1
|
Campa MJ, Gottlin EB, Wiehe K, Patz EF. A tumor-binding antibody with cross-reactivity to viral antigens. Cancer Immunol Immunother 2025; 74:126. [PMID: 40009215 PMCID: PMC11865367 DOI: 10.1007/s00262-025-03975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND We previously identified in non-small cell lung cancer (NSCLC) patients an autoantibody to complement factor H (CFH) that is associated with non-metastatic disease and longer time to progression in patients with stage I disease. A recombinant human antibody, GT103, was cloned from single B cells isolated from patients with the autoantibody. GT103 inhibits tumor growth and establishes an antitumor microenvironment. The anti-CFH autoantibody and GT103 recognize the epitope PIDNGDIT within the SCR19 domain of CFH. Here, we asked if this autoantibody could have originally arisen as a humoral response to a similar epitope in a viral protein from a prior infection. METHODS Homologous viral peptides with high sequence identity to the core PIDNGDIT epitope sequence were identified and synthesized. NSCLC patient plasma containing anti-CFH autoantibodies were assayed by ELISA against these peptides. GT103 was assayed on a 4345-peptide pathogen microarray. RESULTS Epitopes similar to the GT103 epitope are present in several viruses, including human metapneumovirus-1 (HMPV-1) that contains a sequence within attachment glycoprotein G that differs by one amino acid. Anti-CFH autoantibodies in NSCLC patient plasma weakly bound to an HMPV-1 peptide containing the epitope. GT103 cross-reacted with multiple viral epitopes on a peptide microarray, with the top hits being peptides in the human endogenous retrovirus-K polymerase (HERV-K pol) protein and measles hemagglutinin glycoprotein. GT103 bound the viral HMPV-1, HERV-K pol, and measles epitope peptides but with lower affinity compared to the GT103 epitope peptide. CONCLUSION These findings suggest that memory B cells against a viral target could have affinity matured to produce an antibody that recognizes a similar epitope on tumor cells and exhibits antitumor properties.
Collapse
Affiliation(s)
- Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Aggeletopoulou I, Pantzios S, Triantos C. Personalized Immunity: Neoantigen-Based Vaccines Revolutionizing Hepatocellular Carcinoma Treatment. Cancers (Basel) 2025; 17:376. [PMID: 39941745 PMCID: PMC11815775 DOI: 10.3390/cancers17030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent form of primary liver cancer, presents significant therapeutic challenges due to its molecular complexity, late-stage diagnosis, and inherent resistance to conventional treatments. The intermediate to low mutational burden in HCC and its ability to evade the immune system through multiple mechanisms complicate the development of effective therapies. Recent advancements in immunotherapy, particularly neoantigen-based vaccines, offer a promising, personalized approach to HCC treatment. Neoantigens are tumor-specific peptides derived from somatic mutations in tumor cells. Unlike normal cellular antigens, neoantigens are foreign to the immune system, making them highly specific targets for immunotherapy. Neoantigens arise from genetic alterations such as point mutations, insertions, deletions, and gene fusions, which are expressed as neoepitopes that are not present in healthy tissues, thus evading the immune tolerance mechanisms that typically protect normal cells. Preclinical and early-phase clinical studies of neoantigen-based vaccines have shown promising results, demonstrating the ability of these vaccines to elicit robust T cell responses against HCC. The aim of the current review is to provide an in-depth exploration of the therapeutic potential of neoantigen-based vaccines in HCC, focusing on neoantigen identification, vaccine platforms, and their integration with immune checkpoint inhibitors to enhance immunogenicity. It also evaluates preclinical and clinical data on efficacy and safety while addressing challenges in clinical translation. By taking advantage of the unique antigenic profile of each patient's tumor, neoantigen-based vaccines represent a promising approach in the treatment of HCC, offering the potential for improved patient outcomes, long-term remission, and a shift towards personalized, precision medicine in liver cancer therapy.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| | - Spyridon Pantzios
- Hepatogastroenterology Unit, Academic Department of Internal Medicine, General Oncology Hospital of Kifissia “Agioi Anargyroi”, National and Kapodistrian University of Athens, 14564 Athens, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| |
Collapse
|
3
|
Ragone C, Cavalluzzo B, Mauriello A, Tagliamonte M, Buonaguro L. Lack of shared neoantigens in prevalent mutations in cancer. J Transl Med 2024; 22:344. [PMID: 38600547 PMCID: PMC11005154 DOI: 10.1186/s12967-024-05110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Tumors are mostly characterized by genetic instability, as result of mutations in surveillance mechanisms, such as DNA damage checkpoint, DNA repair machinery and mitotic checkpoint. Defect in one or more of these mechanisms causes additive accumulation of mutations. Some of these mutations are drivers of transformation and are positively selected during the evolution of the cancer, giving a growth advantage on the cancer cells. If such mutations would result in mutated neoantigens, these could be actionable targets for cancer vaccines and/or adoptive cell therapies. However, the results of the present analysis show, for the first time, that the most prevalent mutations identified in human cancers do not express mutated neoantigens. The hypothesis is that this is the result of the selection operated by the immune system in the very early stages of tumor development. At that stage, the tumor cells characterized by mutations giving rise to highly antigenic non-self-mutated neoantigens would be efficiently targeted and eliminated. Consequently, the outgrowing tumor cells cannot be controlled by the immune system, with an ultimate growth advantage to form large tumors embedded in an immunosuppressive tumor microenvironment (TME). The outcome of such a negative selection operated by the immune system is that the development of off-the-shelf vaccines, based on shared mutated neoantigens, does not seem to be at hand. This finding represents the first demonstration of the key role of the immune system on shaping the tumor antigen presentation and the implication in the development of antitumor immunological strategies.
