1
|
Yarahmadi A, Afkhami H. Potential relationship between Helicobacter pylori infection and autoimmune disorders: A narrative review. Microb Pathog 2025; 205:107572. [PMID: 40220801 DOI: 10.1016/j.micpath.2025.107572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Helicobacter pylori (H. pylori) is a spiral-shaped, gram-negative, flagellated bacteria that causes gastritis symptoms. This bacterium, particularly in individuals with a genetic predisposition, has been implicated in the pathogenesis of several autoimmune diseases (AD) through complex mechanisms involving the interaction of cellular and humoral immune responses. This review article tells you about the link between H. pylori infection and several types of AD, including systemic lupus erythematosus (SLE), autoimmune pancreatitis (AIP), rheumatoid arthritis (RA), Sjögren syndrome (SjS), psoriasis, and antiphospholipid syndrome (APS). We conducted a comprehensive analysis of the current literature to elucidate the potential role of H. pylori as a triggering factor for these disorders. Our findings suggest a significant correlation between H. pylori infection and the onset or exacerbation of specific ADs. This relationship is common mechanisms, including molecular mimicry, chronic inflammation, epitope spreading, and cytokine dysregulation. While H. pylori is implicated in AD, other factors such as genetic predisposition, environmental triggers, and other microbial agents also play crucial roles. Other pathogens, such as Epstein-Barr virus (EBV), cytomegalovirus (CMV), and bacteria like Mycobacterium tuberculosis and Chlamydia pneumoniae have been linked to ADs. These shared pathways highlight the potential role of H. pylori as a unifying factor in the pathogenesis of diverse ADs. Further research is necessary to fully understand the interactions between H. pylori and the immune system in the context of autoimmunity. This review aims to provide a detailed overview of the knowledge on this topic, highlighting the need for additional studies to clarify these complex relationships.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran; Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| |
Collapse
|
2
|
Wan C, Xu Y, Zhu Y, Cao X, Wang P, Gu Y. NLRP3 inflammasome expression affects immune cell infiltration and clinical prognosis in Helicobacter pylori infection‑associated gastric cancer. Mol Med Rep 2025; 32:185. [PMID: 40314099 PMCID: PMC12059518 DOI: 10.3892/mmr.2025.13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/26/2025] [Indexed: 05/03/2025] Open
Abstract
High Helicobacter pylori infection rates contribute to high gastric cancer (GC) incidence. While H. pylori infection is associated with GC development its mechanisms are still being studied. The aim of the present study was to examine the differences between H. pylori infection‑induced GC and non‑infected tissues, and to investigate the correlation between nucleotide‑binding oligomerization domain, leucine rich repeat and pyrin domain containing 3 (NLRP3) inflammasome expression and immune cell infiltration in GC, thus providing a theoretical basis for clinical prognosis and immunotherapy. High‑throughput RNA‑sequencing expression data from The Cancer Genome Atlas (TCGA) were analyzed. Additionally, TIMER2.0 and Kaplan‑Meier Plotter were used to analyze the differential expression of NLRP3 mRNA in various tumors, the effect of H. pylori infection on gene expression, and the association between NLRP3 and clinical prognosis among patients with GC. Immunohistochemistry (IHC) was used to assess the effects of NLRP3 protein expression on immune cell infiltration in clinical tissues with or without H. pylori infection. R software was used for data visualization and statistical analysis. TCGA data revealed that the expression levels of NLRP3 in GC tissues were increased compared with those in normal tissues (P<0.05), which was further validated in clinical samples. Furthermore, NLRP3 mRNA expression was significantly elevated in clinical GC tissues infected with H. pylori. Notably higher relative levels of NLRP3 mRNA were observed in tumor tissues with a tumor size ≥5 cm, lymph node metastasis, Tumor‑Node‑Metastasis stage III + IV or poor differentiation compared with the respective controls (P<0.05). IHC confirmed a significant increase in NLRP3 expression within H. pylori‑infected GC tissues compared with that in non‑infected tissues. In GC immune infiltration, NLRP3 expression was revealed to be associated with natural killer cell, whereas it was negatively correlated with regulatory T cells and CD8+ T cells. These findings indicated that NLRP3 may promote the polarization of tumor‑associated macrophages towards the M2 phenotype. High NLRP3 expression also promoted the infiltration of CD3+ and CD206+ cells, which significantly affected the survival rate of patients with GC. The immune infiltration of regulatory T lymphocytes was associated with better survival benefits for patients with GC; however, M2 macrophage infiltration was not conducive to the survival of patients with GC. Furthermore, survival analysis showed that high expression of NLRP3 was associated with a poorer 5‑year overall survival, progression‑free survival and post‑progression survival rates. In conclusion, elevated NLRP3 expression, which may be induced by H. pylori infection, could promote immune cell infiltration potentially by regulating cancer cell proliferation and migration, ultimately leading to an unfavorable prognosis and a notable reduction in the 5‑year survival rate.
Collapse
Affiliation(s)
- Chuandan Wan
- Central Laboratory, Changshu Medical Examination Institute, Changshu, Jiangsu 215500, P.R. China
| | - Yeqiong Xu
- Central Laboratory, Changshu Medical Examination Institute, Changshu, Jiangsu 215500, P.R. China
| | - Yanping Zhu
- Central Laboratory, Changshu Medical Examination Institute, Changshu, Jiangsu 215500, P.R. China
| | - Xuexian Cao
- Department of Oncology and Radiotherapy, Affiliated Changshu Hospital of Nantong University, Changshu, Jiangsu 215500, P.R. China
| | - Ping Wang
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yulan Gu
- Department of Oncology and Radiotherapy, Affiliated Changshu Hospital of Nantong University, Changshu, Jiangsu 215500, P.R. China
| |
Collapse
|
3
|
Bui TT, Tran TTT, Nguyen TS, Le TTH, Nguyen CL, Pham HN, Bañuls AL, Le HS, Le HPA, Bui TT, Bui TS, Phan QH, Tran THT, Nguyen QH. Genomic insights into virulence, biofilm formation, and antimicrobial resistance of multidrug-resistant Helicobacter pylori strains of novel sequence types isolated from Vietnamese patients with gastric diseases. J Glob Antimicrob Resist 2025; 43:237-241. [PMID: 40345333 DOI: 10.1016/j.jgar.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/08/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025] Open
Abstract
Helicobacter pylori (H. pylori) is a clinically important pathogen associated with gastric diseases. Here, we characterized the genome of multidrug-resistant H. pylori strains of novel sequence types, which were recovered from Vietnamese patients with gastritis or a stomach ulcer. Phenotypic-antibiotic susceptibility testing was performed against amoxicillin, clarithromycin, metronidazol, tetracycline, and levofloxacin using an E-test. The whole genome sequence of three H. pylori strains was de novo assembled, followed by in silico analysis of multilocus sequence typing (MLST), core-genome based phylogeny, genetic determinants associated with virulence, biofilm formation, and antibiotic-resistance. The genome sequence of H. pylori strains exhibited a high similarity with the average nucleotide identity (ANI) values of 98.5% to 99.2%, carried 5 to 7 pathogenicity islands, and 3 to 6 mobilomes. The MLST profile of strains revealed novel sequence types ST4511, ST4512, and ST4513. Core-genome based phylogeny exhibited that the three H. pylori strains belong to the Asian genotype. These strains possessed 128 to 131 virulence genes, including toxin-encoding genes cagA and vacA. Double amoxicillin-resistant mutations on pbp1 and pbp2, or a mutation on pbp3, triple clarithromycin-resistant mutations on 23S rRNA gene and a levofloxacin-resistant mutation on gyrA were detected in antibiotic-resistant strains. Mutations on rdxA were detected in both metronidazole-resistant and -sensitive strains, whereas frxA mutations were detected in only one metronidazole-sensitive strain. Finally, a rifamycin-resistant mutation in rpoB was also detected. This study provides insights into the genome of multidrug-resistant H. pylori strains of a novel sequence type circulating in Vietnam for future investigations of its pathobiology and spread through human populations.
Collapse
Affiliation(s)
- Thanh Thuyet Bui
- Department of Microbiology, 108 Military Central Hospital, Hanoi, Vietnam; Vietnamese-German Center for Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, Vietnam
| | - Thi Thanh Tam Tran
- MICH Group, LMI DRISA, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Vietnam
| | - Thai Son Nguyen
- MICH Group, LMI DRISA, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Vietnam
| | - Thi Thu Hang Le
- MICH Group, LMI DRISA, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Vietnam
| | - Cam Linh Nguyen
- MICH Group, LMI DRISA, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Vietnam
| | - Hoang Nam Pham
- MICH Group, LMI DRISA, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Vietnam
| | - Anne-Laure Bañuls
- UMR MIVEGEC (University of Montpellier-IRD-CNRS), LMI DRISA, Montpellier, France
| | - Huu Song Le
- Vietnamese-German Center for Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, Vietnam; Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Huu Phuong Anh Le
- Vietnamese-German Center for Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, Vietnam; Center for Stem cell Research and Application, 108 Military Central Hospital, Hanoi, Vietnam
| | - Thi Tho Bui
- Polyclinic and Premier Healthcare Center, 108 Military Central Hospital, Hanoi, Vietnam
| | - Tien Sy Bui
- Department of Microbiology, 108 Military Central Hospital, Hanoi, Vietnam; Vietnamese-German Center for Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, Vietnam
| | - Quoc Hoan Phan
- Vietnamese-German Center for Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, Vietnam; Department of Molecular, 108 Military Central Hospital, Hanoi, Vietnam
| | - Thi Huyen Trang Tran
- Vietnamese-German Center for Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, Vietnam; Center for Stem cell Research and Application, 108 Military Central Hospital, Hanoi, Vietnam
| | - Quang Huy Nguyen
- MICH Group, LMI DRISA, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Vietnam.
| |
Collapse
|
4
|
Chen C, Wang X, Han X, Peng L, Zhang Z. Gut microbiota and gastrointestinal tumors: insights from a bibliometric analysis. Front Microbiol 2025; 16:1558490. [PMID: 40264971 PMCID: PMC12012581 DOI: 10.3389/fmicb.2025.1558490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction Despite the growing number of studies on the role of gut microbiota in treating gastrointestinal tumors, the overall research trends in this field remain inadequately characterized. Methods A bibliometric analysis was conducted using publications retrieved from the Web of Science Core Collection (up to September 30, 2024). Analytical tools including VOSviewer, CiteSpace, and an online bibliometric platform were employed to evaluate trends and hotspots. Results Analysis of 1,421 publications revealed significant geographical disparities in research output, with China and the United States leading contributions. Institutionally, the University of Adelaide, Zhejiang University, and Shanghai Jiao Tong University were prominent contributors. Authorship analysis identified Hannah R. Wardill as the most prolific author, while the International Journal of Molecular Sciences emerged as a leading journal. Rapidly growing frontiers include "proliferation," "inhibition," "immunotherapy," "drug delivery," and "tumorigenesis." Discussion This study provides a comprehensive overview of research trends and highlights emerging directions, aiming to advance scientific and clinical applications of gut microbiota in gastrointestinal tumor therapy.
Collapse
Affiliation(s)
- Chaofan Chen
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiaolan Wang
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xu Han
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Lifan Peng
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhiyun Zhang
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
5
|
Sulekha Suresh D, Jain T, Dudeja V, Iyer S, Dudeja V. From Microbiome to Malignancy: Unveiling the Gut Microbiome Dynamics in Pancreatic Carcinogenesis. Int J Mol Sci 2025; 26:3112. [PMID: 40243755 PMCID: PMC11988718 DOI: 10.3390/ijms26073112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/01/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Pancreatic cancer is a major cause of cancer-associated mortality globally, characterized by a poor prognosis and limited therapeutic response. The current approach for treating pancreatic cancer involves locoregional control with surgical resection and systemic therapy in the form of cytotoxic chemotherapy. However, despite standard-of-care treatment, the outcomes remain dismal. Emerging evidence suggests that the gut microbiota plays a significant role in pancreatic carcinogenesis through dysbiosis, chronic inflammation and immune modulation. Dysbiosis-driven alterations in the gut microbiota composition can disrupt intestinal homeostasis, promote systemic inflammation and create a tumor-permissive microenvironment in the pancreas. Moreover, the gut microbiota modulates the efficacy of systemic therapies, including chemotherapy and immunotherapy, by impacting drug metabolism and shaping the tumor immune landscape. This review is mainly focused on exploring the intricate interplay between the gut microbiota and pancreatic cancer, and also highlighting its dual role in carcinogenesis and the therapeutic response.
