1
|
Corsi J, Semnani P, Peroni D, Belli R, Morelli A, Lassandro M, Sidarovich V, Adami V, Valentini C, Cavallerio P, Grosskreutz J, Fabbiano F, Grossmann D, Hermann A, Tell G, Basso M, D’Agostino V. Small molecule inhibitors of hnRNPA2B1-RNA interactions reveal a predictable sorting of RNA subsets into extracellular vesicles. Nucleic Acids Res 2025; 53:gkaf176. [PMID: 40103230 PMCID: PMC11915509 DOI: 10.1093/nar/gkaf176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025] Open
Abstract
Extracellular vesicles (EVs) are cell-secreted membranous particles contributing to intercellular communication. Coding and noncoding RNAs can be detected as EV cargo, and RNA-binding proteins (RBPs), such as hnRNPA2B1, have been circumstantially implicated in EV-RNA sorting mechanisms. However, the contribution of competitive RBP-RNA interactions responsible for RNA-sorting outcomes is still unclear, especially for predicting the EV-RNA content. We designed a reverse proteomic analysis exploiting the EV-RNA to identify intracellular protein binders in vitro. Using cells expressing a recombinant hnRNPA2B1 to normalize competitive interactions, we prioritized a network of heterogeneous nuclear ribonucleoproteins and purine-rich RNA sequences subsequently validated in secreted EV-RNA through short fluorescent RNA oligos. Then, we designed a GGGAG-enriched RNA probe that efficiently interacted with a full-length human hnRNPA2B1 protein. We exploited the interaction to conduct a pharmacological screening and identify inhibitors of the protein-RNA binding. Small molecules were orthogonally validated through biochemical and cell-based approaches. Selected drugs remarkably impacted secreted EV-RNAs and reduced an RNA-dependent, EV-mediated paracrine activation of NF-kB in recipient cells. These results demonstrate the relevance of post-transcriptional mechanisms for EV-RNA sorting and the possibility of predicting the EV-RNA quality for developing innovative strategies targeting discrete paracrine functions.
Collapse
Affiliation(s)
- Jessica Corsi
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Pouriya Sharbatian Semnani
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Daniele Peroni
- MS Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Romina Belli
- MS Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Alessia Morelli
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Michelangelo Lassandro
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Viktoryia Sidarovich
- HTS Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Valentina Adami
- HTS Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Chiara Valentini
- NGS Core Facility, Department of Cellular, Computational and Integrative Biomedicine CIBIO, University of Trento, 38122 Trento, Italy
| | - Paolo Cavallerio
- NGS Core Facility, Department of Cellular, Computational and Integrative Biomedicine CIBIO, University of Trento, 38122 Trento, Italy
| | - Julian Grosskreutz
- Excellence Cluster Precision Medicine in Inflammation, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Fabrizio Fabbiano
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Dajana Grossmann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DMED), University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy
| | - Manuela Basso
- Laboratory of Transcriptional Neurobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Vito G D’Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
2
|
Kodavati M, Maloji Rao VH, Provasek VE, Hegde ML. Regulation of DNA damage response by RNA/DNA-binding proteins: Implications for neurological disorders and aging. Ageing Res Rev 2024; 100:102413. [PMID: 39032612 PMCID: PMC11463832 DOI: 10.1016/j.arr.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
RNA-binding proteins (RBPs) are evolutionarily conserved across most forms of life, with an estimated 1500 RBPs in humans. Traditionally associated with post-transcriptional gene regulation, RBPs contribute to nearly every known aspect of RNA biology, including RNA splicing, transport, and decay. In recent years, an increasing subset of RBPs have been recognized for their DNA binding properties and involvement in DNA transactions. We refer to these RBPs with well-characterized DNA binding activity as RNA/DNA binding proteins (RDBPs), many of which are linked to neurological diseases. RDBPs are associated with both nuclear and mitochondrial DNA repair. Furthermore, the presence of intrinsically disordered domains in RDBPs appears to be critical for regulating their diverse interactions and plays a key role in controlling protein aggregation, which is implicated in neurodegeneration. In this review, we discuss the emerging roles of common RDBPs from the heterogeneous nuclear ribonucleoprotein (hnRNP) family, such as TAR DNA binding protein-43 (TDP43) and fused in sarcoma (FUS) in controlling DNA damage response (DDR). We also explore the implications of RDBP pathology in aging and neurodegenerative diseases and provide a prospective on the therapeutic potential of targeting RDBP pathology mediated DDR defects for motor neuron diseases and aging.
Collapse
Affiliation(s)
- Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA.
| | - Vikas H Maloji Rao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA
| | - Vincent E Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA; Department of Neurosurgery, Weill Medical College, New York, NY 10065, USA.
| |
Collapse
|
3
|
Sanjuan-Sanjuan A, Alors-Perez E, Sanchez-Frías M, Monserrat-Barbudo JA, Falguera Uceda M, Heredero-Jung S, Luque RM. Splicing Machinery Is Impaired in Oral Squamous Cell Carcinomas and Linked to Key Pathophysiological Features. Int J Mol Sci 2024; 25:6929. [PMID: 39000035 PMCID: PMC11240936 DOI: 10.3390/ijms25136929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Alternative splicing dysregulation is an emerging cancer hallmark, potentially serving as a source of novel diagnostic, prognostic, or therapeutic tools. Inhibitors of the activity of the splicing machinery can exert antitumoral effects in cancer cells. We aimed to characterize the splicing machinery (SM) components in oral squamous cell carcinoma (OSCC) and to evaluate the direct impact of the inhibition of SM-activity on OSCC-cells. The expression of 59 SM-components was assessed using a prospective case-control study of tumor and healthy samples from 37 OSCC patients, and the relationship with clinical and histopathological features was assessed. The direct effect of pladienolide-B (SM-inhibitor) on the proliferation rate of primary OSCC cell cultures was evaluated. A significant dysregulation in several SM components was found in OSCC vs. adjacent-healthy tissues [i.e., 12 out of 59 (20%)], and their expression was associated with clinical and histopathological features of less aggressiveness and overall survival. Pladienolide-B treatment significantly decreased OSCC-cell proliferation. Our data reveal a significantly altered expression of several SM-components and link it to pathophysiological features, reinforcing a potential clinical and pathophysiological relevance of the SM dysregulation in OSCC. The inhibition of SM-activity might be a therapeutic avenue in OSCC, offering a clinically relevant opportunity to be explored.
