1
|
Foote K, Rienks M, Schmidt L, Theofilatos K, Yasmin, Ozols M, Eckersley A, Shah A, Figg N, Finigan A, O’Shaughnessy K, Wilkinson I, Mayr M, Bennett M. Oxidative DNA damage promotes vascular ageing associated with changes in extracellular matrix-regulating proteins. Cardiovasc Res 2025; 121:614-628. [PMID: 38717632 PMCID: PMC12054627 DOI: 10.1093/cvr/cvae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/31/2024] [Accepted: 02/29/2024] [Indexed: 02/13/2025] Open
Abstract
AIMS Vascular ageing is characterized by vessel stiffening, with increased deposition of extracellular matrix (ECM) proteins including collagens. Oxidative DNA damage occurs in vascular ageing, but how it regulates ECM proteins and vascular stiffening is unknown. We sought to determine the relationship between oxidative DNA damage and ECM regulatory proteins in vascular ageing. METHODS AND RESULTS We examined oxidative DNA damage, the major base excision repair (BER) enzyme 8-Oxoguanine DNA Glycosylase (Ogg1) and its regulators, multiple physiological markers of ageing, and ECM proteomics in mice from 22 to 72 w. Vascular ageing was associated with increased oxidative DNA damage, and decreased expression of Ogg1, its active acetylated form, its acetylation regulatory proteins P300 and CBP, and the transcription factor Foxo3a. Vascular stiffness was examined in vivo in control, Ogg1-/-, or mice with vascular smooth muscle cell-specific expression of Ogg1+ (Ogg1) or an inactive mutation (Ogg1KR). Ogg1-/- and Ogg1KR mice showed reduced arterial compliance and distensibility, and increased stiffness and pulse pressure, whereas Ogg1 expression normalized all parameters to 72 w. ECM proteomics identified major changes in collagens with ageing, and downregulation of the ECM regulatory proteins Protein 6-lysyl oxidase (LOX) and WNT1-inducible-signaling pathway protein 2 (WISP2). Ogg1 overexpression upregulated LOX and WISP2 both in vitro and in vivo, and downregulated Transforming growth factor β1 (TGFb1) and Collagen 4α1 in vivo compared with Ogg1KR. Foxo3a activation induced Lox, while Wnt3 induction of Wisp2 also upregulated LOX and Foxo3a, and downregulated TGFβ1 and fibronectin 1. In humans, 8-oxo-G increased with vascular stiffness, while active OGG1 reduced with both age and stiffness. CONCLUSION Vascular ageing is associated with oxidative DNA damage, downregulation of major BER proteins, and changes in multiple ECM structural and regulatory proteins. Ogg1 protects against vascular ageing, associated with changes in ECM regulatory proteins including LOX and WISP2.
Collapse
MESH Headings
- Animals
- DNA Glycosylases/genetics
- DNA Glycosylases/metabolism
- DNA Glycosylases/deficiency
- Oxidative Stress
- DNA Damage
- Forkhead Box Protein O3/metabolism
- Extracellular Matrix Proteins/metabolism
- Extracellular Matrix Proteins/genetics
- Aging/metabolism
- Aging/pathology
- Aging/genetics
- Vascular Stiffness
- Mice, Knockout
- Mice, Inbred C57BL
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Humans
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/enzymology
- Signal Transduction
- Cells, Cultured
- Acetylation
- Extracellular Matrix/metabolism
- Mice
Collapse
Affiliation(s)
- Kirsty Foote
- Section of Cardiorespiratory Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Marieke Rienks
- Cardiovascular Division, King’s College London, The James Black Centre, 2nd Floor, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Lukas Schmidt
- Cardiovascular Division, King’s College London, The James Black Centre, 2nd Floor, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Konstantinos Theofilatos
- Cardiovascular Division, King’s College London, The James Black Centre, 2nd Floor, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Yasmin
- Department of Medicine, Experimental Medicine and Therapeutics, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 2QQ, UK
| | - Matiss Ozols
- Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Saffron Walden CB10 1RQ, UK
| | - Alexander Eckersley
- Division of Musculoskeletal & Dermatological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Aarti Shah
- Section of Cardiorespiratory Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Nichola Figg
- Section of Cardiorespiratory Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Alison Finigan
- Section of Cardiorespiratory Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Kevin O’Shaughnessy
- Department of Medicine, Experimental Medicine and Therapeutics, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 2QQ, UK
| | - Ian Wilkinson
- Department of Medicine, Experimental Medicine and Therapeutics, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 2QQ, UK
| | - Manuel Mayr
- Cardiovascular Division, King’s College London, The James Black Centre, 2nd Floor, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Martin Bennett
- Section of Cardiorespiratory Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| |
Collapse
|
2
|
Abulghasem EA, Price CA. The influence of CCN family proteins on ovarian physiology and pathology. Reprod Fertil Dev 2025; 37:RD24199. [PMID: 40359309 DOI: 10.1071/rd24199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The CCN family of proteins is comprised of six matricellular proteins known to regulate multiple cellular processes such as adhesion, proliferation, differentiation, and apoptosis. CCN proteins are known to function through the binding of integrin receptors and through the regulation of growth factors and cytokines in the context of cardiovascular and skeletal development, injury repair, fibrosis, inflammation and cancer. The expression and roles of several CCNs, particularly CCN1 and CCN2, have been investigated in the ovary as they are effectors of the Hippo signaling pathway, and their role in the development of ovarian fibrosis has been described. Here we review the patterns of expression of CCN1-6 in the ovarian follicle, and the role of CCN2 in follicle development and steroidogenesis, and the expression and potential actions of CCN1-6 in ovarian cancers. We highlight the roles CCNs may play in inflammatory processes, and put forth a case for CCN involvement in the process of ovulation.
Collapse
Affiliation(s)
- El Arbi Abulghasem
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Christopher A Price
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| |
Collapse
|
3
|
Gupta H, Raghubansi A, Bharat, Sharma K, Zutshi K, Panchal P, Bhattacharya S, Ranjan P, Puri G, Saini N. Targeting GSK3β and signaling pathways in breast cancer: role of individual members of miR- 23/24/27 cluster. BMC Cancer 2025; 25:737. [PMID: 40254586 PMCID: PMC12010543 DOI: 10.1186/s12885-025-14045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/31/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND The high mortality rate of breast cancer and the difficulties associated with therapeutic resistance, especially in cases where targeted treatments are unavailable, make it a serious threat to women's health. This study examines the relationship between three mature microRNAs (miRNAs) that are clustered together, namely miR- 23a, miR- 27a, and miR- 24-2, as well as their potential correlation with breast cancer. METHODS We identified common gene targets of miR- 23a, miR- 27a, and miR- 24-2 using computational analysis. We also checked for the levels of miR- 23a, miR- 27a, and miR- 24-2 in 26 breast tumor tissues (with their matched control) as well as MCF7 and MDA-MB- 231 cell lines using qRT-PCR. Dual-luciferase reporter assay was conducted to validate the binding site of the microRNAs in their target gene. Western blot was performed to study the expression of various breast cancer related genes in the presence of the three microRNAs. In addition, the effect of microRNAs in cancer cell metastasis and cell division was carried out using invasion and cell cycle assay. RESULTS Computational analysis identified key genes, including GSK3β, NCOA1 and SP1, which are functionally linked to tumor progression and various other malignancies. All three microRNAs were found to be significantly downregulated in the breast cancer tissue samples in comparison to their respective controls. Kaplan-Meier plot analysis revealed that the expression levels of these genes and associated microRNAs correlates with breast cancer patient survival rates. Reduced SP1 and NCOA1 levels predicted a worse prognosis, but elevated levels of GSK3β were linked with decreased survival. Moreover, miR- 23a and miR- 24-2 specifically target GSK3β, potentially disrupting the Wnt/β-catenin pathway involved in breast cancer development. Functional tests showed that miR- 23a, miR- 27a and miR- 24-2 affect expression of EMT related genes, influencing cell invasion and migration, impacting ERK signaling and EMT, critical in the spread of breast cancer. CONCLUSION This study unlocks the potential of targeting the microRNA cluster as a therapeutic approach and emphasizes the complex regulatory roles of each individual members of the miR- 23a/27a/24-2 cluster in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Harshi Gupta
