1
|
Cervantes-Torres J, Hernández-Aceves JA, Gajón Martínez JA, Moctezuma-Rocha D, Vázquez Ramírez R, Sifontes-Rodríguez S, Ramírez-Salinas GL, Mendoza Sierra L, Alfonzo LB, Sciutto E, Fragoso G. Exploring the Mechanisms Underlying Cellular Uptake and Activation of Dendritic Cells by the GK-1 Peptide. ACS OMEGA 2024; 9:49625-49638. [PMID: 39713707 PMCID: PMC11656211 DOI: 10.1021/acsomega.4c07736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/03/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024]
Abstract
The use of peptides for cancer immunotherapy is a promising and emerging approach that is being intensively explored worldwide. One such peptide, GK-1, has been shown to delay the growth of triple-negative breast tumors in mice, reduce their metastatic capacity, and reverse the intratumor immunosuppression that characterizes this model. Herein, it is demonstrated that GK-1 is taken up by bone marrow dendritic cells in a dose-dependent manner 15 min after exposure, more efficiently at 37 °C than at 4 °C, implying an entrance into the cells by energy-independent and -dependent processes through clathrin-mediated endocytosis. Theoretical predictions support the binding of GK-1 to the hydrophobic pocket of MD2, preventing it from bridging TLR4, thereby promoting receptor dimerization and cell activation. GK-1 can effectively activate cells via a TLR4-dependent pathway based on in vitro studies using HEK293 and HEK293-TLR4-MD2 cells and in vivo using C3H/HeJ mice (hyporesponsive to LPS). In conclusion, GK-1 enters the cells by passive diffusion and by activation of the transmembrane Toll-like receptor 4 triggering cell activation, which could be involved in the GK-1 antitumor properties.
Collapse
Affiliation(s)
- Jacquelynne Cervantes-Torres
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
- Departamento
de Microbiología e Inmunología, Facultad de Medicina
Veterinaria y Zootecnia, Universidad Nacional
Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Juan A. Hernández-Aceves
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Julián A. Gajón Martínez
- Unidad de
Investigación Médica en Inmunoquímica, Hospital
de Especialidades, CMN Siglo XXI, Instituto
Mexicano del Seguro Social, Ciudad de México MX 06600, Mexico
| | - Diego Moctezuma-Rocha
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Ricardo Vázquez Ramírez
- Departamento
de Biología Molecular y Biotecnología, Instituto de
Investigaciones Biomédicas, Universidad Nacional Autónoma
de México, Sede Tercer Circuito Exterior
Edificio C 1er Piso, C-146, Ciudad
de México MX 04510, Mexico
| | - Sergio Sifontes-Rodríguez
- Investigador
por México del CONAHCyT adscrito al Departamento de Inmunología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Sede Circuito
Escolar Edificio A 1er Piso, Ciudad
de México MX 04510, Mexico
| | - Gemma L. Ramírez-Salinas
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Luis Mendoza Sierra
- Departamento
de Biología Molecular y Biotecnología, Instituto de
Investigaciones Biomédicas, Universidad Nacional Autónoma
de México, Sede Tercer Circuito Exterior
Edificio C 1er Piso, C-146, Ciudad
de México MX 04510, Mexico
| | - Laura Bonifaz Alfonzo
- Unidad de
Investigación Médica en Inmunoquímica, Hospital
de Especialidades, CMN Siglo XXI, Instituto
Mexicano del Seguro Social, Ciudad de México MX 06600, Mexico
| | - Edda Sciutto
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Gladis Fragoso
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| |
Collapse
|
2
|
Holme JA, Vondráček J, Machala M, Lagadic-Gossmann D, Vogel CFA, Le Ferrec E, Sparfel L, Øvrevik J. Lung cancer associated with combustion particles and fine particulate matter (PM 2.5) - The roles of polycyclic aromatic hydrocarbons (PAHs) and the aryl hydrocarbon receptor (AhR). Biochem Pharmacol 2023; 216:115801. [PMID: 37696458 PMCID: PMC10543654 DOI: 10.1016/j.bcp.2023.115801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest that combustion components in ambient fine particulate matter (PM2.5), such as polycyclic aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that ambient air PM2.5 exposure primarily induces lung cancer development through tumor promotion of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development caused by air pollution focusing on the tumor promoting properties including metabolism, immune system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed between smoking and outdoor air PM2.5 represent the two ends of a dose-response continuum of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the driving factor at the relatively low-dose exposures from ambient air PM2.5, whereas genotoxicity in the central airways becomes increasingly more important at the higher combustion PM levels encountered through smoking and occupational exposure.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway.