Collapse
Affiliation(s)
| | | | | | | | - Vikas Dudeja
- Division of Surgical Oncology, Department of Surgery, The University of Alabama at Birmingham, BDB 573 1808 7th Avenue South, Birmingham, AL 35294, USA; (D.S.S.); (T.J.); (V.D.); (S.I.)
| |
Collapse
|
6
|
Al Omari SM, Khalifeh AH, Moman R, Sawan HM. Knowledge, Attitudes, and Practices Related to Helicobacter pylori and Gastric Disease in Jordan: Implications for Early Detection and Eradication. Infect Drug Resist 2025; 18:1503-1514. [PMID: 40123709 PMCID: PMC11930260 DOI: 10.2147/idr.s508330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Background Gastric cancer and ulcers are responsible for almost 1 million deaths globally each year, disproportionately affecting low- and middle-income populations. Helicobacter pylori (H. pylori) infection is a major risk factor for both gastric cancer and peptic ulcers, with infection rates surpassing 70% in developing countries and reaching 88% in Jordan. Despite strong evidence linking H. pylori infection to gastric cancer, particularly with CagA-positive strains, public awareness of H. pylori infection, its transmission routes, and associated health risks remains insufficient. Methods This study aimed to assess the knowledge, attitudes, and practices (KAP) related to H. pylori-induced stomach ulcers and cancer in a Jordanian population, focusing on early detection and eradication efforts. A survey was administered to 398 participants to evaluate their understanding of H. pylori and its role in gastric disease. Results The findings revealed that 64.3% of respondents were aware of H. pylori, with 75.9% recognizing its association with gastric ulcers. However, awareness of the transmission routes and potential complications is limited. The frequent use of antacids for symptom relief also highlights the need for better awareness of appropriate treatments. Conclusion Public health education targeting these knowledge gaps could help reduce the incidence of H. pylori-related complications, including gastric cancer, especially in high-prevalence areas such as Jordan. Addressing these deficits and promoting preventive strategies, such as improved hygiene and regular medical check-ups, could facilitate early detection and improve health outcomes for individuals at risk of H. pylori-induced infection.
Collapse
Affiliation(s)
| | | | - Raja Moman
- Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Hana M Sawan
- Faculty of Pharmacy, Zarqa University, Zarqa, Jordan
| |
Collapse
|
7
|
Wang N, Wu S, Huang L, Hu Y, He X, He J, Hu B, Xu Y, Rong Y, Yuan C, Zeng X, Wang F. Intratumoral microbiome: implications for immune modulation and innovative therapeutic strategies in cancer. J Biomed Sci 2025; 32:23. [PMID: 39966840 PMCID: PMC11837407 DOI: 10.1186/s12929-025-01117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Recent advancements have revealed the presence of a microbiome within tumor tissues, underscoring the crucial role of the tumor microbiome in the tumor ecosystem. This review delves into the characteristics of the intratumoral microbiome, underscoring its dual role in modulating immune responses and its potential to both suppress and promote tumor growth. We examine state-of-the-art techniques for detecting and analyzing intratumoral bacteria, with a particular focus on their interactions with the immune system and the resulting implications for cancer prognosis and treatment. By elucidating the intricate crosstalk between the intratumoral microbiome and the host immune system, we aim to uncover novel therapeutic strategies that enhance the efficacy of cancer treatments. Additionally, this review addresses the existing challenges and future prospects within this burgeoning field, advocating for the integration of microbiome research into comprehensive cancer therapy frameworks.
Collapse
Affiliation(s)
- Na Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Si Wu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lanxiang Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yue Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xin He
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jourong He
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ben Hu
- Center for Tumor Precision Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yaqi Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuan Rong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China.
| | - Xiantao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
8
|
Duan Y, Xu Y, Dou Y, Xu D. Helicobacter pylori and gastric cancer: mechanisms and new perspectives. J Hematol Oncol 2025; 18:10. [PMID: 39849657 PMCID: PMC11756206 DOI: 10.1186/s13045-024-01654-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Gastric cancer remains a significant global health challenge, with Helicobacter pylori (H. pylori) recognized as a major etiological agent, affecting an estimated 50% of the world's population. There has been a rapidly expanding knowledge of the molecular and pathogenetic mechanisms of H. pylori over the decades. This review summarizes the latest research advances to elucidate the molecular mechanisms underlying the H. pylori infection in gastric carcinogenesis. Our investigation of the molecular mechanisms reveals a complex network involving STAT3, NF-κB, Hippo, and Wnt/β-catenin pathways, which are dysregulated in gastric cancer caused by H. pylori. Furthermore, we highlight the role of H. pylori in inducing oxidative stress, DNA damage, chronic inflammation, and cell apoptosis-key cellular events that pave the way for carcinogenesis. Emerging evidence also suggests the effect of H. pylori on the tumor microenvironment and its possible implications for cancer immunotherapy. This review synthesizes the current knowledge and identifies gaps that warrant further investigation. Despite the progress in our previous knowledge of the development in H. pylori-induced gastric cancer, a comprehensive investigation of H. pylori's role in gastric cancer is crucial for the advancement of prevention and treatment strategies. By elucidating these mechanisms, we aim to provide a more in-depth insights for the study and prevention of H. pylori-related gastric cancer.
Collapse
Affiliation(s)
- Yantao Duan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yonghu Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Dou
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dazhi Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Li Y, Wang M, Zhao H. Research Progress of Buyang Yiwei Decoction in Regulating Intestinal Flora for Gastric Cancer. Cancer Manag Res 2024; 16:1863-1869. [PMID: 39735255 PMCID: PMC11675287 DOI: 10.2147/cmar.s496404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/26/2024] [Indexed: 12/31/2024] Open
Abstract
Intestinal flora is a complex micro-ecosystem in human body, which is called the second genome of human body. Intestinal flora imbalance plays an important role in the occurrence and development of gastric cancer through circulation, metabolism and immunity. Gastric cancer is associated with dysbacteriosis. Traditional Chinese medicine (TCM) compounds in Buyang Yiwei Decoction can reduce the clinical signs and symptoms of gastric cancer by regulating intestinal microbiota, alleviate the adverse reactions of gastric cancer after radiotherapy and chemotherapy, and improve the quality of life of patients. This article reviews whether Buyang Yiwei Decoction can reduce the risk of gastric cancer or play a therapeutic role in gastric cancer by improving the intestinal microbiota.
Collapse
Affiliation(s)
- Yu Li
- Oncology Department, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, People’s Republic of China
| | - Manya Wang
- Department of Traditional Chinese Medicine, Shanghai Pudong New Area Nanhui Xincheng Community Health Service Center, Pudong New Area, Shanghai, People’s Republic of China
| | - Huixie Zhao
- Department of Traditional Chinese Medicine, Shijiazhuang TCM Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
10
|
Kim J, Song CH. Stress Granules in Infectious Disease: Cellular Principles and Dynamic Roles in Immunity and Organelles. Int J Mol Sci 2024; 25:12950. [PMID: 39684660 DOI: 10.3390/ijms252312950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Stress granules (SGs) are membrane-less aggregates that form in response to various cellular stimuli through a process called liquid-liquid phase separation (LLPS). Stimuli such as heat shock, osmotic stress, oxidative stress, and infections can induce the formation of SGs, which play crucial roles in regulating gene expression to help cells adapt to stress conditions. Various mRNAs and proteins are aggregated into SGs, particularly those associated with the protein translation machinery, which are frequently found in SGs. When induced by infections, SGs modulate immune cell activity, supporting the cellular response against infection. The roles of SGs differ in viral versus microbial infections, and depending on the type of immune cell involved, SGs function differently in response to infection. In this review, we summarize our current understanding of the implication of SGs in immunity and cellular organelles in the context of infectious diseases. Importantly, we explore insights into the regulatory functions of SGs in the context of host cells under infection.
Collapse
Affiliation(s)
- Jaewhan Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chang-Hwa Song
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
11
|
Ataollahi H, Hedayati M, Zia-Jahromi N, Daneshpour M, Siadat SD. Investigating the role of the intratumoral microbiome in thyroid cancer development and progression. Crit Rev Oncol Hematol 2024; 204:104545. [PMID: 39476992 DOI: 10.1016/j.critrevonc.2024.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
The intratumoral microbiome (ITM) is in the spotlight due to its possible contribution to the initiation, progression, and invasion of a wide range of cancers. Its precise contribution to cancer tumorigenesis is still elusive, though. Thyroid cancer(TC), the ninth leading cause of cancer globally and the most prevalent endocrine malignancy with a rapidly rising incidence among all cancers, has attracted much attention nowadays. Still, the association between the tumor's microbiome and TC progression and development is an evolving area of investigation with significant consequences for disease understanding and intervention. Therefore, this review offers an appropriate perspective on this emerging concept in TC based on prior studies on the ITM among the most common tumors worldwide, concentrating on TC. Moreover, information on the origin of the ITM and practical methods can pave the way for researchers to opt for the most appropriate method for further investigations on the ITM more accurately.
Collapse
Affiliation(s)
- Hanieh Ataollahi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 23, Shahid Arabi St.Yemen St, Velenjak, PO Box:19395-4763, Tehran, Iran.
| | - Noosha Zia-Jahromi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Maryam Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 23, Shahid Arabi St.Yemen St, Velenjak, PO Box:19395-4763, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center(MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Li F, Si YT, Tang JW, Umar Z, Xiong XS, Wang JT, Yuan Q, Tay ACY, Chua EG, Zhang L, Marshall BJ, Yang WX, Gu B, Wang L. Rapid profiling of carcinogenic types of Helicobacter pylori infection via deep learning analysis of label-free SERS spectra of human serum. Comput Struct Biotechnol J 2024; 23:3379-3390. [PMID: 39329094 PMCID: PMC11424770 DOI: 10.1016/j.csbj.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
WHO classified Helicobacter pylori as a Group I carcinogen for gastric cancer as early as 1994. However, despite the high prevalence of H. pylori infection, only about 3 % of infected individuals eventually develop gastric cancer, with the highly virulent H. pylori strains expressing cytotoxin-associated protein (CagA) and vacuolating cytotoxin (VacA) being critical factors in gastric carcinogenesis. It is well known that H. pylori infection is divided into two types in terms of the presence and absence of CagA and VacA toxins in serum, that is, carcinogenic Type I infection (CagA+/VacA+, CagA+/VacA-, CagA-/VacA+) and non-carcinogenic Type II infection (CagA-/VacA-). Currently, detecting the two carcinogenic toxins in active modes is mainly done by diagnosing their serological antibodies. However, the method is restricted by expensive reagents and intricate procedures. Therefore, establishing a rapid, accurate, and cost-effective way for serological profiling of carcinogenic H. pylori infection holds significant implications for effectively guiding H. pylori eradication and gastric cancer prevention. In this study, we developed a novel method by combining surface-enhanced Raman spectroscopy with the deep learning algorithm convolutional neural network to create a model for distinguishing between serum samples with Type I and Type II H. pylori infections. This method holds the potential to facilitate rapid screening of H. pylori infections with high risks of carcinogenesis at the population level, which can have long-term benefits in reducing gastric cancer incidence when used for guiding the eradication of H. pylori infections.