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
| | - Anushka Raghubansi
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
| | - Bharat
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kritika Sharma
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
| | - Krittika Zutshi
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
| | - Partibha Panchal
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sushant Bhattacharya
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Piyush Ranjan
- Department of Surgical Disciplines, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Gopal Puri
- Department of Surgical Disciplines, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Neeru Saini
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Liang W, Peng Z, Mingchu Z, Deshui Y. METTL3 mediated WISP1 m 6A modification promotes epithelial-mesenchymal transition and tumorigenesis in laryngeal squamous cell carcinoma via m 6A reader IGF2BP1. Gene 2025; 941:149222. [PMID: 39761803 DOI: 10.1016/j.gene.2025.149222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
OBJECT N6-methyladenosine (m6A), is well known as the most abundant epigenetic modification in messenger RNA, but its influence on laryngeal squamous cell carcinoma (LSCC) remains largely unexplored and poorly understood. This study was designed to explore the effects of m6A on WISP1-mediated epithelial-mesenchymal transition (EMT) and tumorigenesis in LSCC. METHODS m6A methylated and expression levels of WISP1 in LSCC tumor tissues and cells were measured by MeRIP-qPCR, qRT-PCR, and western blotting. The regulatory mechanism of m6A modification of WISP1 in LSCC was determined using MeRIP-qPCR, RIP, dual luciferase reporter assay, and RNA stability assay. Cell viability was assessed utilizing MTT method. The invasion and migration ability of LSCC cells were determined by transwell and wound healing method, respectively. Tumor xenograft models were used for the in vivo experiments. RESULTS The m6A methylation level of WISP1 was significantly enhanced in LSCC patients and LSCC cell lines. Overexpression of the m6A methyltransferase METTL3 significantly upregulated WISP1 expression by promoting its m6A methylation level, whereas METTL3 inhibition exhibited the opposite effect in LSCC cells. Functionally, we found that METTL3 accelerated the viability, invasion, migration, and EMT of LSCC cells by upregulating WISP1. Additionally, overexpression of METTL3 increased WISP1 expression and tumorigenesis were verified in in vivo experiments. Mechanistically, m6A-modified WISP1 was recognized by IGF2BP1, which enhanced the stability of WISP1 mRNA. CONCLUSION Our findings indicate that the m6A modification of WISP1 promotes EMT in LSCC by enhancing WISP1 mRNA stability via an IGF2BP1-dependent manner, which may highlight an m6A methylation-based approach for LSCC diagnosis and therapy.
Collapse
Affiliation(s)
- Wang Liang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zhang Peng
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhang Mingchu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Deshui
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Qian C, Sun Y, Yue Y. Construction and Validation of a T Cell Exhaustion-Related Prognostic Signature in Cholangiocarcinoma. Int J Genomics 2025; 2025:8823837. [PMID: 40226355 PMCID: PMC11991809 DOI: 10.1155/ijog/8823837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/24/2025] [Indexed: 04/15/2025] Open
Abstract
Objective: T cell exhaustion (TEX) is a critical determinant of immune resistance. This study was performed to investigate the key genes linked to TEX in cholangiocarcinoma (CCA) and construct a TEX-associated gene signature to forecast the prognosis of patients with CCA. Methods: Based on the expression data acquired from the E-MTAB-6389 dataset, the TEX-related modules and module genes were identified using weighted coexpression network analysis (WGCNA). Subsequently, a TEX-related prognostic signature was built by using the univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analysis. The immune cell infiltration in each CCA sample was evaluated using the single-sample gene set enrichment analysis (ssGSEA) package, followed by single-cell RNA sequencing (scRNA-seq) analysis. Furthermore, the expression of TEX-related genes in the gene signature was experimentally validated in CCA cells by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot analysis. Results: A total of 15 TEX-associated modules and 23 module genes were identified. Then, a four-gene signature related to TEX was established, containing Palladin, Cytoskeletal Associated Protein (PALLD), Member RAS Oncogene Family (RAB31), ADAM Metallopeptidase With Thrombospondin Type 1 Motif 2 (ADAMTS2), and WISP1, which could predict prognosis of patients with CCA. Moreover, neutrophils, endothelial cells, B cells, and T cells exhibited significant infiltration in CCA samples, and these four TEX-related genes were both significantly positively correlated with T cells, endothelial cells, and B cells while negatively correlated with neutrophils. Moreover, a total of 13 cell types were annotated after scRNA-seq analysis. Notably, RAB31 was mainly highly expressed in monocytes, macrophages, DC2 (Dendritic Cells 2), and DC3 (Dendritic Cells 3), and PALLD, ADAMTS2, and WISP1 were mainly overexpressed in fibroblasts. Furthermore, experimental validation revealed that the expression levels of PALLD, RAB31, ADAMTS2, and WISP1 were consistent with the trend results of bioinformatics analysis. Conclusion: A prognostic signature was developed by four TEX-related genes, including PALLD, RAB31, ADAMTS2, and WISP1, which might be a powerful predictor for the prognosis of patients with CCA. These TEX-related genes were related to the infiltration of neutrophils, endothelial cells, B cells, and T cells in CCA.
Collapse
Affiliation(s)
- Changshi Qian
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yuqiao Sun
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yihuai Yue
- Department of Surgery, Medical College of Yanbian University, Yanji, China
| |
Collapse
|
6
|
Kim S, Yang K, Kim K, Kim HJ, Kim DY, Chae J, Ahn YH, Kang JL. The interplay of cancer-associated fibroblasts and apoptotic cancer cells suppresses lung cancer cell growth through WISP-1-integrin ανβ3-STAT1 signaling pathway. Cell Commun Signal 2025; 23:98. [PMID: 39966869 PMCID: PMC11837402 DOI: 10.1186/s12964-025-02094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/08/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Cell death within the tumor microenvironment (TME) plays a crucial role in controlling cancer by influencing the balance of tumor-specific immunity. Cancer-associated fibroblasts (CAFs) significantly contribute to tumor progression through paracrine mechanisms. We found that reprogramming of CAFs by apoptotic cancer cells suppresses tumor volume and lung metastasis. Here, we investigated the mechanisms by which the interaction between apoptotic lung cancer cells and CAFs hinders tumor growth. METHODS Experimental methods including CCK assay, colony formation assay, immunoblotting, co-immunoprecipitation, qRT-PCR analysis, qRT-PCR array, apoptosis assay, ELISA, and immunofluorescent staining were used in this study. Additionally, CAFs were isolated from lung tumors of Kras-mutant (KrasLA1) mice and human lung adenocarcinoma samples using magnetic-activated cell sorting. Murine lung cancer cells (344SQ cells) along with various human cancer cell lines (A549, HCT116, and LoVo) were cultured. In animal study, conditioned medium (CM) derived from CAFs (undiluted or 50% diluted) with or without neutralizing anti-WISP-1 antibody was administered into syngeneic mice to study anti-tumoral effects. To confirm the paracrine role of WISP-1, recombinant WISP-1 (rWISP-1) was administered via intratumoral injection. RESULTS We demonstrate that treatment with CM from lung CAFs exposed to apoptotic cancer cells suppresses proliferation and promotes apoptosis in lung cancer cells through STAT1 signaling. Pharmacologic inhibition of Notch1 activation or siRNA-mediated Notch1 silencing in CAFs reversed the antiproliferative and proapoptotic effects. Similarly, knockdown of Wnt-induced signaling protein 1 (WISP-1) in CAFs or neutralizing the CM with anti-WISP-1 antibodies reversed the antiproliferative and proapoptotic effects. WISP-1 signaled through integrin ανβ3-STAT1 signaling pathway to inhibit cancer cell growth and promote apoptosis. The in vivo introduction of CM derived from apoptotic 344SQ-exposed CAFs (ApoSQ-CAF CM) potently decelerated tumor growth. This effect was observed alongside the downregulation of proliferative and anti-apoptotic markers, while simultaneously boosting the activation of phosphorylated STAT1 and pro-apoptotic markers in CD326+ tumor cells within syngeneic immunocompetent mice. rWISP-1 effectively replicates the in vivo effects of ApoSQ-CAF CM. CONCLUSIONS These findings suggest that CM from apoptotic cancer cell-exposed CAFs may offer a promising therapeutic approach by lung cancer suppression.