Collapse
Affiliation(s)
- Concetta Ragone
- Lab of Innovative Immunological Models Unit, Istituto Nazionale Tumori, IRCCS - "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Beatrice Cavalluzzo
- Lab of Innovative Immunological Models Unit, Istituto Nazionale Tumori, IRCCS - "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Angela Mauriello
- Lab of Innovative Immunological Models Unit, Istituto Nazionale Tumori, IRCCS - "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Maria Tagliamonte
- Lab of Innovative Immunological Models Unit, Istituto Nazionale Tumori, IRCCS - "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy.
| | - Luigi Buonaguro
- Lab of Innovative Immunological Models Unit, Istituto Nazionale Tumori, IRCCS - "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy.
| |
Collapse
|
4
|
Cavalluzzo B, Viuff MC, Tvingsholm SA, Ragone C, Manolio C, Mauriello A, Buonaguro FM, Tornesello ML, Izzo F, Morabito A, Hadrup SR, Tagliamonte M, Buonaguro L. Cross-reactive CD8 + T cell responses to tumor-associated antigens (TAAs) and homologous microbiota-derived antigens (MoAs). J Exp Clin Cancer Res 2024; 43:87. [PMID: 38509571 PMCID: PMC10953141 DOI: 10.1186/s13046-024-03004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND We have recently shown extensive sequence and conformational homology between tumor-associated antigens (TAAs) and antigens derived from microorganisms (MoAs). The present study aimed to assess the breadth of T-cell recognition specific to MoAs and the corresponding TAAs in healthy subjects (HS) and patients with cancer (CP). METHOD A library of > 100 peptide-MHC (pMHC) combinations was used to generate DNA-barcode labelled multimers. Homologous peptides were selected from the Cancer Antigenic Peptide Database, as well as Bacteroidetes/Firmicutes-derived peptides. They were incubated with CD8 + T cells from the peripheral blood of HLA-A*02:01 healthy individuals (n = 10) and cancer patients (n = 16). T cell recognition was identified using tetramer-staining analysis. Cytotoxicity assay was performed using as target cells TAP-deficient T2 cells loaded with MoA or the paired TuA. RESULTS A total of 66 unique pMHC recognized by CD8+ T cells across all groups were identified. Of these, 21 epitopes from microbiota were identified as novel immunological targets. Reactivity against selected TAAs was observed for both HS and CP. pMHC tetramer staining confirmed CD8+ T cell populations cross-reacting with CTA SSX2 and paired microbiota epitopes. Moreover, PBMCs activated with the MoA where shown to release IFNγ as well as to exert cytotoxic activity against cells presenting the paired TuA. CONCLUSIONS Several predicted microbiota-derived MoAs are recognized by T cells in HS and CP. Reactivity against TAAs was observed also in HS, primed by the homologous bacterial antigens. CD8+ T cells cross-reacting with MAGE-A1 and paired microbiota epitopes were identified in three subjects. Therefore, the microbiota can elicit an extensive repertoire of natural memory T cells to TAAs, possibly able to control tumor growth ("natural anti-cancer vaccination"). In addition, non-self MoAs can be included in preventive/therapeutic off-the-shelf cancer vaccines with more potent anti-tumor efficacy than those based on TAAs.
Collapse
Affiliation(s)
- Beatrice Cavalluzzo
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Via Mariano Semmola, 52, Naples, Italy
| | - Marie Christine Viuff
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Siri Amanda Tvingsholm
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Concetta Ragone
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Via Mariano Semmola, 52, Naples, Italy
| | - Carmen Manolio
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Via Mariano Semmola, 52, Naples, Italy
| | - Angela Mauriello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Via Mariano Semmola, 52, Naples, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Unit, Istituto Nazionale Tumori - IRCCS - "Fond. G. Pascale", Naples, Italy
| | - Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Sine Reker Hadrup
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Via Mariano Semmola, 52, Naples, Italy.
| | - Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Via Mariano Semmola, 52, Naples, Italy.
| |
Collapse
|
5
|
Buonaguro L, Tagliamonte M. Peptide-based vaccine for cancer therapies. Front Immunol 2023; 14:1210044. [PMID: 37654484 PMCID: PMC10467431 DOI: 10.3389/fimmu.2023.1210044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Different strategies based on peptides are available for cancer treatment, in particular to counter-act the progression of tumor growth and disease relapse. In the last decade, in the context of therapeutic strategies against cancer, peptide-based vaccines have been evaluated in different tumor models. The peptides selected for cancer vaccine development can be classified in two main type: tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs), which are captured, internalized, processed and presented by antigen-presenting cells (APCs) to cell-mediated immunity. Peptides loaded onto MHC class I are recognized by a specific TCR of CD8+ T cells, which are activated to exert their cytotoxic activity against tumor cells presenting the same peptide-MHC-I complex. This process is defined as active immunotherapy as the host's immune system is either de novo activated or restimulated to mount an effective, tumor-specific immune reaction that may ultimately lead to tu-mor regression. However, while the preclinical data have frequently shown encouraging results, therapeutic cancer vaccines clinical trials, including those based on peptides have not provided satisfactory data to date. The limited efficacy of peptide-based cancer vaccines is the consequence of several factors, including the identification of specific target tumor antigens, the limited immunogenicity of peptides and the highly immunosuppressive tumor microenvironment (TME). An effective cancer vaccine can be developed only by addressing all such different aspects. The present review describes the state of the art for each of such factors.
Collapse
Affiliation(s)
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - “Fond G. Pascale”, Naples, Italy
| |
Collapse
|
6
|
Tian J, Ma J. The Value of Microbes in Cancer Neoantigen Immunotherapy. Pharmaceutics 2023; 15:2138. [PMID: 37631352 PMCID: PMC10459105 DOI: 10.3390/pharmaceutics15082138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Tumor neoantigens are widely used in cancer immunotherapy, and a growing body of research suggests that microbes play an important role in these neoantigen-based immunotherapeutic processes. The human body and its surrounding environment are filled with a large number of microbes that are in long-term interaction with the organism. The microbiota can modulate our immune system, help activate neoantigen-reactive T cells, and play a great role in the process of targeting tumor neoantigens for therapy. Recent studies have revealed the interconnection between microbes and neoantigens, which can cross-react with each other through molecular mimicry, providing theoretical guidance for more relevant studies. The current applications of microbes in immunotherapy against tumor neoantigens are mainly focused on cancer vaccine development and immunotherapy with immune checkpoint inhibitors. This article summarizes the related fields and suggests the importance of microbes in immunotherapy against neoantigens.