| |
Collapse
|
3
|
Marques-da-Silva D, Lagoa R. Rafting on the Evidence for Lipid Raft-like Domains as Hubs Triggering Environmental Toxicants' Cellular Effects. Molecules 2023; 28:6598. [PMID: 37764374 PMCID: PMC10536579 DOI: 10.3390/molecules28186598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The plasma membrane lipid rafts are cholesterol- and sphingolipid-enriched domains that allow regularly distributed, sub-micro-sized structures englobing proteins to compartmentalize cellular processes. These membrane domains can be highly heterogeneous and dynamic, functioning as signal transduction platforms that amplify the local concentrations and signaling of individual components. Moreover, they participate in cell signaling routes that are known to be important targets of environmental toxicants affecting cell redox status and calcium homeostasis, immune regulation, and hormonal functions. In this work, the evidence that plasma membrane raft-like domains operate as hubs for toxicants' cellular actions is discussed, and suggestions for future research are provided. Several studies address the insertion of pesticides and other organic pollutants into membranes, their accumulation in lipid rafts, or lipid rafts' disruption by polychlorinated biphenyls (PCBs), benzo[a]pyrene (B[a]P), and even metals/metalloids. In hepatocytes, macrophages, or neurons, B[a]P, airborne particulate matter, and other toxicants caused rafts' protein and lipid remodeling, oxidative changes, or amyloidogenesis. Different studies investigated the role of the invaginated lipid rafts present in endothelial cells in mediating the vascular inflammatory effects of PCBs. Furthermore, in vitro and in vivo data strongly implicate raft-localized NADPH oxidases, the aryl hydrocarbon receptor, caveolin-1, and protein kinases in the toxic mechanisms of occupational and environmental chemicals.
Collapse
Affiliation(s)
- Dorinda Marques-da-Silva
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Ricardo Lagoa
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| |
Collapse
|
4
|
From Nucleus to Organs: Insights of Aryl Hydrocarbon Receptor Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms232314919. [PMID: 36499247 PMCID: PMC9738205 DOI: 10.3390/ijms232314919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a markedly established regulator of a plethora of cellular and molecular processes. Its initial role in the detoxification of xenobiotic compounds has been partially overshadowed by its involvement in homeostatic and organ physiology processes. In fact, the discovery of its ability to bind specific target regulatory sequences has allowed for the understanding of how AHR modulates such processes. Thereby, AHR presents functions in transcriptional regulation, chromatin architecture modifications and participation in different key signaling pathways. Interestingly, such fields of influence end up affecting organ and tissue homeostasis, including regenerative response both to endogenous and exogenous stimuli. Therefore, from classical spheres such as canonical transcriptional regulation in embryonic development, cell migration, differentiation or tumor progression to modern approaches in epigenetics, senescence, immune system or microbiome, this review covers all aspects derived from the balance between regulation/deregulation of AHR and its physio-pathological consequences.
Collapse
|
5
|
Tamayo M, Martín-Nunes L, Piedras MJ, Martin-Calvo M, Martí-Morente D, Gil-Fernández M, Gómez-Hurtado N, Moro MÁ, Bosca L, Fernández-Velasco M, Delgado C. The Aryl Hydrocarbon Receptor Ligand FICZ Improves Left Ventricular Remodeling and Cardiac Function at the Onset of Pressure Overload-Induced Heart Failure in Mice. Int J Mol Sci 2022; 23:5403. [PMID: 35628213 PMCID: PMC9141655 DOI: 10.3390/ijms23105403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023] Open
Abstract
Adverse ventricular remodeling is the heart's response to damaging stimuli and is linked to heart failure and poor prognosis. Formyl-indolo [3,2-b] carbazole (FICZ) is an endogenous ligand for the aryl hydrocarbon receptor (AhR), through which it exerts pleiotropic effects including protection against inflammation, fibrosis, and oxidative stress. We evaluated the effect of AhR activation by FICZ on the adverse ventricular remodeling that occurs in the early phase of pressure overload in the murine heart induced by transverse aortic constriction (TAC). Cardiac structure and function were evaluated by cardiac magnetic resonance imaging (CMRI) before and 3 days after Sham or TAC surgery in mice treated with FICZ or with vehicle, and cardiac tissue was used for biochemical studies. CMRI analysis revealed that FICZ improved cardiac function and attenuated cardiac hypertrophy. These beneficial effects involved the inhibition of the hypertrophic calcineurin/NFAT pathway, transcriptional reduction in pro-fibrotic genes, and antioxidant effects mediated by the NRF2/NQO1 pathway. Overall, our findings provide new insight into the role of cardiac AhR signaling in the injured heart.