Collapse
Affiliation(s)
- Shinyoung Kim
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Kyungwon Yang
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Kiyoon Kim
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Hee Ja Kim
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
| | - Da Young Kim
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Jeesoo Chae
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07985, Korea
| | - Young-Ho Ahn
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07985, Korea
| | - Jihee Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea.
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea.
| |
Collapse
|
7
|
Lu W, Feng W, Zhen H, Jiang S, Li Y, Liu S, Ru Q, Xiao W. Unlocking the therapeutic potential of WISP-1: A comprehensive exploration of its role in age-related musculoskeletal disorders. Int Immunopharmacol 2025; 145:113791. [PMID: 39667044 DOI: 10.1016/j.intimp.2024.113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/03/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
As the global population ages, the incidence of age-related musculoskeletal diseases continues to increase, driven by numerous complex and poorly understood factors. WNT-1 inducible secreted protein 1 (WISP-1), a secreted matrix protein, plays a critical role in the growth and development of the musculoskeletal system, including chondrogenesis, osteogenesis, and myogenesis. Numerous in vivo and in vitro studies have demonstrated that WISP-1 is significantly upregulated in age-related musculoskeletal conditions, such as osteoarthritis, osteoporosis, and sarcopenia, suggesting its involvement in the pathogenesis of these diseases. Regulating WISP-1 expression holds promise as a therapeutic strategy for improving musculoskeletal function, potentially offering new avenues for treating age-related musculoskeletal diseases in clinical practice. This review highlights the signaling pathways associated with WISP-1, its physiological roles within the musculoskeletal system, and its therapeutic potential in treating age-related musculoskeletal disorders.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenjie Feng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Haozu Zhen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuguang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710001, Shaanxi, China.
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
8
|
Chen H, Zhang X, Zhang Z, Li G, Li X, Yang S, Liu Y, Yang M. Identification and validation of CCN family genes to predict the prognosis in gastric cancer. Discov Oncol 2024; 15:610. [PMID: 39485579 PMCID: PMC11530581 DOI: 10.1007/s12672-024-01459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a deadly malignancy with an ever-increasing incidence worldwide. The cellular communication network (CCN) family serves as matricellular proteins and exerts their various functions via regulating cell proliferation and differentiation. This study aimed to perform an integrated analysis of CCNs to predict the prognosis in GC. METHODS The microarray datasets were obtained from Gene Expression Omnibus database to identify the differentially expressed genes between GC and non-tumor tissues. Functional enrichment and genetic alteration analysis revealed the biological functions and alteration status associated with CCNs. We analyzed the mRNA and protein expressions of CCN family in GC patients. Furthermore, the prognostic value of distinct CCN family members were analyzed using the Kaplan-Meier plotter database. Finally, the human gastric cancer cell lines were used for in vitro experiments to further validate the role of WISP1. RESULTS 26 genes were firstly identified to be significantly highly expressed in gastric tumor tissues. CCN family genes were identified to predict the prognosis in GC. Among the six CCNs, WISP1 is upregulated in GC tissues and its highly expression is associated with poor survival in GC patients. Moreover, a significant correlation is found between the expression of WISP1 and the pathological stage of patients with GC. Additionally, in vitro experiments demonstrated that WISP1 promotes the proliferation and invasive potential of GC cells, suggesting it may be a potential therapeutic target for GC. CONCLUSIONS A comprehensive bioinformatic analysis of CCN genes provides new insights into the potential roles of this family in GC. Importantly, WISP1 may be a good prognostic predictor and a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Huanting Chen
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China
- Department of General Surgery, People's Hospital of Shenzhen Baoan District, Affiliated Shenzhen Baoan Hospital of Southern Medical University, Shenzhen, 518101, China
| | - Xiaomin Zhang
- Department of Radiation Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Zhe Zhang
- Department of Radiation Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Guoqiang Li
- Department of Radiation Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Xin Li
- Department of Radiation Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Siran Yang
- Department of Radiation Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Yajie Liu
- Department of Radiation Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, China.
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China.
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China.
| | - Mengqi Yang
- Department of Radiation Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, Guangdong, China.
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China.
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China.
| |
Collapse
|
9
|
Christopoulou ME, Aletras AJ, Papakonstantinou E, Stolz D, Skandalis SS. WISP1 and Macrophage Migration Inhibitory Factor in Respiratory Inflammation: Novel Insights and Therapeutic Potentials for Asthma and COPD. Int J Mol Sci 2024; 25:10049. [PMID: 39337534 PMCID: PMC11432718 DOI: 10.3390/ijms251810049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Recent advancements highlight the intricate interplay between the extracellular matrix (ECM) and immune responses, notably in respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). The ECM, a dynamic structural framework within tissues, orches-trates a plethora of cellular processes, including immune cell behavior and tissue repair mecha-nisms. WNT1-inducible-signaling pathway protein 1 (WISP1), a key ECM regulator, controls immune cell behavior, cytokine production, and tissue repair by modulating integrins, PI3K, Akt, β-catenin, and mTOR signaling pathways. WISP1 also induces macrophage migration inhibitory factor (MIF) expression via Src kinases and epidermal growth factor receptor (EGFR) activation. MIF, through its wide range of activities, enhances inflammation and tissue restructuring. Rec-ognized for its versatile roles in regulating the immune system, MIF interacts with multiple immune components, such as the NLRP3 inflammasome, thereby sustaining inflammatory pro-cesses. The WISP1-MIF axis potentially unveils complex molecular mechanisms governing im-mune responses and inflammation. Understanding the intricate roles of WISP1 and MIF in the pathogenesis of chronic respiratory diseases such as asthma and COPD could lead to the identi-fication of novel targets for therapeutic intervention to alleviate disease severity and enhance patient outcomes.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alexios J Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Eleni Papakonstantinou
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daiana Stolz
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
10
|
Eun K, Kim AY, Ryu S. Matricellular proteins in immunometabolism and tissue homeostasis. BMB Rep 2024; 57:400-416. [PMID: 38919018 PMCID: PMC11444987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/11/2023] [Accepted: 04/25/2024] [Indexed: 06/27/2024] Open
Abstract
Matricellular proteins are integral non-structural components of the extracellular matrix. They serve as essential modulators of immunometabolism and tissue homeostasis, playing critical roles in physiological and pathological conditions. These extracellular matrix proteins including thrombospondins, osteopontin, tenascins, the secreted protein acidic and rich in cysteine (SPARC) family, the Cyr61, CTGF, NOV (CCN) family, and fibulins have multi-faceted functions in regulating immune cell functions, metabolic pathways, and tissue homeostasis. They are involved in immune-metabolic regulation and influence processes such as insulin signaling, adipogenesis, lipid metabolism, and immune cell function, playing significant roles in metabolic disorders such as obesity and diabetes. Furthermore, their modulation of tissue homeostasis processes including cellular adhesion, differentiation, migration, repair, and regeneration is instrumental for maintaining tissue integrity and function. The importance of these proteins in maintaining physiological equilibrium is underscored by the fact that alterations in their expression or function often coincide with disease manifestation. This review contributes to our growing understanding of these proteins, their mechanisms, and their potential therapeutic applications. [BMB Reports 2024; 57(9): 400-416].