Collapse
Affiliation(s)
- Junrui Tian
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China;
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410078, China
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China;
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410078, China
| |
Collapse
|
7
|
Buonaguro L, Cavalluzzo B, Mauriello A, Ragone C, Tornesello AL, Buonaguro FM, Tornesello ML, Tagliamonte M. Microorganisms-derived antigens for preventive anti-cancer vaccines. Mol Aspects Med 2023; 92:101192. [PMID: 37295175 DOI: 10.1016/j.mam.2023.101192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Cancer prevention is one of the aim with the highest priority in order to reduce the burden of cancer diagnosis and treatment on individuals as well as on healthcare systems. To this aim, vaccines represent the most efficient primary cancer prevention strategy. Indeed, anti-cancer immunological memory elicited by preventive vaccines might promptly expand and prevent tumor from progressing. Antigens derived from microorganisms (MoAs), represent the obvious target for developing highly effective preventive vaccines for virus-induced cancers. In this respect, the drastic reduction in cancer incidence following HBV and HPV preventive vaccines are the paradigmatic example of such evidence. More recently, experimental evidences suggest that MoAs may represent a "natural" anti-cancer preventive vaccination or can be exploited for developing vaccines to prevent cancers presenting highly homologous tumor-associated antigens (TAAs) (e.g. molecular mimicry). The present review describes the different preventive anti-cancer vaccines based on antigens derived from pathogens at the different stages of development.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Beatrice Cavalluzzo
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Angela Mauriello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Concetta Ragone
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy.
| |
Collapse
|
8
|
Gouttefangeas C, Klein R, Maia A. The good and the bad of T cell cross-reactivity: challenges and opportunities for novel therapeutics in autoimmunity and cancer. Front Immunol 2023; 14:1212546. [PMID: 37409132 PMCID: PMC10319254 DOI: 10.3389/fimmu.2023.1212546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 07/07/2023] Open
Abstract
T cells are main actors of the immune system with an essential role in protection against pathogens and cancer. The molecular key event involved in this absolutely central task is the interaction of membrane-bound specific T cell receptors with peptide-MHC complexes which initiates T cell priming, activation and recall, and thus controls a range of downstream functions. While textbooks teach us that the repertoire of mature T cells is highly diverse, it is clear that this diversity cannot possibly cover all potential foreign peptides that might be encountered during life. TCR cross-reactivity, i.e. the ability of a single TCR to recognise different peptides, offers the best solution to this biological challenge. Reports have shown that indeed, TCR cross-reactivity is surprisingly high. Hence, the T cell dilemma is the following: be as specific as possible to target foreign danger and spare self, while being able to react to a large spectrum of body-threatening situations. This has major consequences for both autoimmune diseases and cancer, and significant implications for the development of T cell-based therapies. In this review, we will present essential experimental evidence of T cell cross-reactivity, implications for two opposite immune conditions, i.e. autoimmunity vs cancer, and how this can be differently exploited for immunotherapy approaches. Finally, we will discuss the tools available for predicting cross-reactivity and how improvements in this field might boost translational approaches.
Collapse
Affiliation(s)
- Cécile Gouttefangeas
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Ana Maia
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Tagliamonte M, Cavalluzzo B, Mauriello A, Ragone C, Buonaguro FM, Tornesello ML, Buonaguro L. Molecular mimicry and cancer vaccine development. Mol Cancer 2023; 22:75. [PMID: 37101139 PMCID: PMC10131527 DOI: 10.1186/s12943-023-01776-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND The development of cancer immunotherapeutic strategies relies on the identification and validation of optimal target tumor antigens, which should be tumor-specific as well as able to elicit a swift and potent anti-tumor immune response. The vast majority of such strategies are based on tumor associated antigens (TAAs) which are shared wild type cellular self-epitopes highly expressed on tumor cells. Indeed, TAAs can be used to develop off-the-shelf cancer vaccines appropriate to all patients affected by the same malignancy. However, given that they may be also presented by HLAs on the surface of non-malignant cells, they may be possibly affected by immunological tolerance or elicit autoimmune responses. MAIN BODY In order to overcome such limitations, analogue peptides with improved antigenicity and immunogenicity able to elicit a cross-reactive T cell response are needed. To this aim, non-self-antigens derived from microorganisms (MoAs) may be of great benefit.
Collapse
Affiliation(s)
- Maria Tagliamonte
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori, IRCCS - "Fond. G. Pascale", Naples, Italy
| | - Beatrice Cavalluzzo
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori, IRCCS - "Fond. G. Pascale", Naples, Italy
| | - Angela Mauriello
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori, IRCCS - "Fond. G. Pascale", Naples, Italy
| | - Concetta Ragone
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori, IRCCS - "Fond. G. Pascale", Naples, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori, IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori, IRCCS - "Fond G. Pascale", Naples, Italy
| | - Luigi Buonaguro
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori, IRCCS - "Fond. G. Pascale", Naples, Italy.