Collapse
Affiliation(s)
- María Tamayo
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
| | - Laura Martín-Nunes
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
| | - María José Piedras
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
- Facultad de Medicina, Universidad Francisco de Vitoria (UFV), 28223 Madrid, Spain
| | - María Martin-Calvo
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
| | - Daniel Martí-Morente
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
| | - Marta Gil-Fernández
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
- Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Nieves Gómez-Hurtado
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
| | - María Ángeles Moro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain;
| | - Lisardo Bosca
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
| | - María Fernández-Velasco
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
- Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
| |
Collapse
|
6
|
Marchetti S, Mollerup S, Gutzkow KB, Rizzi C, Skuland T, Refsnes M, Colombo A, Øvrevik J, Mantecca P, Holme JA. Biological effects of combustion-derived particles from different biomass sources on human bronchial epithelial cells. Toxicol In Vitro 2021; 75:105190. [PMID: 33964422 DOI: 10.1016/j.tiv.2021.105190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 05/01/2021] [Indexed: 11/15/2022]
Abstract
Combustion-derived particles (CDPs), in particular from traffic, are regarded as a central contributor for adverse health effects linked to air pollution. Recently, also biomass burning has been recognized as an important source for CDPs. Here, the effects of CDPs (PM10) originating from burning of pellet, charcoal and wood on key processes associated to lung carcinogenesis were explored. Human bronchial epithelial cells (HBEC3-KT) were exposed to 2.5 μg/cm2 of CDPs for 24 h and biological effects were examined in terms of cytotoxicity, inflammation, epithelial to mesenchymal transition (EMT)-related effects, DNA damage and genotoxicity. Reduced cell migration, inflammation and modulation of various PM-associated genes were observed mainly after exposure to wood and pellet. In contrast, only particles from pellet burning induced alteration in cell proliferation and DNA damage, which resulted in cell cycle alterations. Charcoal instead, appeared in general less effective in inducing pro-carcinogenic effects. These results illustrate differences in the toxicological profile due to the CDPs source. The different chemical compounds adsorbed on CDPs seemed to be central for particle properties, leading to an activation of various cellular signaling pathways involved in early steps of cancer progression.
Collapse
Affiliation(s)
- Sara Marchetti
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy,.
| | - Steen Mollerup
- Section of Occupational Toxicology, National Institute of Occupational Health, Oslo N-0033, Norway.
| | - Kristine Bjerve Gutzkow
- Section of Molecular Toxicology, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, Oslo N-0403, Norway.
| | - Cristiana Rizzi
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, 20126 Milano, Italy.
| | - Tonje Skuland
- Section of Pollution and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403 Oslo, Norway.
| | - Magne Refsnes
- Section of Pollution and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403 Oslo, Norway.
| | - Anita Colombo
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy,.
| | - Johan Øvrevik
- Section of Pollution and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403 Oslo, Norway.
| | - Paride Mantecca
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy,.
| | - Jørn Andreas Holme
- Section of Pollution and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403 Oslo, Norway.
| |
Collapse
|
7
|
González-Rico FJ, Vicente-García C, Fernández A, Muñoz-Santos D, Montoliu L, Morales-Hernández A, Merino JM, Román AC, Fernández-Salguero PM. Alu retrotransposons modulate Nanog expression through dynamic changes in regional chromatin conformation via aryl hydrocarbon receptor. Epigenetics Chromatin 2020; 13:15. [PMID: 32169107 PMCID: PMC7071633 DOI: 10.1186/s13072-020-00336-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
Transcriptional repression of Nanog is an important hallmark of stem cell differentiation. Chromatin modifications have been linked to the epigenetic profile of the Nanog gene, but whether chromatin organization actually plays a causal role in Nanog regulation is still unclear. Here, we report that the formation of a chromatin loop in the Nanog locus is concomitant to its transcriptional downregulation during human NTERA-2 cell differentiation. We found that two Alu elements flanking the Nanog gene were bound by the aryl hydrocarbon receptor (AhR) and the insulator protein CTCF during cell differentiation. Such binding altered the profile of repressive histone modifications near Nanog likely leading to gene insulation through the formation of a chromatin loop between the two Alu elements. Using a dCAS9-guided proteomic screening, we found that interaction of the histone methyltransferase PRMT1 and the chromatin assembly factor CHAF1B with the Alu elements flanking Nanog was required for chromatin loop formation and Nanog repression. Therefore, our results uncover a chromatin-driven, retrotransposon-regulated mechanism for the control of Nanog expression during cell differentiation.