Collapse
Affiliation(s)
- Fen Li
- Department of Laboratory Medicine, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Yu-Ting Si
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jia-Wei Tang
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zeeshan Umar
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Xue-Song Xiong
- Department of Laboratory Medicine, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Jin-Ting Wang
- Department of Gastroenterology, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Quan Yuan
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Alfred Chin Yen Tay
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, Western Australia, Australia
- Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Marshall International Digestive Diseases Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Eng Guan Chua
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, Western Australia, Australia
- Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Marshall International Digestive Diseases Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Barry J. Marshall
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, Western Australia, Australia
- Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Marshall International Digestive Diseases Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei-Xuan Yang
- Department of Gastroenterology, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Division of Microbiology and Immunology, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- School of Agriculture and Food Sustainability, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Fang Z, Zhang W, Wang H, Zhang C, Li J, Chen W, Xu X, Wang L, Ma M, Zhang S, Li Y. Helicobacter pylori promotes gastric cancer progression by activating the TGF-β/Smad2/EMT pathway through HKDC1. Cell Mol Life Sci 2024; 81:453. [PMID: 39545942 PMCID: PMC11568101 DOI: 10.1007/s00018-024-05491-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Helicobacter pylori (H. pylori) infection is widely acknowledged as the primary risk factor for gastric cancer, facilitating its progression via the Correa cascade. Concurrently, Hexokinase Domain Containing 1 (HKDC1) has been implicated in the mediation of aerobic glycolysis, contributing to tumorigenesis across various cancers. However, the precise role of HKDC1 in the inflammatory transformation associated with H. pylori-induced gastric cancer remains elusive. In this study, transcriptome sequencing revealed a significant correlation between HKDC1 and H. pylori-induced gastric cancer. Subsequent validation using qRT-PCR, immunohistochemistry, and Western blot analysis confirmed elevated HKDC1 expression in both human and murine gastritis and gastric tumors. Moreover, in vitro and in vivo experiments demonstrated that H. pylori infection up-regulates TGF-β1 and p-Smad2, thereby activating the epithelial-mesenchymal transition (EMT) pathway, with HKDC1 playing a pivotal role. Suppression of HKDC1 expression or pharmacological inhibition of TGF-β1 reversed EMT activation, consequently reducing gastric cancer cell proliferation and metastasis. These results underscore HKDC1's essential contribution to H. pylori-induced gastric cancer progression via EMT activation.
Collapse
Affiliation(s)
- Ziqing Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Weitong Zhang
- Department of General Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Chaoyang Zhang
- Department of General Surgery, The Second Affiliated Hospital Zhejiang University, Hangzhou, 310000, China
| | - Jing Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Wanjing Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Xin Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Luyang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Mengdi Ma
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Shangxin Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China.
| |
Collapse
|
14
|
Xu F, Zheng H, Dong X, Zhou A, Emu Q. miRNA expression signatures induced by pasteurella multocida infection in goats lung. Sci Rep 2024; 14:19626. [PMID: 39179681 PMCID: PMC11343864 DOI: 10.1038/s41598-024-69654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression and are involved in bacterial pathogenesis and host-pathogen interactions. In this study, we investigated the function of miRNAs in the regulation of host responses to Pasteurella multocida infection. Using next-generation sequencing, we analyzed miRNA expression pattern and identified differentially expressed miRNAs in Pasteurella multocida-infected goat lungs. In addition, we investigated the function of differentially expressed miRNAs andtheir targeted signaling pathways in bacterial infection processes. The results showed that Pasteurella multocida infection led to 69 significantly differentially expressed miRNAs, including 28 known annotated miRNAs with miR-497-3p showing the most significant difference. Gene target prediction and functional enrichment analyses showed that the target genes were mainly involved in cell proliferation, regulation of the cellular metabolic process, positive regulation of cellular process, cellular senescence, PI3K-Akt signaling pathway, FoxO signaling pathway and infection-related pathways. In conclusion, these data provide a new perspective on the roles of miRNAs in Pasteurella multocida infection.
Collapse
Affiliation(s)
- Feng Xu
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Animal Science Academy of Sichuan Province, Chengdu, China
| | - Hao Zheng
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, China
| | - Xia Dong
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, China
| | - Ao Zhou
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, China.
| | - Quzhe Emu
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Animal Science Academy of Sichuan Province, Chengdu, China.
| |
Collapse
|
15
|
Naing C, Aung HH, Aye SN, Poovorawan Y, Whittaker MA. CagA toxin and risk of Helicobacter pylori-infected gastric phenotype: A meta-analysis of observational studies. PLoS One 2024; 19:e0307172. [PMID: 39173001 PMCID: PMC11341061 DOI: 10.1371/journal.pone.0307172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is frequently associated with non-cardia type gastric cancer, and it is designated as a group I carcinogen. This study aimed to systematically review and meta-analyze the evidence on the prevalence of CagA status in people with gastric disorders in the Indo-Pacific region, and to examine the association of CagA positive in the risk of gastric disorders. This study focused on the Indo-Pacific region owing to the high disability adjusted life-years related to these disorders, the accessibility of efficient treatments for this common bacterial infection, and the varying standard of care for these disorders, particularly among the elderly population in the region. METHODS Relevant studies were identified in the health-related electronic databases including PubMed, Ovid, Medline, Ovid Embase, Index Medicus, and Google Scholar that were published in English between 1 January 2000, and 18 November 2023. For pooled prevalence, meta-analysis of proportional studies was done, after Freeman-Tukey double arcsine transformation of data. A random-effect model was used to compute the pooled odds ratio (OR) and 95% confidence interval (CI) to investigate the relationship between CagA positivity and gastric disorders. RESULTS Twenty-four studies from eight Indo-Pacific countries (Bhutan, India, Indonesia, Malaysia, Myanmar, Singapore, Thailand, Vietnam) were included. Overall pooled prevalence of CagA positivity in H. pylori-infected gastric disorders was 83% (95%CI = 73-91%). Following stratification, the pooled prevalence of CagA positivity was 78% (95%CI = 67-90%) in H. pylori-infected gastritis, 86% (95%CI = 73-96%) in peptic ulcer disease, and 83% (95%CI = 51-100%) in gastric cancer. Geographic locations encountered variations in CagA prevalence. There was a greater risk of developing gastric cancer in those with CagA positivity compared with gastritis (OR = 2.53,95%CI = 1.15-5.55). CONCLUSION Findings suggest that the distribution of CagA in H. pylori-infected gastric disorders varies among different type of gastric disorders in the study countries, and CagA may play a role in the development of gastric cancer. It is important to provide a high standard of care for the management of gastric diseases, particularly in a region where the prevalence of these disorders is high. Better strategies for effective treatment for high-risk groups are required for health programs to revisit this often-neglected infectious disease.
Collapse
Affiliation(s)
- Cho Naing
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Queensland, Australia
| | - Htar Htar Aung
- School of Medicine, IMU University, Kuala Lumpur, Malaysia
| | - Saint Nway Aye
- School of Medicine, IMU University, Kuala Lumpur, Malaysia
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Maxine A. Whittaker
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Queensland, Australia
| |
Collapse
|
16
|
Kwon SY, Thi-Thu Ngo H, Son J, Hong Y, Min JJ. Exploiting bacteria for cancer immunotherapy. Nat Rev Clin Oncol 2024; 21:569-589. [PMID: 38840029 DOI: 10.1038/s41571-024-00908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Immunotherapy has revolutionized the treatment of cancer but continues to be constrained by limited response rates, acquired resistance, toxicities and high costs, which necessitates the development of new, innovative strategies. The discovery of a connection between the human microbiota and cancer dates back 4,000 years, when local infection was observed to result in tumour eradication in some individuals. However, the true oncological relevance of the intratumoural microbiota was not recognized until the turn of the twentieth century. The intratumoural microbiota can have pivotal roles in both the pathogenesis and treatment of cancer. In particular, intratumoural bacteria can either promote or inhibit cancer growth via remodelling of the tumour microenvironment. Over the past two decades, remarkable progress has been made preclinically in engineering bacteria as agents for cancer immunotherapy; some of these bacterial products have successfully reached the clinical stages of development. In this Review, we discuss the characteristics of intratumoural bacteria and their intricate interactions with the tumour microenvironment. We also describe the many strategies used to engineer bacteria for use in the treatment of cancer, summarizing contemporary data from completed and ongoing clinical trials. The work described herein highlights the potential of bacteria to transform the landscape of cancer therapy, bridging ancient wisdom with modern scientific innovation.
Collapse
Affiliation(s)
- Seong-Young Kwon
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| | - Hien Thi-Thu Ngo
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biochemistry, Hanoi Medical University, Hanoi, Vietnam
| | - Jinbae Son
- CNCure Biotech, Jeonnam, Republic of Korea
| | - Yeongjin Hong
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- CNCure Biotech, Jeonnam, Republic of Korea
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea.
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- CNCure Biotech, Jeonnam, Republic of Korea.
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea.
| |
Collapse
|
17
|
Motamedzadeh A, Rahmati-Dehkordi F, Heydari H, Behnam M, Rashidi Noshabad FZ, Tamtaji Z, Taheri AT, Nabavizadeh F, Aschner M, Mirzaei H, Tamtaji OR. Therapeutic potential of Phycocyanin in gastrointestinal cancers and related disorders. Mol Biol Rep 2024; 51:741. [PMID: 38874869 DOI: 10.1007/s11033-024-09675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Gastrointestinal cancer is the most fatal cancer worldwide. The etiology of gastrointestinal cancer has yet to be fully characterized. Alcohol consumption, obesity, tobacco, Helicobacter pylori and gastrointestinal disorders, including gastroesophageal reflux disease, gastric ulcer, colon polyps and non-alcoholic fatty liver disease are among the several risks factors for gastrointestinal cancers. Phycocyanin which is abundant in Spirulina. Phycocyanin, a member of phycobiliprotein family with intense blue color, is an anti-diabetic, neuroprotective, anti-oxidative, anti-inflammatory, and anticancer compound. Evidence exists supporting that phycocyanin has antitumor effects, exerting its pharmacological effects by targeting a variety of cellular and molecular processes, i.e., apoptosis, cell-cycle arrest, migration and Wnt/β-catenin signaling. Phycocyanin has also been applied in treatment of several gastrointestinal disorders such as, gastric ulcer, ulcerative colitis and fatty liver that is known as a risk factor for progression to cancer. Herein, we summarize various cellular and molecular pathways that are affected by phycocyanin, its efficacy upon combined drug treatment, and the potential for nanotechnology in its gastrointestinal cancer therapy.
Collapse
Affiliation(s)
- Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Rahmati-Dehkordi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoora Heydari
- Student Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Behnam
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolkarim Talebi Taheri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Physiology, School of Medicine, Tehran University of medical sciences, Tehran, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of medical sciences, Tehran, Iran.
| |
Collapse
|
18
|
Mascaretti F, Haider S, Amoroso C, Caprioli F, Ramai D, Ghidini M. Role of the Microbiome in the Diagnosis and Management of Gastroesophageal Cancers. J Gastrointest Cancer 2024; 55:662-678. [PMID: 38411876 DOI: 10.1007/s12029-024-01021-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE Stomach and esophageal cancers are among the highest mortality from cancers worldwide. Microbiota has an interplaying role within the human gastrointestinal (GI) tract. Dysbiosis occurs when a disruption of the balance between the microbiota and the host happens. With this narrative review, we discuss the main alterations in the microbiome of gastroesophageal cancer, revealing its potential role in the pathogenesis, early detection, and treatment. RESULTS Helicobacter pylori plays a major role the development of a cascade of preneoplastic conditions ranging from atrophic gastritis to metaplasia and dysplasia, ultimately culminating in gastric cancer, while other pathogenic agents are Fusobacterium nucleatum, Bacteroides fragilis, Escherichia coli, and Lactobacillus. Campylobacter species (spp.)'s role in the progression of esophageal adenocarcinoma may parallel that of Helicobacter pylori in the context of gastric cancer, with other esophageal carcinogenic agents being Escherichia coli, Bacteroides fragilis, and Fusobacterium nucleatum. Moreover, gut microbiome could significantly alter the outcomes of chemotherapy and immunotherapy. The gut microbiome can be modulated through interventions such as antibiotics, probiotics, or prebiotics intake. Fecal microbiota transplantation has emerged as a therapeutic strategy as well. CONCLUSIONS Nowadays, it is widely accepted that changes in the normal gut microbiome causing dysbiosis and immune dysregulation play a role gastroesophageal cancer. Different interventions, including probiotics and prebiotics intake are being developed to improve therapeutic outcomes and mitigate toxicities associated with anticancer treatment. Further studies are required in order to introduce the microbiome among the available tools of precision medicine in the field of anticancer treatment.
