1
|
Tang S, Long X, Li F, Jiang S, Fu Y, Liu J. Identification of RUVBL2 as a novel biomarker to predict the prognosis and drug sensitivity in multiple myeloma based on ferroptosis genes. Hematology 2025; 30:2467499. [PMID: 39985176 DOI: 10.1080/16078454.2025.2467499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a hematological malignancy with the proliferation of malignant plasma cells. Numerous studies have highlighted the critical role of ferroptosis in MM. However, how to use ferroptosis-related genes (FRGs) for prognostic prediction and treatment guidance in MM remains unknown. METHODS By analysis of GEO databases, the prognostic gene was identified and a therapeutic strategy for MM patients based on FRGs was explored. A total of 12 FRGs were identified, utilizing the STRING database and Cytoscape software, and the PPI networks were constructed to identify hub genes and further functional enrichment analyses. Based on the aforementioned data, this study analyzed the expression of RUVBL2 in MM patients by qRT-PCR and Western blotting. To validate the functional role of RUVBL2 in the MM cells, cellular experiments were ultimately conducted. RESULTS The analysis highlighted six hub genes, including TP53, MCM5, TLR4, RUVBL2, GCLM and ITGA6, and functional enrichment analyses indicating enrichment in DNA replication, regulation of apoptotic signaling pathway and PI3K/AKT signaling pathway. Prognostic analysis indicated that TP53, RUVBL2, and MCM5 are associated with MM prognosis, with RUVBL2 displaying a notable area under the curve (AUC) of 0.823 in ROC analysis. The study first determined that RUVBL2 is highly expressed in MM, siRUVBL2-mediated deletion of RUVBL2 inhibited proliferation, promoted apoptosis and increased the sensitivity of BTZ in MM cells, and also overcame BTZ resistance in CD138+ primary cells from MM patients. CONCLUSIONS Our study first suggested that RUVBL2 may be regarded as potential therapeutic targets and prognostic value in MM.
Collapse
Affiliation(s)
- Sishi Tang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xinyi Long
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Fangfang Li
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Siyi Jiang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yunfeng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
2
|
Wang W, Hashimi B, Wang P. Targeting ferroptosis: the role of non-coding RNAs in hepatocellular carcinoma progression and therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6335-6348. [PMID: 39820644 DOI: 10.1007/s00210-025-03791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
One of the most common tumors is hepatocellular carcinoma (HCC), and the prognosis for late-stage HCC is still not good. It is anticipated that improved outcomes would result from a deeper comprehension of the pathophysiology of HCC. Ferroptosis as a new discovered cell death type is linked to the progression of HCC and may be crucial for its detection, prevention, therapy, and prognosis. Numerous studies suggest that epigenetic alterations mediated by non-coding RNAs (ncRNA) might influence cancer cell susceptibility to ferroptosis. This study elucidates the processes of ferroptosis and delineates the paths by which ncRNAs influence HCC by modulating ferroptosis. Furthermore, it offers significant insights into ferroptosis-associated ncRNAs, intending to discover novel therapeutic approaches for HCC. It also explores innovative concepts for the future use of ncRNA-based ferroptosis-targeted therapeutics.
Collapse
Affiliation(s)
- Weijia Wang
- Department of Oncology, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People's Hospital), Shandong Province, China
| | - Behishta Hashimi
- Department of Midwifery, Jahan Institute of Health Sciences, Kabul, Afghanistan
| | - Ping Wang
- Department of Oncology, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, Shandong Province, China.
| |
Collapse
|
3
|
Catapano A, Cimmino F, Petrella L, Pizzella A, D'Angelo M, Ambrosio K, Marino F, Sabbatini A, Petrelli M, Paolini B, Lucchin L, Cavaliere G, Cristino L, Crispino M, Trinchese G, Mollica MP. Iron metabolism and ferroptosis in health and diseases: The crucial role of mitochondria in metabolically active tissues. J Nutr Biochem 2025; 140:109888. [PMID: 40057002 DOI: 10.1016/j.jnutbio.2025.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 03/30/2025]
Abstract
Iron is essential in various physiological processes, but its accumulation leads to oxidative stress and cell damage, thus iron homeostasis has to be tightly regulated. Ferroptosis is an iron-dependent non-apoptotic regulated cell death characterized by iron overload and reactive oxygen species accumulation. Mitochondria are organelles playing a crucial role in iron metabolism and involved in ferroptosis. MitoNEET, a protein of mitochondrial outer membrane, is a key element in this process. Ferroptosis, altering iron levels in several metabolically active organs, is linked to several non-communicable diseases. For example, iron overload in the liver leads to hepatic fibrosis and cirrhosis, accelerating non-alcholic fatty liver diseases progression, in the muscle cells contributes to oxidative damage leading to sarcopenia, and in the brain is associated to neurodegeneration. The aim of this review is to investigate the intricate balance of iron regulation focusing on the role of mitochondria and oxidative stress, and analyzing the ferroptosis implications in health and disease.
Collapse
Affiliation(s)
- Angela Catapano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, Naples, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Margherita D'Angelo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Katia Ambrosio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Francesca Marino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Annarita Sabbatini
- Dietetic and Clinical Nutrition Unit, IEO European Institute of Oncology IRCSS, Milan, Italy
| | - Massimiliano Petrelli
- Department of Clinical and Molecular Sciences, Clinic of Endocrinology and Metabolic Diseases, Università Politecnica delle Marche, Ancona, Italy
| | - Barbara Paolini
- Department of Innovation, experimentation and clinical research, Unit of dietetics and clinical nutrition, S. Maria Alle Scotte Hospital, University of Siena, Siena, Italy
| | - Lucio Lucchin
- Dietetics and Clinical Nutrition, Bolzano Health District, Bolzano, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Luigia Cristino
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | | | | |
Collapse
|
4
|
Ding R, Liao L, Chen J, Zhang J, Cai S, Miao X, Li T, Zhao J, Chen Q, Cheng X, Deng J. Downregulation of ferroptosis-related Genes can regulate the invasion and migration of osteosarcoma cells. Sci Rep 2025; 15:17582. [PMID: 40399425 PMCID: PMC12095786 DOI: 10.1038/s41598-025-02319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
Osteosarcoma (OS) is a prevalent form of bone cancer among younger people, particularly children and adolescents. Ferroptosis is a non-apoptotic cell death identified by increased levels of iron-dependent lipid peroxidation. This study was designed to develop a prognostic model based on differentially expressed genes (DEGs) associated with ferroptosis and examined the functions of ferroptosis-related genes (FRGs) in OS cells. Gene expression profiles in OS were retrieved from TARGET and GEO databases, while GTEx provided data for healthy tissues. Prognostic genes were identified through bioinformatics analysis and data integration. In vitro experiments, cell cultures, qRT-PCR, immunohistochemistry (IHC), cell transfection, Edu assays, DHE assays, migration, and invasion assays validated the prognostic model and explored the functional role of FRGs in OS cells. Univariate Cox regression analysis demonstrated that 12 DEGs were differentially expressed. Based on four FRGs in OS constructed a risk-scoring model. The high-risk (HR) group showed a considerably lower OS rate than the low-risk (LR) group (p < 0.001 in the TARGET and p < 0.05 in the GSE21257 cohorts). A risk score was validated as an independent predictive factor for OS via multivariate Cox regression. Functional analysis shows that these FRGs affect the occurrence of ferroptosis by influencing the intracellular ROS levels and play a regulatory role in the proliferation, migration, and infiltration of OS cells. The findings suggested that four FRGs demonstrate significant prognostic value in OS, offering potential insights into novel therapeutic targets for OS treatment.
Collapse
Affiliation(s)
- Rui Ding
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
| | - Le Liao
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiahui Chen
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
| | - Shenghao Cai
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
| | - Xinxin Miao
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China
| | - Tao Li
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
| | - Jiangminghao Zhao
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
| | - Qi Chen
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China.
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Jiangxi, 330006, China.
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China.
| | - Jianjian Deng
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China.
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Jiangxi, 330006, China.
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China.
| |
Collapse
|
5
|
Cheng Z, Ren Y, Wang X, Zhang Y, Hua Y, Zhao H, Lu H. A novel prognostic framework for HBV-infected hepatocellular carcinoma: insights from ferroptosis and iron metabolism proteomics. Brief Bioinform 2025; 26:bbaf216. [PMID: 40381315 PMCID: PMC12085197 DOI: 10.1093/bib/bbaf216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/15/2025] [Accepted: 04/21/2025] [Indexed: 05/20/2025] Open
Abstract
Effective classification methods and prognostic models enable more accurate classification and treatment of hepatocellular carcinoma (HCC) patients. However, the weak correlation between RNA and protein data has limited the clinical utility of previous RNA-based prognostic models for HCC. In this work, we constructed a novel prognostic framework for HCC patients using seven differentially expressed proteins associated with ferroptosis and iron metabolism. Furthermore, this prognostic model robustly classifies HCC patients into three clinically relevant risk groups. Significant differences in overall survival, age, tumor differentiation, microvascular invasion, distant metastasis, and alpha-fetoprotein levels were observed among the risk groups. Based on the prognostic model and known biological pathways, we explored the potential mechanisms underlying the inconsistent differential expression patterns of FTH1 (Ferritin heavy chain 1) mRNA and protein. Our findings demonstrated that tumor tissues in HCC patients promote liver cancer progression by downregulating FTH1 protein expression, rather than upregulating FTH1 mRNA expression, ultimately leading to poor prognosis. Subsequently, based on risk score and tumor size, we developed a nomogram for predicting the prognosis of HCC patients, which demonstrated superior predictive performance in both the training and validation cohorts (C-index: 0.774; AUC for 1-5 years: 0.783-0.964). Additionally, our findings demonstrated that the adverse prognosis of high-risk HCC patients was closely correlated with ferroptosis in liver cancer tissues, alterations in iron metabolism, and changes in the tumor immune microenvironment. In conclusion, our prognostic model and predictive nomogram offer novel insights and tools for the effective classification of HCC patients, potentially enhancing clinical decision-making and outcomes.
Collapse
Affiliation(s)
- Zhiwei Cheng
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai 200080, China
- SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yongyong Ren
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- Institute of Bioinformatics, Shanghai Academy of Experimental Medicine, 528 Hongshan Road, Pudong New District, Shanghai 200126, China
| | - Xinbo Wang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yuening Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yingqi Hua
- Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, 300 George Street, New Haven, CT 06511, United States
| | - Hui Lu
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- Institute of Bioinformatics, Shanghai Academy of Experimental Medicine, 528 Hongshan Road, Pudong New District, Shanghai 200126, China
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Center for Biomedical Informatics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, 1400 Beijing West Road, Jing'an District, Shanghai 200040, China
| |
Collapse
|
6
|
Wang C, Gao G, Che Q, Zheng S, Yang Y, Li T, Zhai X, Lu Y, Huang B, Yu T, Zhao K, Liu M. Deciphering the value of anoikis-related genes in prognosis, immune microenvironment, and drug sensitivity of laryngeal squamous cell carcinoma. Pathol Res Pract 2025; 268:155849. [PMID: 40020330 DOI: 10.1016/j.prp.2025.155849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) is a prevalent malignancy characterized by high metastatic potential and poor prognosis. Anoikis, an apoptotic pathway triggered by detachment from the extracellular matrix (ECM), acts as a barrier against cancer metastasis, so it is necessary to explore the role of anoikis-related genes (ARGs) in LSCC. METHODS Multivariate Cox regression analysis was used to construct prognostic model. A nomogram integrating risk scores with clinicopathological characteristics was constructed for prognosis. Spearman correlation analysis linked ARGs to the tumor microenvironment (TME) and immune infiltration. We also predicted IC50 values for various chemotherapeutic agents by risk group and selected three drugs (LGK974, OSI-027, and OF-1) for molecular docking with MMP3. TCGA datasets was used to evaluate the expression profile of MMP3 and TIMP1 in LSCC. In vitro assays were conducted to confirm the function of target gene in LSCC. RESULTS We identified 19 ARGs associated with LSCC prognosis and developed a prognostic model, which subsequently classified patients into high- and low-risk groups based on median risk scores. Nomogram we established demonstrated excellent predictive performance. Low-risk individuals exhibited significantly higher immunophenotype (IPS) scores and elevated levels of immune cell components than high-risk counterparts (p < 0.05). MMP3 demonstrating strong binding affinity with selected drugs. Analysis of TCGA datasets revealed higher TIMP1 and MMP3 expression in LSCC tissues. CONCLUSIONS Our prognostic signature effectively predicts LSCC prognosis, with MMP3 identified as a potential novel biomarker for LSCC treatment. Furthermore, our findings underscore the critical role of immune-based therapies in improving outcomes, especially for low-risk patients.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China
| | - Ge Gao
- Medical School of Chinese PLA, Beijing 100853, China
| | - Qin Che
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China
| | - Shikang Zheng
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China
| | - Ying Yang
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China
| | - Tian Li
- Tianjin Medical University, Tianjin 300100, China
| | - Xingyou Zhai
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China
| | - Yuehao Lu
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261042, China
| | - Bangqing Huang
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China
| | - Ting Yu
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China
| | - Kai Zhao
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China.