Collapse
Affiliation(s)
- Kyoungjun Eun
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Ah Young Kim
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Seungjin Ryu
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Natural Medicine, College of Medicine, Hallym Unviersity, Chuncheon 24252, Korea
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Korea
| |
Collapse
|
11
|
Singh K, Oladipupo SS. An overview of CCN4 (WISP1) role in human diseases. J Transl Med 2024; 22:601. [PMID: 38937782 PMCID: PMC11212430 DOI: 10.1186/s12967-024-05364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
CCN4 (cellular communication network factor 4), a highly conserved, secreted cysteine-rich matricellular protein is emerging as a key player in the development and progression of numerous disease pathologies, including cancer, fibrosis, metabolic and inflammatory disorders. Over the past two decades, extensive research on CCN4 and its family members uncovered their diverse cellular mechanisms and biological functions, including but not limited to cell proliferation, migration, invasion, angiogenesis, wound healing, repair, and apoptosis. Recent studies have demonstrated that aberrant CCN4 expression and/or associated downstream signaling is key to a vast array of pathophysiological etiology, suggesting that CCN4 could be utilized not only as a non-invasive diagnostic or prognostic marker, but also as a promising therapeutic target. The cognate receptor of CCN4 remains elusive till date, which limits understanding of the mechanistic insights on CCN4 driven disease pathologies. However, as therapeutic agents directed against CCN4 begin to make their way into the clinic, that may start to change. Also, the pathophysiological significance of CCN4 remains underexplored, hence further research is needed to shed more light on its disease and/or tissue specific functions to better understand its clinical translational benefit. This review highlights the compelling evidence of overlapping and/or diverse functional and mechanisms regulated by CCN4, in addition to addressing the challenges, study limitations and knowledge gaps on CCN4 biology and its therapeutic potential.
Collapse
Affiliation(s)
- Kirti Singh
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA
| | - Sunday S Oladipupo
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA.
| |
Collapse
|
12
|
Foutadakis S, Kordias D, Vatsellas G, Magklara A. Identification of New Chemoresistance-Associated Genes in Triple-Negative Breast Cancer by Single-Cell Transcriptomic Analysis. Int J Mol Sci 2024; 25:6853. [PMID: 38999963 PMCID: PMC11241600 DOI: 10.3390/ijms25136853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a particularly aggressive mammary neoplasia with a high fatality rate, mainly because of the development of resistance to administered chemotherapy, the standard treatment for this disease. In this study, we employ both bulk RNA-sequencing and single-cell RNA-sequencing (scRNA-seq) to investigate the transcriptional landscape of TNBC cells cultured in two-dimensional monolayers or three-dimensional spheroids, before and after developing resistance to the chemotherapeutic agents paclitaxel and doxorubicin. Our findings reveal significant transcriptional heterogeneity within the TNBC cell populations, with the scRNA-seq identifying rare subsets of cells that express resistance-associated genes not detected by the bulk RNA-seq. Furthermore, we observe a partial shift towards a highly mesenchymal phenotype in chemoresistant cells, suggesting the epithelial-to-mesenchymal transition (EMT) as a prevalent mechanism of resistance in subgroups of these cells. These insights highlight potential therapeutic targets, such as the PDGF signaling pathway mediating EMT, which could be exploited in this setting. Our study underscores the importance of single-cell approaches in understanding tumor heterogeneity and developing more effective, personalized treatment strategies to overcome chemoresistance in TNBC.
Collapse
Affiliation(s)
- Spyros Foutadakis
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
| | - Dimitrios Kordias
- Biomedical Research Institute-Foundation for Research and Technology, 45110 Ioannina, Greece;
- Department of Clinical Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Giannis Vatsellas
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
| | - Angeliki Magklara
- Biomedical Research Institute-Foundation for Research and Technology, 45110 Ioannina, Greece;
- Department of Clinical Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Institute of Biosciences, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
13
|
Karamad V, Sogutlu F, Ozkaya FC, Shademan B, Ebrahim W, El-Neketi M, Avci CB. Investigation of iso-propylchaetominine anticancer activity on apoptosis, cell cycle and Wnt signaling pathway in different cancer models. Fitoterapia 2024; 173:105789. [PMID: 38158162 DOI: 10.1016/j.fitote.2023.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Dysregulation of the Wnt signaling pathway contributes to the development of many cancer types. Natural compounds produced with biotechnological systems have been the focus of research for being a new drug candidate both with unlimited resources and cost-effective production. In this study, it was aimed to reveal the effects of isopropylchaetominine on cytotoxic, cytostatic, apoptotic and Wnt signaling pathways in brain, pancreatic and prostate cancer. The IC50 values of isopropylchaetominine in U-87 MG, PANC1, PC3 and LNCaP cells were calculated as 91.94 μM, 41.68 μM, 54.54 μM and 7.86 μM in 72nd h, respectively. The metabolite arrests the cell cycle in G0/G1 phase in each cancer cells. Iso-propylchaetominine induced a 4.3-fold and 1.9-fold increase in apoptosis in PC3 and PANC1 cells, respectively. The toxicity of isopropylchaetominine in healthy fibroblast cells was assessed using the annexin V method, and no significant apoptotic activity was observed between the groups treated with the active substance and untreated. In U-87 MG, PANC1, PC3, and LNCaP cells under treatment with isopropylchaetominin, the expression levels of DKK3, TLE1, AES, DKK1, FRZB, DAB2, AXIN1/2, PPARD, SFRP4, APC and SOX17 tumor suppressor genes increased significantly. Decreases in expression of Wnt1, Wnt2, Wnt3, Wnt4, Wnt5, Wnt6, Wnt10, Wnt11, FRZ2, FRZ3, FRZ7, TCF7L1, BCL9, PYGO, CCND2, c-MYC, WISP1 and CTNNB1 oncogenic genes were detected. All these result shows that isopropylchaetominine can present promising new treatment strategy in different cancer types.
Collapse
Affiliation(s)
- Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Ferhat Can Ozkaya
- Aliaga Industrial Zone Technology Transfer Office, Aliaga, İzmir 35800, Turkey
| | - Behrouz Shademan
- Stem cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-16471, Iran
| | - Weaam Ebrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mona El-Neketi
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey.
| |
Collapse
|
14
|
Curran CS, Cui X, Li Y, Jeakle M, Sun J, Demirkale CY, Minkove S, Hoffmann V, Dhamapurkar R, Chumbris S, Bolyard C, Iheanacho A, Eichacker PQ, Torabi-Parizi P. Anti-PD-L1 therapy altered inflammation but not survival in a lethal murine hepatitis virus-1 pneumonia model. Front Immunol 2024; 14:1308358. [PMID: 38259435 PMCID: PMC10801642 DOI: 10.3389/fimmu.2023.1308358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Because prior immune checkpoint inhibitor (ICI) therapy in cancer patients presenting with COVID-19 may affect outcomes, we investigated the beta-coronavirus, murine hepatitis virus (MHV)-1, in a lethal pneumonia model in the absence (Study 1) or presence of prior programmed cell death ligand-1 (PD-L1) antibody (PD-L1mAb) treatment (Study 2). Methods In Study 1, animals were inoculated intratracheally with MHV-1 or vehicle and evaluated at day 2, 5, and 10 after infection. In Study 2, uninfected or MHV-1-infected animals were pretreated intraperitoneally with control or PD-L1-blocking antibodies (PD-L1mAb) and evaluated at day 2 and 5 after infection. Each study examined survival, physiologic and histologic parameters, viral titers, lung immunophenotypes, and mediator production. Results Study 1 results recapitulated the pathogenesis of COVID-19 and revealed increased cell surface expression of checkpoint molecules (PD-L1, PD-1), higher expression of the immune activation marker angiotensin converting enzyme (ACE), but reduced detection of the MHV-1 receptor CD66a on immune cells in the lung, liver, and spleen. In addition to reduced detection of PD-L1 on all immune cells assayed, PD-L1 blockade was associated with increased cell surface expression of PD-1 and ACE, decreased cell surface detection of CD66a, and improved oxygen saturation despite reduced blood glucose levels and increased signs of tissue hypoxia. In the lung, PD-L1mAb promoted S100A9 but inhibited ACE2 production concomitantly with pAKT activation and reduced FOXO1 levels. PD-L1mAb promoted interferon-γ but inhibited IL-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF) production, contributing to reduced bronchoalveolar lavage levels of eosinophils and neutrophils. In the liver, PD-L1mAb increased viral clearance in association with increased macrophage and lymphocyte recruitment and liver injury. PD-L1mAb increased the production of virally induced mediators of injury, angiogenesis, and neuronal activity that may play role in COVID-19 and ICI-related neurotoxicity. PD-L1mAb did not affect survival in this murine model. Discussion In Study 1 and Study 2, ACE was upregulated and CD66a and ACE2 were downregulated by either MHV-1 or PD-L1mAb. CD66a is not only the MHV-1 receptor but also an identified immune checkpoint and a negative regulator of ACE. Crosstalk between CD66a and PD-L1 or ACE/ACE2 may provide insight into ICI therapies. These networks may also play role in the increased production of S100A9 and neurological mediators in response to MHV-1 and/or PD-L1mAb, which warrant further study. Overall, these findings support observational data suggesting that prior ICI treatment does not alter survival in patients presenting with COVID-19.