Collapse
Affiliation(s)
- Alba Sanjuan-Sanjuan
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Oral and Maxillofacial Surgery Department, HURS, 14004 Cordoba, Spain
- Oral and Maxillofacial Surgery Department, CAMC Hospital, Charleston, WV 25301, USA
| | - Emilia Alors-Perez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14014 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Marina Sanchez-Frías
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Anatomical Pathology Service, IMIBIC/HURS, 14004 Cordoba, Spain
| | - José A Monserrat-Barbudo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Oral and Maxillofacial Surgery Department, HURS, 14004 Cordoba, Spain
| | - Mabel Falguera Uceda
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Oral and Maxillofacial Surgery Department, HURS, 14004 Cordoba, Spain
| | - Susana Heredero-Jung
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Oral and Maxillofacial Surgery Department, HURS, 14004 Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14014 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| |
Collapse
|
4
|
Yang L, Zhang Z, Yao X, Wu X, Zhang Z. HNRNPL facilitates ferroptosis in hepatocellular carcinoma cells by promoting S100A9 expression. Transl Oncol 2024; 43:101908. [PMID: 38368714 PMCID: PMC10884479 DOI: 10.1016/j.tranon.2024.101908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024] Open
Abstract
OBJECTIVE This study probed into the effect of HNRNPL on ferroptosis in hepatocellular carcinoma (HCC) cells and related molecular mechanisms. METHODS Expression patterns of HNRNPL, Recombinant S100 Calcium Binding Protein A9 (S100A9) were analyzed in HCC tissues or cells. Following transfection, HCC cell activity was analyzed, followed by detection of levels of ROS, iron content, LPO, MDA, and GSH as well as the expression of ferroptosis-related proteins. For molecular mechanism, RIP, RNA pull-down assay and actinomycin D assay were implemented to verify the binding relationship between HNRNPL and S100A9. Finally, in vivo nude mouse xenograft tumor experiments were performed for further validate the crucial role of HNENPL expression in HCC. RESULTS HNRNPL and S100A9 were significantly overexpressed in HCC. sh-HNRNPL treatment led to a significant decrease in cellular activity, GSH content, and expression of GPX4 and SLC7A11, and a significant increase in iron content, LPO level, MDA, ROS content, and expression of ACSL4 and TFR1. In addition, after sh-HNRNPL was combined with oe-S100A9 or Fer-1, a ferroptosis inhibitor, both oe-S100A9 and Fer-1 reversed the promotional effect of sh-HNRNPL on ferroptosis of HCC cells when sh-HNRNPL acted alone. Mechanically, HNRNPL promoted S100A9 mRNA stability and expression through RBP. Furthermore, low expression of HNRNPL in vivo delayed the growth of xenograft tumors and the expression of ferroptosis-related proteins. CONCLUSION HNRNPL promotes S100A9 mRNA stability and expression through RBP action, thereby promoting ferroptosis in HCC cells.
Collapse
Affiliation(s)
- Lanfang Yang
- Department of Hepatopancreas Biliary, Hernia Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Hepatopancreas Biliary, Hernia Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350005, China.
| | - Zhibo Zhang
- Department of Hepatopancreas Biliary, Hernia Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Hepatopancreas Biliary, Hernia Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Xiangqing Yao
- Department of Hepatopancreas Biliary, Hernia Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Hepatopancreas Biliary, Hernia Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Xukun Wu
- Department of Hepatopancreas Biliary, Hernia Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Hepatopancreas Biliary, Hernia Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Zhao Zhang
- Department of Hepatopancreas Biliary, Hernia Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Hepatopancreas Biliary, Hernia Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350005, China
| |
Collapse
|
5
|
Zhang Z, Fan W, Gao Q, Han Y, Ma J, Gao W, Hu Y, Zhu H, Yang R, Wang H, Du B, Zhang Z, Zhong J. Hsa_Circ_0000826 inhibits the proliferation of colorectal cancer by targeting AUF1. J Genet Genomics 2023; 50:192-203. [PMID: 35940521 DOI: 10.1016/j.jgg.2022.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022]
Abstract
Many circular RNAs (circRNAs) are reported to be abnormally expressed during the progression of various tumors, and these circRNAs can be used as anti-tumor targets. Therefore, it is important to identify circRNAs that can be used effectively for the clinical diagnosis and treatment of colorectal cancer (CRC). Here, we report that hsa_Circ_0000826 (Circ_0000826), a circRNA with significantly reduced expression level in CRC tissues, is associated with a poor prognosis in patients. The silencing of Circ_0000826 promotes the proliferation of CRC cells. Conversely, the overexpression of Circ_0000826 restricted CRC cell proliferation both in vitro and in vivo. Furthermore, Circ_0000826 could target AU-rich element RNA-binding protein 1 (AUF1). AUF1, known as heterogeneous nuclear ribonucleoprotein D (hnRNP D), could bind to the c-MYC 3'-UTR and promote c-MYC expression. When Circ_0000826 binds to AUF1, it competitively inhibits the binding of AUF1 to the c-MYC 3'-UTR, which inhibits the c-MYC expression and cell proliferation. These results provide novel insights into the functional mechanism of Circ_0000826 action in CRC progression and indicate its potential use as a therapeutic target in CRC.
Collapse
Affiliation(s)
- Zheying Zhang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wenyan Fan
- Department of Microscopic Morphology Laboratory, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Qingzu Gao
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yifei Han
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jingyu Ma
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wuji Gao
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yuhan Hu
- Department of Microscopic Morphology Laboratory, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Huifang Zhu
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Rui Yang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Haijun Wang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Baoshun Du
- Second Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, Henan 453003, China
| | - Zuoyang Zhang
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Jiateng Zhong
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| |
Collapse
|
6
|
Liu M, Guo J, Jia R. Emerging roles of alternative RNA splicing in oral squamous cell carcinoma. Front Oncol 2022; 12:1019750. [PMID: 36505770 PMCID: PMC9732560 DOI: 10.3389/fonc.2022.1019750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
Alternative RNA splicing (ARS) is an essential and tightly regulated cellular process of post-transcriptional regulation of pre-mRNA. It produces multiple isoforms and may encode proteins with different or even opposite functions. The dysregulated ARS of pre-mRNA contributes to the development of many cancer types, including oral squamous cell carcinoma (OSCC), and may serve as a biomarker for the diagnosis and prognosis of OSCC and an attractive therapeutic target. ARS is mainly regulated by splicing factors, whose expression is also often dysregulated in OSCC and involved in tumorigenesis. This review focuses on the expression and roles of splicing factors in OSCC, the alternative RNA splicing events associated with OSCC, and recent advances in therapeutic approaches that target ARS.
Collapse
Affiliation(s)
- Miaomiao Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China,Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China,*Correspondence: Jihua Guo, ; Rong Jia,
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China,RNA Institute, Wuhan University, Wuhan, China,*Correspondence: Jihua Guo, ; Rong Jia,
| |
Collapse
|
7
|
Qu JH, Tarasov KV, Chakir K, Tarasova YS, Riordon DR, Lakatta EG. Proteomic Landscape and Deduced Functions of the Cardiac 14-3-3 Protein Interactome. Cells 2022; 11:cells11213496. [PMID: 36359893 PMCID: PMC9654263 DOI: 10.3390/cells11213496] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Rationale: The 14-3-3 protein family is known to interact with many proteins in non-cardiac cell types to regulate multiple signaling pathways, particularly those relating to energy and protein homeostasis; and the 14-3-3 network is a therapeutic target of critical metabolic and proteostatic signaling in cancer and neurological diseases. Although the heart is critically sensitive to nutrient and energy alterations, and multiple signaling pathways coordinate to maintain the cardiac cell homeostasis, neither the structure of cardiac 14-3-3 protein interactome, nor potential functional roles of 14-3-3 protein–protein interactions (PPIs) in heart has been explored. Objective: To establish the comprehensive landscape and characterize the functional role of cardiac 14-3-3 PPIs. Methods and Results: We evaluated both RNA expression and protein abundance of 14-3-3 isoforms in mouse heart, followed by co-immunoprecipitation of 14-3-3 proteins and mass spectrometry in left ventricle. We identified 52 proteins comprising the cardiac 14-3-3 interactome. Multiple bioinformatic analyses indicated that more than half of the proteins bound to 14-3-3 are related to mitochondria; and the deduced functions of the mitochondrial 14-3-3 network are to regulate cardiac ATP production via interactions with mitochondrial inner membrane proteins, especially those in mitochondrial complex I. Binding to ribosomal proteins, 14-3-3 proteins likely coordinate protein synthesis and protein quality control. Localizations of 14-3-3 proteins to mitochondria and ribosome were validated via immunofluorescence assays. The deduced function of cardiac 14-3-3 PPIs is to regulate cardiac metabolic homeostasis and proteostasis. Conclusions: Thus, the cardiac 14-3-3 interactome may be a potential therapeutic target in cardiovascular metabolic and proteostatic disease states, as it already is in cancer therapy.