Collapse
Affiliation(s)
- Francisco J González-Rico
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Av. de Elvas s/n, 06071, Badajoz, Spain
| | - Cristina Vicente-García
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, C/Darwin 3, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Almudena Fernández
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, C/Darwin 3, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Diego Muñoz-Santos
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, C/Darwin 3, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Lluís Montoliu
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, C/Darwin 3, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Antonio Morales-Hernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Av. de Elvas s/n, 06071, Badajoz, Spain
| | - Jaime M Merino
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Av. de Elvas s/n, 06071, Badajoz, Spain
| | - Angel-Carlos Román
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Av. de Elvas s/n, 06071, Badajoz, Spain.
| | - Pedro M Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Av. de Elvas s/n, 06071, Badajoz, Spain.
| |
Collapse
|
8
|
Holme JA, Brinchmann BC, Le Ferrec E, Lagadic-Gossmann D, Øvrevik J. Combustion Particle-Induced Changes in Calcium Homeostasis: A Contributing Factor to Vascular Disease? Cardiovasc Toxicol 2020; 19:198-209. [PMID: 30955163 DOI: 10.1007/s12012-019-09518-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Air pollution is the leading environmental risk factor for disease and premature death in the world. This is mainly due to exposure to urban air particle matter (PM), in particular, fine and ultrafine combustion-derived particles (CDP) from traffic-related air pollution. PM and CDP, including particles from diesel exhaust (DEP), and cigarette smoke have been linked to various cardiovascular diseases (CVDs) including atherosclerosis, but the underlying cellular mechanisms remain unclear. Moreover, CDP typically consist of carbon cores with a complex mixture of organic chemicals such as polycyclic aromatic hydrocarbons (PAHs) adhered. The relative contribution of the carbon core and adhered soluble components to cardiovascular effects of CDP is still a matter of discussion. In the present review, we summarize evidence showing that CDP affects intracellular calcium regulation, and argue that CDP-induced impairment of normal calcium control may be a critical cellular event through which CDP exposure contributes to development or exacerbation of cardiovascular disease. Furthermore, we highlight in vitro research suggesting that adhered organic chemicals such as PAHs may be key drivers of these responses. CDP, extractable organic material from CDP (CDP-EOM), and PAHs may increase intracellular calcium levels by interacting with calcium channels like transient receptor potential (TRP) channels, and receptors such as G protein-coupled receptors (GPCR; e.g., beta-adrenergic receptors [βAR] and protease-activated receptor 2 [PAR-2]) and the aryl hydrocarbon receptor (AhR). Clarifying a possible role of calcium signaling and mechanisms involved may increase our understanding of how air pollution contributes to CVD.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, 0403, Oslo, Norway.
| | - Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, 0403, Oslo, Norway
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, 0403, Oslo, Norway.