| |
Collapse
|
10
|
Characterisation of RSV Fusion Proteins from South African Patients with RSV Disease, 2019 to 2020. Viruses 2022; 14:v14112321. [PMID: 36366419 PMCID: PMC9698603 DOI: 10.3390/v14112321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Respiratory syncytial virus (RSV) is classified into RSV-A and RSV-B, which are further classified into genotypes based on variability in the G gene. The fusion (F) protein is highly conserved; however, variability within antigenic sites has been reported. This study aimed to characterise F proteins from RSV strains detected in South Africa from 2019 to 2020. Patients of all ages, from whom respiratory samples were submitted to the National Health Laboratory Service at Charlotte Maxeke Johannesburg Academic Hospital, South Africa during 2019 to 2020, were included. Complete RSV F genes were amplified for next-generation sequencing. MEGA X software was used for phylogenetic analysis. The overall prevalence of RSV was 5.8% (101/1734). Among 101 RSV positive samples only 69.3% (70/101) were available for characterization of the RSV F protein gene. Among cases included for F gene characterisation, viral co-infections were observed in 50% (35/70) and 25.7% (18/70) were admitted to intensive care units (ICU). About 74.2% (23/31) of F gene sequences cluster with other African NA1/ON1 genotypes. At antigenic site I, the V384I mutation was replaced by V384T in South African strains. The S275F mutation was seen in a single South African strain. The N120 N-linked glycosylation site was present in 25.8% (8/31) of RSV-A F proteins described in this study. For the first time, we detected the rare S275F mutation that is associated with palivizumab resistance.
Collapse
|
11
|
Manolio C, Ragone C, Cavalluzzo B, Mauriello A, Tornesello ML, Buonaguro FM, Salomone Megna A, D’Alessio G, Penta R, Tagliamonte M, Buonaguro L. Antigenic molecular mimicry in viral-mediated protection from cancer: the HIV case. J Transl Med 2022; 20:472. [PMID: 36243758 PMCID: PMC9569184 DOI: 10.1186/s12967-022-03681-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND People living with HIV/AIDS (PLWHA) show a reduced incidence for three cancer types, namely breast, prostate and colon cancers. In the present study, we assessed whether a molecular mimicry between HIV epitopes and tumor associated antigens and, consequently, a T cell cross-reactivity could provide an explanation for such an epidemiological evidence. METHODS Homology between published TAAs and non-self HIV-derived epitopes have been assessed by BLAST homology. Structural analyses have been performed by bioinformatics tools. Immunological validation of CD8+ T cell cross-reactivity has been evaluated ex vivo by tetramer staining. FINDINGS Sequence homologies between multiple TAAs and HIV epitopes have been found. High structural similarities between the paired TAAs and HIV epitopes as well as comparable patterns of contact with HLA and TCR α and β chains have been observed. Furthermore, cross-reacting CD8+ T cells have been identified. INTERPRETATION This is the first study showing a molecular mimicry between HIV antigens an TAAs identified in breast, prostate and colon cancers. Therefore, it is highly reasonable that memory CD8+ T cells elicited during the HIV infection may play a key role in controlling development and progression of such cancers in the PLWHA lifetime. This represents the first demonstration ever that a viral infection may induce a natural "preventive" anti-cancer memory T cells, with highly relevant implications beyond the HIV infection.
Collapse
Affiliation(s)
- Carmen Manolio
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS – “Fond G. Pascale”, Via Mariano Semmola, 52, Naples, Italy
| | - Concetta Ragone
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS – “Fond G. Pascale”, Via Mariano Semmola, 52, Naples, Italy
| | - Beatrice Cavalluzzo
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS – “Fond G. Pascale”, Via Mariano Semmola, 52, Naples, Italy
| | - Angela Mauriello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS – “Fond G. Pascale”, Via Mariano Semmola, 52, Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS – “Fond G. Pascale”, Naples, Italy
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS – “Fond G. Pascale”, Naples, Italy
| | | | - Giovanna D’Alessio
- Division of Infectious Diseases, AORN San Pio Hospital, Benevento, Italy
| | - Roberta Penta
- Cellular Manipulation and Immunogenetics, Oncology Dep, Ba.S.C.O. Unit, AORN Santobono-Pausilipon, Naples, Italy
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS – “Fond G. Pascale”, Via Mariano Semmola, 52, Naples, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS – “Fond G. Pascale”, Via Mariano Semmola, 52, Naples, Italy
| |
Collapse
|
12
|
Neoantigens and their clinical applications in human gastrointestinal cancers. World J Surg Oncol 2022; 20:321. [PMID: 36171610 PMCID: PMC9520945 DOI: 10.1186/s12957-022-02776-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/16/2022] [Indexed: 12/24/2022] Open
Abstract
Background Tumor-specific neoantigens are ideal targets for cancer immunotherapy. As research findings have proved, neoantigen-specific T cell activity is immunotherapy’s most important determinant. Main text There is sufficient evidence showing the role of neoantigens in clinically successful immunotherapy, providing a justification for targeting. Because of the significance of the pre-existing anti-tumor immune response for the immune checkpoint inhibitor, it is believed that personalized neoantigen-based therapy may be an imperative approach for cancer therapy. Thus, intensive attention is given to strategies targeting neoantigens for the significant impact with other immunotherapies, such as the immune checkpoint inhibitor. Today, several algorithms are designed and optimized based on Next-Generation Sequencing and public databases, including dbPepNeo, TANTIGEN 2.0, Cancer Antigenic Peptide Database, NEPdb, and CEDAR databases for predicting neoantigens in silico that stimulates the development of T cell therapies, cancer vaccine, and other ongoing immunotherapy approaches. Conclusions In this review, we deliberated the current developments in understanding and recognition of the immunogenicity of newly found gastrointestinal neoantigens as well as their functions in immunotherapies and cancer detection. We also described how neoantigens are being developed and how they might be used in the treatment of GI malignancies.