Collapse
Affiliation(s)
- Federica Mascaretti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Salman Haider
- Department of Internal Medicine, Brooklyn Hospital Center, Brooklyn, New York, NY, USA
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Daryl Ramai
- Division of Gastroenterology and Hepatology, University of Utah Health, Salt Lake City, UT, USA
| | - Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Via Sforza 28, Milan, Italy.
| |
Collapse
|
19
|
Sgamato C, Rocco A, Compare D, Priadko K, Romano M, Nardone G. Exploring the Link between Helicobacter pylori, Gastric Microbiota and Gastric Cancer. Antibiotics (Basel) 2024; 13:484. [PMID: 38927151 PMCID: PMC11201017 DOI: 10.3390/antibiotics13060484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Gastric cancer (GC) still represents one of the leading causes of cancer-related mortality and is a major public health issue worldwide. Understanding the etiopathogenetic mechanisms behind GC development holds immense potential to revolutionize patients' treatment and prognosis. Within the complex web of genetic predispositions and environmental factors, the connection between Helicobacter pylori (H. pylori) and gastric microbiota emerges as a focus of intense research investigation. According to the most recent hypotheses, H. pylori triggers inflammatory responses and molecular alterations in gastric mucosa, while non-Helicobacter microbiota modulates disease progression. In this review, we analyze the current state of the literature on the relationship between H. pylori and non-Helicobacter gastric microbiota in gastric carcinogenesis, highlighting the mechanisms by which microecological dysbiosis can contribute to the malignant transformation of the mucosa.
Collapse
Affiliation(s)
- Costantino Sgamato
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80131 Naples, Italy; (C.S.); (D.C.); (G.N.)
| | - Alba Rocco
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80131 Naples, Italy; (C.S.); (D.C.); (G.N.)
| | - Debora Compare
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80131 Naples, Italy; (C.S.); (D.C.); (G.N.)
| | - Kateryna Priadko
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (K.P.); (M.R.)
| | - Marco Romano
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (K.P.); (M.R.)
| | - Gerardo Nardone
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80131 Naples, Italy; (C.S.); (D.C.); (G.N.)
| |
Collapse
|
20
|
Xu HM, Han Y, Liu ZC, Yin ZY, Wang MY, Yu C, Ma JL, Sun D, Liu WD, Zhang Y, Zhou T, Zhang JY, Pei P, Yang L, Millwood IY, Walters RG, Chen Y, Du H, Chen Z, You WC, Li L, Pan KF, Lv J, Li WQ. Helicobacter pylori Treatment and Gastric Cancer Risk Among Individuals With High Genetic Risk for Gastric Cancer. JAMA Netw Open 2024; 7:e2413708. [PMID: 38809553 PMCID: PMC11137637 DOI: 10.1001/jamanetworkopen.2024.13708] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 05/30/2024] Open
Abstract
Importance Helicobacter pylori treatment and nutrition supplementation may protect against gastric cancer (GC), but whether the beneficial effects only apply to potential genetic subgroups and whether high genetic risk may be counteracted by these chemoprevention strategies remains unknown. Objective To examine genetic variants associated with the progression of gastric lesions and GC risk and to assess the benefits of H pylori treatment and nutrition supplementation by levels of genetic risk. Design, Setting, and Participants This cohort study used follow-up data of the Shandong Intervention Trial (SIT, 1989-2022) and China Kadoorie Biobank (CKB, 2004-2018) in China. Based on the SIT, a longitudinal genome-wide association study was conducted to identify genetic variants for gastric lesion progression. Significant variants were examined for incident GC in a randomly sampled set of CKB participants (set 1). Polygenic risk scores (PRSs) combining independent variants were assessed for GC risk in the remaining CKB participants (set 2) and in an independent case-control study in Linqu. Exposures H pylori treatment and nutrition supplementation. Main Outcomes and Measures Primary outcomes were the progression of gastric lesions (in SIT only) and the risk of GC. The associations of H pylori treatment and nutrition supplementation with GC were evaluated among SIT participants with different levels of genetic risk. Results Our analyses included 2816 participants (mean [SD] age, 46.95 [9.12] years; 1429 [50.75%] women) in SIT and 100 228 participants (mean [SD] age, 53.69 [11.00] years; 57 357 [57.23%] women) in CKB, with 147 GC cases in SIT and 825 GC cases in CKB identified during follow-up. A PRS integrating 12 genomic loci associated with gastric lesion progression and incident GC risk was derived, which was associated with GC risk in CKB (highest vs lowest decile of PRS: hazard ratio [HR], 2.54; 95% CI, 1.80-3.57) and further validated in the analysis of 702 case participants and 692 control participants (mean [SD] age, 54.54 [7.66] years; 527 [37.80%] women; odds ratio, 1.83; 95% CI, 1.11-3.05). H pylori treatment was associated with reduced GC risk only for individuals with high genetic risk (top 25% of PRS: HR, 0.45; 95% CI, 0.25-0.82) but not for those with low genetic risk (HR, 0.81; 95% CI, 0.50-1.34; P for interaction = .03). Such effect modification was not found for vitamin (P for interaction = .93) or garlic (P for interaction = .41) supplementation. Conclusions and Relevance The findings of this cohort study indicate that a high genetic risk of GC may be counteracted by H pylori treatment, suggesting primary prevention could be tailored to genetic risk for more effective prevention.
Collapse
Affiliation(s)
- Heng-Min Xu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuting Han
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zong-Chao Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhou-Yi Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Meng-Yuan Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Canqing Yu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Jun-Ling Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Dianjianyi Sun
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Wei-Dong Liu
- Linqu Public Health Bureau, Linqu, Shandong, China
| | - Yang Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Tong Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jing-Ying Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Pei Pei
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Ling Yang
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Iona Y. Millwood
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Robin G. Walters
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Yiping Chen
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Huaidong Du
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Wei-Cheng You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Liming Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Kai-Feng Pan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Lv
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wen-Qing Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
21
|
Oudouhou F, Morin C, Bouin M, Gaudreau C, Baron C. Inhibition of the type IV secretion system from antibiotic-resistant Helicobacter pylori clinical isolates supports the potential of Cagα as an anti-virulence target. Can J Microbiol 2024; 70:119-127. [PMID: 38176008 DOI: 10.1139/cjm-2023-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Helicobacter pylori resistance to antibiotics is a growing problem and it increasingly leads to treatment failure. While the bacterium is present worldwide, the severity of clinical outcomes is highly dependent on the geographical origin and genetic characteristics of the strains. One of the major virulence factors identified in H. pylori is the cag pathogenicity island (cagPAI), which encodes a type IV secretion system (T4SS) used to translocate effectors into human cells. Here, we investigated the genetic variability of the cagPAI among 13 antibiotic-resistant H. pylori strains that were isolated from patient biopsies in Québec. Seven of the clinical strains carried the cagPAI, but only four could be readily cultivated under laboratory conditions. We observed variability of the sequences of CagA and CagL proteins that are encoded by the cagPAI. All clinical isolates induce interleukin-8 secretion and morphological changes upon co-incubation with gastric cancer cells and two of them produce extracellular T4SS pili. Finally, we demonstrate that molecule 1G2, a small molecule inhibitor of the Cagα protein from the model strain H. pylori 26695, reduces interleukin-8 secretion in one of the clinical isolates. Co-incubation with 1G2 also inhibits the assembly of T4SS pili, suggesting a mechanism for its action on T4SS function.
Collapse
Affiliation(s)
- Flore Oudouhou
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Claire Morin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Mickael Bouin
- Department of Medicine, Faculty of Medicine, Université de Montréal and Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Christiane Gaudreau
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal and Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
22
|
Chen ZW, Dong ZB, Xiang HT, Chen SS, Yu WM, Liang C. Helicobacter pylori CagA protein induces gastric cancer stem cell-like properties through the Akt/FOXO3a axis. J Cell Biochem 2024; 125:e30527. [PMID: 38332574 DOI: 10.1002/jcb.30527] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
The presence of Helicobacter pylori (H. pylori) infection poses a substantial risk for the development of gastric adenocarcinoma. The primary mechanism through which H. pylori exerts its bacterial virulence is the cytotoxin CagA. This cytotoxin has the potential to induce inter-epithelial mesenchymal transition, proliferation, metastasis, and the acquisition of stem cell-like properties in gastric cancer (GC) cells infected with CagA-positive H. pylori. Cancer stem cells (CSCs) represent a distinct population of cells capable of self-renewal and generating heterogeneous tumor cells. Despite evidence showing that CagA can induce CSCs-like characteristics in GC cells, the precise mechanism through which CagA triggers the development of GC stem cells (GCSCs) remains uncertain. This study reveals that CagA-positive GC cells infected with H. pylori exhibit CSCs-like properties, such as heightened expression of CD44, a specific surface marker for CSCs, and increased ability to form tumor spheroids. Furthermore, we have observed that H. pylori activates the PI3K/Akt signaling pathway in a CagA-dependent manner, and our findings suggest that this activation is associated with the CSCs-like characteristics induced by H. pylori. The cytotoxin CagA, which is released during H. pylori infection, triggers the activation of the PI3K/Akt signaling pathway in a CagA-dependent manner. Additionally, CagA inhibits the transcription of FOXO3a and relocates it from the nucleus to the cytoplasm by activating the PI3K/Akt pathway. Furthermore, the regulatory function of the Akt/FOXO3a axis in the transformation of GC cells into a stemness state was successfully demonstrated.
Collapse
Affiliation(s)
- Zheng-Wei Chen
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhe-Bin Dong
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Han-Ting Xiang
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Sang-Sang Chen
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Wei-Ming Yu
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Chao Liang
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
23
|
Abdullah ST, Abdullah SR, Hussen BM, Younis YM, Rasul MF, Taheri M. Role of circular RNAs and gut microbiome in gastrointestinal cancers and therapeutic targets. Noncoding RNA Res 2024; 9:236-252. [PMID: 38192436 PMCID: PMC10771991 DOI: 10.1016/j.ncrna.2023.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
Gastrointestinal cancers are a huge worldwide health concern, which includes a wide variety of digestive tract cancers. Circular RNAs (circRNAs), a kind of non-coding RNA (ncRNAs), are a family of single-stranded, covalently closed RNAs that have become recognized as crucial gene expression regulators, having an impact on several cellular functions in cancer biology. The gut microbiome, which consists of several different bacteria, actively contributes to the regulation of host immunity, inflammation, and metabolism. CircRNAs and the gut microbiome interact significantly to greatly affect the growth of GI cancer. Several studies focus on the complex functions of circRNAs and the gut microbiota in GI cancers, including esophageal cancer, colorectal cancer, gastric cancer, hepatocellular cancer, and pancreatic cancer. It also emphasizes how changed circRNA expression profiles and gut microbiota affect pathways connected to malignancy as well as how circRNAs affect hallmarks of gastrointestinal cancers. Furthermore, circRNAs and gut microbiota have been recommended as biological markers for therapeutic targets as well as diagnostic and prognostic purposes. Targeting circRNAs and the gut microbiota for the treatment of gastrointestinal cancers is also being continued to study. Despite significant initiatives, the connection between circRNAs and the gut microbiota and the emergence of gastrointestinal cancers remains poorly understood. In this study, we will go over the most recent studies to emphasize the key roles of circRNAs and gut microbiota in gastrointestinal cancer progression and therapeutic options. In order to create effective therapies and plan for the future gastrointestinal therapy, it is important to comprehend the functions and mechanisms of circRNAs and the gut microbiota.