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
9
|
Evidence of selective activation of aryl hydrocarbon receptor nongenomic calcium signaling by pyrene. Biochem Pharmacol 2018; 158:1-12. [PMID: 30248327 DOI: 10.1016/j.bcp.2018.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/20/2018] [Indexed: 12/02/2022]
Abstract
In its classical genomic mode of action, the aryl hydrocarbon receptor (AhR) acts as a ligand activated transcription factor regulating expression of target genes such as CYP1A1 and CYP1B1. Some ligands may also trigger more rapid nongenomic responses through AhR, including calcium signaling (Ca2+). In the present study we observed that pyrene induced a relatively rapid increase in intracellular Ca2+-concentrations ([Ca2+]i) in human microvascular endothelial cells (HMEC-1) and human embryonic kidney cells (HEK293) that was attenuated by AhR-inhibitor treatment and/or transient AhR knockdown by RNAi. In silico molecular docking based on homology models, suggested that pyrene is not able to bind to the human AhR in the agonist conformation. Instead, pyrene docked in the antagonist conformation of the AhR PAS-B binding pocket, although the interaction differed from antagonists such as GNF-351 and CH223191. Accordingly, pyrene did not induce CYP1A1 or CYP1B1, but suppressed CYP1-expression by benzo[a]pyrene (B[a]P) in HMEC-1 cells, confirming that pyrene act as an antagonist of AhR-induced gene expression. Use of pharmacological inhibitors and Ca2+-free medium indicated that the pyrene-induced AhR nongenomic [Ca2+]i increase was initiated by Ca2+-release from intracellular stores followed by a later phase of extracellular Ca2+-influx, consistent with store operated calcium entry (SOCE). These effects was accompanied by an AhR-dependent reduction in ordered membrane lipid domains, as determined by di-4-ANEPPDHQ staining. Addition of cholesterol inhibited both the pyrene-induced [Ca2+]i-increase and alterations in membrane lipid order. In conclusion, we propose that pyrene binds to AhR, act as an antagonist of the canonical genomic AhR/Arnt/CYP1-pathway, reduces ordered membrane lipid domains, and activates AhR nongenomic Ca2+-signaling from intracellular stores.
Collapse
|
10
|
Moreno-Marín N, Merino JM, Alvarez-Barrientos A, Patel DP, Takahashi S, González-Sancho JM, Gandolfo P, Rios RM, Muñoz A, Gonzalez FJ, Fernández-Salguero PM. Aryl Hydrocarbon Receptor Promotes Liver Polyploidization and Inhibits PI3K, ERK, and Wnt/β-Catenin Signaling. iScience 2018; 4:44-63. [PMID: 30240752 PMCID: PMC6147018 DOI: 10.1016/j.isci.2018.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/25/2018] [Accepted: 05/09/2018] [Indexed: 01/02/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR) deficiency alters tissue homeostasis. However, how AhR regulates organ maturation and differentiation remains mostly unknown. Liver differentiation entails a polyploidization process fundamental for cell growth, metabolism, and stress responses. Here, we report that AhR regulates polyploidization during the preweaning-to-adult mouse liver maturation. Preweaning AhR-null (AhR−/−) livers had smaller hepatocytes, hypercellularity, altered cell cycle regulation, and enhanced proliferation. Those phenotypes persisted in adult AhR−/− mice and correlated with compromised polyploidy, predominance of diploid hepatocytes, and enlarged centrosomes. Phosphatidylinositol-3-phosphate kinase (PI3K), extracellular signal-regulated kinase (ERK), and Wnt/β-catenin signaling remained upregulated from preweaning to adult AhR-null liver, likely increasing mammalian target of rapamycin (mTOR) activation. Metabolomics revealed the deregulation of mitochondrial oxidative phosphorylation intermediates succinate and fumarate in AhR−/− liver. Consistently, PI3K, ERK, and Wnt/β-catenin inhibition partially rescued polyploidy in AhR−/− mice. Thus, AhR may integrate survival, proliferation, and metabolism for liver polyploidization. Since tumor cells tend to be polyploid, AhR modulation could have therapeutic value in the liver. AhR is required for liver polyploidization during preweaning-to-adult transition INS-R/PI3K/AKT, ERK, Wnt/β-Cat and mTOR are downregulated during liver polyploidization Reduced polyploidy relates with enhanced mitochondrial metabolism in AhR-null liver Understanding how AhR modulates polyploidy may provide strategies against cancer
Collapse
Affiliation(s)
- Nuria Moreno-Marín
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Badajoz 06071, Spain
| | - Jaime M Merino
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Badajoz 06071, Spain
| | - Alberto Alvarez-Barrientos
- Servicio de Técnicas Aplicadas a las Biociencias (STAB), Universidad de Extremadura, Badajoz, Badajoz 06071, Spain
| | - Daxeshkumar P Patel
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - José M González-Sancho
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, and CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Pablo Gandolfo
- Cell Signaling Department, CABIMER-CSIC, Sevilla 41092, Spain
| | - Rosa M Rios
- Cell Signaling Department, CABIMER-CSIC, Sevilla 41092, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, and CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro M Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Badajoz 06071, Spain.