Collapse
|
8
|
de Avila JG, Redondo CS, Alviz-Amador A. Bioinformatic Analysis of Plus Gene Expression Related to Progression from Leukoplakia to Oral Squamous Cell Carcinoma. Asian Pac J Cancer Prev 2022; 23:3833-3842. [PMID: 36444596 PMCID: PMC9930946 DOI: 10.31557/apjcp.2022.23.11.3833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Leukoplakia is one of the most frequently found lesions in the oral cavity, with a probability of 17 to 24% of becoming malignant cells in a period of 30 years. OBJECTIVE To identify differentially expressed gene profiles of leukoplakia and its progression to oral squamous cell carcinoma, essential for the discovery of new biomarkers to predict and prevent the presence of diseases in the oral cavity. METHODS Initially, gene profiles of GSE85514 and GSE160042 from the Gene Expression Omnibus database were used. Differentially expressed genes were identified using GEO2R. The CLUEGO plugin in Cytoscape was used for DEG functionality and enrichment analysis. Finally, a protein-protein interaction (PPI) network was constructed using Cytoscape from data collected online from the STRING server. RESULTS According to the MCC algorithm, the 10 most found gene sequences were HNRNPU, SMC1A, PAFAH1B1, EHMT1, SPTBN4, OLFM1, NCAM1, SF3B3, FGF2, and UBE2I; with HNRNPU, SMC1A, and PAFAH1B1 being the most representative of the modules. CONCLUSIONS We were able to describe the gene sequences that promote the progression from leukoplakia to oral squamous cell carcinoma. Within these genes, the HNRNPU, SMC1A, and PAFAH1B1 constitute the main promising therapeutic targets to counteract the progression of oral cancer, they could also be important biomarkers for the diagnosis and classification of the disease.
Collapse
Affiliation(s)
- Jaime Guzman de Avila
- Department of Oral Medicine, School of Dentistry, University of Cartagena Cartagena, Colombia.
| | | | - Antistio Alviz-Amador
- Pharmacology and Therapeutic Group, Faculty of Pharmaceutical Sciences, University of Cartagena, Health Science Campus, Colombia. ,For Correspondence:
| |
Collapse
|
9
|
Yang SL, Guan HQ, Yang HB, Chen Y, Huang XY, Chen L, Shen ZF, Wang LX. The expression and biological effect of NR2F6 in non-small cell lung cancer. Front Oncol 2022; 12:940234. [PMID: 36119482 PMCID: PMC9478584 DOI: 10.3389/fonc.2022.940234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 12/25/2022] Open
Abstract
Objective This study aimed to explore the expression and effect of the nuclear receptor subfamily 2 group F member 6 (NR2F6) gene in non-small cell lung cancer (NSCLC) and provide an experimental basis for the targeted therapy of NSCLC. Method First, the expression of NR2F6 in lung cancer tissues was analyzed using the Gene Expression Omnibus and the Cancer Genome Atlas (TCGA) databases, and the expression of NR2F6 in lung cancer tissues and cells was verified by Western blotting and quantitative polymerase chain reaction. Next, the relationship between NR2F6 expression and the clinicopathological features of lung cancer was analyzed via immunohistochemistry, and the relationship between NR2F6 expression and prognosis was analyzed using the Kaplan–Meier Plotter. The influence of NR2F6 knockdown on the proliferation capacity of lung cancer cells was then verified at cell level. Finally, the expression of heterogeneous nuclear ribonucleoprotein D (HNRNPD) in lung cancer tissue was analyzed using the TCGA database and immunohistochemistry. The impact of HNRNPD knockdown on the proliferation capacity of lung cancer cells was verified at cell level, and the relationship between NR2F6 and HNRNPD was verified by co-immunoprecipitation. Results NR2F6 was highly expressed in lung cancer tissues and cells, and its expression was positively correlated with the depth of invasion, lymphatic metastasis, and clinical stage of lung cancer. High expression of NR2F6 in lung cancer was also significantly associated with poor prognosis. At cell level, NR2F6 knockdown was found to inhibit the proliferation of H460 and H358 in lung cancer cells. Furthermore, the TCGA database and immunohistochemical results showed that HNRNPD was highly expressed in lung cancer tissues and was highly consistent with NR2F6 expression in these tissues. Knockdown of HNRNPD also inhibited the proliferation of lung cancer cells. The co-immunoprecipitation experiment verified that NR2F6 interacted with HNRNPD. Conclusion NR2F6 may interact with HNRNPD to jointly regulate the progression of lung cancer, and this conclusion provides a new experimental basis for the study of the molecular targeted therapy of NSCLC.
Collapse
Affiliation(s)
- Shu lin Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huan qin Guan
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hong bao Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yao Chen
- Department of pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao ying Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi fa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liang xing Wang, ; Zhi fa Shen,
| | - Liang xing Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liang xing Wang, ; Zhi fa Shen,
| |
Collapse
|
10
|
Li ML, Ragupathi A, Patel N, Hernandez T, Magsino J, Werlen G, Brewer G, Jacinto E. The RNA-binding protein AUF1 facilitates Akt phosphorylation at the membrane. J Biol Chem 2022; 298:102437. [PMID: 36041631 PMCID: PMC9513781 DOI: 10.1016/j.jbc.2022.102437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Mammalian target of rapamycin (mTOR), which is part of mTOR complex 1 (mTORC1) and mTORC2, controls cellular metabolism in response to levels of nutrients and other growth signals. A hallmark of mTORC2 activation is the phosphorylation of Akt, which becomes upregulated in cancer. How mTORC2 modulates Akt phosphorylation remains poorly understood. Here, we found that the RNA-binding protein, AUF1 (ARE/poly(U)-binding/degradation factor 1), modulates mTORC2/Akt signaling. We determined that AUF1 is required for phosphorylation of Akt at Thr308, Thr450, and Ser473 and that AUF1 also mediates phosphorylation of the mTORC2-modulated metabolic enzyme glutamine fructose-6-phosphate amidotransferase 1 at Ser243. In addition, AUF1 immunoprecipitation followed by quantitative RT–PCR revealed that the mRNAs of Akt, glutamine fructose-6-phosphate amidotransferase 1, and the mTORC2 component SIN1 associate with AUF1. Furthermore, expression of the p40 and p45, but not the p37 or p42, isoforms of AUF1 specifically mediate Akt phosphorylation. In the absence of AUF1, subcellular fractionation indicated that Akt fails to localize to the membrane. However, ectopic expression of a membrane-targeted allele of Akt is sufficient to allow Akt-Ser473 phosphorylation despite AUF1 depletion. Finally, conditions that enhance mTORC2 signaling, such as acute glutamine withdrawal, augment AUF1 phosphorylation, whereas mTOR inhibition abolishes AUF1 phosphorylation. Our findings unravel a role for AUF1 in promoting membrane localization of Akt to facilitate its phosphorylation on this cellular compartment. Targeting AUF1 could have therapeutic benefit for cancers with upregulated mTORC2/Akt signaling.