Collapse
Affiliation(s)
- Colleen S. Curran
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Mark Jeakle
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Cumhur Y. Demirkale
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Samuel Minkove
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Victoria Hoffmann
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, United States
| | - Rhea Dhamapurkar
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Symya Chumbris
- Texcell North-America, Inc., Frederick, MD, United States
| | | | | | - Peter Q. Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Parizad Torabi-Parizi
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
El Dessouki D, Amr K, Kholoussi N, Rady HM, Temtamy SA, Abdou MMS, Aglan M. Clinical and molecular characterization in a cohort of patients with progressive pseudorheumatoid dysplasia. Am J Med Genet A 2023; 191:2329-2336. [PMID: 37377052 DOI: 10.1002/ajmg.a.63339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Progressive pseudorheumatoid dysplasia (PPRD), a rare autosomal recessive syndrome, is a type of skeletal dysplasia associated with pain, stiffness, swelling of multiple joints, and the absence of destructive changes. PPRD occurs due to loss of function pathogenic variants in WISP3 (CCN6) gene, located on chromosome 6q22. In this study, 23 unrelated Egyptian PPRD patients were clinically diagnosed based on medical history, physical and radiological examinations, and laboratory investigations. Sequencing of the whole WISP3 (CCN6) exons and introns boundaries was carried out for all patients. A total of 11 different sequence variations were identified in the WISP3 (CCN6) gene, five of them were new pathogenic variants: the NM_003880.3: c.80T>A (p.L27*), c.161delG (p.C54fs*12), c.737T>C (p.Leu246Pro), c.347-1G>A (IVS3-1G>A), and c.376C>T (p.Q126*). The results of this study expand the spectrum of WISP3 (CCN6) pathogenic variants associated with PPRD. Clinical and genetic analysis is important for proper genetic counseling to curb this rare disorder in the families.
Collapse
Affiliation(s)
- Dina El Dessouki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Khalda Amr
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Naglaa Kholoussi
- Immunogenetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Hanaa M Rady
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samia Ali Temtamy
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Manal M S Abdou
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona Aglan
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
16
|
Timmermans RGM, Blom AB, Bloks NGC, Nelissen RGHH, van der Linden EHMJ, van der Kraan PM, Meulenbelt I, Ramos YFM, van den Bosch MHJ. CCN4/WISP1 Promotes Migration of Human Primary Osteoarthritic Chondrocytes. Cartilage 2023; 14:67-75. [PMID: 36546648 PMCID: PMC10076902 DOI: 10.1177/19476035221144747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Previously, we have shown the involvement of cellular communication network factor 4/Wnt-activated protein Wnt-1-induced signaling protein 1 (CCN4/WISP1) in osteoarthritic (OA) cartilage and its detrimental effects on cartilage. Here, we investigated characteristics of CCN4 in chondrocyte biology by exploring correlations of CCN4 with genes expressed in human OA cartilage with functional follow-up. DESIGN Spearman correlation analysis was performed for genes correlating with CCN4 using our previously established RNA sequencing dataset of human preserved OA cartilage of the RAAK study, followed by a pathway enrichment analysis for genes with ρ ≥|0.6.| Chondrocyte migration in the absence or presence of CCN4 was determined in a scratch assay, measuring scratch size using a live cell imager for up to 36 h. Changes in expression levels of 12 genes, correlating with CCN4 and involved in migratory processes, were determined with reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS Correlation of CCN4 with ρ ≥|0.6| was found for 58 genes in preserved human OA cartilage. Pathway analysis revealed "neural crest cell migration" as most significant enriched pathway, containing among others CORO1C, SEMA3C, and SMO. Addition of CCN4 to primary chondrocytes significantly enhance chondrocyte migration as demonstrated by reduced scratch size over the course of 36 h, but at the timepoints measured no effect was observed on mRNA expression of the 12 genes. CONCLUSION CCN4 increases cell migration of human primary OA chondrocytes. Since WISP1 expression is known to be increased in OA cartilage, this may serve to direct chondrocytes toward cartilage defects and orchestrate repair.
Collapse
Affiliation(s)
- Ritchie G M Timmermans
- Experimental Rheumatology, Radboud university medical center, Nijmegen, The Netherlands
- Section Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Radboud university medical center, Nijmegen, The Netherlands
| | - Niek G C Bloks
- Section Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
| | - Rob G H H Nelissen
- Department of Orthopaedics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Peter M van der Kraan
- Experimental Rheumatology, Radboud university medical center, Nijmegen, The Netherlands
| | - Ingrid Meulenbelt
- Section Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
| | - Yolande F M Ramos
- Section Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
| | | |
Collapse
|
17
|
Fetisov TI, Borunova AA, Antipova AS, Antoshina EE, Trukhanova LS, Gorkova TG, Zuevskaya SN, Maslov A, Gurova K, Gudkov A, Lesovaya EA, Belitsky GA, Yakubovskaya MG, Kirsanov KI. Targeting Features of Curaxin CBL0137 on Hematological Malignancies In Vitro and In Vivo. Biomedicines 2023; 11:biomedicines11010230. [PMID: 36672738 PMCID: PMC9856019 DOI: 10.3390/biomedicines11010230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The anticancer activity of Curaxin CBL0137, a DNA-binding small molecule with chromatin remodulating effect, has been demonstrated in different cancers. Herein, a comparative evaluation of CBL0137 activity was performed in respect to acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia and multiple myeloma (MM) cultured in vitro. MTT assay showed AML and MM higher sensitivity to CBL0137's cytostatic effect comparatively to other hematological malignancy cells. Flow cytometry cell cycle analysis revealed an increase in subG1 and G2/M populations after CBL0137 cell treatment, but the prevalent type of arrest varied. Apoptosis activation by CBL0137 measured by Annexin-V/PI dual staining was more active in AML and MM cells. RT2 PCR array showed that changes caused by CBL0137 in signaling pathways involved in cancer pathogenesis were more intensive in AML and MM cells. On the murine model of AML WEHI-3, CBL0137 showed significant anticancer effects in vivo, which were evaluated by corresponding changes in spleen and liver. Thus, more pronounced anticancer effects of CBL0137 in vitro were observed in respect to AML and MM. Experiments in vivo also indicated the perspective of CBL0137 use for AML treatment. This in accordance with the frontline treatment approach in AML using epigenetic drugs.
Collapse
Affiliation(s)
- Timur I. Fetisov
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Anna A. Borunova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Alina S. Antipova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Elena E. Antoshina
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Lubov S. Trukhanova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Tatyana G. Gorkova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | | | - Alexei Maslov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Andrei Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ekaterina A. Lesovaya
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Department of Oncology, I.P. Pavlov Ryazan State Medical University, 390026 Ryazan, Russia
| | - Gennady A. Belitsky
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | | | - Kirill I. Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Correspondence:
| |
Collapse
|
18
|
Carmon I, Kalmus S, Zobrab A, Alterman M, Emram R, Gussarsky M, Kandel L, Reich E, Casap N, Dvir-Ginzberg M. Repairing a critical cranial defect using WISP1-pretreated chondrocyte scaffolds. J Tissue Eng 2023; 14:20417314231159740. [PMID: 36949842 PMCID: PMC10026108 DOI: 10.1177/20417314231159740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/09/2023] [Indexed: 03/19/2023] Open
Abstract
In cranial flat bone fractures, spontaneous bone repair will occur only when the fracture ends are in close contact. However, in cases wherein bone discontinuity is extensive, surgical interventions are often required. To this end, autologous bone is harvested and surgically integrated into the site of fracture. Here we propose to use cartilage, as an alternative autologous source, to promote cranial fracture repair. The advantage of this approach is the potential reduction in donor site morbidity, likely due to the avascular and aneural nature of cartilage. As a first step we attempted to induce cartilage mineralization in vitro, using micromass primary chondrocyte cultures, incubated with BMP2 and/or WISP1, which were examined histologically following a 3-week culture period. Next, chondrocyte seeded collagen scaffolds were evaluated in vitro for expression profiles and ALP activity. Finally, chondrocyte-seeded collagen scaffolds were implanted in a Lewis rats 8 mm critical calvaria defect model, which was imaged via live CT for 12 weeks until sacrifice. End points were analyzed for microCT, histology, and serum levels of bone related markers. Micromass cultures exhibited an osseous inducing trend following WISP1 administration, which was maintained in chondrocyte seeded scaffolds. Accordingly, in vivo analysis was carried out to assess the impact of WISP1-pretreated chondrocytes (WCS) versus untreated chondrocytes (UCS) in calvaria defect model and compared to untreated control comprised of a defect-associated blood clot (BC) or empty collagen scaffold (CS) implant. Live CT and microCT exhibited higher mineralization volumes in critical defect implanted with UCS, with some structural improvements in WCS. Histological analysis exhibited higher anabolic bone formation in WCS and trabecular bone was detected in WCS and UCS groups. Chondrocytes implanted into critical cranial defect expedite the formation of native-like osseous tissue, especially after WISP1 priming in culture. Ultimately, these data support the use of autologous chondrocytes to repair critical maxillofacial defects.