| | - Mingbo Liu
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China; Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
7
|
Huang C, Tang B, Chen W, Chen J, Zhang H, Bai M. Multiomic traits reveal that critical irinotecan-related core regulator FSTL3 promotes CRC progression and affects ferroptosis. Cancer Cell Int 2025; 25:115. [PMID: 40140870 PMCID: PMC11938592 DOI: 10.1186/s12935-025-03753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Irinotecan is a widely used chemotherapy drug in colorectal cancer (CRC). The evolution and prognosis of CRC involve complex mechanisms and depend on the drug administered, especially for irinotecan. However, the specific mechanism and prognostic role of irinotecan-related regulators remain to be elucidated. METHODS Data from public databases were used to explore the multiomic traits of irinotecan-related regulators through bioinformatics analysis. RT‒qPCR, western blotting, transmission electron microscopy and flow cytometry were used as experimental validations. RESULTS Iriscore (irinotecan-related score) was constructed based on irinotecan-related regulators, and a high iriscore predicted a poor prognosis, poor therapeutic response and the MSS/MSI-L status. Single-cell analysis revealed that FSTL3 and TMEM98 were mainly expressed in CRC stem cells. Potential transcription factors (E2F1, STAT1, and TTF2) and therapeutic drugs (telatinib) that target irinotecan-related regulators were identified. FSTL3 was the core risk irinotecan-related regulator. Some ferroptosis regulators (GPX4, HSPB1 and RGS4) and related metabolic pathways (lipid oxidation and ROS metabolism) were correlated significantly with FSTL3. In vitro, irinotecan inhibited the expression of FSTL3 and ferroptotic defence proteins (GPX4 and SLC7A11), and induced lipid peroxidation and intracellular Fe (2+) ions concentration increased. CONCLUSIONS We confirmed that irinotecan-related regulators, especially FSTL3, have effective prognostic value in CRC and speculated that FSTL3 may promote CRC progression and affect ferroptosis, which is beneficial for identifying candidate targeted irinotecan-related regulators and accurate individualized treatment strategies for CRC.
Collapse
Affiliation(s)
- Chengyi Huang
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, Shanghai, 200433, China
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China
| | - Bufu Tang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenjuan Chen
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, Shanghai, 200433, China
| | - Jinggang Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China
| | - Huojun Zhang
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Minghua Bai
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
8
|
Wang B, Lv B, Li H, Zhang J, Ding Y, Zhou J, Bu M, Fan L, Han C. Design of self-assembled micelles based on natural dual-targeting strategies and evaluation of their anti-liver cancer effects as drug delivery systems. NPJ Precis Oncol 2025; 9:82. [PMID: 40119157 PMCID: PMC11928538 DOI: 10.1038/s41698-025-00869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/09/2025] [Indexed: 03/24/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world and in China, Most patients are already in an advanced stage at the time of diagnosis, and the chance of complete surgical resection is lost, therefore, drug treatment is particularly important. Angelica sinensis polysaccharide (ASP) has natural liver-targeting properties, berberine (BBR) is a lipophilic cation with anticancer activities and mitochondrial-targeting properties, and honokiol (HNK) has mitochondria-dependent anticancer effects against cancer. Therefore, the aim of the present work was to synthesize Angelica sinensis polysaccharide-berberineamphiphilic polymer (ASP-SS-BBR) loaded with HNK to prepare the micelles ASP-BBR-PM@HNK to improve the hepatic targeting ability of the nanoparticles and the mitochondrial targeting ability in HCC cells and to enhance the anti-HCC effect of HNK. The findings of this study demonstrate the successful synthesis of ASP-BBR-PM@HNK, characterized by a particle size of 48.6 ± 1.13 nm. The formulation exhibits commendable stability, a sustained-release profile, and the capability for glutathione (GSH)-responsive release. ASP-BBR-PM@HNK is efficiently internalized by HepG2 cells, exhibiting the highest rate of cell inhibition. Additionally, the use of Gal and Man as receptor blockers confirmed the formulation's superior targeting capabilities, including exceptional mitochondrial targeting. Subsequent in vivo experiments employing BALB/c nude mice as a model further corroborated these experimental outcomes. This research has successfully developed an effective natural dual-targeting system, offering a novel approach for the precise treatment of liver cancer.
Collapse
Affiliation(s)
- Binbin Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Bai Lv
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Hao Li
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Jie Zhang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Yaning Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, PR China
| | - Jianwen Zhou
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Li Fan
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, PR China.
| | - Cuiyan Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China.
| |
Collapse
|
9
|
Yang L, Xu Y, Han J, Fang C, Yang Z, Zhang R, Zhou S. SALL4/ABCB6 Axis Suppresses Ferroptosis in Colon Cancer by Mediating Mitophagy. J Biochem Mol Toxicol 2025; 39:e70183. [PMID: 40052371 DOI: 10.1002/jbt.70183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/23/2024] [Accepted: 02/08/2025] [Indexed: 05/13/2025]
Abstract
According to reports, the inhibition of ferroptosis is an essential culprit of malignant progression in various tumors, including colon cancer (CC). However, the relevant study on the regulatory mechanism of CC ferroptosis is sparse. This project was designed to identify the key genes modulating CC ferroptosis as well as specific mechanisms. Based on The Cancer Genome Atlas (TCGA)-CC mRNA expression data and immunohistochemistry assay, we analyzed the expression of ABCB6 and SALL4 in CC tissue. The HTFtarget was employed to predict the binding sites. The expression of ABCB6 and SALL4 in CC cells was analyzed by quantitative polymerase chain reaction, and the interaction between ABCB6 and SALL4 was verified by dual-luciferase and chromatin immunoprecipitation experiments. Cell viability was tested by cell counting kit-8 and colony formation assay. The malondialdehyde (MDA), Fe2+ content, and lipid reactive oxygen species (ROS) levels were examined by utilizing the corresponding reagent kits. The protein expression of ABCB6, SALL4, GPX4, GCLC, and SLC3A2 were determined via western blot. High expression of ABCB6 was detected in CC. ABCB6 overexpression suppressed ferroptosis and dramatically declined the levels of MDA, lipid ROS, and Fe2+ in cells. Furthermore, it induced mitochondrial membrane potential dysfunction and substantially suppressed the fluorescence intensity of GFP-LC3, which in turn promoted the expression of GPX4, GCLC, and SLC3A2 proteins and prevented CC cell ferroptosis. The cell rescue experiment verified that SALL4 initiated ABCB6 activation to mediate mitophagy and prevent ferroptosis in CC cells. The findings evidenced that the SALL4/ABCB6 axis suppresses mitophagy to hinder ferroptosis in CC. The mitophagy pathway may be essential for ABCB6 to regulate ferroptosis in CC.
Collapse
Affiliation(s)
- Leilei Yang
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, Taizhou, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou, Zhejiang, China
| | - Yuehuai Xu
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Jiaju Han
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Chengfeng Fang
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Zaiping Yang
- Department of Anesthesiology, Taizhou Hospital, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Ruili Zhang
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, Taizhou, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou, Zhejiang, China
| | - Shenkang Zhou
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, Taizhou, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou, Zhejiang, China
| |
Collapse
|
10
|
Anastasopoulos NA, Barbouti A, Goussia AC, Christodoulou DK, Glantzounis GK. Exploring the Role of Metabolic Hyperferritinaemia (MHF) in Steatotic Liver Disease (SLD) and Hepatocellular Carcinoma (HCC). Cancers (Basel) 2025; 17:842. [PMID: 40075688 PMCID: PMC11899477 DOI: 10.3390/cancers17050842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The increasing prevalence of the spectrum of Steatotic Liver Disease (SLD), including Metabolic-Associated Steatotic Liver Disease (MASLD), Metabolic-Associated Steatohepatitis (MASH), and progression to Cirrhosis and Hepatocellular Carcinoma (HCC) has led to intense research in disease pathophysiology, with many studies focusing on the role of iron. Iron overload, which is often observed in patients with SLD as a part of metabolic hyperferritinaemia (MHF), particularly in the reticuloendothelial system (RES), can exacerbate steatosis. This imbalance in iron distribution, coupled with a high-fat diet, can further promote the progression of SLD by means of oxidative stress triggering inflammation and activating hepatic stellate cells (HSCs), therefore leading to fibrosis and progression of simple steatosis to the more severe MASH. The influence of iron overload in disease progression has also been shown by the complex role of ferroptosis, a type of cell death driven by iron-dependent lipid peroxidation. Ferroptosis depletes the liver's antioxidant capacity, further contributing to the development of MASH, while its role in MASH-related HCC is potentially linked to alternations in the tumour microenvironment, as well as ferroptosis resistance. The iron-rich steatotic hepatic environment becomes prone to hepatocarcinogenesis by activation of several pro-carcinogenic mechanisms including epithelial-to-mesenchymal transition and deactivation of DNA damage repair. Biochemical markers of iron overload and deranged metabolism have been linked to all stages of SLD and its associated HCC in multiple patient cohorts of diverse genetic backgrounds, enhancing our daily clinical understanding of this interaction. Further understanding could lead to enhanced therapies for SLD management and prevention.
Collapse
Affiliation(s)
- Nikolaos-Andreas Anastasopoulos
- HPB Unit, Department of Surgery, University Hospital of Ioannina, 45110 Ioannina, Greece
- Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, London W12 0HS, UK
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anna C. Goussia
- Department of Pathology, University Hospital of Ioannina, 45110 Ioannina, Greece
| | | | | |
Collapse
|
11
|
Yi N, Zhou Y, Di D, Yin X, Feng X, Xing W, Ma C, Xia C. Development and validation of a prognostic model based on disulfidptosis-related ferroptosis genes: DRD4 and SLC2A3 as biomarkers for predicting prognosis in colon cancer. Transl Cancer Res 2025; 14:159-178. [PMID: 39974379 PMCID: PMC11833425 DOI: 10.21037/tcr-24-1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/04/2024] [Indexed: 02/21/2025]
Abstract
Background Disulfidptosis and ferroptosis are emerging cell death modalities crucial to cancer progression, yet their prognostic potential in colon cancer (CC) remains underexplored. This study develops and validates a prognostic model based on DRD4 and SLC2A3, two genes involved in key biological processes in CC. DRD4 regulates cell proliferation, migration, and apoptosis, while SLC2A3 enhances glucose uptake via the Warburg effect, promoting tumor growth. High expression of both genes is linked to poor prognosis, advanced stages, and increased aggressiveness, enabling precise stratification of patients and accurate prognostic predictions. Methods Transcriptomic and clinical data from 476 CC samples and 41 normal colon samples were obtained from The Cancer Genome Atlas (TCGA) database, with 452 patient samples utilized for survival analysis. A training cohort and a validation cohort were generated through random allocation. Disulfidptosis-related ferroptosis genes (DRFGs) were identified using Pearson correlation analysis, and a prognostic model was built using the least absolute shrinkage and selection operator (LASSO) and Cox regression analysis. External validation was performed using the Gene Expression Omnibus (GEO) datasets (GSE17538 and GSE38832), and clinical samples were further analyzed through immunohistochemistry. Predictors in the nomogram included age, gender, tumor stage, and risk score. The C-index of the final model was used to assess its prognostic accuracy. Results The results were validated using external cohorts from the GEO database and immunohistochemistry experiments. A prognostic model incorporating DRD4 and SLC2A3 effectively stratified CC patients into high- and low-risk groups, revealing distinct differences in survival times, immune landscapes, and biological characteristics. High expression levels of DRD4 and SLC2A3 correlated with advanced clinicopathological stages and poor prognosis, with a C-index of 0.75 indicating strong predictive accuracy. Immunohistochemistry confirmed the upregulation of both genes in CC tissues, further validating the model's clinical relevance. Conclusions This DRFG-based prognostic model offers an effective tool for predicting clinical outcomes in CC and can guide personalized treatment strategies. The upregulation of DRD4 and SLC2A3 suggests their potential as therapeutic targets. Future studies should focus on elucidating the underlying mechanisms of these biomarkers to enhance their clinical application.
Collapse
Affiliation(s)
- Nan Yi
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanzi Zhou
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dong Di
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xindong Yin
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao Feng
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenya Xing
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chaoqun Ma
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Cunbing Xia
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Alatawi AD, Venkatesan K, Asseri K, Paulsamy P, Alqifari SF, Ahmed R, Nagoor Thangam MM, Sirag N, Qureshi AA, Elsayes HA, Faried Bahgat Z, Bahnsawy NSM, Prabahar K, Dawood BMAE. Targeting Ferroptosis in Rare Neurological Disorders Including Pediatric Conditions: Innovations and Therapeutic Challenges. Biomedicines 2025; 13:265. [PMID: 40002678 PMCID: PMC11853599 DOI: 10.3390/biomedicines13020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Ferroptosis, characterized by iron dependency and lipid peroxidation, has emerged as a key mechanism underlying neurodegeneration in rare neurological disorders. These conditions, often marked by significant therapeutic gaps and high unmet medical needs, present unique challenges for intervention development. This review examines the involvement of ferroptosis in rare neurological disease pathogenesis, focusing on its role in oxidative damage and neuronal dysfunction. We explore recent pharmacological advancements, including iron chelators, lipid peroxidation blockers, and antioxidant-based strategies, designed to target ferroptosis. While these approaches show promise, challenges such as disease heterogeneity, limited diagnostic tools, and small patient cohorts hinder progress. Furthermore, we discuss the translational and regulatory barriers to implementing ferroptosis-based therapies in clinical practice. By addressing these obstacles and fostering innovative solutions, this review underscores the potential of ferroptosis-targeting strategies to revolutionize treatment paradigms for rare neurological disorders.