Collapse
Affiliation(s)
- Mei-Ling Li
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854
| | - Aparna Ragupathi
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854
| | - Nikhil Patel
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854
| | - Tatiana Hernandez
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854
| | - Jedrick Magsino
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854
| | - Guy Werlen
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854
| | - Gary Brewer
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854.
| | - Estela Jacinto
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854.
| |
Collapse
|
11
|
Lymphatic filarial serum proteome profiling for identification and characterization of diagnostic biomarkers. PLoS One 2022; 17:e0270635. [PMID: 35793325 PMCID: PMC9258881 DOI: 10.1371/journal.pone.0270635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/15/2022] [Indexed: 01/08/2023] Open
Abstract
Lymphatic Filariasis (LF) affects more than 863 million people in tropical and subtropical areas of the world, causing high morbidity and long illnesses leading to social exclusion and loss of wages. A combination of drugs Ivermectin, Diethylcarbamazine citrate and Albendazole is recommended by WHO to accelerate the Global Programme to Eliminate Lymphatic Filariasis (GPELF). To assess the outcome of GPELF, to re-evaluate and to formulate further strategies there is an imperative need for high quality diagnostic markers. This study was undertaken to identify Lymphatic Filarial biomarkers which can detect LF infections in asymptomatic cases and would also serve as indicators for differentiating among different clinical stages of the disease. A combination of Fourier-transform infrared spectroscopy (FT-IR), MMP zymography, SDS-PAGE, classical 2DE along with MALDI-TOF/MS was done to identify LF biomarkers from serum samples of different stages of LF patients. FT-IR spectroscopy coupled with univariate and multivariate analysis of LF serum samples, revealed significant differences in peak intensity at 3300, 2950, 1645, 1540 and 1448 cm-1 (p<0.05). The proteomics analysis results showed that various proteins were differentially expressed (p<0.05), including C-reactive protein, α-1-antitrypsin, heterogeneous nuclear ribonucleoprotein D like, apolipoproteins A-I and A-IV in different LF clinical stages. Functional pathway analysis suggested the involvement of differentially expressed proteins in vital physiological pathways like acute phase response, hemostasis, complement and coagulation cascades. Furthermore, the differentiation between different stages of LF cases and biomarkers identified in this study clearly demonstrates the potential of the human serum profiling approach for LF detection. To our knowledge, this is the first report of comparative human serum profiling in different categories of LF patients.
Collapse
|
12
|
Li Y, Wang H, Wan J, Ma Q, Qi Y, Gu Z. The hnRNPK/A1/R/U Complex Regulates Gene Transcription and Translation and is a Favorable Prognostic Biomarker for Human Colorectal Adenocarcinoma. Front Oncol 2022; 12:845931. [PMID: 35875075 PMCID: PMC9301189 DOI: 10.3389/fonc.2022.845931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are emerging as a crucially important protein family in tumors. However, it is unclear which family members are essential for cancer progression, and their diverse expression patterns and prognostic values are rarely reported. In this work, we found that the expression levels of hnRNPs were all upregulated in colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ) tissues. Immunohistochemical staining revealed that hnRNPA1, hnRNPA2B1, hnRNPC, hnRNPK, hnRNPR, and hnRNPU are overexpressed in colorectal adenocarcinoma. Additionally, the promoter methylation levels of hnRNPs were significantly elevated or decreased, and multiple genetic alterations of hnRNPs were found in colorectal adenocarcinoma patients. Correlation analysis showed that the expression levels of hnRNPs were positively correlated with each other. Furthermore, we demonstrated that high expressions of hnRNPA1, hnRNPK, hnRNPR, and hnRNPU were associated with better overall survival rates for colorectal adenocarcinoma patients. The co-expression network and functional prediction analysis indicated that hnRNPK/A1/R/U was involved in cellular gene transcription and translation. Moreover, hnRNPK/A1/R/U complex was identified and confirmed by mass spectrometry and co-immunoprecipitation. RNA sequencing analysis revealed that the transcription factor hnRNPK regulated transcription and translation of related genes. Finally, through establishment of stable cell lines in vitro, we verified that hnRNPK was a favorable factor in human colorectal adenocarcinoma which promoted immune cell infiltration and inhibited tumor growth. Our findings illustrate that the hnRNPK/A1/R/U complex is a favorable prognostic biomarker for human colorectal adenocarcinoma. Targeting hnRNPK during transcription and translation could be a promising therapeutic strategy for colorectal adenocarcinoma treatment.
Collapse
Affiliation(s)
- Yixin Li
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hui Wang
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jiajia Wan
- Post-Doctoral Station of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qian Ma
- Post-Doctoral Station of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Qian Ma, ; Yu Qi, ; Zhuoyu Gu,
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Qian Ma, ; Yu Qi, ; Zhuoyu Gu,
| | - Zhuoyu Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Qian Ma, ; Yu Qi, ; Zhuoyu Gu,
| |
Collapse
|
13
|
Evaluation of Heterogeneous Nuclear Ribonucleoprotein D Expression as a Diagnostic Marker for Oral Squamous Cell Carcinoma. Diagnostics (Basel) 2022; 12:diagnostics12061332. [PMID: 35741145 PMCID: PMC9221583 DOI: 10.3390/diagnostics12061332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
The heterogeneous nuclear ribonucleoprotein D (hnRNPD) serves as a prognostic marker for oral squamous cell carcinoma (OSCC). We evaluated the diagnostic potential of hnRNPD to differentiate between OSCC and normal mucosa. Immunohistochemistry for hnRNPD and a routinely used diagnostic marker deltaNp63 (p40) was performed in 32 normal mucosae and 46 OSCC specimens. Subsequently, receiver-operating characteristic analysis was performed to evaluate the diagnostic potential of hnRNPD in comparison to that of p40. Immunostaining for p40 and hnRNPD was observed in 39 (84.78%) and 38 (82.60%) cases, respectively, in OSCC specimens. The poorly differentiated squamous cell carcinoma displayed 100% (eight cases) immunoreactivity for hnRNPD as compared to 87.5% (seven cases) for p40. Nuclear staining of p40 and hnRNPD was observed in all OSCC specimens. p40 staining was restricted to basal cells, whereas both basal and para-basal cells displayed hnRNPD staining in OSCC specimens. Areas under the curve for p40 and hnRNPD were 0.86 and 0.87, respectively. p40 and hnRNPD showed equal sensitivities (80.95%). However, hnRNPD displayed marginally higher (88.23%) specificity for tumor cells as compared to that of p40 (85.29%). Conclusion: In addition to being a well-established prognostic marker, hnRNPD can serve as a diagnostic marker for OSCC.