Collapse
Affiliation(s)
- Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Yousif Mohammed Younis
- Department of Nursing, College of Nursing, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Baral B, Kandpal M, Ray A, Jana A, Yadav DS, Sachin K, Mishra A, Baig MS, Jha HC. Helicobacter pylori and Epstein-Barr virus infection in cell polarity alterations. Folia Microbiol (Praha) 2024; 69:41-57. [PMID: 37672163 DOI: 10.1007/s12223-023-01091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
The asymmetrical distribution of the cellular organelles inside the cell is maintained by a group of cell polarity proteins. The maintenance of polarity is one of the vital host defense mechanisms against pathogens, and the loss of it contributes to infection facilitation and cancer progression. Studies have suggested that infection of viruses and bacteria alters cell polarity. Helicobacter pylori and Epstein-Barr virus are group I carcinogens involved in the progression of multiple clinical conditions besides gastric cancer (GC) and Burkitt's lymphoma, respectively. Moreover, the coinfection of both these pathogens contributes to a highly aggressive form of GC. H. pylori and EBV target the host cell polarity complexes for their pathogenesis. H. pylori-associated proteins like CagA, VacA OipA, and urease were shown to imbalance the cellular homeostasis by altering the cell polarity. Similarly, EBV-associated genes LMP1, LMP2A, LMP2B, EBNA3C, and EBNA1 also contribute to altered cell asymmetry. This review summarized all the possible mechanisms involved in cell polarity deformation in H. pylori and EBV-infected epithelial cells. We have also discussed deregulated molecular pathways like NF-κB, TGF-β/SMAD, and β-catenin in H. pylori, EBV, and their coinfection that further modulate PAR, SCRIB, or CRB polarity complexes in epithelial cells.
Collapse
Affiliation(s)
- Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Anushka Ray
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Ankit Jana
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Dhirendra Singh Yadav
- Central Forensic Science Laboratory, Pune, DFSS, Ministry of Home Affairs, Govt. of India, Talegaon MIDC Phase-1, Near JCB Factory, Pune, Maharashtra, 410506, India
| | - Kumar Sachin
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jolly Grant, Dehradun, Uttarakhand, 248 016, India
| | - Amit Mishra
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65 Nagaur Road, Karwar, Jodhpur District, Rajasthan, 342037, India
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
25
|
Yang S, Hao S, Ye H, Zhang X. Cross-talk between Helicobacter pylori and gastric cancer: a scientometric analysis. Front Cell Infect Microbiol 2024; 14:1353094. [PMID: 38357448 PMCID: PMC10864449 DOI: 10.3389/fcimb.2024.1353094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Background Helicobacter pylori (HP) is considered a leading risk factor for gastric cancer (GC). The aim of this article is to conduct bibliometric and visual analysis to assess scientific output, identify highly cited papers, summarize current knowledge, and explore recent hotspots and trends in HP/GC research. Methods A bibliographic search was conducted on October 24, 2023, to retrieve relevant studies on HP/GC research between 2003 and 2022. The search terms were attached to HP and GC. The main data were from the Web of Science Core Collection (WoSCC). Data visualization was performed using Biblioshiny, VOSviewer, and Microsoft Excel. Results In HP/GC research, 1970 papers were retrieved. The total number of papers (Np) in HP/GC was growing from 2003 to 2022. China and Japan were in the leading position and made the most contributions to HP/GC. Vanderbilt University and the US Department of Veterans Affairs had the highest Np. The most productive authors were Peek Jr Richard M. and Piazuelo M Blanca. Helicobacter received the most Np, while Gastroenterology had the most total citations (TC). High-cited publications and keyword clustering were used to identify the current status and trends in HP/GC research, while historical citation analysis provided insight into the evolution of HP/GC research. The hot topics included the effect of HP on gastric tumorigenesis and progression, the pathogenesis of HP-induced GC (HP factors), and the mechanisms by which HP affects GC (host factors). Research in the coming years could focus on topics such as autophagy, gut microbiota, immunotherapy, exosomes, epithelial-mesenchymal transition (EMT), and gamma-glutamyl transpeptidase (GGT). Conclusion This study evaluated the global scientific output in HP/GC research and its quantitative characteristics, identified the essential works, and collected information on the current status, main focuses and emerging trends in HP/GC research to provide academics with guidance for future paths.
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
| | - Shaodong Hao
- Spleen-Stomach Department, Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Ye
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
| | - Xuezhi Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
26
|
Engelsberger V, Gerhard M, Mejías-Luque R. Effects of Helicobacter pylori infection on intestinal microbiota, immunity and colorectal cancer risk. Front Cell Infect Microbiol 2024; 14:1339750. [PMID: 38343887 PMCID: PMC10853882 DOI: 10.3389/fcimb.2024.1339750] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Infecting about half of the world´s population, Helicobacter pylori is one of the most prevalent bacterial infections worldwide and the strongest known risk factor for gastric cancer. Although H. pylori colonizes exclusively the gastric epithelium, the infection has also been associated with various extragastric diseases, including colorectal cancer (CRC). Epidemiological studies reported an almost two-fold increased risk for infected individuals to develop CRC, but only recently, direct causal and functional links between the chronic infection and CRC have been revealed. Besides modulating the host intestinal immune response, H. pylori is thought to increase CRC risk by inducing gut microbiota alterations. It is known that H. pylori infection not only impacts the gastric microbiota at the site of infection but also leads to changes in bacterial colonization in the distal large intestine. Considering that the gut microbiome plays a driving role in CRC, H. pylori infection emerges as a key factor responsible for promoting changes in microbiome signatures that could contribute to tumor development. Within this review, we want to focus on the interplay between H. pylori infection, changes in the intestinal microbiota, and intestinal immunity. In addition, the effects of H. pylori antibiotic eradication therapy will be discussed.
Collapse
Affiliation(s)
| | | | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
27
|
Ali A, AlHussaini KI. Helicobacter pylori: A Contemporary Perspective on Pathogenesis, Diagnosis and Treatment Strategies. Microorganisms 2024; 12:222. [PMID: 38276207 PMCID: PMC10818838 DOI: 10.3390/microorganisms12010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that colonizes the gastric mucosa and is associated with various gastrointestinal disorders. H. pylori is a pervasive pathogen, infecting nearly 50% of the world's population, and presents a substantial concern due to its link with gastric cancer, ranking as the third most common cause of global cancer-related mortality. This review article provides an updated and comprehensive overview of the current understanding of H. pylori infection, focusing on its pathogenesis, diagnosis, and treatment strategies. The intricate mechanisms underlying its pathogenesis, including the virulence factors and host interactions, are discussed in detail. The diagnostic methods, ranging from the traditional techniques to the advanced molecular approaches, are explored, highlighting their strengths and limitations. The evolving landscape of treatment strategies, including antibiotic regimens and emerging therapeutic approaches, is thoroughly examined. Through a critical synthesis of the recent research findings, this article offers valuable insights into the contemporary knowledge of Helicobacter pylori infection, guiding both clinicians and researchers toward effective management and future directions in combating this global health challenge.
Collapse
Affiliation(s)
- Asghar Ali
- Clinical Biochemistry Laboratory, Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Khalid I. AlHussaini
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 4233-13317, Saudi Arabia
| |
Collapse
|
28
|
Mostaghimi T, Bahadoran E, Bakht M, Taheri S, Sadeghi H, Babaei A. Role of lncRNAs in Helicobacter pylori and Epstein-Barr virus associated gastric cancers. Life Sci 2024; 336:122316. [PMID: 38035995 DOI: 10.1016/j.lfs.2023.122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Helicobacter pylori infection is a risk factor for the development of gastric cancer (GC), and the role of co-infection with viruses, such as Epstein-Barr virus, in carcinogenesis cannot be ignored. Furthermore, it is now known that genetic factors such as long non-coding RNAs (lncRNAs) are involved in many diseases, including GC. On the other side, they can also be used as therapeutic goals. Modified lncRNAs can cause aberrant expression of genes encoding proximal proteins, which are essential for the development of carcinoma. In this review, we present the most recent studies on lncRNAs in GC, concentrating on their roles in H. pylori and EBV infections, and discuss some of the molecular mechanisms of these GC-related pathogens. There was also a discussion of the research gaps and future perspectives.
Collapse
Affiliation(s)
- Talieh Mostaghimi
- Department of Medical Microbiology and Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ensiyeh Bahadoran
- School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Mehdi Bakht
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Shiva Taheri
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Hamid Sadeghi
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran.
| |
Collapse
|
29
|
Wang J, Deng R, Chen S, Deng S, Hu Q, Xu B, Li J, He Z, Peng M, Lei S, Ma T, Chen Z, Zhu H, Zuo C. Helicobacter pylori CagA promotes immune evasion of gastric cancer by upregulating PD-L1 level in exosomes. iScience 2023; 26:108414. [PMID: 38047083 PMCID: PMC10692710 DOI: 10.1016/j.isci.2023.108414] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Cytotoxin-associated gene A (CagA) of Helicobacter pylori (Hp) may promote immune evasion of Hp-infected gastric cancer (GC), but potential mechanisms are still under explored. In this study, the positive rates of CagA and PD-L1 protein in tumor tissues and the high level of exosomal PD-L1 protein in plasma exosomes were significantly associated with the elevated stages of tumor node metastasis (TNM) in Hp-infected GC. Moreover, the positive rate of CagA was positively correlated with the positive rate of PD-L1 in tumor tissues and the level of PD-L1 protein in plasma exosomes, and high level of exosomal PD-L1 might indicate poor prognosis of Hp-infected GC. Mechanically, CagA increased PD-L1 level in exosomes derived from GC cells by inhibiting p53 and miRNA-34a, suppressing proliferation and anticancer effect of CD8+ T cells. This study provides sights for understanding immune evasion mediated by PD-L1. Targeting CagA and exosomal PD-L1 may improve immunotherapy efficacy of Hp-infected GC.
Collapse
Affiliation(s)
- Jinfeng Wang
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Tumor of Pancreaticobiliary Duodenal Junction In Hunan Province, Changsha 410013, Hunan, China
| | - Rilin Deng
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Shuai Chen
- School of Integrated Traditional Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan, China
| | - Shun Deng
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Tumor of Pancreaticobiliary Duodenal Junction In Hunan Province, Changsha 410013, Hunan, China
| | - Qi Hu
- Graduates School, University of South China, Hengyang 421001, Hunan, China
| | - Biaoming Xu
- Graduates School, University of South China, Hengyang 421001, Hunan, China
| | - Junjun Li
- Department of Pathology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Zhuo He
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Tumor of Pancreaticobiliary Duodenal Junction In Hunan Province, Changsha 410013, Hunan, China
| | - Mingjing Peng
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Tumor of Pancreaticobiliary Duodenal Junction In Hunan Province, Changsha 410013, Hunan, China
| | - Sanlin Lei
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Tiexiang Ma
- The Third Department of General Surgery, The Central Hospital of Xiangtan City, Xiangtan 411100, Hunan, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, Hunan, China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Tumor of Pancreaticobiliary Duodenal Junction In Hunan Province, Changsha 410013, Hunan, China
- School of Integrated Traditional Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan, China
- Graduates School, University of South China, Hengyang 421001, Hunan, China
| |
Collapse
|
30
|
Krzysiek-Maczka G, Brzozowski T, Ptak-Belowska A. Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development. Cancer Metastasis Rev 2023; 42:1219-1256. [PMID: 37460910 PMCID: PMC10713772 DOI: 10.1007/s10555-023-10122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023]
Abstract
The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-β, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland
| |
Collapse
|
31
|
Khan N, Rehman B, Almanaa TN, Aljahdali SM, Waheed Y, Ullah A, Asfandayar M, Al-Harbi AI, Naz T, Arshad M, Sanami S, Ahmad S. A novel therapeutic approach to prevent Helicobacter pylori induced gastric cancer using networking biology, molecular docking, and simulation approaches. J Biomol Struct Dyn 2023; 42:13876-13889. [PMID: 37962871 DOI: 10.1080/07391102.2023.2279276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Helicobacter pylori infects 50% of the world population and in 80% of cases, the infection progresses to the point where an ulcer develops leading to gastric cancer (GC). This study aimed to prevent GC by predicting Hub genes that are inducing GC. Furthermore, the study objective was to screen inhibitory molecules that block the function of predicted genes through several biophysical approaches. These proteins, such as Mucin 4 (MUC4) and Baculoviral IAP repeat containing 3 (BIRC3), had LogFC values of 2.28 and 3.39, respectively, and were found to be substantially expressed in those who had H. pylori infection. The MUC4 and BIRC3 inhibit apoptosis of infected cells and promote cancerous cell survival. The proteins were examined for their Physico-chemical characteristics, 3D structure and secondary structure analysis, solvent assessable surface area (SASA), active site identification, and network analysis. The MUC4 and BIRC3 expression was inhibited by docking eighty different compounds collected from the ZINC database. Fifty-seven compounds were successfully docked into the active site resulting in the lowest binding energy scores. The ZINC585267910 and ZINC585268691 compounds showed the lowest binding energy of -8.5 kcal/mol for MUC4 and -7.1 kcal/mol for BIRC3, respectively, and were considered best-docked solutions for molecular dynamics simulations. The mean root mean square deviation (RMSD) value for the ZINC585267910-MUC4 complex was 0.86 Å and the ZINC585268691-BIRC3 complex was 1.01 Å. The net MM/GBSA energy value of the ZINC585267910-MUC4 complex estimated was -46.84 kcal/mol and that of the ZINC585268691-BIRC3 complex was -44.84 kcal/mol. In a nutshell, the compounds might be investigated further as an inhibitor of the said proteins to stop the progress of GC induced by H. pylori.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nadeem Khan
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Bushra Rehman
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadaa, Pakistan
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Muhammad Asfandayar
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Alhanouf I Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Tahira Naz
- Department of Chemical and Life Sciences, Qurtuba University of Science and Technology, Peshawar, Pakistan
| | - Muhammad Arshad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Samira Sanami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
32
|
dos Santos EC, Rohan P, Binato R, Abdelhay E. Integrated Network Analysis of microRNAs, mRNAs, and Proteins Reveals the Regulatory Interaction between hsa-mir-200b and CFL2 Associated with Advanced Stage and Poor Prognosis in Patients with Intestinal Gastric Cancer. Cancers (Basel) 2023; 15:5374. [PMID: 38001634 PMCID: PMC10670725 DOI: 10.3390/cancers15225374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Intestinal gastric cancer (IGC) carcinogenesis results from a complex interplay between environmental and molecular factors, ultimately contributing to disease development. We used integrative bioinformatic analysis to investigate IGC high-throughput molecular data to uncover interactions among differentially expressed genes, microRNAs, and proteins and their roles in IGC. An integrated network was generated based on experimentally validated microRNA-gene/protein interaction data, with three regulatory circuits involved in a complex network contributing to IGC progression. Key regulators were determined, including 23 microRNA and 15 gene/protein hubs. The regulatory circuit networks were associated with hallmarks of cancer, e.g., cell death, apoptosis and the cell cycle, the immune response, and epithelial-to-mesenchymal transition, indicating that different mechanisms of gene regulation impact similar biological functions. Altered expression of hubs was related to the clinicopathological characteristics of IGC patients and showed good performance in discriminating tumors from adjacent nontumor tissues and in relation to T stage and overall survival (OS). Interestingly, expression of upregulated hub hsa-mir-200b and its downregulated target hub gene/protein CFL2 were related not only to pathological T staging and OS but also to changes during IGC carcinogenesis. Our study suggests that regulation of CFL2 by hsa-miR-200b is a dynamic process during tumor progression and that this control plays essential roles in IGC development. Overall, the results indicate that this regulatory interaction is an important component in IGC pathogenesis. Also, we identified a novel molecular interplay between microRNAs, proteins, and genes associated with IGC in a complex biological network and the hubs closely related to IGC carcinogenesis as potential biomarkers.