Collapse
Affiliation(s)
- Ahmed D. Alatawi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Krishnaraju Venkatesan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (K.A.); (A.A.Q.)
| | - Khalid Asseri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (K.A.); (A.A.Q.)
| | - Premalatha Paulsamy
- College of Nursing, Mahalah Branch for Girls, King Khalid University, Abha 62521, Saudi Arabia;
| | - Saleh F. Alqifari
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.F.A.); (K.P.)
| | - Rehab Ahmed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (N.S.)
| | | | - Nizar Sirag
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (N.S.)
| | - Absar A. Qureshi
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (K.A.); (A.A.Q.)
| | - Hala Ahmed Elsayes
- Department of Psychiatric and Mental Health Nursing, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Psychiatric and Mental Health, Faculty of Nursing, Tanta University, Tanta 31527, Egypt
| | - Zeinab Faried Bahgat
- Department of Medical-Surgical Nursing, Faculty of Nursing, Tanta University, Tanta 31527, Egypt;
- Department of Medical-Surgical Nursing, College of Nursing, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center, Al-Ahsa 31982, Saudi Arabia
| | - Nesren S. M. Bahnsawy
- Department of Pediatric Nursing, College of Nursing, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia;
- Department of Pediatric Nursing, Faculty of Nursing, Cairo University, Giza 12613, Egypt
| | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.F.A.); (K.P.)
| | - Basma Mahmoud Abd Elhamid Dawood
- Department of Pediatric Nursing, Faculty of Nursing, Tanta University, Tanta 31527, Egypt;
- Department of Pediatric Nursing, College of Nursing, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
13
|
Mo Y, Zou Z, Chen E. [Research progress on ferroptosis regulation in tumor immunity of hepatocellular carcinoma]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:715-725. [PMID: 39694527 PMCID: PMC11726010 DOI: 10.3724/zdxbyxb-2024-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/30/2024] [Indexed: 12/20/2024]
Abstract
Ferroptosis is a form of regulated cell death, which is dependent on iron metabolism imbalance and characterized by lipid peroxidation. Ferroptosis plays a crucial role in various pathological processes. Studies have shown that the occurrence of ferroptosis is closely associated with the progression of hepatocellular carcinoma (HCC). Ferroptosis is involved in regulating the lipid metabolism, iron homeostasis, mitochondrial metabolism, and redox processes in HCC. Additionally, ferroptosis plays a key role in HCC tumor immunity by modulating the phenotype and function of various immune cells in the tumor microenvironment, affecting tumor immune escape and progression. Ferroptosis-induced lipid peroxidation and oxidative stress can promote the polarization of M1 macrophages and enhance the pro-inflammatory response in tumors, inhibiting immune suppressive cells such as myeloid-derived suppressor cells and regulatory T cells to disrupt their immune suppression function. The regulation of expression of ferroptosis-related molecules such as GPX4 and SLC7A11 not only affects the sensitivity of tumor cells to immunotherapy but also directly influences the activity and survival of effector cells such as T cells and dendritic cells, further enhancing or weakening host antitumor immune response. Targeting ferroptosis has demonstrated significant clinical potential in HCC treatment. Induction of ferroptosis by nanomedicines and molecular targeting strategies can directly kill tumor cells or enhance antitumor immune responses. The integration of multimodal therapies with immunotherapy further expands the application of ferroptosis targeting as a cancer therapy. This article reviews the relationship between ferroptosis and antitumor immune responses and the role of ferroptosis in HCC progression from the perspective of tumor immune microenvironment, to provide insights for the development of antitumor immune therapies targeting ferroptosis.
Collapse
Affiliation(s)
- Yuqian Mo
- School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China.
| | - Zhilin Zou
- School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Erbao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China.
| |
Collapse
|
14
|
Fan Y, Ma K, Lin Y, Ren J, Peng H, Yuan L, Nasser MI, Jiang X, Wang K. Immune imbalance in Lupus Nephritis: The intersection of T-Cell and ferroptosis. Front Immunol 2024; 15:1520570. [PMID: 39726588 PMCID: PMC11669548 DOI: 10.3389/fimmu.2024.1520570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Ferroptosis is a novel form of cell death characterized by unlimited accumulation of iron-dependent lipid peroxides. It is often accompanied by disease, and the relationship between ferroptosis of immune cells and immune regulation has been attracting increasing attention. Initially, it was found in cancer research that the inhibition of regulatory T cell (Treg) ferroptosis and the promotion of CD8+ T cell ferroptosis jointly promoted the formation of an immune-tolerant environment in tumors. T-cell ferroptosis has subsequently been found to have immunoregulatory effects in other diseases. As an autoimmune disease characterized by immune imbalance, T-cell ferroptosis has attracted attention for its potential in regulating immune balance in lupus nephritis. This article reviews the metabolic processes within different T-cell subsets in lupus nephritis (LN), including T follicular helper (TFH) cells, T helper (Th)17 cells, Th1 cells, Th2 cells, and Treg cells, and reveals that these cellular metabolisms not only facilitate the formation of a T-cell immune imbalance but are also closely associated with the occurrence of ferroptosis. Consequently, we hypothesize that targeting the metabolic pathways of ferroptosis could become a novel research direction for effectively treating the immune imbalance in lupus nephritis by altering T-cell differentiation and the incidence of ferroptosis.
Collapse
Affiliation(s)
- Yunhe Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Junyi Ren
- University of Electronic Science and Technology of China, School of Medicine, Chengdu, China
| | - Haoyu Peng
- University of Electronic Science and Technology of China, School of Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Moussa Ide Nasser
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xuan Jiang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Ke Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| |
Collapse
|
15
|
Xie Y, Xie J, Li L. The Role of Methylation in Ferroptosis. J Cardiovasc Transl Res 2024; 17:1219-1228. [PMID: 39075241 DOI: 10.1007/s12265-024-10539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/21/2024] [Indexed: 07/31/2024]
Abstract
Methylation modification is a crucial epigenetic alteration encompassing RNA methylation, DNA methylation, and histone methylation. Ferroptosis represents a newly discovered form of programmed cell death (PCD) in 2012, which is characterized by iron-dependent lipid peroxidation. The comprehensive investigation of ferroptosis is therefore imperative for a more profound comprehension of the pathological and pathophysiological mechanisms implicated in a wide array of diseases. Researches show that methylation modifications can exert either promotive or inhibitory effects on cell ferroptosis. Consequently, this review offers a comprehensive overview of the pivotal role played by methylation in ferroptosis, elucidating its associated factors and underlying mechanisms.
Collapse
Affiliation(s)
- Yushu Xie
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jie Xie
- Class of Excellent Doctor, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Liang Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
16
|
Zhu Z, Cao H, Yan H, Liu H, Hong Z, Sun A, Liu T, Mao F. Prognostic iron-metabolism signature robustly stratifies single-cell characteristics of hepatocellular carcinoma. Comput Struct Biotechnol J 2024; 23:929-941. [PMID: 38375529 PMCID: PMC10875160 DOI: 10.1016/j.csbj.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Cancer immunotherapy has shown to be a promising method in treating hepatocellular carcinoma (HCC), but suboptimal responses in patients are attributed to cellular and molecular heterogeneity. Iron metabolism-related genes (IRGs) are important in maintaining immune system homeostasis and have the potential to help develop new strategies for HCC treatment. Herein, we constructed and validated the iron-metabolism gene prognostic index (IPX) using univariate Cox proportional hazards regression and LASSO Cox regression analysis, successfully categorizing HCC patients into two groups with distinct survival risks. Then, we performed single-sample gene set enrichment analysis, weighted correlation network analysis, gene ontology enrichment analysis, cellular lineage analysis, and SCENIC analysis to reveal the key determinants underlying the ability of this model based on bulk and single-cell transcriptomic data. We identified several driver transcription factors specifically activated in specific malignant cell sub-populations to contribute to the adverse survival outcomes in the IPX-high subgroup. Within the tumor microenvironment (TME), T cells displayed significant diversity in their cellular characteristics and experienced changes in their developmental paths within distinct clusters identified by IPX. Interestingly, the proportion of Treg cells was increased in the high-risk group compared with the low-risk group. These results suggest that iron-metabolism could be involved in reshaping the TME, thereby disrupting the cell cycle of immune cells. This study utilized IRGs to construct a novel and reliable model, which can be used to assess the prognosis of patients with HCC and further clarify the molecular mechanisms of IRGs in HCC at single-cell resolution.
Collapse
Affiliation(s)
- Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Huang Cao
- School of Medicine, Xiamen University, Xiamen, Fujian 361100, China
| | - Hongyu Yan
- School of Medicine, Xiamen University, Xiamen, Fujian 361100, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Hanzhi Liu
- The Third Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Zaifa Hong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361103, China
| | - Anran Sun
- Oncology Research Center, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, Guangdong 511300, China
- Research Center for Translational Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Tong Liu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
17
|
Petriv N, Suo H, Hochnadel I, Timrott K, Bondarenko N, Neubert L, Reinhard E, Jedicke N, Kaufhold P, Guzmán CA, Lichtinghagen R, Manns MP, Bantel H, Yevsa T. Essential roles of B cell subsets in the progression of MASLD and HCC. JHEP Rep 2024; 6:101189. [PMID: 39611128 PMCID: PMC11602976 DOI: 10.1016/j.jhepr.2024.101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 11/30/2024] Open
Abstract
Background & Aims Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death. Metabolic dysfunction-associated steatotic liver disease (MASLD) is a significant cause of HCC. Current treatment options for HCC are very limited. Recent evidence highlights B cells as key drivers in MASLD progression toward HCC. However, it remains unclear whether multiple B cell populations or a distinct B cell subset regulates inflammatory responses during liver disease progression. The scope of this study was to define protumorigenic B cell subsets in MASLD and HCC. Methods Multicolor flow cytometry, immunohistochemistry, and immunofluorescence analyses were performed to investigate B cell populations locally (in liver tissue) and systemically (in the blood) in mice with MASLD (n = 6) and HCC (n = 5-6). The results obtained in mice were also verified in patients with MASLD (n = 19) and HCC (n = 16). Results Our study revealed an increase of two regulatory B cell (Breg) subsets, CD19+B220+CD5+CD1d+ (p <0.0001) and CD19-B220+CD5+CD1d- (p <0.0001), both of which highly overexpress IgM/IgD, PD-L1, and IL-10, in the livers of mice with MASLD and HCC. Furthermore, we showed that B-cell depletion therapy in combination with a Listeria-based vaccine decreased CD19-B220+CD5+CD1d- Bregs (p = 0.0103), and improved survival of mice with HCC. We also found CD19+CD5+IL-10+ (p = 0.0167), CD19+CD5+PD-L1+ (p = 0.0333) and CD19+CD5+IgM+IgD+ (p = 0.0317) B cells in human HCCs. In addition, strong overexpression of IgM/IgD, PD-L1, IL-10, were detected on non-switched memory B cells (p = 0.0049) and plasmablasts (p = 0.0020). The examination of blood samples obtained from patients with MASLD showed an increase of total B cells expressing IL-10 (p <0.0001) and IgM/IgD (p = 0.3361), CD19+CD20+CD5+CD1d+ Bregs (p = 0.6424) and CD19+CD20+CD27+ non-switched memory B cells (p = 0.0003). Conclusions Our results provide novel insights into the protumorigenic roles of several B cell subsets, the specific targeting of which could abrogate the progression of liver disease. Impact and implications Hepatocellular carcinoma (HCC) is the primary liver cancer with a constantly rising mortality rate. Metabolic dysfunction-associated steatotic liver disease (MASLD) is an emerging important cause of HCC. Current treatment options for HCC are limited and there is a high risk of recurrence. The study aims to identify new therapeutic strategies by exploring the immunological aspects of MASLD and HCC. Our findings extend the current knowledge on the role of B cells in the progression of MASLD and HCC. This study emphasizes the involvement of IgM+IgD+ regulatory B cells (Bregs) in malignant liver disease progression. These Bregs characterized by a high expression of PD-L1, IL-10, IgM, and IgD. Two other B cell subsets with immunosuppressive phenotype have been found in the study in murine liver disease - plasmablasts and non-switched memory B cells. Targeting these B cells could lead to more effective treatments of HCC.