Collapse
|
14
|
Kumar V, Kumar A, Kumar M, Lone MR, Mishra D, Chauhan SS. NFκB (RelA) mediates transactivation of hnRNPD in oral cancer cells. Sci Rep 2022; 12:5944. [PMID: 35396527 PMCID: PMC8993925 DOI: 10.1038/s41598-022-09963-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/25/2022] [Indexed: 11/09/2022] Open
Abstract
Heterogeneous Ribonucleoprotein D (hnRNPD) is an RNA binding protein involved in post-transcriptional regulation of multiple mediators of carcinogenesis. We previously demonstrated a strong association of hnRNPD over expression with poor outcome in Oral Squamous Cell Carcinoma (OSCC). However, hitherto the precise molecular mechanism of its overexpression in oral cancer was not clear. Therefore, in an attempt to elucidate the transcriptional regulation of hnRNPD expression, we cloned 1406 bp of 5ʹ flanking region of human hnRNPD gene along with 257 bp of its first exon upstream to promoterless luciferase reporter gene in pGL3-Basic. Transfection of the resulting construct in SCC-4 cells yielded 1271 fold higher luciferase activity over parent vector. By promoter deletion analysis, we identified a canonical TATA box containing 126 bp core promoter region that retained ~ 58% activity of the full length promoter. In silico analysis revealed the presence of four putative NFκB binding motifs in the promoter. Sequential deletion of these motifs from the full-length promoter reporter construct coupled with luciferase assays revealed an 82% decrease in promoter activity after deletion of the first (−1358/−1347) motif and 99% reduction after the deletion of second motif (−1052/−1041). In-vivo binding of NFκB (RelA) to these two motifs in SCC-4 cells was confirmed by ChIP assays. Site directed mutagenesis of even one of these two motifs completely abolished promoter activity, while mutagenesis of the remaining two motifs had marginal effect on the same. Consistent with these findings, treatment of SCC-4 cells with PDTC, a known inhibitor of NFκB dramatically reduced the levels hnRNPD mRNA and protein. Finally, the expression of hnRNPD and NFκB in clinical specimen from 37 oral cancer patients was assessed and subjected to Spearmen’s Correlation analysis which revealed a strong positive correlation between the two. Thus, results of the present study for the first time convincingly demonstrate NFκB (RelA) mediated transcriptional upregulation of hnRNPD expression in oral cancer.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Anurag Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Bilaspur, India
| | - Moien Rasheed Lone
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Deepika Mishra
- Division of Oral Pathology, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam Singh Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
15
|
AU-Rich Element RNA Binding Proteins: At the Crossroads of Post-Transcriptional Regulation and Genome Integrity. Int J Mol Sci 2021; 23:ijms23010096. [PMID: 35008519 PMCID: PMC8744917 DOI: 10.3390/ijms23010096] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Genome integrity must be tightly preserved to ensure cellular survival and to deter the genesis of disease. Endogenous and exogenous stressors that impose threats to genomic stability through DNA damage are counteracted by a tightly regulated DNA damage response (DDR). RNA binding proteins (RBPs) are emerging as regulators and mediators of diverse biological processes. Specifically, RBPs that bind to adenine uridine (AU)-rich elements (AREs) in the 3' untranslated region (UTR) of mRNAs (AU-RBPs) have emerged as key players in regulating the DDR and preserving genome integrity. Here we review eight established AU-RBPs (AUF1, HuR, KHSRP, TIA-1, TIAR, ZFP36, ZFP36L1, ZFP36L2) and their ability to maintain genome integrity through various interactions. We have reviewed canonical roles of AU-RBPs in regulating the fate of mRNA transcripts encoding DDR genes at multiple post-transcriptional levels. We have also attempted to shed light on non-canonical roles of AU-RBPs exploring their post-translational modifications (PTMs) and sub-cellular localization in response to genotoxic stresses by various factors involved in DDR and genome maintenance. Dysfunctional AU-RBPs have been increasingly found to be associated with many human cancers. Further understanding of the roles of AU-RBPS in maintaining genomic integrity may uncover novel therapeutic strategies for cancer.
Collapse
|
16
|
Wang C, Huang H. Effects of ribosomal associated protein hnRNP D in gemcitabine-resistant pancreatic cancer. Biochem Biophys Res Commun 2021; 579:181-187. [PMID: 34624736 DOI: 10.1016/j.bbrc.2021.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the role of ribosomal associated protein hnRNP D in resistance to gemcitabine (GEM) in pancreatic cancer cells. METHODS The expressions of hnRNP D in clinical pancreatic cancer tissues were detected by immunohistochemistry. The proliferation of pancreatic cancer cell lines (PANC-1, BXPC-3, SW1990 and ASPC-1) were measured by CCK8 assay. IC50 of each cell line was calculated and compared. The expressions of hnRNP D protein in pancreatic cancer cell lines were detected by Western Blot assay. The change of hnRNP D expression was confirmed by qPCR and Western Blot after the expressions of hnRNP D in PANC-1 cells being down-regulated by miRNA. And than the apoptosis rate and cell cycle of PANC-1 cells were detected by flow cytometry, while the expressions of apoptosis-related proteins cleaved caspase3, P-Akt, AKT and P65 were detected by Western Blot. RESULTS HnRNP D protein expressed in clinical pancreatic tissues widely. The IC50 of GEM in PANC-1 was the highest while in BXPC-3 was the lowest. And the expression of hnRNP D protein in PANC-1 was the highest while in BXPC-3 was the lowest. After miRNA interfering, the expressions of hnRNP D protein and gene were significantly decreased in PANC-1 cells. The decrease of hnRNP D expression promoted cell apoptosis and inhibited the cell transformation to the S phase in cell cycle. Under the intervention of GEM, cleaved caspase3 expression was significantly increased, while p-Akt, AKT and P65 expression was significantly decreased. CONCLUSION HnRNP D was associated with resistance to GEM in pancreatic cancer cells. Decreasing of hnRNP D expression promoted cell apoptosis induced by GEM.
Collapse
Affiliation(s)
- Congfei Wang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
17
|
Impact of alternative splicing on mechanisms of resistance to anticancer drugs. Biochem Pharmacol 2021; 193:114810. [PMID: 34673012 DOI: 10.1016/j.bcp.2021.114810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022]
Abstract
A shared characteristic of many tumors is the lack of response to anticancer drugs. Multiple mechanisms of pharmacoresistance (MPRs) are involved in permitting cancer cells to overcome the effect of these agents. Pharmacoresistance can be primary (intrinsic) or secondary (acquired), i.e., triggered or enhanced in response to the treatment. Moreover, MPRs usually result in the lack of sensitivity to several agents, which accounts for diverse multidrug-resistant (MDR) phenotypes. MPRs are based on the dynamic expression of more than one hundred genes, constituting the so-called resistome. Alternative splicing (AS) during pre-mRNA maturation results in changes affecting proteins involved in the resistome. The resulting splicing variants (SVs) reduce the efficacy of anticancer drugs by lowering the intracellular levels of active agents, altering molecular targets, enhancing both DNA repair ability and defensive mechanism of tumors, inducing changes in the balance between pro-survival and pro-apoptosis signals, modifying interactions with the tumor microenvironment, and favoring malignant phenotypic transitions. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the impact of AS on MPR in cancer cells.
Collapse
|
18
|
Jeffery N, Chambers D, Invergo BM, Ames RM, Harries LW. Changes to the identity of EndoC-βH1 beta cells may be mediated by stress-induced depletion of HNRNPD. Cell Biosci 2021; 11:144. [PMID: 34301309 PMCID: PMC8305497 DOI: 10.1186/s13578-021-00658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 12/02/2022] Open
Abstract
Background Beta cell identity changes occur in the islets of donors with diabetes, but the molecular basis of this remains unclear. Protecting residual functional beta cells from cell identity changes may be beneficial for patients with diabetes. Results A somatostatin-positive cell population was induced in stressed clonal human EndoC-βH1 beta cells and was isolated using FACS. A transcriptomic characterisation of somatostatin-positive cells was then carried out. Gain of somatostatin-positivity was associated with marked dysregulation of the non-coding genome. Very few coding genes were differentially expressed. Potential candidate effector genes were assessed by targeted gene knockdown. Targeted knockdown of the HNRNPD gene induced the emergence of a somatostatin-positive cell population in clonal EndoC-βH1 beta cells comparable with that we have previously reported in stressed cells. Conclusions We report here a role for the HNRNPD gene in determination of beta cell identity in response to cellular stress. These findings widen our understanding of the role of RNA binding proteins and RNA biology in determining cell identity and may be important for protecting remaining beta cell reserve in diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00658-6.