Collapse
|
13
|
Fang X, Lan H, Jin K, Gong D, Qian J. Nanovaccines for Cancer Prevention and Immunotherapy: An Update Review. Cancers (Basel) 2022; 14:3842. [PMID: 36010836 PMCID: PMC9405528 DOI: 10.3390/cancers14163842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022] Open
Abstract
Cancer immunotherapy has received more and more attention from cancer researchers over the past few decades. Various methods such as cell therapy, immune checkpoint blockers, and cancer vaccines alone or in combination therapies have achieved relatively satisfactory results in cancer therapy. Among these immunotherapy-based methods, cancer vaccines alone have not yet had the necessary efficacy in the clinic. Therefore, nanomaterials have increased the efficacy and ef-fectiveness of cancer vaccines by increasing their half-life and durability, promoting tumor mi-croenvironment (TME) reprogramming, and enhancing their anti-tumor immunity with minimal toxicity. In this review, according to the latest studies, the structure and different types of nanovaccines, the mechanisms of these vaccines in cancer treatment, as well as the advantages and disadvantages of these nanovaccines are discussed.
Collapse
Affiliation(s)
- Xingliang Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Huanrong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Daojun Gong
- Department of Gastrointestinal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hosptial, Wenzhou Medical University, Xinchang 312500, China
| |
Collapse
|
14
|
Therapeutic Vaccines against Hepatocellular Carcinoma in the Immune Checkpoint Inhibitor Era: Time for Neoantigens? Int J Mol Sci 2022; 23:ijms23042022. [PMID: 35216137 PMCID: PMC8875127 DOI: 10.3390/ijms23042022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) have been used as immunotherapy for hepatocellular carcinoma (HCC) with promising but still limited results. Identification of immune elements in the tumor microenvironment of individual HCC patients may help to understand the correlations of responses, as well as to design personalized therapies for non-responder patients. Immune-enhancing strategies, such as vaccination, would complement ICI in those individuals with poorly infiltrated tumors. The prominent role of responses against mutated tumor antigens (neoAgs) in ICI-based therapies suggests that boosting responses against these epitopes may specifically target tumor cells. In this review we summarize clinical vaccination trials carried out in HCC, the available information on potentially immunogenic neoAgs in HCC patients, and the most recent results of neoAg-based vaccines in other tumors. Despite the low/intermediate mutational burden observed in HCC, data obtained from neoAg-based vaccines in other tumors indicate that vaccines directed against these tumor-specific antigens would complement ICI in a subset of HCC patients.
Collapse
|
15
|
Cavalluzzo B, Mauriello A, Ragone C, Manolio C, Tornesello ML, Buonaguro FM, Tvingsholm SA, Hadrup SR, Tagliamonte M, Buonaguro L. Novel Molecular Targets for Hepatocellular Carcinoma. Cancers (Basel) 2021; 14:140. [PMID: 35008303 PMCID: PMC8750630 DOI: 10.3390/cancers14010140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of death from cancer globally. Indeed, only a few treatments are available, most of which are effective only for the early stages of the disease. Therefore, there is an urgent needing for potential markers for a specifically targeted therapy. Candidate proteins were selected from datasets of The Human Protein Atlas, in order to identify specific tumor-associated proteins overexpressed in HCC samples associated with poor prognosis. Potential epitopes were predicted from such proteins, and homology with peptides derived from viral proteins was assessed. A multiparametric validation was performed, including recognition by PBMCs from HCC-patients and healthy donors, showing a T-cell cross-reactivity with paired epitopes. These results provide novel HCC-specific tumor-associated antigens (TAAs) for immunotherapeutic anti-HCC strategies potentially able to expand pre-existing virus-specific CD8+ T cells with superior anticancer efficacy.
Collapse
Affiliation(s)
- Beatrice Cavalluzzo
- Innovative Immunological Models Unit, Istituto Nazionale Tumori-IRCCS-“Fond G. Pascale”, 80131 Naples, Italy; (B.C.); (A.M.); (C.R.); (C.M.); (M.T.)
| | - Angela Mauriello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori-IRCCS-“Fond G. Pascale”, 80131 Naples, Italy; (B.C.); (A.M.); (C.R.); (C.M.); (M.T.)
| | - Concetta Ragone
- Innovative Immunological Models Unit, Istituto Nazionale Tumori-IRCCS-“Fond G. Pascale”, 80131 Naples, Italy; (B.C.); (A.M.); (C.R.); (C.M.); (M.T.)
| | - Carmen Manolio
- Innovative Immunological Models Unit, Istituto Nazionale Tumori-IRCCS-“Fond G. Pascale”, 80131 Naples, Italy; (B.C.); (A.M.); (C.R.); (C.M.); (M.T.)
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori-IRCCS-“Fond G. Pascale”, 80131 Naples, Italy; (M.L.T.); (F.M.B.)
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori-IRCCS-“Fond G. Pascale”, 80131 Naples, Italy; (M.L.T.); (F.M.B.)
| | - Siri Amanda Tvingsholm
- T-Cells and Cancer, Experimental & Translational Immunology (XTI), Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.A.T.); (S.R.H.)
| | - Sine Reker Hadrup
- T-Cells and Cancer, Experimental & Translational Immunology (XTI), Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.A.T.); (S.R.H.)
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori-IRCCS-“Fond G. Pascale”, 80131 Naples, Italy; (B.C.); (A.M.); (C.R.); (C.M.); (M.T.)
| | - Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori-IRCCS-“Fond G. Pascale”, 80131 Naples, Italy; (B.C.); (A.M.); (C.R.); (C.M.); (M.T.)