Collapse
Affiliation(s)
- Everton Cruz dos Santos
- Stem Cell Laboratory, Division of Specialized Laboratories, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil; (P.R.); (R.B.); (E.A.)
| | | | | | | |
Collapse
|
33
|
Liu J, Shao N, Qiu H, Zhao J, Chen C, Wan J, He Z, Zhao X, Xu L. Intestinal microbiota: A bridge between intermittent fasting and tumors. Biomed Pharmacother 2023; 167:115484. [PMID: 37708691 DOI: 10.1016/j.biopha.2023.115484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
Intestinal microbiota and their metabolites are essential for maintaining intestinal health, regulating inflammatory responses, and enhancing the body's immune function. An increasing number of studies have shown that the intestinal microbiota is tightly tied to tumorigenesis and intervention effects. Intermittent fasting (IF) is a method of cyclic dietary restriction that can improve energy metabolism, prolong lifespan, and reduce the progression of various diseases, including tumors. IF can affect the energy metabolism of tumor cells, inhibit tumor cell growth, improve the function of immune cells, and promote an anti-tumor immune response. Interestingly, recent research has further revealed that the intestinal microbiota can be impacted by IF, in particular by changes in microbial composition and metabolism. These findings suggest the complexity of the IF as a promising tumor intervention strategy, which merits further study to better understand and encourage the development of clinical tumor intervention strategies. In this review, we aimed to outline the characteristics of the intestinal microbiota and its mechanisms in different tumors. Of note, we summarized the impact of IF on intestinal microbiota and discussed its potential association with tumor suppressive effects. Finally, we proposed some key scientific issues that need to be addressed and envision relevant research prospects, which might provide a theoretical basis and be helpful for the application of IF and intestinal microbiota as new strategies for clinical interventions in the future.
Collapse
Affiliation(s)
- Jing Liu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Nan Shao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hui Qiu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiajia Wan
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhixu He
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou University Medical College, Guiyang 550025, Guizhou Province, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
34
|
Shin WS, Xie F, Chen B, Yu P, Yu J, To KF, Kang W. Updated Epidemiology of Gastric Cancer in Asia: Decreased Incidence but Still a Big Challenge. Cancers (Basel) 2023; 15:cancers15092639. [PMID: 37174105 PMCID: PMC10177574 DOI: 10.3390/cancers15092639] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the decline in incidence and mortality rates, gastric cancer (GC) is the fifth leading cause of cancer deaths worldwide. The incidence and mortality of GC are exceptionally high in Asia due to high H. pylori infection, dietary habits, smoking behaviors, and heavy alcohol consumption. In Asia, males are more susceptible to developing GC than females. Variations in H. pylori strains and prevalence rates may contribute to the differences in incidence and mortality rates across Asian countries. Large-scale H. pylori eradication was one of the effective ways to reduce GC incidences. Treatment methods and clinical trials have evolved, but the 5-year survival rate of advanced GC is still low. Efforts should be put towards large-scale screening and early diagnosis, precision medicine, and deep mechanism studies on the interplay of GC cells and microenvironments for dealing with peritoneal metastasis and prolonging patients' survival.
Collapse
Affiliation(s)
- Wing Sum Shin
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Peiyao Yu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| |
Collapse
|
35
|
Zhou S, Li C, Liu L, Yuan Q, Miao J, Wang H, Ding C, Guan W. Gastric microbiota: an emerging player in gastric cancer. Front Microbiol 2023; 14:1130001. [PMID: 37180252 PMCID: PMC10172576 DOI: 10.3389/fmicb.2023.1130001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Gastric cancer (GC) is a common cancer worldwide with a high mortality rate. Many microbial factors influence GC, of which the most widely accepted one is Helicobacter pylori (H. pylori) infection. H. pylori causes inflammation, immune reactions and activation of multiple signaling pathways, leading to acid deficiency, epithelial atrophy, dysplasia and ultimately GC. It has been proved that complex microbial populations exist in the human stomach. H. pylori can affect the abundance and diversity of other bacteria. The interactions among gastric microbiota are collectively implicated in the onset of GC. Certain intervention strategies may regulate gastric homeostasis and mitigate gastric disorders. Probiotics, dietary fiber, and microbiota transplantation can potentially restore healthy microbiota. In this review, we elucidate the specific role of the gastric microbiota in GC and hope these data can facilitate the development of effective prevention and therapeutic approaches for GC.
Collapse
Affiliation(s)
- Shizhen Zhou
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chenxi Li
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lixiang Liu
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qinggang Yuan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Ji Miao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hao Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
36
|
Kouidhi S, Zidi O, Belkhiria Z, Rais H, Ayadi A, Ben Ayed F, Mosbah A, Cherif A, El Gaaied ABA. Gut microbiota, an emergent target to shape the efficiency of cancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:240-265. [PMID: 37205307 PMCID: PMC10185446 DOI: 10.37349/etat.2023.00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/04/2023] [Indexed: 05/21/2023] Open
Abstract
It is now well-acknowledged that microbiota has a profound influence on both human health and illness. The gut microbiota has recently come to light as a crucial element that influences cancer through a variety of mechanisms. The connections between the microbiome and cancer therapy are further highlighted by a number of preclinical and clinical evidence, suggesting that these complicated interactions may vary by cancer type, treatment, or even by tumor stage. The paradoxical relationship between gut microbiota and cancer therapies is that in some cancers, the gut microbiota may be necessary to maintain therapeutic efficacy, whereas, in other cancers, gut microbiota depletion significantly increases efficacy. Actually, mounting research has shown that the gut microbiota plays a crucial role in regulating the host immune response and boosting the efficacy of anticancer medications like chemotherapy and immunotherapy. Therefore, gut microbiota modulation, which aims to restore gut microbial balance, is a viable technique for cancer prevention and therapy given the expanding understanding of how the gut microbiome regulates treatment response and contributes to carcinogenesis. This review will provide an outline of the gut microbiota's role in health and disease, along with a summary of the most recent research on how it may influence the effectiveness of various anticancer medicines and affect the growth of cancer. This study will next cover the newly developed microbiota-targeting strategies including prebiotics, probiotics, and fecal microbiota transplantation (FMT) to enhance anticancer therapy effectiveness, given its significance.
Collapse
Affiliation(s)
- Soumaya Kouidhi
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
| | - Oumaima Zidi
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
- Department of Biologu, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | | | - Henda Rais
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
- Service d’Oncologie Médicale, Hôpital Salah-Azaïz, Tunis 1006, Tunisia
| | - Aida Ayadi
- Department of Pathology, Abderrahman Mami Hospital, University of Tunis El Manar, Ariana 2080, Tunisia
| | - Farhat Ben Ayed
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
| | - Amor Mosbah
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
| | - Ameur Cherif
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
| | - Amel Ben Ammar El Gaaied
- Laboratory of Genetics, Immunology and Human Pathology, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
37
|
Zhu W, Liu D, Lu Y, Sun J, Zhu J, Xing Y, Ma X, Wang Y, Ji M, Jia Y. PHKG2 regulates RSL3-induced ferroptosis in Helicobacter pylori related gastric cancer. Arch Biochem Biophys 2023; 740:109560. [PMID: 36948350 DOI: 10.1016/j.abb.2023.109560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 03/24/2023]
Abstract
Ferroptosis is a newly discovered form of regulatory cell death induced by iron-dependent lipid peroxidation. Infection with Helicobacter pylori (H. pylori) is regarded as a high-risk factor for the development of gastric cancer (GC) and is associated with an increase in the levels of reactive oxygen species with activation of oncogenic signaling pathways. However, whether GC arising in the context of infection with H. pylori is correlated with ferroptosis is still unknown. In this study, we demonstrate that H. pylori infection increased the sensitivity of GC cells to RSL3 (RAS-selective lethal3)-induced ferroptosis. The molecular subtypes mediated by ferroptosis-related genes are associated with tumor microenvironment (TME) cell infiltration and patient survival. Importantly, we identified that the expression of phosphorylase kinase G2 (PHKG2) was remarkably correlated with H. pylori infection, metabolic biological processes, patient survival and therapy response. We further found the mechanism of H. pylori-induced cell sensitivity to ferroptosis, which involves PHKG2 regulation of the lipoxygenase enzyme Arachidonate 5-Lipoxygenase (ALOX5). In conclusion, PHKG2 facilitates RSL3-induced ferroptosis in H. pylori-positive GC cells by promoting ALOX5 expression. These findings may contribute to a better understanding of the unique pathogenesis of H. pylori-induced GC and allow for maximum efficacy of genetic, cellular, and immune therapies for controlling ferroptosis in diverse contexts.
Collapse
Affiliation(s)
- Wenshuai Zhu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Duanrui Liu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China; Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yi Lu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Jingguo Sun
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
| | - Jingyu Zhu
- Department of Gastroenterology, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Mingyu Ji
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China.