Collapse
Affiliation(s)
- Nataliia Petriv
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Inga Hochnadel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Kai Timrott
- Department of General-, Visceral and Transplantation Surgery, MHH, Hannover, Germany
| | - Nina Bondarenko
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Department of Pathological Anatomy, Forensic Medicine and Pathological Physiology, Dnipro State Medical University, Dnipro, Ukraine
- Institute of Pathology, MHH, Hannover, Germany
| | | | - Elena Reinhard
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Nils Jedicke
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Patrick Kaufhold
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Carlos Alberto Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Michael P. Manns
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Heike Bantel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| |
Collapse
|
18
|
Zhang X, Tang B, Luo J, Yang Y, Weng Q, Fang S, Zhao Z, Tu J, Chen M, Ji J. Cuproptosis, ferroptosis and PANoptosis in tumor immune microenvironment remodeling and immunotherapy: culprits or new hope. Mol Cancer 2024; 23:255. [PMID: 39543600 PMCID: PMC11566504 DOI: 10.1186/s12943-024-02130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/19/2024] [Indexed: 11/17/2024] Open
Abstract
Normal life requires cell division to produce new cells, but cell death is necessary to maintain balance. Dysregulation of cell death can lead to the survival and proliferation of abnormal cells, promoting tumor development. Unlike apoptosis, necrosis, and autophagy, the newly recognized forms of regulated cell death (RCD) cuproptosis, ferroptosis, and PANoptosis provide novel therapeutic strategies for tumor treatment. Increasing research indicates that the death of tumor and immune cells mediated by these newly discovered forms of cell death can regulate the tumor microenvironment (TME) and influence the effectiveness of tumor immunotherapy. This review primarily elucidates the molecular mechanisms of cuproptosis, ferroptosis, and PANoptosis and their complex effects on tumor cells and the TME. This review also summarizes the exploration of nanoparticle applications in tumor therapy based on in vivo and in vitro evidence derived from the induction or inhibition of these new RCD pathways.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Bufu Tang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jinhua Luo
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Yang Yang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Qiaoyou Weng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Jianfei Tu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| |
Collapse
|
19
|
Muluh TA, Fu Q, Ai X, Wang C, Chen W, Zheng X, Wang W, Wang M, Shu XS, Ying Y. Targeting Ferroptosis as an Advance Strategy in Cancer Therapy. Antioxid Redox Signal 2024; 41:616-636. [PMID: 38959114 DOI: 10.1089/ars.2024.0608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Significance: This study innovates by systematically integrating the molecular mechanisms of iron death and its application in cancer therapy. By deeply analyzing the interaction between iron death and the tumor microenvironment, the study provides a new theoretical basis for cancer treatment and directions for developing more effective treatment strategies. In addition, the study points to critical issues and barriers that need to be addressed in future research, providing valuable insights into the use of iron death in clinical translation. Recent Advances: These findings are expected to drive further advances in cancer treatment, bringing patients more treatment options and hope. Through this paper, we see the great potential of iron death in cancer treatment and look forward to more research results being translated into clinical applications in the future to contribute to the fight against cancer. Critical Issues: In today's society, cancer is still one of the major diseases threatening human health. Despite advances in existing treatments, cancer recurrence and drug resistance remain a severe problem. These problems increase the difficulty of treatment and bring a substantial physical and mental burden to patients. Therefore, finding new treatment strategies to overcome these challenges has become significant. Future Directions: The study delved into the molecular basis of iron death in tumor biology. It proposed a conceptual framework to account for the interaction of iron death with the tumor immune microenvironment, guide treatment selection, predict efficacy, explore combination therapies, and identify new therapeutic targets to overcome cancer resistance to standard treatments, peeving a path for future research and clinical translation of ferroptosis as a potential strategy in cancer therapy. Antioxid. Redox Signal. 41, 616-636. [Figure: see text].
Collapse
Affiliation(s)
- Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Qianqian Fu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiaojiao Ai
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Changfeng Wang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wei Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiangyi Zheng
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wei Wang
- Shanghai Waker Bioscience Co., Ltd., Shanghai, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xing-Sheng Shu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Ying Ying
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
20
|
Han S, Wang S, Li Y, He Y, Ma J, Feng Y. HPV-ferroptosis related genes as biomarkers to predict the prognosis of cervical cancer. Discov Oncol 2024; 15:468. [PMID: 39302544 DOI: 10.1007/s12672-024-01291-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Ferroptosis can be used as a powerful predictor of cancer prognosis. HPV persistent infection is the main cause of cervical cancer, so it is very important to improve the prognosis of patients. Therefore, it is necessary to explore the value of HPV-ferroptosis related genes as prognostic biomarkers of cervical cancer patients. METHODS In this study, differentially expressed HPV-ferroptosis related genes were obtained from GSE7410, HPV gene set crossed with iron death genes. Five HPV-ferroptosis related genes with prognostic features were finally identified: CYBB, VEGFA, CKB, EFNA1 and HELLS. Multifactorial Cox regression was applied to establish and validate the prognostic model, and drug susceptibility and immune infiltration analyses were also performed. RESULTS The prognostic model was validated in the training set (TCGA) and validation set (GSE44001). Kaplan-Meier curves reveal significant differences in overall survival (OS) between high-risk and low-risk groups. Receiver operating characteristic (ROC) curve reflects the stability and accuracy of the prognostic model established in this study. In terms of immune function, T cell costimulation was better in the low-risk group than in the high-risk group (P < 0.01). The therapeutic effects of cisplatin, paclitaxel, docetaxel and cyclophosphamide, commonly used chemotherapy drugs for cervical cancer, are better in the high-risk group than in the low-risk group (P < 0.001). CONCLUSION HPV-ferroptosis related gene prognostic model not only has good stability and accuracy in predicting the prognosis of cervical cancer patients, but also has certain guiding value for clinicians in terms of drug sensitivity and immune microenvironment.
Collapse
Affiliation(s)
- Songtao Han
- Clinical Laboratory CenterHospital of Traditional Chinese Medicine, Affiliated to Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Uygur Autonomous Region Radiotherapy Clinical Research and Training Center, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, 830011, China
| | - Senyu Wang
- Department of Laboratory Medicine, Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Uygur Autonomous Region Radiotherapy Clinical Research and Training Center, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, 830011, China
| | - Yuxia Li
- Department of Laboratory Medicine, Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Uygur Autonomous Region Radiotherapy Clinical Research and Training Center, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, 830011, China
| | - YuJiao He
- Hospital of Traditional Chinese Medicine, Affiliated to Xinjiang Medical University, Urumqi, 830011, China
| | - Jing Ma
- Hospital of Traditional Chinese Medicine, Affiliated to Xinjiang Medical University, Urumqi, 830011, China
| | - Yangchun Feng
- Department of Laboratory Medicine, Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Xinjiang Uygur Autonomous Region Radiotherapy Clinical Research and Training Center, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, 830011, China.
| |
Collapse
|
21
|
Tang D, Kroemer G, Kang R. Ferroptosis in hepatocellular carcinoma: from bench to bedside. Hepatology 2024; 80:721-739. [PMID: 37013919 PMCID: PMC10551055 DOI: 10.1097/hep.0000000000000390] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
The most widespread type of liver cancer, HCC, is associated with disabled cellular death pathways. Despite therapeutic advancements, resistance to current systemic treatments (including sorafenib) compromises the prognosis of patients with HCC, driving the search for agents that might target novel cell death pathways. Ferroptosis, a form of iron-mediated nonapoptotic cell death, has gained considerable attention as a potential target for cancer therapy, especially in HCC. The role of ferroptosis in HCC is complex and diverse. On one hand, ferroptosis can contribute to the progression of HCC through its involvement in both acute and chronic liver conditions. In contrast, having ferroptosis affect HCC cells might be desirable. This review examines the role of ferroptosis in HCC from cellular, animal, and human perspectives while examining its mechanisms, regulation, biomarkers, and clinical implications.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus; 94800 Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; 75015 Paris, France
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
22
|
Na X, Li L, Liu D, He J, Zhang L, Zhou Y. Natural products targeting ferroptosis pathways in cancer therapy (Review). Oncol Rep 2024; 52:123. [PMID: 39054952 PMCID: PMC11292301 DOI: 10.3892/or.2024.8782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Ferroptosis inducers (FIN) have a key role in cancer therapy and provide novel and innovative treatment strategies. Although many researchers have performed FIN screening of synthetic compounds, studies on the identification of FIN from natural products are limited, particularly in the field of drug development and combination therapy. In this review, this gap was addressed by comprehensively summarizing recent studies on ferroptosis. The causes of ferroptosis were categorized into driving and defensive factors, elucidating key pathways and targets. Next, through summarizing research on natural products that induce ferroptosis, the study elaborated in detail on the natural products that have FIN functions. Their discovery and development were also described and insight for clinical drug development was provided. In addition, the mechanisms of action were analyzed and potential combination therapies, resistance reversal and structural enhancements were presented. By highlighting the potential of natural products in inducing ferroptosis for cancer treatment, this review may serve as a reference for utilizing these compounds against cancer. It not only showed the significance of natural products but may also promote further investigation into their therapeutic effects, thus encouraging research in this field.
Collapse
Affiliation(s)
- Xin Na
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Lin Li
- Yunnan Cancer Hospital (Third Affiliated Hospital of Kunming Medical University), Kunming, Yunnan 650118, P.R. China
| | - Dongmei Liu
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaqi He
- The First Clinical Medical College of Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Ling Zhang
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yiping Zhou
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
23
|
Li Y, Cheng X. Enhancing Colorectal Cancer Immunotherapy: The Pivotal Role of Ferroptosis in Modulating the Tumor Microenvironment. Int J Mol Sci 2024; 25:9141. [PMID: 39273090 PMCID: PMC11395055 DOI: 10.3390/ijms25179141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant challenge in oncology, with increasing incidence and mortality rates worldwide, particularly among younger adults. Despite advancements in treatment modalities, the urgent need for more effective therapies persists. Immunotherapy has emerged as a beacon of hope, offering the potential for improved outcomes and quality of life. This review delves into the critical interplay between ferroptosis, an iron-dependent form of regulated cell death, and immunotherapy within the CRC context. Ferroptosis's influence extends beyond tumor cell fate, reshaping the tumor microenvironment (TME) to enhance immunotherapy's efficacy. Investigations into Ferroptosis-related Genes (OFRGs) reveal their pivotal role in modulating immune cell infiltration and TME composition, closely correlating with tumor responsiveness to immunotherapy. The integration of ferroptosis inducers with immunotherapeutic strategies, particularly through novel approaches like ferrotherapy and targeted co-delivery systems, showcases promising avenues for augmenting treatment efficacy. Furthermore, the expression patterns of OFRGs offer novel prognostic tools, potentially guiding personalized and precision therapy in CRC. This review underscores the emerging paradigm of leveraging ferroptosis to bolster immunotherapy's impact, highlighting the need for further research to translate these insights into clinical advancements. Through a deeper understanding of the ferroptosis-immunotherapy nexus, new therapeutic strategies can be developed, promising enhanced efficacy and broader applicability in CRC treatment, ultimately improving patient outcomes and quality of life in the face of this formidable disease.
Collapse
Affiliation(s)
- Yanqing Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Xiaofei Cheng
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
24
|
Li JW, Mao YM, Chen SL, Ye R, Fei YR, Li Y, Tong SY, Yang HW, He YB. The interplay between metal ions and immune cells in glioma: pathways to immune escape. Discov Oncol 2024; 15:348. [PMID: 39134820 PMCID: PMC11319581 DOI: 10.1007/s12672-024-01229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
This review explores the intricate roles of metal ions-iron, copper, zinc, and selenium-in glioma pathogenesis and immune evasion. Dysregulated metal ion metabolism significantly contributes to glioma progression by inducing oxidative stress, promoting angiogenesis, and modulating immune cell functions. Iron accumulation enhances oxidative DNA damage, copper activates hypoxia-inducible factors to stimulate angiogenesis, zinc influences cell proliferation and apoptosis, and selenium modulates the tumor microenvironment through its antioxidant properties. These metal ions also facilitate immune escape by upregulating immune checkpoints and secreting immunosuppressive cytokines. Targeting metal ion pathways with therapeutic strategies such as chelating agents and metalloproteinase inhibitors, particularly in combination with conventional treatments like chemotherapy and immunotherapy, shows promise in improving treatment efficacy and overcoming resistance. Future research should leverage advanced bioinformatics and integrative methodologies to deepen the understanding of metal ion-immune interactions, ultimately identifying novel biomarkers and therapeutic targets to enhance glioma management and patient outcomes.