| |
Collapse
|
11
|
Brinchmann BC, Le Ferrec E, Podechard N, Lagadic-Gossmann D, Shoji KF, Penna A, Kukowski K, Kubátová A, Holme JA, Øvrevik J. Lipophilic Chemicals from Diesel Exhaust Particles Trigger Calcium Response in Human Endothelial Cells via Aryl Hydrocarbon Receptor Non-Genomic Signalling. Int J Mol Sci 2018; 19:E1429. [PMID: 29748474 PMCID: PMC5983734 DOI: 10.3390/ijms19051429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022] Open
Abstract
Exposure to diesel exhaust particles (DEPs) affects endothelial function and may contribute to the development of atherosclerosis and vasomotor dysfunction. As intracellular calcium concentration [Ca2+]i is considered important in myoendothelial signalling, we explored the effects of extractable organic matter from DEPs (DEP-EOM) on [Ca2+]i and membrane microstructure in endothelial cells. DEP-EOM of increasing polarity was obtained by pressurized sequential extraction of DEPs with n-hexane (n-Hex-EOM), dichloromethane (DCM-EOM), methanol, and water. Chemical analysis revealed that the majority of organic matter was extracted by the n-Hex- and DCM-EOM, with polycyclic aromatic hydrocarbons primarily occurring in n-Hex-EOM. The concentration of calcium was measured in human microvascular endothelial cells (HMEC-1) using micro-spectrofluorometry. The lipophilic n-Hex-EOM and DCM-EOM, but not the more polar methanol- and water-soluble extracts, induced rapid [Ca2+]i increases in HMEC-1. n-Hex-EOM triggered [Ca2+]i increase from intracellular stores, followed by extracellular calcium influx consistent with store operated calcium entry (SOCE). By contrast, the less lipophilic DCM-EOM triggered [Ca2+]i increase via extracellular influx alone, resembling receptor operated calcium entry (ROCE). Both extracts increased [Ca2+]i via aryl hydrocarbon receptor (AhR) non-genomic signalling, verified by pharmacological inhibition and RNA-interference. Moreover, DCM-EOM appeared to induce an AhR-dependent reduction in the global plasma membrane order, as visualized by confocal fluorescence microscopy. DCM-EOM-triggered [Ca2+]i increase and membrane alterations were attenuated by the membrane stabilizing lipid cholesterol. In conclusion, lipophilic constituents of DEPs extracted by n-hexane and DCM seem to induce rapid AhR-dependent [Ca2+]i increase in HMEC-1 endothelial cells, possibly involving both ROCE and SOCE-mediated mechanisms. The semi-lipophilic fraction extracted by DCM also caused an AhR-dependent reduction in global membrane order, which appeared to be connected to the [Ca2+]i increase.
Collapse
Affiliation(s)
- Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
- Division of Laboratory Medicine, Faculty of Medicine, University of Oslo, N-0315 Oslo, Norway.
| | - Eric Le Ferrec
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Normand Podechard
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Dominique Lagadic-Gossmann
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Kenji F Shoji
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Aubin Penna
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Klara Kukowski
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA.
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA.
| | - Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
| |
Collapse
|
12
|
Flores-Pérez A, Elizondo G. Apoptosis induction and inhibition of HeLa cell proliferation by alpha-naphthoflavone and resveratrol are aryl hydrocarbon receptor-independent. Chem Biol Interact 2018; 281:98-105. [DOI: 10.1016/j.cbi.2017.12.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/30/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
|
13
|
Lee SY, Yi JK, Yun HM, Bae CH, Cho ES, Lee KS, Kim EC. Expression of Caveolin-1 in Periodontal Tissue and Its Role in Osteoblastic and Cementoblastic Differentiation In Vitro. Calcif Tissue Int 2016; 98:497-510. [PMID: 26686692 DOI: 10.1007/s00223-015-0095-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023]
Abstract
