale Maggiore PoliclinicoCentre of Preclinical ResearchMilan20122Italy
- Transplantation Center, Digestive Disease and Surgery Institute and Department of Immunity and Inflammation, Lerner Research InstituteCleveland Clinic9620 Carnegie AveClevelandOH44106United States
| | - Eva Korcakova
- Biomedical CenterFaculty of Medicine in PilsenCharles UniversityAlej Svobody 1655/76Pilsen32300Czech Republic
- Department of Imaging MethodsFaculty of Medicine in Pilsen, Charles UniversityAlej Svobody 80Pilsen30460Czech Republic
| | - Vaclav Liska
- Department of SurgeryFaculty of Medicine in PilsenCharles UniversityAlej Svobody 923/80Pilsen32300Czech Republic
- Biomedical CenterFaculty of Medicine in PilsenCharles UniversityAlej Svobody 1655/76Pilsen32300Czech Republic
| | - Inge K. Herrmann
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process Engineering (IEPE)Department of Mechanical and Process Engineering (D‐MAVT)ETH ZurichSonneggstrasse 3Zürich8092Switzerland
- Particles‐Biology InteractionsDepartment of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
| |
Collapse
|