| |
Collapse
|
16
|
Mauriello A, Cavalluzzo B, Manolio C, Ragone C, Luciano A, Barbieri A, Tornesello ML, Buonaguro FM, Tagliamonte M, Buonaguro L. Long-term memory T cells as preventive anticancer immunity elicited by TuA-derived heteroclitic peptides. J Transl Med 2021; 19:526. [PMID: 34952611 PMCID: PMC8709997 DOI: 10.1186/s12967-021-03194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/11/2021] [Indexed: 11/10/2022] Open
Abstract
The host's immune system may be primed against antigens during the lifetime (e.g. microorganisms antigens-MoAs), and swiftly recalled upon growth of a tumor expressing antigens similar in sequence and structure. C57BL/6 mice were immunized in a preventive setting with tumor antigens (TuAs) or corresponding heteroclitic peptides specific for TC-1 and B16 cell lines. Immediately or 2-months after the end of the vaccination protocol, animals were implanted with cell lines. The specific anti-vaccine immune response as well as tumor growth were regularly evaluated for 2 months post-implantation. The preventive vaccination with TuA or their heteroclitic peptides (hPep) was able to delay (B16) or completely suppress (TC-1) tumor growth when cancer cells were implanted immediately after the end of the vaccination. More importantly, TC-1 tumor growth was significantly delayed, and suppressed in 6/8 animals, also when cells were implanted 2-months after the end of the vaccination. The vaccine-specific T cell response provided a strong immune correlate to the pattern of tumor growth. A preventive immunization with heteroclitic peptides resembling a TuA is able to strongly delay or even suppress tumor growth in a mouse model. More importantly, the same effect is observed also when tumor cells are implanted 2 months after the end of vaccination, which corresponds to 8 - 10 years in human life. The observed potent tumor control indicates that a memory T cell immunity elicited during the lifetime by a antigens similar to a TuA, i.e. viral antigens, may ultimately represent a great advantage for cancer patients and may lead to a novel preventive anti-cancer vaccine strategy.
Collapse
Affiliation(s)
- Angela Mauriello
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Beatrice Cavalluzzo
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Carmen Manolio
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Concetta Ragone
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Antonio Luciano
- Animal Facility, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Naples, Italy
| | - Antonio Barbieri
- Animal Facility, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Naples, Italy
| | - Maria Lina Tornesello
- Mol Biol and Viral Oncogenesis, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Naples, Italy
| | - Franco M Buonaguro
- Mol Biol and Viral Oncogenesis, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Naples, Italy
| | - Maria Tagliamonte
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Luigi Buonaguro
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy.
| |
Collapse
|
17
|
Ragone C, Manolio C, Cavalluzzo B, Mauriello A, Tornesello ML, Buonaguro FM, Castiglione F, Vitagliano L, Iaccarino E, Ruvo M, Tagliamonte M, Buonaguro L. Identification and validation of viral antigens sharing sequence and structural homology with tumor-associated antigens (TAAs). J Immunother Cancer 2021; 9:e002694. [PMID: 34049932 PMCID: PMC8166618 DOI: 10.1136/jitc-2021-002694] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The host's immune system develops in equilibrium with both cellular self-antigens and non-self-antigens derived from microorganisms which enter the body during lifetime. In addition, during the years, a tumor may arise presenting to the immune system an additional pool of non-self-antigens, namely tumor antigens (tumor-associated antigens, TAAs; tumor-specific antigens, TSAs). METHODS In the present study, we looked for homology between published TAAs and non-self-viral-derived epitopes. Bioinformatics analyses and ex vivo immunological validations have been performed. RESULTS Surprisingly, several of such homologies have been found. Moreover, structural similarities between paired TAAs and viral peptides as well as comparable patterns of contact with HLA and T cell receptor (TCR) α and β chains have been observed. Therefore, the two classes of non-self-antigens (viral antigens and tumor antigens) may converge, eliciting cross-reacting CD8+ T cell responses which possibly drive the fate of cancer development and progression. CONCLUSIONS An established antiviral T cell memory may turn out to be an anticancer T cell memory, able to control the growth of a cancer developed during the lifetime if the expressed TAA is similar to the viral epitope. This may ultimately represent a relevant selective advantage for patients with cancer and may lead to a novel preventive anticancer vaccine strategy.
Collapse
Affiliation(s)
- Concetta Ragone
- Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | - Carmen Manolio
- Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | - Beatrice Cavalluzzo
- Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | - Angela Mauriello
- Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | - Maria Lina Tornesello
- Esperimental Oncology - Molecular Biology and Viral Oncogenesis, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | - Franco M Buonaguro
- Esperimental Oncology - Molecular Biology and Viral Oncogenesis, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | | | | | | | - Menotti Ruvo
- Institute for Biostructures and Bioimages, CNR, Roma, Italy
| | - Maria Tagliamonte
- Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | - Luigi Buonaguro
- Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| |
Collapse
|
18
|
Zhong C, Li Y, Yang J, Jin S, Chen G, Li D, Fan X, Lin H. Immunotherapy for Hepatocellular Carcinoma: Current Limits and Prospects. Front Oncol 2021; 11:589680. [PMID: 33854960 PMCID: PMC8039369 DOI: 10.3389/fonc.2021.589680] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Although many approaches have been used to treat hepatocellular carcinoma (HCC), the clinical benefits remain limited, particularly for late stage HCC. In recent years, studies have focused on immunotherapy for HCC. Immunotherapies have shown promising clinical outcomes in several types of cancers and potential therapeutic effects for advanced HCC. In this review, we summarize the immune tolerance and immunotherapeutic strategies for HCC as well as the main challenges of current therapeutic approaches. We also present alternative strategies for overcoming these limitations.