It has been previously reported that caveolin-1 (Cav-1) knockout mice exhibit increased bone size and stiffness. However, the expression and role of Cav-1 on periodontal tissue is poorly understood. The aim of this study was to investigate the immunohistochemical expression of Cav-1 in the mouse periodontium and explore the role of Cav-1 on osteoblastic and cementoblastic differentiation in human periodontal ligament cells (hPDLCs), cementoblasts, and osteoblasts. To reveal the molecular mechanisms of Cav-1 activity, associated signaling pathways were also examined. Immunolocalization of Cav-1 was studied in mice periodontal tissue. Differentiation was evaluated by ALP activity, alizarin red S staining, and RT-PCR for marker genes. Signal transduction was analyzed using Western blotting and confocal microscopy. Cav-1 expression was observed in hPDLCs, cementoblasts, and osteoblasts of the periodontium both in vivo and in vitro. Inhibition of Cav-1 expression by methyl-β-cyclodextrin (MβCD) and knockdown of Cav-1 by siRNA promoted osteoblastic and cementoblastic differentiation by increasing ALP activity, calcium nodule formation, and mRNA expression of differentiation markers in hPDLCs, cementoblasts, and osteoblasts. Osteogenic medium-induced BMP-2 and BMP-7 expression, and phosphorylation of Smad1/5/8 were enhanced by MβCD and siRNA knockdown of Cav-1, which was reversed by BMP inhibitor noggin. MβCD and Cav-1 siRNA knockdown increased OM-induced AMPK, Akt, GSK3β, and CREB phosphorylation, which were reversed by Ara-A, a specific AMPK inhibitor. Moreover, OM-induced activation of p38, ERK, JNK, and NF-κB was enhanced by Cav-1 inhibition. This study demonstrates, for the first time, that Cav-1 is expressed in developing periodontal tissue and in vitro in periodontal-related cells. Cav-1 inhibition positively regulates osteoblastic differentiation in hPDLCs, cementoblasts, and osteoblasts via BMP, AMPK, MAPK, and NF-κB pathway. Thus, Cav-1 inhibition may be a novel molecular target for therapeutic approaches in periodontitis or osteolytic disease.
Collapse
Affiliation(s)
- So-Youn Lee
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, 14 Kyungheedae-ro Dongdaemun-gu, Seoul, 02453, Republic of Korea
| | - Jin-Kyu Yi
- Department of Conservative Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, 14 Kyungheedae-ro Dongdaemun-gu, Seoul, 02453, Republic of Korea
| | - Cheol-Hyeon Bae
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| | - Kook-Sun Lee
- Division of Dentistry, Department of Oral and Maxillofacial Radiology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, 14 Kyungheedae-ro Dongdaemun-gu, Seoul, 02453, Republic of Korea.
| |
Collapse
|
14
|
Morales-Hernández A, González-Rico FJ, Román AC, Rico-Leo E, Alvarez-Barrientos A, Sánchez L, Macia Á, Heras SR, García-Pérez JL, Merino JM, Fernández-Salguero PM. Alu retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor. Nucleic Acids Res 2016; 44:4665-83. [PMID: 26883630 PMCID: PMC4889919 DOI: 10.1093/nar/gkw095] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/09/2016] [Indexed: 12/18/2022] Open
Abstract
Cell differentiation is a central process in development and in cancer growth and dissemination. OCT4 (POU5F1) and NANOG are essential for cell stemness and pluripotency; yet, the mechanisms that regulate their expression remain largely unknown. Repetitive elements account for almost half of the Human Genome; still, their role in gene regulation is poorly understood. Here, we show that the dioxin receptor (AHR) leads to differentiation of human carcinoma cells through the transcriptional upregulation of Alu retrotransposons, whose RNA transcripts can repress pluripotency genes. Despite the genome-wide presence of Alu elements, we provide evidences that those located at the NANOG and OCT4 promoters bind AHR, are transcribed by RNA polymerase-III and repress NANOG and OCT4 in differentiated cells. OCT4 and NANOG repression likely involves processing of Alu-derived transcripts through the miRNA machinery involving the Microprocessor and RISC. Consistently, stable AHR knockdown led to basal undifferentiation, impaired Alus transcription and blockade of OCT4 and NANOG repression. We suggest that transcripts produced from AHR-regulated Alu retrotransposons may control the expression of stemness genes OCT4 and NANOG during differentiation of carcinoma cells. The control of discrete Alu elements by specific transcription factors may have a dynamic role in genome regulation under physiological and diseased conditions.