Collapse
Affiliation(s)
- Idan Carmon
- Laboratory of Cartilage Biology,
Institute of Bio-Medical and Oral Research, Faculty of Dental Medicine, Hebrew
University of Jerusalem, Jerusalem, Israel
| | - Shira Kalmus
- Laboratory of Cartilage Biology,
Institute of Bio-Medical and Oral Research, Faculty of Dental Medicine, Hebrew
University of Jerusalem, Jerusalem, Israel
| | - Anna Zobrab
- Laboratory of Cartilage Biology,
Institute of Bio-Medical and Oral Research, Faculty of Dental Medicine, Hebrew
University of Jerusalem, Jerusalem, Israel
| | - Michael Alterman
- Deptatement. of Maxillofacial Surgery,
Faculty of Dental Medicine, Hadassah-Hebrew University, Jerusalem, Israel
| | - Raphaelle Emram
- Laboratory of Cartilage Biology,
Institute of Bio-Medical and Oral Research, Faculty of Dental Medicine, Hebrew
University of Jerusalem, Jerusalem, Israel
| | - May Gussarsky
- Laboratory of Cartilage Biology,
Institute of Bio-Medical and Oral Research, Faculty of Dental Medicine, Hebrew
University of Jerusalem, Jerusalem, Israel
| | - Leonid Kandel
- Orthopedic Research Unit,
Hadassah-Hebrew University, Jerusalem, Israel
| | - Eli Reich
- Laboratory of Cartilage Biology,
Institute of Bio-Medical and Oral Research, Faculty of Dental Medicine, Hebrew
University of Jerusalem, Jerusalem, Israel
| | - Nardi Casap
- Deptatement. of Maxillofacial Surgery,
Faculty of Dental Medicine, Hadassah-Hebrew University, Jerusalem, Israel
| | - Mona Dvir-Ginzberg
- Laboratory of Cartilage Biology,
Institute of Bio-Medical and Oral Research, Faculty of Dental Medicine, Hebrew
University of Jerusalem, Jerusalem, Israel
- Mona Dvir-Ginzberg, Laboratory of Cartilage
Biology, Institute of Bio-Medical and Oral Research, Faculty of Dental Medicine,
Hebrew University of Jerusalem, P. O. Box 12272, Jerusalem 9112102, Israel.
| |
Collapse
|
19
|
Chang AC, Lin LW, Chen YC, Chen PC, Liu SC, Tai HC, Wu HC, Sung SY, Lin TH, Tang CH. The ADAM9/WISP-1 axis cooperates with osteoblasts to stimulate primary prostate tumor growth and metastasis. Int J Biol Sci 2023; 19:760-771. [PMID: 36778124 PMCID: PMC9909997 DOI: 10.7150/ijbs.77495] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Metastatic prostate cancer (PCa) predicts a poor prognosis and lower likelihood of survival. Osteoblasts (OBs) are known to be responsible for the synthesis and mineralization of bone, although it is unclear as to whether PCa in the prostate gland cooperates with OBs in bone to promote PCa malignant transformation. We aimed to elucidate how primary PCa cells cooperate with distal OBs and contribute to the vicious cycle that leads to metastatic PCa. Methods: N-cadherin, E-cadherin, and Twist protein expression were measured by Western blot. Twist translocation into the nucleus was detected by the immunofluorescence (IF) assay. Enzyme-linked immunosorbent assay (ELISA) detected protein levels in human serum samples. Levels of candidate protein expression were examined by the human cytokine array. Prostate tumor growth and metastasis were analyzed by orthotopic and metastatic prostate cancer models, respectively. Immunohistochemistry (IHC) staining was used to observe ADAM metallopeptidase domain 9 (ADAM9) and WNT1 inducible signaling pathway protein 1 (WISP-1) expression in tissue. Results: Our in vitro and in vivo analyses have now discovered that primary PCa expressing ADAM9 protein enables the transformation of OBs into PCa-associated osteoblasts (PCa-OBs), inducing WISP-1 secretion from PCa-OBs in the bone microenvironment. The upregulation of WISP-1 in bone provided feedback to primary PCa and promoted PCa cell aggressiveness via epithelial-mesenchymal transition (EMT) activity. Elevated levels of WISP-1 expression were detected in the serum of patients with PCa. ADAM9 levels were overexpressed in tumor tissue from PCa patients; ADAM9 blockade interrupted OB-induced release of WISP-1 and also suppressed primary tumor growth and distal metastasis in orthotopic PCa mouse models. Conclusion: Our study suggests that the ADAM9/WISP-1 axis assists with metastatic PCa progression. Thus, targeting the ADAM9/WISP-1 axis may help to prevent the malignant phenotypes of PCa cells.
Collapse
Affiliation(s)
- An-Chen Chang
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Liang-Wei Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yen-Chen Chen
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Po-Chun Chen
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Huai-Ching Tai
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.,Department of Urology, Fu-Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Hsi-Chin Wu
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Urology, China Medical University Hospital, Taichung, Taiwan.,Department of Urology, China Medical University Beigang Hospital, Beigang, Yunlin, Taiwan
| | - Shian-Ying Sung
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Office of Human Research, Taipei Medical University, Taipei, Taiwan.,TMU-Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Tien-Huang Lin
- Department of Urology, Buddhist Tzu Chi General Hospital Taichung Branch, Taichung, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
20
|
Suryawanshi H, Yang H, Lubetzky M, Morozov P, Lagman M, Thareja G, Alonso A, Li C, Snopkowski C, Belkadi A, Mueller FB, Lee JR, Dadhania DM, Salvatore SP, Seshan SV, Sharma VK, Suhre K, Suthanthiran M, Tuschl T, Muthukumar T. Detection of infiltrating fibroblasts by single-cell transcriptomics in human kidney allografts. PLoS One 2022; 17:e0267704. [PMID: 35657798 PMCID: PMC9165878 DOI: 10.1371/journal.pone.0267704] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
We tested the hypothesis that single-cell RNA-sequencing (scRNA-seq) analysis of human kidney allograft biopsies will reveal distinct cell types and states and yield insights to decipher the complex heterogeneity of alloimmune injury. We selected 3 biopsies of kidney cortex from 3 individuals for scRNA-seq and processed them fresh using an identical protocol on the 10x Chromium platform; (i) HK: native kidney biopsy from a living donor, (ii) AK1: allograft kidney with transplant glomerulopathy, tubulointerstitial fibrosis, and worsening graft function, and (iii) AK2: allograft kidney after successful treatment of active antibody-mediated rejection. We did not study T-cell-mediated rejections. We generated 7217 high-quality single cell transcriptomes. Taking advantage of the recipient-donor sex mismatches revealed by X and Y chromosome autosomal gene expression, we determined that in AK1 with fibrosis, 42 months after transplantation, more than half of the kidney allograft fibroblasts were recipient-derived and therefore likely migratory and graft infiltrative, whereas in AK2 without fibrosis, 84 months after transplantation, most fibroblasts were donor-organ-derived. Furthermore, AK1 was enriched for tubular progenitor cells overexpressing profibrotic extracellular matrix genes. AK2, eight months after successful treatment of rejection, contained plasmablast cells with high expression of immunoglobulins, endothelial cell elaboration of T cell chemoattractant cytokines, and persistent presence of cytotoxic T cells. In addition to these key findings, our analysis revealed unique cell types and states in the kidney. Altogether, single-cell transcriptomics yielded novel mechanistic insights, which could pave the way for individualizing the care of transplant recipients.