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China.
| |
Collapse
|
38
|
Xi J, Li Y, Zhang H, Bai Z. Dynamic variations of the gastric microbiota: Key therapeutic points in the reversal of Correa's cascade. Int J Cancer 2023; 152:1069-1084. [PMID: 36029278 DOI: 10.1002/ijc.34264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
Correa's cascade is a dynamic process in the development of intestinal-type gastric cancer (GC), and its pathological features, gastric microbiota and interactions between microorganisms and their hosts vary at different developmental stages. The characteristics of cells, tissues and gastric microbiota before or after key therapeutic points are critical for monitoring malignant transformation and early tumour reversal. This review summarises the pathological features of gastric mucosa, characteristics of gastric microbiota, specific microbial markers, microbe-microbe interactions and microbe-host interactions at different stages in Correa's cascade. The markers related to each Correa's cascade point were analysed in detail. We attempted to identify key therapeutic points for early cancer reversal and provide a novel approach to reduce the incidence of GC and improve precise treatment.
Collapse
Affiliation(s)
- Jiahui Xi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, Lanzhou, China
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumour, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhongtian Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, Lanzhou, China.,General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
39
|
Miftahussurur M, Alfaray RI, Fauzia KA, Dewayani A, Doohan D, Waskito LA, Rezkitha YAA, Utomo DH, Somayana G, Fahrial Syam A, Lubis M, Akada J, Matsumoto T, Yamaoka Y. Low-grade intestinal metaplasia in Indonesia: Insights into the expression of proinflammatory cytokines during Helicobacter pylori infection and unique East-Asian CagA characteristics. Cytokine 2023; 163:156122. [PMID: 36640695 DOI: 10.1016/j.cyto.2022.156122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023]
Abstract
Helicobacter pylori infection is a major cause of intestinal metaplasia. In this study, we aimed to understand the reason underlying the low grade and incidence of intestinal metaplasia in Indonesia, based on the expression of genes encoding proinflammatory cytokines in gastric biopsy specimens. The possible reasons for the lesser virulence of the East-Asian-type CagA in Indonesia than that of the Western-type CagA, which is not common in other countries, were also investigated. The mRNA expression of cytokines was evaluated using real-time PCR. CagA characteristics were analyzed using in silico analysis. The expression of cytokines was typically not robust, among H. pylori-infected subjects in Indonesia, despite them predominantly demonstrating the East-Asian-type CagA. This might partially be explained by the characteristics of the East-Asian-type CagA in Indonesia, which showed a higher instability index and required higher energy to interact with proteins related to the cytokine induction pathway compared with the other types (p < 0.001 and p < 0.05, respectively). Taken together, besides the low prevalence of H. pylori, the low inflammatory response of the host and low CagA virulence, even among populations with high infection rates, may play an essential role in the low grade and low incidence of intestinal metaplasia in Indonesia. We believe that these findings would be relevant for better understanding of intestinal metaplasia, which is closely associated with the development of gastric cancer.
Collapse
Affiliation(s)
- Muhammad Miftahussurur
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Jalan Mayjend Prof, Dr. Moestopo, No. 6-8, Surabaya, Surabaya 60131, Indonesia; Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Ricky Indra Alfaray
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita 879-5593, Japan.
| | - Kartika Afrida Fauzia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita 879-5593, Japan; Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Astri Dewayani
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Infectious Disease Control, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan; Department of Anatomy, Histology and Pharmacology, Universitas Airlangga, Surabaya 60131, Indonesia.
| | - Dalla Doohan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Anatomy, Histology and Pharmacology, Universitas Airlangga, Surabaya 60131, Indonesia.
| | - Langgeng Agung Waskito
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia; Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Yudith Annisa Ayu Rezkitha
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Internal Medicine, Faculty of Medicine, University of Muhammadiyah, Surabaya, Surabaya 60113, Indonesia.
| | - Didik Huswo Utomo
- Research and Education Center for Bioinformatics, Indonesia Institute of Bioinformatics, Malang 65162, Indonesia.
| | - Gde Somayana
- Gastroentero Hepatology Division, Department of Internal Medicine, Faculty of Medicine-Sanglah Hospital, Udayana University, Denpasar, Bali 80114, Indonesia.
| | - Ari Fahrial Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine-Cipto Mangunkusumo Teaching Hospital, University of Indonesia, Jakarta 10430, Indonesia.
| | - Masrul Lubis
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine-Cipto Mangunkusumo Teaching Hospital, Universitas Sumatera Utara, Medan 20222, Indonesia
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita 879-5593, Japan.
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita 879-5593, Japan.
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita 879-5593, Japan; Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Iroquois Family Genes in Gastric Carcinogenesis: A Comprehensive Review. Genes (Basel) 2023; 14:genes14030621. [PMID: 36980893 PMCID: PMC10048635 DOI: 10.3390/genes14030621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Gastric cancer (GC) is the fifth leading cause of cancer-associated death worldwide, accounting for 768,793 related deaths and 1,089,103 new cases in 2020. Despite diagnostic advances, GC is often detected in late stages. Through a systematic literature search, this study focuses on the associations between the Iroquois gene family and GC. Accumulating evidence indicates that Iroquois genes are involved in the regulation of various physiological and pathological processes, including cancer. To date, information about Iroquois genes in GC is very limited. In recent years, the expression and function of Iroquois genes examined in different models have suggested that they play important roles in cell and cancer biology, since they were identified to be related to important signaling pathways, such as wingless, hedgehog, mitogen-activated proteins, fibroblast growth factor, TGFβ, and the PI3K/Akt and NF-kB pathways. In cancer, depending on the tumor, Iroquois genes can act as oncogenes or tumor suppressor genes. However, in GC, they seem to mostly act as tumor suppressor genes and can be regulated by several mechanisms, including methylation, microRNAs and important GC-related pathogens. In this review, we provide an up-to-date review of the current knowledge regarding Iroquois family genes in GC.
Collapse
|
41
|
Pandey H, Tang DWT, Wong SH, Lal D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers (Basel) 2023; 15:cancers15030866. [PMID: 36765824 PMCID: PMC9913759 DOI: 10.3390/cancers15030866] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths worldwide. While CRC is thought to be an interplay between genetic and environmental factors, several lines of evidence suggest the involvement of gut microbiota in promoting inflammation and tumor progression. Gut microbiota refer to the ~40 trillion microorganisms that inhabit the human gut. Advances in next-generation sequencing technologies and metagenomics have provided new insights into the gut microbial ecology and have helped in linking gut microbiota to CRC. Many studies carried out in humans and animal models have emphasized the role of certain gut bacteria, such as Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli, in the onset and progression of CRC. Metagenomic studies have opened up new avenues for the application of gut microbiota in the diagnosis, prevention, and treatment of CRC. This review article summarizes the role of gut microbiota in CRC development and its use as a biomarker to predict the disease and its potential therapeutic applications.
Collapse
Affiliation(s)
- Himani Pandey
- Redcliffe Labs, Electronic City, Noida 201301, India
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Correspondence: (S.H.W.); (D.L.)
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Correspondence: (S.H.W.); (D.L.)
| |
Collapse
|
42
|
Charles A, Thomas RM. The Influence of the microbiome on the innate immune microenvironment of solid tumors. Neoplasia 2023; 37:100878. [PMID: 36696837 PMCID: PMC9879786 DOI: 10.1016/j.neo.2023.100878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Cancer remains a leading cause of death despite many advances in medical and surgical therapy. In recent decades, the investigation for novel therapeutic strategies with greater efficacy and reduced side effects has led to a deeper understanding of the relationship between the microbiome and the immune system in the context of cancer. The ability of the immune system to detect and kill cancer is now recognized to be greatly influenced by the microbial ecosystem of the host. While most of these studies, as well as currently used immunotherapeutics, focus on the adaptive immune system, this minimizes the impact of the innate immune system in cancer surveillance and its regulation by the host microbiome. In this review, known influences of the microbiome on the innate immune cells in the tumor microenvironment will be discussed in the context of individual innate immune cells. Current and needed areas of investigation will highlight the field and its potential impact in the clinical treatment of solid malignancies.
Collapse
Affiliation(s)
- Angel Charles
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ryan M. Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA,Corresponding author at: University of Florida, Department of Surgery, PO Box 100109, Gainesville, FL 32610, USA
| |
Collapse
|
43
|
Hall CE, Maegawa F, Patel AD, Lin E. Management of Gastric Cancer. Am Surg 2023:31348221148359. [PMID: 36609184 DOI: 10.1177/00031348221148359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gastric adenocarcinoma is a complex disease that requires a thorough multidisciplinary approach for appropriate management. Management strategies vary in different regions of the world and have changed over time. In spite of improvements in chemotherapy and surgical techniques and an improvement in outcomes over the last several decades, overall survival remains low. The best outcomes are likely related to early detection, preoperative reduction of tumor burden with immunochemotherapy, consistent surgical technique for resection, and postoperative eradication of tumor cells. We aim to describe the management for gastric cancer, from the specifics of staging and imaging workup to the tenets of surgical resection and reconstruction as well as the adjuvant treatment strategies in this broad review of gastric cancer management.
Collapse
Affiliation(s)
- Caroline E Hall
- Department of Surgery, Division of Gastrointestinal & General Surgery, 23034Emory University School of Medicine, Atlanta, GA, USA
| | - Felipe Maegawa
- Department of Surgery, Division of Gastrointestinal & General Surgery, 23034Emory University School of Medicine, Atlanta, GA, USA
| | - Ankit D Patel
- Department of Surgery, Division of Gastrointestinal & General Surgery, 23034Emory University School of Medicine, Atlanta, GA, USA
| | - Edward Lin
- Department of Surgery, Division of Gastrointestinal & General Surgery, 23034Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
44
|
Wang H, Zhao M, Shi F, Zheng S, Xiong L, Zheng L. A review of signal pathway induced by virulent protein CagA of Helicobacter pylori. Front Cell Infect Microbiol 2023; 13:1062803. [PMID: 37124036 PMCID: PMC10140366 DOI: 10.3389/fcimb.2023.1062803] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Gastric cancer (GC), a common and high-mortality disease, still occupies an important position in current cancer research, and Helicobacter pylori (H. pylori) infection as its important risk factor has been a hot and challenging research area. Among the numerous pathogenic factors of H. pylori, the virulence protein CagA has been widely studied as the only bacterial-derived oncoprotein. It was found that CagA entering into gastric epithelial cells (GECs) can induce the dysregulation of multiple cellular pathways such as MAPK signaling pathway, PI3K/Akt signaling pathway, NF-κB signaling pathway, Wnt/β-catenin signaling pathway, JAK-STAT signaling pathway, Hippo signaling pathway through phosphorylation and non-phosphorylation. These disordered pathways cause pathological changes in morphology, adhesion, polarity, proliferation, movement, and other processes of GECs, which eventually promotes the occurrence of GC. With the deepening of H. pylori-related research, the research on CagA-induced abnormal signaling pathway has been updated and deepened to some extent, so the key signaling pathways activated by CagA are used as the main stem to sort out the pathogenesis of CagA in this paper, aiming to provide new strategies for the H. pylori infection and treatment of GC in the future.
Collapse
Affiliation(s)
- Haiqiang Wang
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhao
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fan Shi
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shudan Zheng
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li Xiong
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihong Zheng
- Department of Internal Medicine, Fourth Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Lihong Zheng,
| |
Collapse
|
45
|
Ghafari F, Alizadeh AM, Agah S, Irani S, Mokhtare M. Insulin-like growth factor 1 serum levels in different stages of gastric cancer and their association with Helicobacter pylori status. Peptides 2022; 158:170892. [PMID: 36240982 DOI: 10.1016/j.peptides.2022.170892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
Abstract
High serum insulin-like growth factor 1 (IGF-1) and positive Helicobacter pylori (H. pylori) may increase the risk of gastric cancer (GC). We aimed to investigate IGF-1 serum levels in different stages of GC patients and their association with H. pylori status. A total of 90 participants, including 60 GC patients and 30 noncancerous (NC) individuals, were included in the present study. IGF-1 serum levels and candidate proteins were assessed using enzyme-linked immunosorbent and immunohistochemistry techniques. Likewise, Giemsa staining was applied to detect H. pylori infection. The candidate genes' expression, including IGF-1R, PI3KCA, AKT1, mTOR1, KRAS, BRAF, and ERK1, was also evaluated by a real-time PCR assay. The results of advanced GC stages indicated a significantly high IHC score for IGF-1R and phosphorylated AKT, mTOR, and ERK proteins compared to the early stages. Moreover, IGF-1 serum levels and the expression of candidate genes were considerably increased in the advanced GC patients compared to the early stages and the positive H. pylori status compared to the negative H. pylori status (P < 0.05). As a result, high IGF-1 serum levels and positive H. pylori status may be correlated with gastric tumor progression, and the inhibition of IGF-1 and the eradication of H. pylori infection might be new therapeutic targets in GC patients.