Collapse
Affiliation(s)
- Jin-Wei Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi-Ming Mao
- Department of Thoracic Surgery, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu Province, China
| | - Shi-Liang Chen
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Rui Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi-Ran Fei
- The First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang Province, China
| | - Yue Li
- The First Clinical Medical College, Guangxi Medical University, Nanning, Guangxi Province, China
| | - Shi-Yuan Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hong-Wei Yang
- Department of Clinical Laboratory, Suzhou BOE Hospital, Suzhou, Jiangsu Province, China.
| | - Yi-Bo He
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China.
| |
Collapse
|
25
|
Wang X, Ren X, Lin X, Li Q, Zhang Y, Deng J, Chen B, Ru G, Luo Y, Lin N. Recent progress of ferroptosis in cancers and drug discovery. Asian J Pharm Sci 2024; 19:100939. [PMID: 39246507 PMCID: PMC11378902 DOI: 10.1016/j.ajps.2024.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 09/10/2024] Open
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron dependence and lipid peroxidation. Ferroptosis is involved in a range of pathological processes, such as cancer. Many studies have confirmed that ferroptosis plays an essential role in inhibiting cancer cell proliferation. In addition, a series of small-molecule compounds have been developed, including erastin, RSL3, and FIN56, which can be used as ferroptosis inducers. The combination of ferroptosis inducers with anticancer drugs can produce a significant synergistic effect in cancer treatment, and patients treated with these combinations exhibit a better prognosis than patients receiving traditional therapy. Therefore, a thorough understanding of the roles of ferroptosis in cancer is of great significance for the treatment of cancer. This review mainly elaborates the molecular biological characteristics and mechanism of ferroptosis, summarizes the function of ferroptosis in cancer development and treatment,illustrates the application of ferroptosis in patient's prognosis prediction and drug discovery, and discusses the prospects of targeting ferroptosis.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Xinxin Ren
- Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
- Clinical Research Center for Cancer of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Xu Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qi Li
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Yingqiong Zhang
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Jun Deng
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Binxin Chen
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Guoqing Ru
- Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Ying Luo
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Nengming Lin
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou 310024, China
| |
Collapse
|
26
|
Duarte TL, Viveiros N, Godinho C, Duarte D. Heme (dys)homeostasis and liver disease. Front Physiol 2024; 15:1436897. [PMID: 39135705 PMCID: PMC11317413 DOI: 10.3389/fphys.2024.1436897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Heme is essential for a variety of proteins involved in vital physiological functions in the body, such as oxygen transport, drug metabolism, biosynthesis of steroids, signal transduction, antioxidant defense and mitochondrial respiration. However, free heme is potentially cytotoxic due to the capacity of heme iron to promote the oxidation of cellular molecules. The liver plays a central role in heme metabolism by significantly contributing to heme synthesis, heme detoxification, and recycling of heme iron. Conversely, enzymatic defects in the heme biosynthetic pathway originate multisystemic diseases (porphyrias) that are highly associated with liver damage. In addition, there is growing evidence that heme contributes to the outcomes of inflammatory, metabolic and malignant liver diseases. In this review, we summarize the contribution of the liver to heme metabolism and the association of heme dyshomeostasis with liver disease.
Collapse
Affiliation(s)
- Tiago L. Duarte
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Nicole Viveiros
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Catarina Godinho
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Delfim Duarte
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Serviço de Hematologia e Transplantação da Medula Óssea, Instituto Português de Oncologia do Porto Francisco Gentil, E.P.E. (IPO Porto), Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| |
Collapse
|
27
|
Abstract
The non-natriuretic-dependent glutamate/cystine inverse transporter-system Xc- is composed of two protein subunits, SLC7A11 and SLC3A2, with SLC7A11 serving as the primary functional component responsible for cystine uptake and glutathione biosynthesis. SLC7A11 is implicated in tumor development through its regulation of redox homeostasis, amino acid metabolism, modulation of immune function, and induction of programmed cell death, among other processes relevant to tumorigenesis. In this paper, we summarize the structure and biological functions of SLC7A11, and discuss its potential role in tumor therapy, which provides a new direction for precision and personalized treatment of tumors.
Collapse
Affiliation(s)
- Yulang Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyu Sun
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
28
|
Faraji P, Kühn H, Ahmadian S. Multiple Roles of Apolipoprotein E4 in Oxidative Lipid Metabolism and Ferroptosis During the Pathogenesis of Alzheimer's Disease. J Mol Neurosci 2024; 74:62. [PMID: 38958788 PMCID: PMC11222241 DOI: 10.1007/s12031-024-02224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/14/2024] [Indexed: 07/04/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide and has a great socio-economic impact. Modified oxidative lipid metabolism and dysregulated iron homeostasis have been implicated in the pathogenesis of this disorder, but the detailed pathophysiological mechanisms still remain unclear. Apolipoprotein E (APOE) is a lipid-binding protein that occurs in large quantities in human blood plasma, and a polymorphism of the APOE gene locus has been identified as risk factors for AD. The human genome involves three major APOE alleles (APOE2, APOE3, APOE4), which encode for three subtly distinct apolipoprotein E isoforms (APOE2, APOE3, APOE4). The canonic function of these apolipoproteins is lipid transport in blood and brain, but APOE4 allele carriers have a much higher risk for AD. In fact, about 60% of clinically diagnosed AD patients carry at least one APOE4 allele in their genomes. Although the APOE4 protein has been implicated in pathophysiological key processes of AD, such as extracellular beta-amyloid (Aβ) aggregation, mitochondrial dysfunction, neuroinflammation, formation of neurofibrillary tangles, modified oxidative lipid metabolism, and ferroptotic cell death, the underlying molecular mechanisms are still not well understood. As for all mammalian cells, iron plays a crucial role in neuronal functions and dysregulation of iron homeostasis has also been implicated in the pathogenesis of AD. Imbalances in iron homeostasis and impairment of the hydroperoxy lipid-reducing capacity induce cellular dysfunction leading to neuronal ferroptosis. In this review, we summarize the current knowledge on APOE4-related oxidative lipid metabolism and the potential role of ferroptosis in the pathogenesis of AD. Pharmacological interference with these processes might offer innovative strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Parisa Faraji
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Hartmut Kühn
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
29
|
Zhao Y, Wang L, Li X, Jiang J, Ma Y, Guo S, Zhou J, Li Y. Programmed Cell Death-Related Gene Signature Associated with Prognosis and Immune Infiltration and the Roles of HMOX1 in the Proliferation and Apoptosis were Investigated in Uveal Melanoma. Genes Genomics 2024; 46:785-801. [PMID: 38767825 PMCID: PMC11208274 DOI: 10.1007/s13258-024-01521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Uveal melanoma (UVM) is the most common primary ocular malignancy, with a wide range of symptoms and outcomes. The programmed cell death (PCD) plays an important role in tumor development, diagnosis, and prognosis. There is still no research on the relationship between PCD-related genes and UVM. A novel PCD-associated prognostic model is urgently needed to improve treatment strategies. OBJECTIVE We aim to screen PCD-related prognostic signature and investigate its proliferation ability and apoptosis in UVM cells. METHODS The clinical information and RNA-seq data of the UVM patients were collected from the TCGA cohort. All the patients were classified using consensus clustering by the selected PCD-related genes. After univariate Cox regression and PPI network analysis, the prognostic PCD-related genes were then submitted to the LASSO regression analysis to build a prognostic model. The level of immune infiltration of 8-PCD signature in high- and low-risk patients was analyzed using xCell. The prediction on chemotherapy and immunotherapy response in UVM patients was assessed by GDSC and TIDE algorithm. CCK-8, western blot and Annexin V-FITC/PI staining were used to explore the roles of HMOX1 in UVM cells. RESULTS A total of 8-PCD signature was constructed and the risk score of the PCD signature was negatively correlated with the overall survival, indicating strong predictive ability and independent prognostic value. The risk score was positively correlated with CD8 Tcm, CD8 Tem and Th2 cells. Immune cells in high-risk group had poorer overall survival. The drug sensitivity demonstrated that cisplatin might impact the progression of UVM and better immunotherapy responsiveness in the high-risk group. Finally, Overespression HMOX1 (OE-HMOX1) decreased the cell viability and induced apoptosis in UVM cells. Recuse experiment results showed that ferrostatin-1 (fer-1) protected MP65 cells from apoptosis and necrosis caused by OE-HMOX1. CONCLUSION The PCD signature may have a significant role in the tumor microenvironment, clinicopathological characteristics, prognosis and drug sensitivity. More importantly, HMOX1 depletion greatly induced tumor cell growth and inhibited cell apoptosis and fer-1 protected UVM cells from apoptosis and necrosis induced by OE-HMOX1. This work provides a foundation for effective therapeutic strategy in tumour treatment.
Collapse
Affiliation(s)
- Yubao Zhao
- Department of Ophthalmology, Fuyang Cancer Hospital of Fuyang Normal University, Fuyang, 236000, Anhui, China
| | - Liang Wang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
| | - Xiaoyan Li
- Department of Science and Education, Fuyang Cancer Hospital of Fuyang Normal University, Fuyang, 236000, Anhui, China
| | - Junzhi Jiang
- Department of Ophthalmology, Fuyang Cancer Hospital of Fuyang Normal University, Fuyang, 236000, Anhui, China
| | - Yan Ma
- Department of Ophthalmology, Fuyang Cancer Hospital of Fuyang Normal University, Fuyang, 236000, Anhui, China
| | - Shuxia Guo
- Department of Ophthalmology, Fuyang Cancer Hospital of Fuyang Normal University, Fuyang, 236000, Anhui, China
| | - Jinming Zhou
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
| | - Yingjun Li
- Department of Ophthalmology, Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China.
| |
Collapse
|
30
|
Brignola C, Pecoraro A, Danisi C, Iaccarino N, Di Porzio A, Romano F, Carotenuto P, Russo G, Russo A. uL3 Regulates Redox Metabolism and Ferroptosis Sensitivity of p53-Deleted Colorectal Cancer Cells. Antioxidants (Basel) 2024; 13:757. [PMID: 39061826 PMCID: PMC11274089 DOI: 10.3390/antiox13070757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Despite advancements in therapeutic strategies, the development of drug resistance and metastasis remains a serious concern for the efficacy of chemotherapy against colorectal cancer (CRC). We have previously demonstrated that low expression of ribosomal protein uL3 positively correlates with chemoresistance in CRC patients. Here, we demonstrated that the loss of uL3 increased the metastatic capacity of CRC cells in chick embryos. Metabolomic analysis revealed large perturbations in amino acid and glutathione metabolism in resistant uL3-silenced CRC cells, indicating that uL3 silencing dramatically triggered redox metabolic reprogramming. RNA-Seq data revealed a notable dysregulation of 108 genes related to ferroptosis in CRC patients. Solute Carrier Family 7 Member 11 (SLC7A11) is one of the most dysregulated genes; its mRNA stability is negatively regulated by uL3, and its expression is inversely correlated with uL3 levels. Inhibition of SLC7A11 with erastin impaired resistant uL3-silenced CRC cell survival by inducing ferroptosis. Of interest, the combined treatment erastin plus uL3 enhanced the chemotherapeutic sensitivity of uL3-silenced CRC cells to erastin. The antimetastatic potential of the combined strategy was evaluated in chick embryos. Overall, our study sheds light on uL3-mediated chemoresistance and provides evidence of a novel therapeutic approach, erastin plus uL3, to induce ferroptosis, establishing individualized therapy by examining p53, uL3 and SLC7A11 profiles in tumors.
Collapse
Affiliation(s)
- Chiara Brignola
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Annalisa Pecoraro
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Camilla Danisi
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Francesca Romano
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Pietro Carotenuto
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei, 34, 80078 Naples, Italy;
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, Corso Umberto I, 40, 80138 Naples, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Annapina Russo
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| |
Collapse
|
31
|
Shu YJ, Lao B, Qiu YY. Research progress of ferroptosis regulating lipid peroxidation and metabolism in occurrence and development of primary liver cancer. World J Gastrointest Oncol 2024; 16:2335-2349. [PMID: 38994128 PMCID: PMC11236230 DOI: 10.4251/wjgo.v16.i6.2335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 06/13/2024] Open
Abstract
As a highly aggressive tumor, the pathophysiological mechanism of primary liver cancer has attracted much attention. In recent years, factors such as ferroptosis regulation, lipid peroxidation and metabolic abnormalities have emerged in the study of liver cancer, providing a new perspective for understanding the development of liver cancer. Ferroptosis regulation, lipid peroxidation and metabolic abnormalities play important roles in the occurrence and development of liver cancer. The regulation of ferroptosis is involved in apoptosis and necrosis, affecting cell survival and death. Lipid peroxidation promotes oxidative damage and promotes the invasion of liver cancer cells. Metabolic abnormalities, especially the disorders of glucose and lipid metabolism, directly affect the proliferation and growth of liver cancer cells. Studies of ferroptosis regulation and lipid peroxidation may help to discover new therapeutic targets and improve therapeutic outcomes. The understanding of metabolic abnormalities can provide new ideas for the prevention of liver cancer, and reduce the risk of disease by adjusting the metabolic process. This review focuses on the key roles of ferroptosis regulation, lipid peroxidation and metabolic abnormalities in this process.