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoqiao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Chen J, Ding Y, Huang F, Lan R, Wang Z, Huang W, Chen R, Wu B, Fu L, Yang Y, Liu J, Hong J, Zhang W, Zhang L. Irradiated whole-cell vaccine suppresses hepatocellular carcinoma growth in mice via Th9 cells. Oncol Lett 2021; 21:409. [PMID: 33841570 PMCID: PMC8020379 DOI: 10.3892/ol.2021.12670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Liver cancer is one of the most common malignant tumors with no available satisfactory treatment. The aim of the present study was to investigate the anti-tumor effect of an irradiated hepatocellular carcinoma (HCC) whole-cell vaccine and its underlying mechanisms. Hepa1-6 and H22 HCC cell lines were irradiated in preparation for whole-cell vaccine production. Subsequently, two HCC tumor-bearing mouse models were created by injecting these Hepa1-6 and H22 cells into the abdominal skin of C57BL/6 and ICR mice, respectively. The mice were immunized with the corresponding whole-cell vaccine the next day, and then once a week until the end of the experimental period. Tumor growth, blood T helper (Th)9 cells and plasma interleukin (IL)-9 levels were monitored during the immunization period. Th9 cells were also induced by in vitro co-culture of the whole-cell vaccine with lymphocytes from the spleen and lymph nodes of the corresponding mice. Alterations of gene expression in transcription factor (TF) were determined by reverse transcription-quantitative PCR, and Th9 cells were detected using flow cytometry. The whole-cell vaccine effectively suppressed HCC tumor growth, as indicated by slower tumor growth and a smaller tumor size in the immunized group compared with the control. The percentage of blood Th9 cells and the concentration of plasma IL-9 were significantly increased in the immunized group. The whole-cell vaccine also induced Th9 cell differentiation and upregulated the expression of TFs PU.1, interferon regulatory factor 4 and basic leucine zipper transcriptional factor ATF-like. These results suggest that the irradiated HCC whole-cell vaccine inhibited tumor growth by increasing Th9 cell numbers in HCC mice
Collapse
Affiliation(s)
- Junying Chen
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yuxiong Ding
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Fei Huang
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ruilong Lan
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Zeng Wang
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Weikang Huang
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ruiqing Chen
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Bing Wu
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lengxi Fu
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yunhua Yang
- Department of Otolaryngology, Fujian Provincial Geriatric Hospital, Fuzhou, Fujian 350009, P.R. China
| | - Jun Liu
- Laboratory of Radiobiology, Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Jinsheng Hong
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Weijian Zhang
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lurong Zhang
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Key Laboratory of Radiation Biology of Fujian Province Universities, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Laboratory of Radiobiology, Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| |
Collapse
|
20
|
Affiliation(s)
- Luigi Buonaguro
- Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"-IRCCS, Via Mariano Semmola, 52, 80131 Naples, Italy.
| | - Vincenzo Cerullo
- Drug Research Program ImmunoViroTherapy Lab (IVTLAb), Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland; Translational Immunology Program (TRIMM), University of Helsinki, Helsinki, Finland; Department of Molecular Medicine and Medical Biotechnology, Naples University "Federico II," S. Pansini 5, Italy.
| |
Collapse
|
21
|
Lu L, Jiang J, Zhan M, Zhang H, Wang QT, Sun SN, Guo XK, Yin H, Wei Y, Liu JO, Li SY, Li Y, He YW. Targeting Neoantigens in Hepatocellular Carcinoma for Immunotherapy: A Futile Strategy? Hepatology 2021; 73:414-421. [PMID: 32299136 DOI: 10.1002/hep.31279] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, P.R. China
| | - Jun Jiang
- Tricision Biotherapeutic Inc., Zhuhai, P.R. China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, P.R. China
| | - Hui Zhang
- First Affiliated Hospital, China Medical University, Shenyang, P.R. China
| | | | | | - Xiao-Kai Guo
- Tricision Biotherapeutic Inc., Zhuhai, P.R. China
| | - Hua Yin
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, P.R. China
| | - Yadong Wei
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shi-You Li
- Tricision Biotherapeutic Inc., Zhuhai, P.R. China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, P.R. China
| | - You-Wen He
- Department of Immunology, Duke University Medical University Medical Center, Durham, NC
| |
Collapse
|
22
|
Buonaguro L, Mauriello A, Cavalluzzo B, Petrizzo A, Tagliamonte M. Immunotherapy in hepatocellular carcinoma. Ann Hepatol 2020; 18:291-297. [PMID: 31047849 DOI: 10.1016/j.aohep.2019.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is considered an immunogenic tumor that arises in chronically inflamed livers due to underlying chronic liver disease caused by viral and non-viral pathogenesis. This inflammation leads to tumor development and is associated to higher tumor immunogenicity. For this reason immunotherapeutic approaches may be suitable therapeutic strategies for HCC. Indeed, several preclinical and clinical data support this hypothesis showing that immunotherapy and even more their combination may be a good alternative candidate for the treatment of HCC patients. However, considering that the liver plays a central role in host defense as well as in the maintenance of self-tolerance, it is characterized by a strong intrinsic immune suppressive microenvironment as well as by a high immune evasion, which may represent a major impediment for an effective immune response against tumor. Furthermore, the low expression of tumor antigens on liver cancer cells leads to a lower T-cell activation and tumor infiltration, resulting in a less efficient control of the tumor growth and, consequently, in a worse clinical outcome. For this reason, strategies should be developed to counteract the different factors in the HCC tumor microenvironment playing a major role in reducing the effects of immunotherapy.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Angela Mauriello
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Beatrice Cavalluzzo
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Annacarmen Petrizzo
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Tagliamonte
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy.
| |
Collapse
|
23
|
Tan AT, Schreiber S. Adoptive T-cell therapy for HBV-associated HCC and HBV infection. Antiviral Res 2020; 176:104748. [DOI: 10.1016/j.antiviral.2020.104748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
|
24
|
Tagliamonte M, Mauriello A, Cavalluzzo B, Ragone C, Manolio C, Petrizzo A, Buonaguro L. Tackling hepatocellular carcinoma with individual or combinatorial immunotherapy approaches. Cancer Lett 2019; 473:25-32. [PMID: 31875523 DOI: 10.1016/j.canlet.2019.12.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of death from cancer globally. Indeed, there is a single drug approved as first-line systemic therapy in advanced unresectable HCC, providing a very limited survival benefit. In earlier stages, 5-year survival rates after surgical and loco-regional therapies are extremely variable depending on the stage of disease. Nevertheless, HCC is considered an immunogenic tumor arising in chronically inflamed livers. In such a scenario, immunotherapy strategies for HCC, in particular combinations including cancer vaccines, may represent a key therapeutic tool to improve clinical outcome in HCC patients. However, a lot of improvement is needed given the disappointing results obtained so far.