Collapse
Affiliation(s)
- Nicola Jeffery
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK
| | | | | | - Ryan M Ames
- University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
19
|
Distinct p63 and p73 Protein Interactions Predict Specific Functions in mRNA Splicing and Polyploidy Control in Epithelia. Cells 2020; 10:cells10010025. [PMID: 33375680 PMCID: PMC7824480 DOI: 10.3390/cells10010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial organs are the first barrier against microorganisms and genotoxic stress, in which the p53 family members p63 and p73 have both overlapping and distinct functions. Intriguingly, p73 displays a very specific localization to basal epithelial cells in human tissues, while p63 is expressed in both basal and differentiated cells. Here, we analyse systematically the literature describing p63 and p73 protein-protein interactions to reveal distinct functions underlying the aforementioned distribution. We have found that p73 and p63 cooperate in the genome stability surveillance in proliferating cells; p73 specific interactors contribute to the transcriptional repression, anaphase promoting complex and spindle assembly checkpoint, whereas p63 specific interactors play roles in the regulation of mRNA processing and splicing in both proliferating and differentiated cells. Our analysis reveals the diversification of the RNA and DNA specific functions within the p53 family.
Collapse
|
20
|
Tian XY, Li J, Liu TH, Li DN, Wang JJ, Zhang H, Deng ZL, Chen FJ, Cai JP. The overexpression of AUF1 in colorectal cancer predicts a poor prognosis and promotes cancer progression by activating ERK and AKT pathways. Cancer Med 2020; 9:8612-8623. [PMID: 33016643 PMCID: PMC7666750 DOI: 10.1002/cam4.3464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 01/09/2023] Open
Abstract
Background AUF1 is one of the AU‐rich binding proteins, which promotes rapid ARE‐mRNA degradation. Recently, it has been reported that AUF1 is involved in regulating the antioxidant system because of its capacity to bind specifically to RNA containing oxidized bases and degrade oxidized RNA. Many antioxidant proteins have been reported to be overexpressed in colorectal cancer (CRC), however, the role of AUF1 in the progression of CRC has not been explored. Methods The expression level of AUF1 protein in human CRC cell lines and CRC tissues was detected by western blotting and immunohistochemistry (IHC. The effects of AUF1 knockdown on CRC cell proliferation, migration, invasion and changes in the signaling pathways were evaluated using a cell counting kit‐8 (CCK‐8), Transwell assays and western blotting. Subcutaneous xenograft tumor model was employed to further substantiate the role of AUF1 in CRC. Results AUF1 protein was upregulated in CRC tissues and CRC cells, and high expression of AUF1 was significantly associated with advanced AJCC stage (P = .001), lymph node metastasis (P = .007), distant metastasis (P = .038) and differentiation (P = .009) of CRC specimens. CRC patients with the high expression of AUF1 had an extremely poor prognosis. The knockdown of AUF1 suppressed CRC cell line proliferation, migration and invasion, inhibited CRC cells tumorigenesis and growth in nude mice, and reduced phosphorylated‐ERK1/2 and phosphorylated AKT in CRC cells. Conclusion Our findings demonstrate that AUF1 is probably involved in the progression of CRC via the activation of the ERK1/2 and AKT pathways. AU‐rich RNA‐binding factor 1 could be used as a novel prognostic biomarker and a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Xin-Yuan Tian
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jin Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Teng-Hui Liu
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Dan-Ni Li
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jing-Jing Wang
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, P.R. China
| | - He Zhang
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Zhou-Lu Deng
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Fu-Jun Chen
- Department of Anorectal Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, P.R. China
| | - Jian-Ping Cai
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, P.R. China.,The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| |
Collapse
|
21
|
Li H, Liu J, Shen S, Dai D, Cheng S, Dong X, Sun L, Guo X. Pan-cancer analysis of alternative splicing regulator heterogeneous nuclear ribonucleoproteins (hnRNPs) family and their prognostic potential. J Cell Mol Med 2020; 24:11111-11119. [PMID: 32915499 PMCID: PMC7576281 DOI: 10.1111/jcmm.15558] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/23/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
As the most critical alternative splicing regulator, heterogeneous nuclear ribonucleoproteins (hnRNPs) have been reported to be implicated in various aspects of cancer. However, the comprehensive understanding of hnRNPs in cancer is still lacking. The molecular alterations and clinical relevance of hnRNP genes were systematically analysed in 33 cancer types based on next-generation sequence data. The expression, mutation, copy number variation, functional pathways, immune cell correlations and prognostic value of hnRNPs were investigated across different cancer types. HNRNPA1 and HNRNPAB were highly expressed in most tumours. HNRNPM, HNRNPUL1, and HNRNPL showed high mutation frequencies, and most hnRNP genes were frequently mutated in uterine corpus endometrial carcinoma (UCEC). HNRNPA2B1 showed widespread copy number amplification across various cancer types. HNRNPs participated in cancer-related pathways including protein secretion, mitotic spindle, G2/M checkpoint, DNA repair, IL6/JAK/STAT3 signal and coagulation, of which hnRNP genes of HNRNPF, HNRNPH2, HNRNPU and HNRNPUL1 are more likely to be implicated. Significant correlation of hnRNP genes with T help cells, NK cells, CD8 positive T cells and neutrophils was identified. Most hnRNPs were associated with worse survival of adrenocortical carcinoma (ACC), liver hepatocellular carcinoma (LIHC) and lung adenocarcinoma (LUAD), whereas hnRNPs predicted better prognosis in kidney renal clear cell carcinoma (KIRC) and thymoma (THYM). The prognosis analysis of KIRC suggested that hnRNPs gene cluster was significantly associated with overall survival (HR = 0.5, 95% CI = 0.35-0.73, P = 0.003). These findings provide novel evidence for further investigation of hnRNPs in the development and therapy of cancer in the future.
Collapse
Affiliation(s)
- Hao Li
- Department of Laboratory MedicineThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Jingwei Liu
- Department of Anorectal Surgerythe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Shixuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryKey Laboratory of Cancer Etiology and PreventionThe First Hospital of China Medical UniversityChina Medical UniversityShenyangChina
| | - Di Dai
- Department of Laboratory MedicineThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Shitong Cheng
- Department of Laboratory MedicineThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Xiaolong Dong
- Department of Laboratory MedicineThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryKey Laboratory of Cancer Etiology and PreventionThe First Hospital of China Medical UniversityChina Medical UniversityShenyangChina
| | - Xiaolin Guo
- Department of Laboratory MedicineThe First Affiliated Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
22
|
Bai Y, Wang J, Gao Z, Dai E. Identification and Verification of Two Novel Differentially Expressed Proteins from Non-neoplastic Mucosa and Colorectal Carcinoma Via iTRAQ Combined with Liquid Chromatography-Mass Spectrometry. Pathol Oncol Res 2019; 26:967-976. [PMID: 30927204 DOI: 10.1007/s12253-019-00651-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
Abstract
Recurrence or metastasis of colorectal cancer (CRC) is common following surgery and/or adjuvant therapy, particularly in patients with an advanced stage of the cancer. Identifying key molecular markers of CRC is beneficial for early diagnosis and early treatment, which may eventually improve the prognosis of patients with CRC. Isobaric mass tags for relative and absolute quantification (iTRAQ) in combination with multidimensional liquid chromatography and tandem mass spectrometry (LC-MS/MS) were used to identify differentially expressed proteins between CRC tissues and paired adjacent normal mucosa. Among the 105 patients, adenocarcinoma was the most common CRC subtype, stage III was the most common Tumor-Node-Metastasis stage and high levels of Ki-67 indicated the rapid proliferation of tumor cells in the samples. The LC-MS/MS-based iTRAQ technology identified 271 differentially expressed proteins, with 130 upregulated proteins and 141 downregulated proteins. Bioinformatics analysis revealed that golgin subfamily A member 2 (GOLGA2) and heterogeneous nuclear ribonucleoprotein D0 (hnRNPD) were located in the center of the upregulated protein network, and were closely associated with the development of CRC. The upregulation of GOLGA2 and hnRNPD was further verified in human tissues using western blotting and immunohistochemistry. GOLGA2 and hnRNPD were identified as two novels differentially expressed proteins in human CRC. Furthermore, the LC-MS/MS-based iTRAQ proteomic approach is a useful tool for searching and identifying differentially expressed proteins, and may be used to provide a comprehensive understanding of the processes that mediate the development of CRC.