Collapse
Affiliation(s)
- Yu-Jie Shu
- Department of Gastroenterology, Yinzhou District Second Hospital, Ningbo 315199, Zhejiang Province, China
| | - Bo Lao
- Department of Gastroenterology, Yinzhou District Second Hospital, Ningbo 315199, Zhejiang Province, China
| | - Ying-Yang Qiu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
32
|
Yu X, Wang S, Ji Z, Meng J, Mou Y, Wu X, Yang X, Xiong P, Li M, Guo Y. Ferroptosis: An important mechanism of disease mediated by the gut-liver-brain axis. Life Sci 2024; 347:122650. [PMID: 38631669 DOI: 10.1016/j.lfs.2024.122650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
AIMS As a unique iron-dependent non-apoptotic cell death, Ferroptosis is involved in the pathogenesis and development of many human diseases and has become a research hotspot in recent years. However, the regulatory role of ferroptosis in the gut-liver-brain axis has not been elucidated. This paper summarizes the regulatory role of ferroptosis and provides theoretical basis for related research. MATERIALS AND METHODS We searched PubMed, CNKI and Wed of Science databases on ferroptosis mediated gut-liver-brain axis diseases, summarized the regulatory role of ferroptosis on organ axis, and explained the adverse effects of related regulatory effects on various diseases. KEY FINDINGS According to our summary, the main way in which ferroptosis mediates the gut-liver-brain axis is oxidative stress, and the key cross-talk of ferroptosis affecting signaling pathway network is Nrf2/HO-1. However, there were no specific marker between different organ axes mediate by ferroptosis. SIGNIFICANCE Our study illustrates the main ways and key cross-talk of ferroptosis mediating the gut-liver-brain axis, providing a basis for future research.
Collapse
Affiliation(s)
- Xinxin Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Shihao Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Zhongjie Ji
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Jiaqi Meng
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Yunying Mou
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Xinyi Wu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Xu Yang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Panyang Xiong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Mingxia Li
- Nursing School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Yinghui Guo
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China.
| |
Collapse
|
33
|
Zhou H, Cheng Y, Huang Q, Xiao J. Regulation of ferroptosis by nanotechnology for enhanced cancer immunotherapy. Expert Opin Drug Deliv 2024; 21:921-943. [PMID: 39014916 DOI: 10.1080/17425247.2024.2379937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION This review explores the innovative intersection of ferroptosis, a form of iron-dependent cell death, with cancer immunotherapy. Traditional cancer treatments face limitations in efficacy and specificity. Ferroptosis as a new paradigm in cancer biology, targets metabolic peculiarities of cancer cells and may potentially overcome such limitations, enhancing immunotherapy. AREA COVERED This review centers on the regulation of ferroptosis by nanotechnology to augment immunotherapy. It explores how nanoparticle-modulated ferroptotic cancer cells impact the TME and immune responses. The dual role of nanoparticles in modulating immune response through ferroptosis are also discussed. Additionally, it investigates how nanoparticles can be integrated with various immunotherapeutic strategies, to optimize ferroptosis induction and cancer treatment efficacy. The literature search was conducted using PubMed and Google Scholar, covering articles published up to March 2024. EXPERT OPINION The manuscript underscores the promising yet intricate landscape of ferroptosis in immunotherapy. It emphasizes the need for a nuanced understanding of ferroptosis' impact on immune cells and the TME to develop more effective cancer treatments, highlighting the potential of nanoparticles in enhancing the efficacy of ferroptosis and immunotherapy. It calls for deeper exploration into the molecular mechanisms and clinical potential of ferroptosis to fully harness its therapeutic benefits in immunotherapy.
Collapse
Affiliation(s)
- Haohan Zhou
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Quan Huang
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| |
Collapse
|
34
|
Chen H, Han Z, Su J, Song X, Ma Q, Lin Y, Ran Z, Li X, Mou R, Wang Y, Li D. Ferroptosis and hepatocellular carcinoma: the emerging role of lncRNAs. Front Immunol 2024; 15:1424954. [PMID: 38846953 PMCID: PMC11153672 DOI: 10.3389/fimmu.2024.1424954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Hepatocellular carcinoma is the most common form of primary liver cancer and poses a significant challenge to the medical community because of its high mortality rate. In recent years, ferroptosis, a unique form of cell death, has garnered widespread attention. Ferroptosis, which is characterized by iron-dependent lipid peroxidation and mitochondrial alterations, is closely associated with the pathological processes of various diseases, including hepatocellular carcinoma. Long non-coding RNAs (lncRNAs), are a type of functional RNA, and play crucial regulatory roles in a variety of biological processes. In this manuscript, we review the regulatory roles of lncRNAs in the key aspects of ferroptosis, and summarize the research progress on ferroptosis-related lncRNAs in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Haoran Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhongyu Han
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Junyan Su
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Xuanliang Song
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Qingquan Ma
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Yumeng Lin
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zijin Ran
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Xueping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongkun Mou
- Department of General Surgery, The Third Hospital of Mianyang, Mianyang, China
| | - Yi Wang
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Dongxuan Li
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
35
|
Zhou H, Zhou X, Zhu R, Zhao Z, Yang K, Shen Z, Sun H. A ferroptosis-related signature predicts the clinical diagnosis and prognosis, and associates with the immune microenvironment of lung cancer. Discov Oncol 2024; 15:163. [PMID: 38743344 PMCID: PMC11093956 DOI: 10.1007/s12672-024-01032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Targeting ferroptosis-related pathway is a potential strategy for treatment of lung cancer (LC). Consequently, exploration of ferroptosis-related markers is important for treating LC. We collected LC clinical data and mRNA expression profiles from TCGA and GEO database. Ferroptosis-related genes (FRGs) were obtained through FerrDB database. Expression analysis was performed to obtain differentially expressed FRGs. Diagnostic and prognostic models were constructed based on FRGs by LASSO regression, univariate, and multivariate Cox regression analysis, respectively. External verification cohorts GSE72094 and GSE157011 were used for validation. The interrelationship between prognostic risk scores based on FRGs and the tumor immune microenvironment was analyzed. Immunocytochemistry, Western blotting, and RT-qPCR detected the FRGs level. Eighteen FRGs were used for diagnostic models, 8 FRGs were used for prognostic models. The diagnostic model distinguished well between LC and normal samples in training and validation cohorts of TCGA. The prognostic models for TCGA, GSE72094, and GSE157011 cohorts significantly confirmed lower overall survival (OS) in high-risk group, which demonstrated excellent predictive properties of the survival model. Multivariate Cox regression analysis further confirmed risk score was an independent risk factor related with OS. Immunoassays revealed that in high-risk group, a significantly higher proportion of Macrophages_M0, Neutrophils, resting Natural killer cells and activated Mast cells and the level of B7H3, CD112, CD155, B7H5, and ICOSL were increased. In conclusion, diagnostic and prognostic models provided superior diagnostic and predictive power for LC and revealed a potential link between ferroptosis and TIME.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Oncology Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xiaoting Zhou
- Medical School, Kunming University of Science and Technology, Kunming, 650031, Yunnan, China
| | - Runying Zhu
- Department of Oncology Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Zhongquan Zhao
- Department of Oncology Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Kang Yang
- Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, 650032, Yunnan, China
| | - Zhenghai Shen
- Department of Thoracic Surgery, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, China
| | - Hongwen Sun
- Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, 650032, Yunnan, China.
| |
Collapse
|
36
|
Qu Z, Zhang B, Kong L, Zhang Y, Zhao Y, Gong Y, Gao X, Feng M, Zhang J, Yan L. Myeloid zinc finger 1 knockdown promotes osteoclastogenesis and bone loss in part by regulating RANKL-induced ferroptosis of osteoclasts through Nrf2/GPX4 signaling pathway. J Leukoc Biol 2024; 115:946-957. [PMID: 38266238 DOI: 10.1093/jleuko/qiae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
The overactivation of the osteoclasts is a crucial pathological factor in the development of osteoporosis. MZF1, belonging to the scan-zinc finger family, plays a significant role in various processes associated with tumor malignant progression and acts as an essential transcription factor regulating osteoblast expression. However, the exact role of MZF1 in osteoclasts has not been determined. In this study, the purpose of our study was to elucidate the role of MZF1 in osteoclastogenesis. First, we established MZF1-deficient female mice and evaluated the femur bone phenotype by micro-computed tomography and histological staining. Our findings indicate that MZF1-/- mice exhibited a low bone mass osteoporosis phenotype. RANKL could independently induce the differentiation of RAW264.7 cells into osteoclasts, and we found that the expression level of MZF1 protein decreased gradually. Then, the CRISPR/Cas 9 gene-editing technique was used to build a RAW264.7 cell model with MZF1 knockout, and RANKL was used to independently induce MZF1-/- and wild-type cells to differentiate into mature osteoclasts. Tartrate-resistant acid phosphatase staining and F-actin fluorescence results showed that the MZF1-/- group produced more tartrate-resistant acid phosphatase-positive mature osteoclasts and larger actin rings. The expression of osteoclast-associated genes (including tartrate-resistant acid phosphatase, CTSK, c-Fos, and NFATc1) was evaluated by reverse transcription quantitative polymerase chain reaction and Western blot. The expression of key genes of osteoclast differentiation in the MZF1-/- group was significantly increased. Furthermore, we found that cell viability was increased in the early stages of RANKL-induced cell differentiation in the MZF1-/- group cells. We examined some prevalent ferroptosis markers, including malondialdehyde, glutathione, and intracellular Fe, the active form of iron in the cytoplasm during the early stages of osteoclastogenesis. The results suggest that MZF1 may be involved in osteoclast differentiation by regulating RANKL-induced ferroptosis of osteoclasts. Collectively, our findings shed light on the essential involvement of MZF1 in the regulation of osteoclastogenesis in osteoporosis and provide insights into its potential underlying mechanism.
Collapse
Affiliation(s)
- Zechao Qu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Yong Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Yiwei Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Yining Gong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Xiangcheng Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Mingzhe Feng
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Jingjun Zhang
- Health Science Centre, Xi'an Jiaotong University, No. 76, Yanta West Road, Yanta District, Xi'an City, Shaanxi Province 710061, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| |
Collapse
|
37
|
Gao Y, Wu R, Pei Z, Ke C, Zeng D, Li X, Zhang Y. Cell cycle associated protein 1 associates with immune infiltration and ferroptosis in gastrointestinal cancer. Heliyon 2024; 10:e28794. [PMID: 38586390 PMCID: PMC10998105 DOI: 10.1016/j.heliyon.2024.e28794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Background Cell Cycle-Associated Protein 1 (CAPRIN1) play an important role in cell proliferation, oxidative stress, and inflammatory response. Nonetheless, its role in tumor immunity and ferroptosis is largely unknown in gastrointestinal cancer patients. Methods Through comprehensive bioinformatics, we investigate CAPRIN1 expression patterns and its role in diagnosis, functional signaling pathways, tumor immune infiltration and ferroptosis of different gastrointestinal cancer subtypes. Besides, immunohistochemistry (IHC) and immune blot were used to validate our esophagus cancer clinical data. The ferroptotic features of CAPRIN1 in vitro were assessed through knockdown assays in esophagus cancer cells. Results CAPRIN1 expression was significantly upregulated, correlated with poor prognosis, and served as an independent risk factor for most gastrointestinal cancer. Moreover, CAPRIN1 overexpression positively correlated with gene markers of most infiltrating immune cells, and immune checkpoints. CAPRIN1 knockdown significantly decreased the protein level of major histocompatibility complex class I molecules. We also identified a link between CAPRIN1 and ferroptosis-related genes in gastrointestinal cancer. Knockdown of CAPRIN1 significantly increased the production of lipid reactive oxygen species and malondialdehyde. Inhibition of CAPRIN1 expression promoted ferroptotic cell death induced by RAS-selective lethal 3 and erastin in human esophagus cancer cells. Conclusion Collectively, our results demonstrate that CAPRIN1 is aberrantly expressed in gastrointestinal cancer, is associated with poor prognosis, and could potentially influence immune infiltration and ferroptosis.