Collapse
Affiliation(s)
- Hemant Suryawanshi
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, United States of America
| | - Hua Yang
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Michelle Lubetzky
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| | - Pavel Morozov
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, United States of America
| | - Mila Lagman
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Gaurav Thareja
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Alicia Alonso
- Epigenomics Core Facility, Weill Cornell Medical College, New York, NY, United States of America
| | - Carol Li
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Catherine Snopkowski
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Aziz Belkadi
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Franco B. Mueller
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - John R. Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| | - Darshana M. Dadhania
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| | - Steven P. Salvatore
- Division of Renal Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Surya V. Seshan
- Division of Renal Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Vijay K. Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, United States of America
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| |
Collapse
|
21
|
Mukama T, Fortner RT, Katzke V, Hynes LC, Petrera A, Hauck SM, Johnson T, Schulze M, Schiborn C, Rostgaard-Hansen AL, Tjønneland A, Overvad K, Pérez MJS, Crous-Bou M, Chirlaque MD, Amiano P, Ardanaz E, Watts EL, Travis RC, Sacerdote C, Grioni S, Masala G, Signoriello S, Tumino R, Gram IT, Sandanger TM, Sartor H, Lundin E, Idahl A, Heath AK, Dossus L, Weiderpass E, Kaaks R. Prospective evaluation of 92 serum protein biomarkers for early detection of ovarian cancer. Br J Cancer 2022; 126:1301-1309. [PMID: 35031764 PMCID: PMC9042845 DOI: 10.1038/s41416-021-01697-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/07/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND CA125 is the best available yet insufficiently sensitive biomarker for early detection of ovarian cancer. There is a need to identify novel biomarkers, which individually or in combination with CA125 can achieve adequate sensitivity and specificity for the detection of earlier-stage ovarian cancer. METHODS In the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, we measured serum levels of 92 preselected proteins for 91 women who had blood sampled ≤18 months prior to ovarian cancer diagnosis, and 182 matched controls. We evaluated the discriminatory performance of the proteins as potential early diagnostic biomarkers of ovarian cancer. RESULTS Nine of the 92 markers; CA125, HE4, FOLR1, KLK11, WISP1, MDK, CXCL13, MSLN and ADAM8 showed an area under the ROC curve (AUC) of ≥0.70 for discriminating between women diagnosed with ovarian cancer and women who remained cancer-free. All, except ADAM8, had shown at least equal discrimination in previous case-control comparisons. The discrimination of the biomarkers, however, was low for the lag-time of >9-18 months and paired combinations of CA125 with any of the 8 markers did not improve discrimination compared to CA125 alone. CONCLUSION Using pre-diagnostic serum samples, this study identified markers with good discrimination for the lag-time of 0-9 months. However, the discrimination was low in blood samples collected more than 9 months prior to diagnosis, and none of the markers showed major improvement in discrimination when added to CA125.
Collapse
Affiliation(s)
- Trasias Mukama
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lucas Cory Hynes
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Agnese Petrera
- Research Unit Protein Science, Helmholtz Zentrum München, German Center for Environmental Health, Neuherberg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Center for Environmental Health, Neuherberg, Germany
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam -Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Catarina Schiborn
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam -Rehbruecke, Nuthetal, Germany
| | - Agnetha Linn Rostgaard-Hansen
- Danish Cancer Society Research Center, Diet, Genes and Environment, Strandboulevarden 49 DK-2100, Copenhagen, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Diet, Genes and Environment, Strandboulevarden 49 DK-2100, Copenhagen, Denmark
| | - Kim Overvad
- Department of Public Health, Aarhus University, Bartholins Alle 2, DK-8000, Aarhus C, Denmark
| | - María José Sánchez Pérez
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Marta Crous-Bou
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO) - Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - María-Dolores Chirlaque
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Pilar Amiano
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, San Sebastián, Spain
- Biodonostia Health Research Institute, Group of Epidemiology of Chronic and Communicable Diseases, San Sebastián, Spain
| | - Eva Ardanaz
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Eleanor L Watts
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital, Via Santena 7, 10126, Turin, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Giovanna Masala
- Institute of Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Simona Signoriello
- Dipartimento di Salute Mentale e Fisica e Medicina Preventiva, Vanvitelli University, Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP 7), Ragusa, Italy
| | - Inger T Gram
- Faculty of Health Sciences, Department of Community Medicine, UiT The Arctic University of Norway, N - 9037, Tromsø, Norway
| | - Torkjel M Sandanger
- Faculty of Health Sciences, Department of Community Medicine, UiT The Arctic University of Norway, N - 9037, Tromsø, Norway
| | - Hanna Sartor
- Diagnostic Radiology, Lund University, Department of Medical Imaging and Physiology, Skåne University Hospital, Malmö, Sweden
| | - Eva Lundin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Annika Idahl
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Laure Dossus
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
22
|
Yeger H, Perbal B. The CCN axis in cancer development and progression. J Cell Commun Signal 2021; 15:491-517. [PMID: 33877533 PMCID: PMC8642525 DOI: 10.1007/s12079-021-00618-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Since the authors first reviewed this subject in 2016 significant progress has been documented in the CCN field with advances made in the understanding of how members of the CCN family of proteins, CCN1-6, contribute to the pathogenesis and progression, positive and negative, of a larger variety of cancers. As termed matricellular proteins, and more recently the connective communication network, it has become clearer that members of the CCN family interact complexly with other proteins in the extracellular microenvironment, membrane signaling proteins, and can also operate intracellularly at the transcriptional level. In this review we expand on this earlier information providing new detailed information and insights that appropriate a much greater involvement and importance of their role in multiple aspects of cancer. Despite all the new information many more questions have been raised and intriguing results generated that warrant greater investigation. In order to permit the reader to smoothly integrate the new information we discuss all relevant CCN members in the context of cancer subtypes. We have harmonized the nomenclature with CCN numbering for easier comparisons. Finally, we summarize what new has been learned and provide a perspective on how our knowledge about CCN1-6 is being used to drive new initiatives on cancer therapeutics.
Collapse
Affiliation(s)
- Herman Yeger
- Program in Developmental and Stem Cell Biology Research Institute, SickKids, Toronto, Canada
| | | |
Collapse
|
23
|
Buitrago-Molina LE, Dywicki J, Noyan F, Schepergerdes L, Pietrek J, Lieber M, Schlue J, Manns MP, Wedemeyer H, Jaeckel E, Hardtke-Wolenski M. Anti-CD20 Therapy Alters the Protein Signature in Experimental Murine AIH, but Not Exclusively towards Regeneration. Cells 2021; 10:cells10061471. [PMID: 34208308 PMCID: PMC8231180 DOI: 10.3390/cells10061471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Autoimmune hepatitis (AIH) is a chronic autoimmune inflammatory disease that usually requires lifelong immunosuppression. Frequent recurrences after the discontinuation of therapy indicate that intrahepatic immune regulation is not restored by current treatments. Studies of other autoimmune diseases suggest that temporary depletion of B cells can improve disease progression in the long term. Methods: We tested a single administration of anti-CD20 antibodies to reduce B cells and the amount of IgG to induce intrahepatic immune tolerance. We used our experimental murine AIH (emAIH) model and treated the mice with anti-CD20 during the late stage of the disease. Results: After treatment, the mice showed the expected reductions in B cells and serum IgGs, but no improvements in pathology. However, all treated animals showed a highly altered serum protein expression pattern, which was a balance between inflammation and regeneration. Conclusions: In conclusion, anti-CD20 therapy did not produce clinically measurable results because it triggered inflammation, as well as regeneration, at the proteomic level. This finding suggests that anti-CD20 is ineffective as a sole treatment for AIH or emAIH.