Collapse
Affiliation(s)
- Yuru Bai
- Department of Military Medical and Health Care, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin, 300162, People's Republic of China.,Department of Oncology, Nanjing Jiangning Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, 211100, People's Republic of China
| | - Jiabao Wang
- Department of Military Medical and Health Care, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin, 300162, People's Republic of China
| | - Zhihua Gao
- Department of Military Medical and Health Care, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin, 300162, People's Republic of China
| | - Erqing Dai
- Department of Military Medical and Health Care, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin, 300162, People's Republic of China.
| |
Collapse
|
23
|
Masuda K, Kuwano Y. Diverse roles of RNA-binding proteins in cancer traits and their implications in gastrointestinal cancers. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1520. [PMID: 30479000 DOI: 10.1002/wrna.1520] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
Abstract
Gene expression patterns in cancer cells are strongly influenced by posttranscriptional mechanisms. RNA-binding proteins (RBPs) play key roles in posttranscriptional gene regulation; they can interact with target mRNAs in a sequence- and structure-dependent manner, and determine cellular behavior by manipulating the processing of these mRNAs. Numerous RBPs are aberrantly deregulated in many human cancers and hence, affect the functioning of mRNAs that encode proteins, implicated in carcinogenesis. Here, we summarize the key roles of RBPs in posttranscriptional gene regulation, describe RBPs disrupted in cancer, and lastly focus on RBPs that are responsible for implementing cancer traits in the digestive tract. These evidences may reveal a potential link between changes in expression/function of RBPs and malignant transformation, and a framework for new insights and potential therapeutic applications. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Kiyoshi Masuda
- Kawasaki Medical School at Kurashiki-City, Okayama, Japan
| | - Yuki Kuwano
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School at Tokushima-City, Tokushima, Japan
| |
Collapse
|
24
|
Armero VES, Tremblay MP, Allaire A, Boudreault S, Martenon-Brodeur C, Duval C, Durand M, Lapointe E, Thibault P, Tremblay-Létourneau M, Perreault JP, Scott MS, Bisaillon M. Transcriptome-wide analysis of alternative RNA splicing events in Epstein-Barr virus-associated gastric carcinomas. PLoS One 2017; 12:e0176880. [PMID: 28493890 PMCID: PMC5426614 DOI: 10.1371/journal.pone.0176880] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/18/2017] [Indexed: 01/12/2023] Open
Abstract
Multiple human diseases including cancer have been associated with a dysregulation in RNA splicing patterns. In the current study, modifications to the global RNA splicing landscape of cellular genes were investigated in the context of Epstein-Barr virus-associated gastric cancer. Global alterations to the RNA splicing landscape of cellular genes was examined in a large-scale screen from 295 primary gastric adenocarcinomas using high-throughput RNA sequencing data. RT-PCR analysis, mass spectrometry, and co-immunoprecipitation studies were also used to experimentally validate and investigate the differential alternative splicing (AS) events that were observed through RNA-seq studies. Our study identifies alterations in the AS patterns of approximately 900 genes such as tumor suppressor genes, transcription factors, splicing factors, and kinases. These findings allowed the identification of unique gene signatures for which AS is misregulated in both Epstein-Barr virus-associated gastric cancer and EBV-negative gastric cancer. Moreover, we show that the expression of Epstein-Barr nuclear antigen 1 (EBNA1) leads to modifications in the AS profile of cellular genes and that the EBNA1 protein interacts with cellular splicing factors. These findings provide insights into the molecular differences between various types of gastric cancer and suggest a role for the EBNA1 protein in the dysregulation of cellular AS.
Collapse
Affiliation(s)
- Victoria E. S. Armero
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marie-Pier Tremblay
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Andréa Allaire
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Simon Boudreault
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Camille Martenon-Brodeur
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Cyntia Duval
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mathieu Durand
- Plateforme RNomique, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Elvy Lapointe
- Plateforme RNomique, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Philippe Thibault
- Plateforme RNomique, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Maude Tremblay-Létourneau
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Pierre Perreault
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Michelle S. Scott
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Martin Bisaillon
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
25
|
Gao Y, Wang W, Cao J, Wang F, Geng Y, Cao J, Xu X, Zhou J, Liu P, Zhang S. Upregulation of AUF1 is involved in the proliferation of esophageal squamous cell carcinoma through GCH1. Int J Oncol 2016; 49:2001-2010. [PMID: 27826622 DOI: 10.3892/ijo.2016.3713] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/23/2016] [Indexed: 02/04/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) has one of the highest mortality rates worldwide. AU-rich element RNA-binding factor 1 (AUF1) is an established RNA-binding protein. AUF1 influences the process of development, apoptosis and tumorigenesis via interacting with adenylate-uridylate rich elements (AREs) bearing mRNAs. However, the clinical relevance of AUF1 and its biological function in ESCC progression have not been reported. In the present study, we first investigated the expression of AUF1 in the ESCC tissue samles and normal samples. We found a significantly higher expression of AUF1 in ESCC tissues than that in normal tissues and tumor adjacent tissues. The expression of AUF1 correlated with ESCC stage (P=0.011) and marginally correlated with lymph node metastasis (P=0.055) of ESCC patients. Silencing of AUF1 by an siRNA inhibited the proliferation and enhanced the apoptosis of ESCC cells. mRNA profiling by microarray analysis revealed that AUF1 knockdown affected 285 genes (fold change ≥2) that function in multiple pathways. GTP cyclohydrolase I (GCH1), the rate limiting enzyme for BH4 synthesis, was found to be downregulated. One of the AU-rich elements in the 3'UTR of GCH1 was found to be responsive to AUF1 expression by luciferase assay. Knockdown of GCH1 suppressed cell proliferation and colony formation of ESCC cells. The expression of AUF1 significantly correlated with that of GCH1 in ESCC tissues. Taken together, we demonstrated the overexpression of AUF1 in esophageal carcinoma and identified GCH1 as AUF1's effector for the proliferation of ESCC cells.