Collapse
Affiliation(s)
- Yan Gao
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Ruimin Wu
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhijun Pei
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Changbin Ke
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Daobing Zeng
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaohui Li
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
38
|
Li D, Zhang M, Liu J, Li Z, Ni B. Potential therapies for HCC involving targeting the ferroptosis pathway. Am J Cancer Res 2024; 14:1446-1465. [PMID: 38726269 PMCID: PMC11076240 DOI: 10.62347/sigp9279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/15/2024] [Indexed: 05/12/2024] Open
Abstract
Liver cancer ranks as the third leading cause of cancer-related mortality worldwide, predominantly in the form of hepatocellular carcinoma (HCC). Conventional detection and treatment approaches have proven inadequate for addressing the elevated incidence and mortality rates associated with HCC. However, a significant body of research suggests that combating HCC through the induction of ferroptosis is possible. Ferroptosis is a regulated cell death process characterized by elevated levels of reactive oxygen species (ROS) and lipid peroxide accumulation, both of which are dependent on iron levels. In recent years, there has been an increasing focus on investigating ferroptosis, revealing its potential as an inhibitory mechanism against various diseases, including tumors. Therefore, ferroptosis induction holds great promise for treating multiple types of cancers, including HCC. This article provides a review of the key mechanisms involved in ferroptosis and explores the potential application of multiple targets and pathways associated with ferroptosis in HCC treatment to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Denghui Li
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing 400038, China
| | - Mengjie Zhang
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing 400038, China
| | - Ju Liu
- Department of Foreign Languages, College of Basic Medical Sciences, Third Military Medical UniversityChongqing 400038, China
| | - Zhifang Li
- Department of Foreign Languages, College of Basic Medical Sciences, Third Military Medical UniversityChongqing 400038, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing 400038, China
| |
Collapse
|
39
|
Ji J, Cheng Z, Zhang J, Wu J, Xu X, Guo C, Feng J. Dihydroartemisinin induces ferroptosis of hepatocellular carcinoma via inhibiting ATF4-xCT pathway. J Cell Mol Med 2024; 28:e18335. [PMID: 38652216 PMCID: PMC11037408 DOI: 10.1111/jcmm.18335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Management of hepatocellular carcinoma (HCC) remains challenging due to population growth, frequent recurrence and drug resistance. Targeting of genes involved with the ferroptosis is a promising alternative treatment strategy for HCC. The present study aimed to investigate the effect of dihydroartemisinin (DHA) against HCC and explore the underlying mechanisms. The effects of DHA on induction of ferroptosis were investigated with the measurement of malondialdehyde concentrations, oxidised C11 BODIPY 581/591 staining, as well as subcutaneous xenograft experiments. Activated transcription factor 4 (ATF4) and solute carrier family 7 member 11 (SLC7A11 or xCT) were overexpressed with lentiviruses to verify the target of DHA. Here, we confirmed the anticancer effect of DHA in inducing ferroptosis is related to ATF4. High expression of ATF4 is related to worse clinicopathological prognosis of HCC. Mechanistically, DHA inhibited the expression of ATF4, thereby promoting lipid peroxidation and ferroptosis of HCC cells. Overexpression of ATF4 rescued DHA-induced ferroptosis. Moreover, ATF4 could directly bound to the SLC7A11 promoter and increase its transcription. In addition, DHA enhances the chemosensitivity of sorafenib on HCC in vivo and in vitro. These findings confirm that DHA induces ferroptosis of HCC via inhibiting ATF4-xCT pathway, thereby providing new drug options for the treatment of HCC.
Collapse
Affiliation(s)
- Jie Ji
- Department of GastroenterologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghaiChina
| | - Ziqi Cheng
- Department of GastroenterologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghaiChina
| | - Jie Zhang
- Department of GastroenterologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghaiChina
| | - Jianye Wu
- Department of GastroenterologyPutuo People's Hospital, Tongji UniversityShanghaiChina
| | - Xuanfu Xu
- Department of GastroenterologyShidong Hospital, University of Shanghai for Science and TechnologyShanghaiChina
| | - Chuanyong Guo
- Department of GastroenterologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghaiChina
| | - Jiao Feng
- Department of GastroenterologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
40
|
Peleman C, Francque S, Berghe TV. Emerging role of ferroptosis in metabolic dysfunction-associated steatotic liver disease: revisiting hepatic lipid peroxidation. EBioMedicine 2024; 102:105088. [PMID: 38537604 PMCID: PMC11026979 DOI: 10.1016/j.ebiom.2024.105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is characterised by cell death of parenchymal liver cells which interact with their microenvironment to drive disease activity and liver fibrosis. The identification of the major death type could pave the way towards pharmacotherapy for MASH. To date, increasing evidence suggest a type of regulated cell death, named ferroptosis, which occurs through iron-catalysed peroxidation of polyunsaturated fatty acids (PUFA) in membrane phospholipids. Lipid peroxidation enjoys renewed interest in the light of ferroptosis, as druggable target in MASH. This review recapitulates the molecular mechanisms of ferroptosis in liver physiology, evidence for ferroptosis in human MASH and critically appraises the results of ferroptosis targeting in preclinical MASH models. Rewiring of redox, iron and PUFA metabolism in MASH creates a proferroptotic environment involved in MASH-related hepatocellular carcinoma (HCC) development. Ferroptosis induction might be a promising novel approach to eradicate HCC, while its inhibition might ameliorate MASH disease progression.
Collapse
Affiliation(s)
- Cédric Peleman
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Sven Francque
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium.
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
41
|
Jiang Y, Yu Y, Pan Z, Glandorff C, Sun M. Ferroptosis: a new hunter of hepatocellular carcinoma. Cell Death Discov 2024; 10:136. [PMID: 38480712 PMCID: PMC10937674 DOI: 10.1038/s41420-024-01863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Ferroptosis is an iron ion-dependent, regulatory cell death modality driven by intracellular lipid peroxidation that plays a key role in the development of HCC. Studies have shown that various clinical agents (e.g., sorafenib) have ferroptosis inducer-like effects and can exert therapeutic effects by modulating different key factors in the ferroptosis pathway. This implies that targeting tumor cell ferroptosis may be a very promising strategy for tumor therapy. In this paper, we summarize the prerequisites and defense systems for the occurrence of ferroptosis and the regulatory targets of drug-mediated ferroptosis action in HCC, the differences and connections between ferroptosis and other programmed cell deaths. We aim to summarize the theoretical basis, classical inducers of ferroptosis and research progress of ferroptosis in HCC cells, clued to the treatment of HCC by regulating ferroptosis network. Further investigation of the specific mechanisms of ferroptosis and the development of hepatocellular carcinoma and interventions at different stages of hepatocellular carcinoma will help us to deepen our understanding of hepatocellular carcinoma, with a view to providing new and more precise preventive as well as therapeutic measures for patients.
Collapse
Affiliation(s)
- Yulang Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongxin Yu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziyang Pan
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Christian Glandorff
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- University Clinic of Hamburg at the HanseMerkur Center of TCM, Hamburg, Germany
| | - Mingyu Sun
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
42
|
Stoess C, Choi YK, Onyuru J, Friess H, Hoffman HM, Hartmann D, Feldstein AE. Cell Death in Liver Disease and Liver Surgery. Biomedicines 2024; 12:559. [PMID: 38540172 PMCID: PMC10968531 DOI: 10.3390/biomedicines12030559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 01/03/2025] Open
Abstract
Cell death is crucial for maintaining tissue balance and responding to diseases. However, under pathological conditions, the surge in dying cells results in an overwhelming presence of cell debris and the release of danger signals. In the liver, this gives rise to hepatic inflammation and hepatocellular cell death, which are key factors in various liver diseases caused by viruses, toxins, metabolic issues, or autoimmune factors. Both clinical and in vivo studies strongly affirm that hepatocyte death serves as a catalyst in the progression of liver disease. This advancement is characterized by successive stages of inflammation, fibrosis, and cirrhosis, culminating in a higher risk of tumor development. In this review, we explore pivotal forms of cell death, including apoptosis, pyroptosis, and necroptosis, examining their roles in both acute and chronic liver conditions, including liver cancer. Furthermore, we discuss the significance of cell death in liver surgery and ischemia-reperfusion injury. Our objective is to illuminate the molecular mechanisms governing cell death in liver diseases, as this understanding is crucial for identifying therapeutic opportunities aimed at modulating cell death pathways.
Collapse
Affiliation(s)
- Christian Stoess
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Yeon-Kyung Choi
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Internal Medicine, School of Medicine, Kyungpook National University Chilgok Hospital, Kyungpook National University, Daegu 41404, Republic of Korea
| | - Janset Onyuru
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Helmut Friess
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Hal M. Hoffman
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel Hartmann
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Ariel E. Feldstein
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Novo Nordisk, Global Drug Discovery, Ørestads Boulevard 108, 2300 Copenhagen, Denmark
| |
Collapse
|
43
|
Lian F, Dong D, Pu J, Yang G, Yang J, Yang S, Wang Y, Zhao B, Lu M. Ubiquitin-specific peptidase 10 attenuates the ferroptosis to promote thyroid cancer malignancy by facilitating GPX4 via elevating SIRT6. ENVIRONMENTAL TOXICOLOGY 2024; 39:1129-1139. [PMID: 37860888 DOI: 10.1002/tox.23992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 08/14/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE Ubiquitin-specific peptidase 10 (USP10) has been found to have oncogenic activity in several human tumors. This study first revealed the exact function of USP10 on the progression of thyroid cancer (THCA) by researching its effect on the ferroptosis. METHODS USP10 expression in THCA patients was analyzed by online data analysis and in 75 THCA cases was scrutinized by real-time quantitative reverse transcription-polymerase chain reaction and Western blot. Influence of USP10 on the viability, colony formation, migration and invasion of THCA cells was demonstrated by cell counting kit-8, colony formation, wound healing and Transwell invasion assays. Effect of USP10 on the Erastin-induced ferroptosis in THCA cells was evaluated by detecting the ferroptosis-related indicators. Intrinsic mechanism of USP10, glutathione peroxidase 4 (GPX4) and sirtuin 6 (SIRT6) in regulating THCA progression was identified. In vivo xenograft experiment was implemented. RESULTS USP10 was abundantly expressed in THCA patients, linking to poor outcome. USP10 overexpression enhanced the viability, colony formation, migration and invasion of THCA cells. USP10 mitigated the Erastin-induced ferroptosis in THCA cells, decreased the levels of iron, Fe2+ , malondialdehyde, lipid reactive oxygen species, reduced mitochondrial superoxide level, and increased mitochondrial membrane potential. USP10 facilitated the expression of ferroptosis suppressor GPX4 by elevating SIRT6. Loss of USP10 repressed the in vivo growth of THCA cells. CONCLUSION USP10 might attenuate the ferroptosis to promote thyroid cancer malignancy by facilitating GPX4 via elevating SIRT6. It might be novel target for the treatment of THCA.
Collapse
Affiliation(s)
- Feng Lian
- Department of General Surgery, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dandan Dong
- Department of General Surgery, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaxi Pu
- Department of General Surgery, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanghua Yang
- Department of General Surgery, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Yang
- Department of General Surgery, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaofei Yang
- Department of General Surgery, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijie Wang
- Department of General Surgery, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Zhao
- Department of General Surgery, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minhao Lu
- Department of General Surgery, The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
44
|
Wen F, Zhao F, Huang W, Liang Y, Sun R, Lin Y, Zhang W. A novel ferroptosis-related gene signature for overall survival prediction in patients with gastric cancer. Sci Rep 2024; 14:4422. [PMID: 38388534 PMCID: PMC10883968 DOI: 10.1038/s41598-024-53515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
The global diagnosis rate and mortality of gastric cancer (GC) are among the highest. Ferroptosis and iron-metabolism have a profound impact on tumor development and are closely linked to cancer treatment and patient's prognosis. In this study, we identified six PRDEGs (prognostic ferroptosis- and iron metabolism-related differentially expressed genes) using LASSO-penalized Cox regression analysis. The TCGA cohort was used to establish a prognostic risk model, which allowed us to categorize GC patients into the high- and the low-risk groups based on the median value of the risk scores. Our study demonstrated that patients in the low-risk group had a higher probability of survival compared to those in the high-risk group. Furthermore, the low-risk group exhibited a higher tumor mutation burden (TMB) and a longer 5-year survival period when compared to the high-risk group. In summary, the prognostic risk model, based on the six genes associated with ferroptosis and iron-metabolism, performs well in predicting the prognosis of GC patients.
Collapse
Affiliation(s)
- Fang Wen
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Fan Zhao
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Wenjie Huang
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yan Liang
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Ruolan Sun
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yize Lin
- Clinical Laboratory Department, Hospital of the Office of the People's Government of the Tibet Autonomous Region in Chengdu, Chengdu, 850015, Sichuan, China
| | - Weihua Zhang
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
45
|
Jin D, Hui Y, Liu D, Li N, Leng J, Wang G, Wang Q, Lu Z. LINC00942 inhibits ferroptosis and induces the immunosuppression of regulatory T cells by recruiting IGF2BP3/SLC7A11 in hepatocellular carcinoma. Funct Integr Genomics 2024; 24:29. [PMID: 38353724 PMCID: PMC10867055 DOI: 10.1007/s10142-024-01292-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with a high recurrence rate and a poor prognosis. Long intergenic nonprotein coding RNA 942 (LINC00942) is reported to be related to ferroptosis and the immune response in HCC and serves as an oncogene in various cancers. This research aimed to explore the contribution of LINC00942 in HCC progression. Functional assays were used to evaluate the functional role of LINC00942 in vitro and in vivo. Mechanistic assays were conducted to assess the association of LINC00942 with insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) and solute carrier family 7 member 11 (SLC7A11) and the regulatory pattern of LINC00942 in HCC cells. LINC00942 was found to exhibit upregulation in HCC tissue and cells. LINC00942 facilitated HCC cell proliferation, suppressed ferroptosis, and converted naive CD4+ T cells to inducible Treg (iTreg) cells by regulating SLC7A11. Furthermore, SLC7A11 expression was positively modulated by LINC00942 in HCC cells. IGF2BP3 was a shared RNA-binding protein (RBP) for LINC00942 and SLC7A11. The binding between the SLC7A11 3' untranslated region and IGF2BP3 was verified, and LINC00942 was found to recruit IGF2BP3 to promote SLC7A11 mRNA stability in an m6A-dependent manner. Moreover, mouse tumor growth and proliferation were inhibited, and the number of FOXP3+CD25+ T cells was increased, while ferroptosis was enhanced after LINC00942 knockdown in vivo. LINC00942 suppresses ferroptosis and induces Treg immunosuppression in HCC by recruiting IGF2BP3 to enhance SLC7A11 mRNA stability, which may provide novel therapeutic targets for HCC.