Collapse
Affiliation(s)
- Fatemeh Ghafari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marjan Mokhtare
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Patrad E, Khalighfard S, Amiriani T, Khori V, Alizadeh AM. Molecular mechanisms underlying the action of carcinogens in gastric cancer with a glimpse into targeted therapy. Cell Oncol 2022; 45:1073-1117. [PMID: 36149600 DOI: 10.1007/s13402-022-00715-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer imposes a substantial global health burden despite its overall incidence decrease. A broad spectrum of inherited, environmental and infectious factors contributes to the development of gastric cancer. A profound understanding of the molecular underpinnings of gastric cancer has lagged compared to several other tumors with similar incidence and morbidity rates, owing to our limited knowledge of the role of carcinogens in this malignancy. The International Agency for Research on Cancer (IARC) has classified gastric carcinogenic agents into four groups based on scientific evidence from human and experimental animal studies. This review aims to explore the potential comprehensive molecular and biological impacts of carcinogens on gastric cancer development and their interactions and interferences with various cellular signaling pathways. CONCLUSIONS In this review, we highlight recent clinical trial data reported in the literature dealing with different ways to target various carcinogens in gastric cancer. Moreover, we touch upon other multidisciplinary therapeutic approaches such as surgery, adjuvant and neoadjuvant chemotherapy. Rational clinical trials focusing on identifying suitable patient populations are imperative to the success of single-agent therapeutics. Novel insights regarding signaling pathways that regulate gastric cancer can potentially improve treatment responses to targeted therapy alone or in combination with other/conventional treatments. Preventive strategies such as control of H. pylori infection through eradication or immunization as well as dietary habit and lifestyle changes may reduce the incidence of this multifactorial disease, especially in high prevalence areas. Further in-depth understanding of the molecular mechanisms involved in the role of carcinogenic agents in gastric cancer development may offer valuable information and update state-of-the-art resources for physicians and researchers to explore novel ways to combat this disease, from bench to bedside. A schematic outlining of the interaction between gastric carcinogenic agents and intracellular pathways in gastric cancer H. pylori stimulates multiple intracellular pathways, including PI3K/AKT, NF-κB, Wnt, Shh, Ras/Raf, c-MET, and JAK/STAT, leading to epithelial cell proliferation and differentiation, apoptosis, survival, motility, and inflammatory cytokine release. EBV can stimulate intracellular pathways such as the PI3K/Akt, RAS/RAF, JAK/STAT, Notch, TGF-β, and NF-κB, leading to cell survival and motility, proliferation, invasion, metastasis, and the transcription of anti-apoptotic genes and pro-inflammatory cytokines. Nicotine and alcohol can lead to angiogenesis, metastasis, survival, proliferation, pro-inflammatory, migration, and chemotactic by stimulating various intracellular signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, ROS, and JAK/STAT. Processed meat contains numerous carcinogenic compounds that affect multiple intracellular pathways such as sGC/cGMP, p38 MAPK, ERK, and PI3K/AKT, leading to anti-apoptosis, angiogenesis, metastasis, inflammatory responses, proliferation, and invasion. Lead compounds may interact with multiple signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, DNA methylation-dependent, and epigenetic-dependent, leading to tumorigenesis, carcinogenesis, malignancy, angiogenesis, DNA hypermethylation, cell survival, and cell proliferation. Stimulating signaling pathways such as PI3K/Akt, RAS/RAF, JAK/STAT, WNT, TGF-β, EGF, FGFR2, and E-cadherin through UV ionizing radiation leads to cell survival, proliferation, and immortalization in gastric cancer. The consequence of PI3K/AKT, NF-κB, Ras/Raf, ROS, JAK/STAT, and WNT signaling stimulation by the carcinogenic component of Pickled vegetables and salted fish is the Warburg effect, tumorigenesis, angiogenesis, proliferation, inflammatory response, and migration.
Collapse
Affiliation(s)
- Elham Patrad
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalighfard
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Hu Y, Wang Y, Mi M, Deng Z, Zhu J, Liu Q, Chen X, Chen Z. Correlation analysis of gastric mucosal lesions with Helicobacter pylori infection and its virulence genotype in Guiyang, Guizhou province, China. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1320. [PMID: 36660645 PMCID: PMC9843376 DOI: 10.21037/atm-22-5553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Background Helicobacter Pylori (H. pylori) infection is the most important factor affecting clinical outcome in patients with gastric mucosal lesions. This study aimed to investigate H. pylori infection in patients with gastric mucosal lesions and their virulence genotype in Guiyang, China. Methods Pathological examinations of 1,364 biopsies from patients with upper gastrointestinal symptoms and H. pylori infection were analyzed according to different pathological types. The bacterial genome DNA was extracted from H. pylori strains isolated from gastric biopsies, and the cagA, vacA, and iceA virulence genes were detected and typed to analyze the correlation of their genotypes between different pathological lesions. Results The positive rate of H. pylori infection was approximately 19.9% (272/1,364), as determined by histopathological examination (HPE). It was more frequently detected in men than in women. A total of 85 H. pylori isolates were obtained from 280 clinical samples (positive rate 30.4%, 85/280). Of these 85 strains, cagA, vacA, and iceA genes were identified in 85.9%, 100%, and 83.5% of samples, respectively. Approximately 74.1% of strains were cagA East Asian type (cagA-ABD), and 11.8% of were cagA Western strains (cagA-AB, cagA-ABC), only present in patients with chronic non-atrophic gastritis. Gastric intraepithelial neoplasia and gastric cancer harbored both Asian strains. A total of 7 combinations of vacA genotypes were noted, among which s1c/m1b (30.6%) and s1c/m2 (41.2%) were the dominant genotypes. The predominant iceA genotype was iceA1 (64.7%). Conclusions We observed that the positive rate of H. pylori infection was related to the pathological type of patients' gastric mucosal lesions. Isolated H. pylori strains showed a unique genotype, mainly East Asian type cagA (ABD), vacA s1c/m2 genotype, and iceA1. These results provide an important reference for further studies of H. pylori in Guizhou province, China.
Collapse
Affiliation(s)
- Yue Hu
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China;,Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of The Affiliated Hospital of Guizhou Medical University, Guiyang, China;,Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
| | - Yan Wang
- Department of Gastroenterology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Mengheng Mi
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
| | - Zhaohui Deng
- Department of Gastroenterology, Guiyang Hospital of Guizhou Aviation Industry Group, Guiyang, China
| | - Jian Zhu
- Department of Gastroenterology, Guizhou Provincial Orthopedic Hospital, Guiyang, China
| | - Qi Liu
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaoqin Chen
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhenghong Chen
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of The Affiliated Hospital of Guizhou Medical University, Guiyang, China;,Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
| |
Collapse
|
48
|
Yang H, Guan L, Hu B. Detection and Treatment of Helicobacter pylori: Problems and Advances. Gastroenterol Res Pract 2022; 2022:4710964. [PMID: 36317106 PMCID: PMC9617708 DOI: 10.1155/2022/4710964] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is chronic and etiologically linked to gastric cancer (GC) derived from gastric epithelium. The potential mechanism is complex, covering chronic inflammation, epithelial senescence, NF-κB activation, the cytotoxin-associated gene A protein translocation, and related abnormal signaling pathways. In clinical practice, the test-and-treat strategy, endoscopy-based strategy, and (family-based) screen-and-treat strategy are recommended to detect H. pylori and prevent GC. It has been demonstrated that the decreasing annual incidence of GC is largely attributable to the management of H. pylori. This study reviews the current clinical practice of H. pylori on the detection and eradication, alternative treatment strategies, and related problems and advances, and hopes to contribute to the better clinical management of H. pylori.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liwen Guan
- Department of Gastroenterology, Sanya Central Hospital (Hainan Third People's Hospital), Sanya, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
49
|
Ahmadi Hedayati M, Ahmadi A, Khatooni Z. DNMT1 Gene Expression in Patients with Helicobacter pylori Infection. ScientificWorldJournal 2022; 2022:2386891. [PMID: 36147796 PMCID: PMC9489387 DOI: 10.1155/2022/2386891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
DNMT1, as a critical enzyme affecting epigenetics through methylation of DNA cytosine-rich sequences, regulates gene expression. Exterior factors including long-term infections, in this study Helicobacter pylori infection, could change host cells' epigenetics by affecting DNMT1 gene expression. This study investigated the statistical correlation between H. pylori virulence genes and DNMT1 gene expression in gastric antral epithelial cells of gastric adenocarcinoma and gastritis patients. In a case-control study, 50 and 53 gastritis and gastric adenocarcinoma antral biopsies, including 23 and 21 patients with H. pylori infection, respectively, were collected from hospitals in the west of Iran. Having extracted total RNA from gastric biopsy samples, cDNA was synthesized and virulence genes of H. pylori were detected by using the PCR method. Relative real-time RT PCR was used to detect ΔΔCt fold changes of the DNMT1 gene expression in divided groups of patients based on H. pylori infection and clinical manifestations. The results showed that along with increasing patients' age, the DNMT1 gene expression will increase in gastric antral epithelial cells of gastric cancer patients (P ≤ 0.05). On the other hand, the biopsy samples with infection of H. pylori cagA, cagY, and cagE genotypes revealed a direct correlation along with increased DNMT1 gene expression. This study revealed the correlations of H. pylori cag pathogenicity island genes with increased DNMT1 gene expression.
Collapse
Affiliation(s)
- Manouchehr Ahmadi Hedayati
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amjad Ahmadi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zahed Khatooni
- School of Pharmacy, Memorial University of Newfoundland, St Johns, NL, Canada
| |
Collapse
|
50
|
Xu Z, Lv Z, Chen F, Zhang Y, Xu Z, Huo J, Liu W, Yu S, Tuersun A, Zhao J, Zong Y, Shen X, Feng W, Lu A. Dysbiosis of human tumor microbiome and aberrant residence of Actinomyces in tumor-associated fibroblasts in young-onset colorectal cancer. Front Immunol 2022; 13:1008975. [PMID: 36119074 PMCID: PMC9481283 DOI: 10.3389/fimmu.2022.1008975] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common form of cancer, and the incidence of sporadic young-onset colorectal cancer (yCRC) has been increasing. Microbiota residing in the tumor microenvironment are emerging tumor components. The colonic microbiome differs between patients with CRC and healthy controls; however, few studies have investigated the role of the tumor microbiota in disease diagnosis and tumorigenesis of yCRC. We performed 16S rRNA sequencing analysis to identify the microbiome in CRC and found that tumor microbial diversity decreased in yCRC. Proteobacteria and Firmicutes were the most abundant phyla in all CRC samples, and Actinomyces and Schaalia cardiffensis were the key microbiota in the yCRC group. Correlation analysis revealed that Actinomyces co-occurred with various pro-tumor microbial taxa, including Bacteroidia, Gammaproteobacteria, and Pseudomonas. An independent cohort was used to validate the results. The Actinomyces in CRC was co-localized with cancer-associated fibroblasts and activated the TLR2/NF-κB pathway and reduces CD8+ T lymphocyte infiltration in CRC microenvironment. This study suggests that tumoral microbiota plays an important role in promoting tumorigenesis and therefore has potential as a promising non-invasive tool and intervention target for anti-tumor therapy.
Collapse
Affiliation(s)
- Zhuoqing Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zeping Lv
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fangqian Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuchen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zifeng Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianting Huo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wangyi Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Suyue Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Abudumaimaitijiang Tuersun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaping Zong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaonan Shen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Aiguo Lu, ; Wenqing Feng, ; Xiaonan Shen,
| | - Wenqing Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Aiguo Lu, ; Wenqing Feng, ; Xiaonan Shen,
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Aiguo Lu, ; Wenqing Feng, ; Xiaonan Shen,
| |
Collapse
|