Collapse
Affiliation(s)
- Maria Tagliamonte
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy
| | - Angela Mauriello
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy
| | - Beatrice Cavalluzzo
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy
| | - Concetta Ragone
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy
| | - Carmen Manolio
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy
| | - Annacarmen Petrizzo
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy
| | - Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy.
| |
Collapse
|
25
|
Mauriello A, Zeuli R, Cavalluzzo B, Petrizzo A, Tornesello ML, Buonaguro FM, Ceccarelli M, Tagliamonte M, Buonaguro L. High Somatic Mutation and Neoantigen Burden Do Not Correlate with Decreased Progression-Free Survival in HCC Patients not Undergoing Immunotherapy. Cancers (Basel) 2019; 11:1824. [PMID: 31756926 PMCID: PMC6966682 DOI: 10.3390/cancers11121824] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
Cancer genome instability leads to accumulation of mutations which may result into tumor-specific mutated "neoantigens", not be affected by central T-cell tolerance. Such neoantigens are considered the optimal target for the patient's anti-tumor T cell immunity as well as for personalized cancer immunotherapy strategies. However, only a minor fraction of predicted neoantigens are relevant to the clinical outcome. In the present study, a prediction algorithm was applied using datasets of RNA sequencing from all 377 Hepatocellular carcinoma (HCC) patients available at The Cancer Genome Atlas (TCGA), to predict neoantigens to be presented by each patient's autologous HLA molecules. Correlation with patients' survival was performed on the 115 samples for whom the exact date of death was known. A total of 30 samples were used for the training set, and 85 samples were used for the validation sets. Neither the somatic mutations nor the number nor the quality of the predicted neoantigens correlate as single parameter with survival of HCC patients who do not undergo immunotherapy treatment. Furthermore, the preferential presentation of such neoantigens in the context of one of the major histocompatibility complex MHC class I molecules does not have an impact on the survival. On the contrary, the expression of Granzyme A (GZMA) is significantly correlated with survival and, in the context of high GZMA, a direct correlation between number and quality of neoantigens with survival is observed. This is in striking contrast to results described in cancer patients undergoing immunotherapy, in which a strong correlation between Tumor Mutational Burden (TMB), number of predicted neoantigens and survival has been reported.
Collapse
Affiliation(s)
- Angela Mauriello
- Laboratory of Cancer Immunoregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, “Fondazione Pascale”, 80131 Naples, Italy; (A.M.); (B.C.); (A.P.)
| | - Roberta Zeuli
- Science and Technology Dept, University del Sannio, 82100 Benevento, Italy; (R.Z.); (M.C.)
- BIOGEM S.c.a.r.l., 83031 Ariano Iprino, Italy
| | - Beatrice Cavalluzzo
- Laboratory of Cancer Immunoregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, “Fondazione Pascale”, 80131 Naples, Italy; (A.M.); (B.C.); (A.P.)
| | - Annacarmen Petrizzo
- Laboratory of Cancer Immunoregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, “Fondazione Pascale”, 80131 Naples, Italy; (A.M.); (B.C.); (A.P.)
| | - Maria Lina Tornesello
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale”-IRCCS, 80131 Naples, Italy; (M.L.T.); (F.M.B.)
| | - Franco M. Buonaguro
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale”-IRCCS, 80131 Naples, Italy; (M.L.T.); (F.M.B.)
| | - Michele Ceccarelli
- Science and Technology Dept, University del Sannio, 82100 Benevento, Italy; (R.Z.); (M.C.)
- BIOGEM S.c.a.r.l., 83031 Ariano Iprino, Italy
| | - Maria Tagliamonte
- Laboratory of Cancer Immunoregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, “Fondazione Pascale”, 80131 Naples, Italy; (A.M.); (B.C.); (A.P.)
| | - Luigi Buonaguro
- Laboratory of Cancer Immunoregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, “Fondazione Pascale”, 80131 Naples, Italy; (A.M.); (B.C.); (A.P.)
| |
Collapse
|
26
|
Zhang C, Yang M, Ericsson AC. Antimicrobial Peptides: Potential Application in Liver Cancer. Front Microbiol 2019; 10:1257. [PMID: 31231341 PMCID: PMC6560174 DOI: 10.3389/fmicb.2019.01257] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/21/2019] [Indexed: 01/08/2023] Open
Abstract
The physicochemical properties of antimicrobial peptides (AMPs) including size, net charge, amphipathic structure, hydrophobicity, and mode-of-action together determine their broad-spectrum activities against bacteria, fungi, protozoa, and viruses. Recent studies show that some AMPs have both antimicrobial and anticancer activities, suggesting a new strategy for cancer therapy. Hepatocellular carcinoma (HCC), the primary liver cancer, is a leading cause of cancer mortality worldwide, and lacks effective treatment. Anticancer peptides (ACPs) derived from AMPs or natural resources could be applied to combat HCC directly or as a synergistic treatment. However, the number of known ACPs is low compared to the number of antibacterial and antifungal peptides, and very few of them can be applied clinically for HCC treatment. In this review, we first summarize recent studies related to ACPs for HCC, followed by a description of potential modes-of-action including direct killing, anti-inflammation, immune modulation, and enhanced wound healing. We then describe the structures of AMPs and methods to design and modify these peptides to improve their anticancer efficacy. Finally, we explore the potential application of ACPs as vaccines or nanoparticles for HCC treatment. Overall, ACPs display several attractive properties as therapeutic agents, including broad-spectrum anticancer activity, ease-of-design and modification, and low production costs. As this is an emerging and novel area of cancer therapy, additional studies are needed to identify existing candidate AMPs with ACP activity, and assess their anticancer activity and specificity, and immunomodulatory effects, using in vitro, in silico, and in vivo approaches.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, United States
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, United States
| | - Aaron C. Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
- University of Missouri Metagenomics Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|