Collapse
Affiliation(s)
- Yi Gao
- Department of Gastroenterology, The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, Jiangsu 214400, P.R. China
| | - Wenjie Wang
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jinming Cao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Fangjun Wang
- Department of Gastroenterology, The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, Jiangsu 214400, P.R. China
| | - Yangyang Geng
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jianping Cao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xiaohui Xu
- Department of General Surgery, The First People's Hospital of Taicang, Soochow University, Taicang, Jiangsu 215400, P.R. China
| | - Jundong Zhou
- The Core Laboratory of Suzhou Cancer Center and Department of Radiotherapy of Suzhou Municipal Hospital, Suzhou, Jiangsu 215001, P.R. China
| | - Pengfei Liu
- Department of Gastroenterology, The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, Jiangsu 214400, P.R. China
| | - Shuyu Zhang
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
26
|
Tremblay MP, Armero VES, Allaire A, Boudreault S, Martenon-Brodeur C, Durand M, Lapointe E, Thibault P, Tremblay-Létourneau M, Perreault JP, Scott MS, Bisaillon M. Global profiling of alternative RNA splicing events provides insights into molecular differences between various types of hepatocellular carcinoma. BMC Genomics 2016; 17:683. [PMID: 27565572 PMCID: PMC5002109 DOI: 10.1186/s12864-016-3029-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/20/2016] [Indexed: 12/13/2022] Open
Abstract
Background Dysregulations in alternative splicing (AS) patterns have been associated with many human diseases including cancer. In the present study, alterations to the global RNA splicing landscape of cellular genes were investigated in a large-scale screen from 377 liver tissue samples using high-throughput RNA sequencing data. Results Our study identifies modifications in the AS patterns of transcripts encoded by more than 2500 genes such as tumor suppressor genes, transcription factors, and kinases. These findings provide insights into the molecular differences between various types of hepatocellular carcinoma (HCC). Our analysis allowed the identification of 761 unique transcripts for which AS is misregulated in HBV-associated HCC, while 68 are unique to HCV-associated HCC, 54 to HBV&HCV-associated HCC, and 299 to virus-free HCC. Moreover, we demonstrate that the expression pattern of the RNA splicing factor hnRNPC in HCC tissues significantly correlates with patient survival. We also show that the expression of the HBx protein from HBV leads to modifications in the AS profiles of cellular genes. Finally, using RNA interference and a reverse transcription-PCR screening platform, we examined the implications of cellular proteins involved in the splicing of transcripts involved in apoptosis and demonstrate the potential contribution of these proteins in AS control. Conclusions This study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in hepatocellular carcinoma. Moreover, these data allowed us to identify unique signatures of genes for which AS is misregulated in the different types of HCC. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3029-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie-Pier Tremblay
- Département de biochimie, Pavillon de recherche appliquée sur le cancer, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Victoria E S Armero
- Département de biochimie, Pavillon de recherche appliquée sur le cancer, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Andréa Allaire
- Département de biochimie, Pavillon de recherche appliquée sur le cancer, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Simon Boudreault
- Département de biochimie, Pavillon de recherche appliquée sur le cancer, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Camille Martenon-Brodeur
- Département de biochimie, Pavillon de recherche appliquée sur le cancer, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Mathieu Durand
- Plateforme RNomique, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Elvy Lapointe
- Plateforme RNomique, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Philippe Thibault
- Plateforme RNomique, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Maude Tremblay-Létourneau
- Département de biochimie, Pavillon de recherche appliquée sur le cancer, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Jean-Pierre Perreault
- Département de biochimie, Pavillon de recherche appliquée sur le cancer, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Michelle S Scott
- Département de biochimie, Pavillon de recherche appliquée sur le cancer, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Martin Bisaillon
- Département de biochimie, Pavillon de recherche appliquée sur le cancer, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
27
|
Kumar M, Mehra S, Thakar A, Shukla NK, Roychoudhary A, Sharma MC, Ralhan R, Chauhan SS. End Binding 1 (EB1) overexpression in oral lesions and cancer: A biomarker of tumor progression and poor prognosis. Clin Chim Acta 2016; 459:45-52. [PMID: 27208742 DOI: 10.1016/j.cca.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Oral squamous cell carcinoma (OSCC) patients are at high risk of loco-regional recurrence and despite the improvement in treatment strategy, 5-year survival rates are about 50%. Identification of patients at high risk of recurrence may enable rigorous personalized post-treatment management. In an earlier proteomics study we observed overexpression of End Binding Protein (EB1) in OSCC. In the present study we investigated the diagnostic and prognostic significance of alterations in expression of EB1 in oral cancer. METHODS In this retrospective study, the expression of EB1 protein was evaluated in 259 OSCCs, 41 dysplasia, 166 hyperplasia and 126 normal tissues using immunohistochemistry and correlated with clinical-pathological parameters and prognosis of OSCC patients over a follow-up period of up to 91months. RESULTS Significantly higher expression of cytoplasmic EB1 was observed in hyperplasia [p<0.001, OR=7.2, 95% CI=4.1-12.8], dysplasia (p<0.001, OR=21.8, CI=8.8-50.2) and OSCCs (p<0.001, OR=10.1, CI=5.8-17.4) in comparison with normal mucosa. Univariate analysis revealed cytoplasmic EB1 association with tumor grade, tumor size and recurrence of the disease. Kaplan Meier survival analysis of EB1 expression showed significantly reduced disease free survival (DFS) (p=0.003). Notably, OSCC patients showing cytoplasmic EB1 overexpression demonstrated significantly reduced DFS (p=0.004, HR=2.1). CONCLUSION EB1 overexpression is an early event in oral tumorigenesis and cytoplasmic EB1 accumulation is associated with poor prognosis and tumor recurrence in OSCC patients.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Siddharth Mehra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Alok Thakar
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, New Delhi, India
| | - Nootan Kumar Shukla
- Department of Surgery, Dr. B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ajoy Roychoudhary
- Department of Dental Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Ranju Ralhan
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Mount Sinai Hospital, Toronto, Ontario, Canada; Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology - Head and Neck Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Ontario, Canada.
| | - Shyam Singh Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
28
|
Matta A, Masui O, Siu KWM, Ralhan R. Identification of 14-3-3zeta associated protein networks in oral cancer. Proteomics 2016; 16:1079-89. [PMID: 26857332 DOI: 10.1002/pmic.201500489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 01/03/2023]
Abstract
Advancements in genomics, proteomics, and bioinformatics have improved our understanding of gene/protein networks involved in intra- and intercellular communication and tumor-host interactions. Using proteomics integrated with bioinformatics, previously we reported overexpression of 14-3-3ζ in premalignant oral lesions and oral squamous cell carcinoma tissues in comparison with normal oral epithelium. 14-3-3ζ emerged as a novel molecular target for therapeutics and a potential prognostic marker in oral squamous cell carcinoma patients. However, the role of 14-3-3ζ in development and progression of oral cancer is not known yet. This study aimed to identify the 14-3-3ζ associated protein networks in oral cancer cell lines using IP-MS/MS and bioinformatics. A total of 287 binding partners of 14-3-3ζ were identified in metastatic (MDA1986) and nonmetastatic (SCC4) oral cancer cell lines including other 14-3-3 isoforms (2%), proteins involved in apoptosis (2%), cytoskeleton (9%), metabolism (16%), and maintenance of redox potential (2%). Our bioinformatics analysis revealed involvement of 14-3-3ζ in protein networks regulating cell cycle, proliferation, apoptosis, cellular trafficking, and endocytosis in oral cancer. In conclusion, our data revealed several novel protein interaction networks involving 14-3-3ζ in oral cancer progression and metastasis.
Collapse
Affiliation(s)
- Ajay Matta
- Department of Chemistry, Centre for Research in Mass Spectrometry, York University, Toronto, ON, Canada
| | - Olena Masui
- Department of Chemistry, Centre for Research in Mass Spectrometry, York University, Toronto, ON, Canada
| | - K W Michael Siu
- Department of Chemistry, Centre for Research in Mass Spectrometry, York University, Toronto, ON, Canada
| | - Ranju Ralhan
- Department of Chemistry, Centre for Research in Mass Spectrometry, York University, Toronto, ON, Canada.,Department of Otolaryngology-Head and Neck Surgery, Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Mount Sinai Hospital, Toronto, ON, Canada.,Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|