Collapse
Affiliation(s)
- Antonio Morales-Hernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071-Badajoz, Spain
| | - Francisco J González-Rico
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071-Badajoz, Spain
| | - Angel C Román
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenida Doctor Arce 37, 28002-Madrid, Spain
| | - Eva Rico-Leo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071-Badajoz, Spain
| | - Alberto Alvarez-Barrientos
- Servicio de Técnicas Aplicadas a las Biociencias, Universidad de Extremadura, Avenida de Elvas s/n 06071-Badajoz, Spain
| | - Laura Sánchez
- GENYO. Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, Avda. de la Ilustración 114, PTS Granada, 18016-Granada, Spain
| | - Ángela Macia
- GENYO. Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, Avda. de la Ilustración 114, PTS Granada, 18016-Granada, Spain
| | - Sara R Heras
- GENYO. Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, Avda. de la Ilustración 114, PTS Granada, 18016-Granada, Spain
| | - José L García-Pérez
- GENYO. Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, Avda. de la Ilustración 114, PTS Granada, 18016-Granada, Spain
| | - Jaime M Merino
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071-Badajoz, Spain
| | - Pedro M Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071-Badajoz, Spain
| |
Collapse
|
15
|
Bui LC, Tomkiewicz C, Pierre S, Chevallier A, Barouki R, Coumoul X. Regulation of Aquaporin 3 Expression by the AhR Pathway Is Critical to Cell Migration. Toxicol Sci 2015; 149:158-66. [DOI: 10.1093/toxsci/kfv221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
16
|
Contador-Troca M, Alvarez-Barrientos A, Merino JM, Morales-Hernández A, Rodríguez MI, Rey-Barroso J, Barrasa E, Cerezo-Guisado MI, Catalina-Fernández I, Sáenz-Santamaría J, Oliver FJ, Fernandez-Salguero PM. Dioxin receptor regulates aldehyde dehydrogenase to block melanoma tumorigenesis and metastasis. Mol Cancer 2015; 14:148. [PMID: 26242870 PMCID: PMC4524442 DOI: 10.1186/s12943-015-0419-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/22/2015] [Indexed: 01/16/2023] Open
Abstract
Background The dioxin (AhR) receptor can have oncogenic or tumor suppressor activities depending on the phenotype of the target cell. We have shown that AhR knockdown promotes melanoma primary tumorigenesis and lung metastasis in the mouse and that human metastatic melanomas had reduced AhR levels with respect to benign nevi. Methods Mouse melanoma B16F10 cells were engineered by retroviral transduction to stably downregulate AhR expression, Aldh1a1 expression or both. They were characterized for Aldh1a1 activity, stem cell markers and migration and invasion in vitro. Their tumorigenicity in vivo was analyzed using xenografts and lung metastasis assays as well as in vivo imaging. Results Depletion of aldehyde dehydrogenase 1a1 (Aldh1a1) impairs the pro-tumorigenic and pro-metastatic advantage of melanoma cells lacking AhR expression (sh-AhR). Thus, Aldh1a1 knockdown in sh-AhR cells (sh-AhR + sh-Aldh1a1) diminished their migration and invasion potentials and blocked tumor growth and metastasis to the lungs in immunocompetent AhR+/+ recipient mice. However, Aldh1a1 downmodulation in AhR-expressing B16F10 cells did not significantly affect tumor growth in vivo. Aldh1a1 knockdown reduced the high levels of CD133+/CD29+/CD44+ cells, melanosphere size and the expression of the pluripotency marker Sox2 in sh-AhR cells. Interestingly, Sox2 increased Aldh1a1 expression in sh-AhR but not in sh-AhR + sh-Aldh1a1 cells, suggesting that Aldh1a1 and Sox2 may be co-regulated in melanoma cells. In vivo imaging revealed that mice inoculated with AhR + Aldh1a1 knockdown cells had reduced tumor burden and enhanced survival than those receiving Aldh1a1-expressing sh-AhR cells. Conclusions Aldh1a1 overactivation in an AhR-deficient background enhances melanoma progression. Since AhR may antagonize the protumoral effects of Aldh1a1, the AhRlow-Aldh1a1high phenotype could be indicative of bad outcome in melanoma. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0419-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Contador-Troca
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, 06071, Badajoz, Spain.
| | | | - Jaime M Merino
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, 06071, Badajoz, Spain.
| | | | - María I Rodríguez
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016, Granada, Spain.
| | - Javier Rey-Barroso
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, 06071, Badajoz, Spain.
| | - Eva Barrasa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, 06071, Badajoz, Spain.
| | - María I Cerezo-Guisado
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, 06071, Badajoz, Spain.
| | | | - Javier Sáenz-Santamaría
- Servicio de Anatomía Patológica, Hospital Universitario Infanta Cristina, 06071, Badajoz, Spain.
| | - Francisco J Oliver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016, Granada, Spain.
| | | |
Collapse
|