Collapse
Affiliation(s)
- Dong Jin
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Yongfeng Hui
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Di Liu
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Nan Li
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Junzhi Leng
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Genwang Wang
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Qi Wang
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| | - Zhenhui Lu
- Department of Hepatobiliary Surgery, Shekou Shenzhen People's Hospital, 36 Shekou Industrial 7 Road, Nanshan District, Shenzhen, 518067, Guangdong, China.
| |
Collapse
|
46
|
Zhao JW, Zhao WY, Cui XH, Xing L, Shi JC, Yu L. The role of the mitochondrial ribosomal protein family in detecting hepatocellular carcinoma and predicting prognosis, immune features, and drug sensitivity. Clin Transl Oncol 2024; 26:496-514. [PMID: 37407805 DOI: 10.1007/s12094-023-03269-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumors, with a slow onset, rapid progression, and frequent recurrence. Previous research has implicated mitochondrial ribosomal genes in the development, metastasis, and prognosis of various cancers. However, further research is necessary to establish a link between mitochondrial ribosomal protein (MRP) family expression and HCC diagnosis, prognosis, ferroptosis-related gene (FRG) expression, m6A modification-related gene expression, tumor immunity, and drug sensitivity. METHODS Bioinformatics resources were used to analyze data from patients with HCC retrieved from the TCGA, ICGC, and GTEx databases (GEPIA, UALCAN, Xiantao tool, cBioPortal, STRING, Cytoscape, TISIDB, and GSCALite). RESULTS Among the 82 MRP family members, 14 MRP genes (MRPS21, MRPS23, MRPL9, DAP3, MRPL13, MRPL17, MRPL24, MRPL55, MRPL16, MRPL14, MRPS17, MRPL47, MRPL21, and MRPL15) were significantly upregulated differentially expressed genes (DEGs) in HCC tumor samples in comparison to normal samples. Receiver-operating characteristic curve analysis indicated that all 14 DEGs show good diagnostic performance. Furthermore, TCGA analysis revealed that the mRNA expression of 39 MRPs was associated with overall survival (OS) in HCC. HCC was divided into two molecular subtypes (C1 and C2) with distinct prognoses using clustering analysis. The clusters showed different FRG expression and m6A methylation profiles and immune features, and prognostic models showed that the model integrating 5 MRP genes (MRPS15, MRPL3, MRPL9, MRPL36, and MRPL37) and 2 FRGs (SLC1A5 and SLC5A11) attained a greater clinical net benefit than three other prognostic models. Finally, analysis of the CTRP and GDSC databases revealed several potential drugs that could target prognostic MRP genes. CONCLUSION We identified 14 MRP genes as HCC diagnostic markers. We investigated FRG and m6A modification-related gene expression profiles and immune features in patients with HCC, and developed and validated a model incorporating MRP and FRG expression that accurately and reliably predicts HCC prognosis and may predict disease progression and treatment response.
Collapse
Affiliation(s)
- Jin-Wei Zhao
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130000, Jilin Province, China
| | - Wei-Yi Zhao
- Medical College of YanBian University, YanBian, 133000, China
| | - Xin-Hua Cui
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130000, Jilin Province, China
| | - Lin Xing
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130000, Jilin Province, China
| | - Jia-Cheng Shi
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130000, Jilin Province, China
| | - Lu Yu
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130000, Jilin Province, China.
| |
Collapse
|
47
|
Zhang QQ, Chen Q, Cao P, Shi CX, Zhang LY, Wang LW, Gong ZJ. AGK2 pre-treatment protects against thioacetamide-induced acute liver failure via regulating the MFN2-PERK axis and ferroptosis signaling pathway. Hepatobiliary Pancreat Dis Int 2024; 23:43-51. [PMID: 36966125 DOI: 10.1016/j.hbpd.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 03/10/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND Acute liver failure (ALF) is an unpredictable and life-threatening critical illness. The pathological characteristic of ALF is massive necrosis of hepatocytes and lots of inflammatory cells infiltration which may lead to multiple organ failure. METHODS Animals were divided into 3 groups, normal, thioacetamide (TAA, ALF model) and TAA + AGK2. Cultured L02 cells were divided into 5 groups, normal, TAA, TAA + mitofusin 2 (MFN2)-siRNA, TAA + AGK2, and TAA + AGK2 + MFN2-siRNA groups. The liver histology was evaluated with hematoxylin and eosin staining, inositol-requiring enzyme 1 (IRE1), activating transcription factor 6β (ATF6β), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) and phosphorylated-PERK (p-PERK). C/EBP homologous protein (CHOP), reactive oxygen species (ROS), MFN2 and glutathione peroxidase 4 (GPX4) were measured with Western blotting, and cell viability and liver chemistry were also measured. Mitochondria-associated endoplasmic reticulum membranes (MAMs) were measured by immunofluorescence. RESULTS The liver tissue in the ALF group had massive inflammatory cell infiltration and hepatocytes necrosis, which were reduced by AGK2 pre-treatment. In comparison to the normal group, apoptosis rate and levels of IRE1, ATF6β, p-PERK, CHOP, ROS and Fe2+ in the TAA-induced ALF model group were significantly increased, which were decreased by AGK2 pre-treatment. The levels of MFN2 and GPX4 were decreased in TAA-induced mice compared with the normal group, which were enhanced by AGK2 pre-treatment. Compared with the TAA-induced L02 cell, apoptosis rate and levels of IRE1, ATF6β, p-PERK, CHOP, ROS and Fe2+ were further increased and levels of MFN2 and GPX4 were decreased in the MFN2-siRNA group. AGK2 pre-treatment decreased the apoptosis rate and levels of IRE1, ATF6β, p-PERK, CHOP, ROS and Fe2+ and enhanced the protein expression of MFN2 and GPX4 in MFN2-siRNA treated L02 cell. Immunofluorescence observation showed that level of MAMs was promoted in the AGK2 pre-treatment group when compared with the TAA-induced group in both mice and L02 cells. CONCLUSIONS The data suggested that AGK2 pre-treatment had hepatoprotective role in TAA-induced ALF via upregulating the expression of MFN2 and then inhibiting PERK and ferroptosis pathway in ALF.
Collapse
Affiliation(s)
- Qing-Qi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Pan Cao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chun-Xia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lu-Yi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lu-Wen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zuo-Jiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
48
|
Mo Y, Zou Z, Chen E. Targeting ferroptosis in hepatocellular carcinoma. Hepatol Int 2024; 18:32-49. [PMID: 37880567 DOI: 10.1007/s12072-023-10593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/04/2023] [Indexed: 10/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with complex survival mechanism and drug resistance, resulting in cancer-related high mortality in the world. Ferroptosis represents a form of regulated cell death, typically distinguished by iron-dependent lipid peroxidation. Cancer cells often employ antioxidant defenses to evade the harmful effects of excess iron. Recent research has proposed that directing interventions towards ferroptosis could serve as an effective strategy in curbing the proliferation and invasion of HCC. Immunotherapy has made some preliminary progress in the remodeling of immune microenvironment, but it has not completely inhibited HCC growth, invasion and drug resistance. Furthermore, ferroptosis is widely observed in the formation of immune microenvironment of HCC and mediates the response of many targeted drugs and immunotherapy. Clarifying the role of ferroptosis in these complex processes is expected to provide a new prospect for HCC treatment. In this review, we outline the mechanisms by which HCC develops invasiveness and drug resistance by evading iron-dependent death, and paint a comprehensive landscape of ferroptosis in different cell types in the HCC immune microenvironment.
Collapse
Affiliation(s)
- Yuqian Mo
- School of Public Health, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhilin Zou
- Department of Ophthalmology, Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Erbao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China.
| |
Collapse
|
49
|
Li P, Wang S, Wan H, Huang Y, Yin K, Sun K, Jin H, Wang Z. Construction of disulfidptosis-based immune response prediction model with artificial intelligence and validation of the pivotal grouping oncogene c-MET in regulating T cell exhaustion. Front Immunol 2024; 15:1258475. [PMID: 38352883 PMCID: PMC10862485 DOI: 10.3389/fimmu.2024.1258475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Background Given the lack of research on disulfidptosis, our study aimed to dissect its role in pan-cancer and explore the crosstalk between disulfidptosis and cancer immunity. Methods Based on TCGA, ICGC, CGGA, GSE30219, GSE31210, GSE37745, GSE50081, GSE22138, GSE41613, univariate Cox regression, LASSO regression, and multivariate Cox regression were used to construct the rough gene signature based on disulfidptosis for each type of cancer. SsGSEA and Cibersort, followed by correlation analysis, were harnessed to explore the linkage between disulfidptosis and cancer immunity. Weighted correlation network analysis (WGCNA) and Machine learning were utilized to make a refined prognosis model for pan-cancer. In particular, a customized, enhanced prognosis model was made for glioma. The siRNA transfection, FACS, ELISA, etc., were employed to validate the function of c-MET. Results The expression comparison of the disulfidptosis-related genes (DRGs) between tumor and nontumor tissues implied a significant difference in most cancers. The correlation between disulfidptosis and immune cell infiltration, including T cell exhaustion (Tex), was evident, especially in glioma. The 7-gene signature was constructed as the rough model for the glioma prognosis. A pan-cancer suitable DSP clustering was made and validated to predict the prognosis. Furthermore, two DSP groups were defined by machine learning to predict the survival and immune therapy response in glioma, which was validated in CGGA. PD-L1 and other immune pathways were highly enriched in the core blue gene module from WGCNA. Among them, c-MET was validated as a tumor driver gene and JAK3-STAT3-PD-L1/PD1 regulator in glioma and T cells. Specifically, the down-regulation of c-MET decreased the proportion of PD1+ CD8+ T cells. Conclusion To summarize, we dissected the roles of DRGs in the prognosis and their relationship with immunity in pan-cancer. A general prognosis model based on machine learning was constructed for pan-cancer and validated by external datasets with a consistent result. In particular, a survival-predicting model was made specifically for patients with glioma to predict its survival and immune response to ICIs. C-MET was screened and validated for its tumor driver gene and immune regulation function (inducing t-cell exhaustion) in glioma.
Collapse
Affiliation(s)
- Pengping Li
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Shaowen Wang
- Neuromedicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hong Wan
- Department of General Surgery, Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuqing Huang
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Kexin Yin
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Ke Sun
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Haigang Jin
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Zhenyu Wang
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
50
|
Cao X, Ge Y, Yan Z, Hu X, Peng F, Zhang Y, He X, Zong D. MTDH enhances radiosensitivity of head and neck squamous cell carcinoma by promoting ferroptosis based on a prognostic signature. JOURNAL OF RADIATION RESEARCH 2024; 65:10-27. [PMID: 37981296 PMCID: PMC10803166 DOI: 10.1093/jrr/rrad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/16/2023] [Indexed: 11/21/2023]
Abstract
Ionizing radiation (IR) induces ferroptosis in head and neck squamous cell carcinoma (HNSCC). But, it remains unclear whether ferroptosis affects the prognosis of HNSCC patients after receiving radiotherapy. This study aims to develop a ferroptosis signature to predict the radiosensitivity and prognosis of HNSCC. Ferroptosis-related genes, clinical data and RNA expression profiles were obtained from the FerrDb database, The Cancer Genome Atlas and GEO database. Prognostic genes were identified by random survival forest, univariate Cox regression, Kaplan-Meier and ROC analyses. Principal component analysis, multivariate Cox regression, nomogram and DCA analyses were conducted to estimate its predictive ability. Functional enrichment and immune-related analyses were performed to explore potential biological mechanisms and tumor immune microenvironment. The effect of the hub gene on ferroptosis and radiosensitivity was verified using flow cytometry, quantitative real-time PCR and clonogenic survival assay. We constructed a ferroptosis-related signature, including IL6, NCF2, metadherin (MTDH) and CBS. We classified patients into high-risk (HRisk) and low-risk groups according to the risk scores. The risk score was confirmed to be an independent predictor for overall survival (OS). Combining the clinical stage with the risk score, we established a predictive nomogram for OS. Furthermore, pathways related to tumorigenesis and tumor immune suppression were mainly enriched in HRisk. MTDH was verified to have a potent effect on IR-induced ferroptosis and consequently promoted radiosensitivity. We constructed a ferroptosis-related signature to predict radiosensitivity and OS in HNSCC patients. MTDH was identified as a promising therapeutic target in radioresistant HNSCC patients.
Collapse
Affiliation(s)
- Xiang Cao
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Yizhi Ge
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Zhenyu Yan
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Xinyu Hu
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Fanyu Peng
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Yujie Zhang
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Xia He
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu 210000, China
- Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu 221000, China
| | - Dan Zong
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| |
Collapse
|