Collapse
Affiliation(s)
- Laura Elisa Buitrago-Molina
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Janine Dywicki
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Lena Schepergerdes
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Julia Pietrek
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Maren Lieber
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Jerome Schlue
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany;
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
- Correspondence: ; Tel.: +49-201-723-6081; Fax: +49-201-723-6915
| |
Collapse
|
24
|
Yang C, Li F, Zhou W, Huang J. Knockdown of long non-coding RNA CCAT2 suppresses growth and metastasis of esophageal squamous cell carcinoma by inhibiting the β-catenin/WISP1 signaling pathway. J Int Med Res 2021; 49:3000605211019938. [PMID: 34057837 PMCID: PMC8753796 DOI: 10.1177/03000605211019938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective Long non-coding RNA (lncRNA) colon cancer-associated transcript 2 (CCAT2) plays oncogenic roles in several cancers, including esophageal squamous cell carcinoma (ESCC). However, the specific mechanism of how CCAT2 influences ESCC tumorigenesis is still unknown. Methods Using RT-qPCR, the mRNA expression levels of CCAT2 in 33 paired ESCC and adjacent non-cancer tissues and cell lines were measured. Lentiviral vector sh-CCAT2 was designed and transfected into TE10 cells. CCK-8 and transwell assays were employed to detect the effects of CCAT2 knockdown on cell proliferation and invasion, respectively. RT-qPCR and western blots were used to detect the effects of CCAT2 knockdown. Results CCAT2 was overexpressed in ESCC tissues compared with corresponding adjacent tissues. CCAT2 knockdown could suppress cell proliferation and invasion in vitro. Furthermore, knockdown of CCAT2 could suppress the mRNA and protein levels of β-catenin and Wnt-induced-secreted-protein-1 (WISP1), as well as the mRNA levels of their downstream targets VEGF-A, MMP2, and ICAM-1. High expression of CCAT2 and WISP1 were associated with poor prognosis of ESCC patients. Conclusions In conclusion, a novel CCAT2/β-catenin/WISP1 axis was revealed in ESCC progression and may provide a promising therapeutic target against ESCC. CCAT2 and WISP1 are potential molecular biomarkers for predicting prognosis of ESCC.
Collapse
Affiliation(s)
- Canlin Yang
- Department of Oncology, Taizhou People's Hospital, Affiliated with Nanjing University of Chinese Medicine, Taizhou, Jiangsu, P.R. China
| | - Fei Li
- Department of Oncology, Taizhou People's Hospital, Affiliated with Nanjing University of Chinese Medicine, Taizhou, Jiangsu, P.R. China
| | - Wenbiao Zhou
- Department of Oncology, Taizhou People's Hospital, Affiliated with Nanjing University of Chinese Medicine, Taizhou, Jiangsu, P.R. China
| | - Junxing Huang
- Department of Oncology, Taizhou People's Hospital, Affiliated with Nanjing University of Chinese Medicine, Taizhou, Jiangsu, P.R. China
| |
Collapse
|
25
|
Nguyen HD, Sun X, Yokota H, Lin CC. Probing Osteocyte Functions in Gelatin Hydrogels with Tunable Viscoelasticity. Biomacromolecules 2021; 22:1115-1126. [PMID: 33543929 PMCID: PMC10548335 DOI: 10.1021/acs.biomac.0c01476] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bone is an attractive site for metastatic cancer cells and has been considered as "soil" for promoting tumor growth. However, accumulating evidence suggests that some bone cells (e.g., osteocytes) can actually suppress cancer cell migration and invasion via direct cell-cell contact and/or through cytokine secretion. Toward designing a biomimetic niche for supporting 3D osteocyte culture, we present here a gelatin-based hydrogel system with independently tunable matrix stiffness and viscoelasticity. In particular, we synthesized a bifunctional macromer, gelatin-norbornene-boronic acid (i.e., GelNB-BA), for covalent cross-linking with multifunctional thiol linkers [e.g., four-arm poly(ethylene glycol)-thiol or PEG4SH] to form thiol-NB hydrogels. The immobilized BA moieties in the hydrogel readily formed reversible boronate ester bonds with 1,3-diols on physically entrapped poly(vinyl alcohol) (PVA). Adjusting the compositions of GelNB-BA, PEG4SH, and PVA afforded hydrogels with independently tunable elasticity and viscoelasticity. With this new dynamic hydrogel platform, we investigated matrix mechanics-induced growth and cytokine secretion of encapsulated MLO-A5 pre-osteocytes. We discovered that more compliant or viscoelastic gels promoted A5 cell growth. On the other hand, cells encapsulated in stiffer gels secreted higher amounts of pro-inflammatory cytokines and chemokines. Finally, conditioned media (CM) collected from the encapsulated MLO-A5 cells (i.e., A5-CM) strongly inhibited breast cancer cell proliferation, invasion, and expression of tumor-activating genes. This new biomimetic hydrogel platform not only serves as a versatile matrix for investigating mechano-sensing in osteocytes but also provides a means to produce powerful anti-tumor CM.
Collapse
Affiliation(s)
- Han D. Nguyen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xun Sun
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Hiroki Yokota
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
26
|
Orlandella FM, De Stefano AE, Iervolino PLC, Buono P, Soricelli A, Salvatore G. Dissecting the molecular pathways involved in the effects of physical activity on breast cancers cells: A narrative review. Life Sci 2020; 265:118790. [PMID: 33220294 DOI: 10.1016/j.lfs.2020.118790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023]
Abstract
Epidemiologic evidence suggests that obesity and sedentary are modifiable factors strongly associated with breast cancer risk worldwide. Since breast cancer represents the most frequent malignant neoplasm and the second cause of cancer-related deaths in women worldwide, an insight into the molecular mechanisms clarifying the effects of physical activity in breast cancer cells could have important implication for changing this cancer burden. In this narrative Review article, we summarize the current knowledge, regarding the effects of adapted physical activity program, focusing on the cellular signaling pathways activated and on the molecular markers involved in breast cancer. Regular exercise training in breast cancer patients has been shown to positively affect tumor-growth and survival rate. Indeed, emerging work demonstrates that regular exercise is able to affect multiple cancer hallmarks influencing the development and progression of cancer. In conclusion, changes in the circulating insulin, adipokines and estrogen levels, inflammation and oxidative stress could represent some of the possible biological mechanisms through which exercise may influence breast cancer development and recurrence.
Collapse
Affiliation(s)
| | - Anna Elisa De Stefano
- Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Via Medina 40, 80133 Naples, Italy; CEINGE - Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Paola Lucia Chiara Iervolino
- CEINGE - Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy; Dipartimento di Scienze Biomediche Avanzate, Università "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Pasqualina Buono
- Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Via Medina 40, 80133 Naples, Italy; CEINGE - Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Andrea Soricelli
- IRCCS SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Via Medina 40, 80133 Naples, Italy
| | - Giuliana Salvatore
- IRCCS SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Via Medina 40, 80133 Naples, Italy; CEINGE - Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| |
Collapse
|
27
|
Mao A, Tang J, Tang D, Wang F, Liao S, Yuan H, Tian C, Sun C, Si J, Zhang H, Xia X. MicroRNA-29b-3p enhances radiosensitivity through modulating WISP1-mediated mitochondrial apoptosis in prostate cancer cells. J Cancer 2020; 11:6356-6364. [PMID: 33033519 PMCID: PMC7532503 DOI: 10.7150/jca.48216] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy is frequently applied for clinically localized prostate cancer while its efficacy could be significantly hindered by radioresistance. MicroRNAs (miRNAs) are important regulators in mediating cellular responses to ionizing radiation (IR), and strongly associate with radiosensitivity in many cancers. In this study, enhancement of radiosensitivity by miR-29b-3p was demonstrated in prostate cancer cell line LNCaP in vitro. Results showed that miR-29b-3p expression was significantly upregulated in response to IR from both X-rays and carbon ion irradiations. Knockdown of miR-29b-3p resulted in radioresistance while overexpression of miR-29b-3p led to increased radiosensitivity (showing reduced cell viability, suppressed cell proliferation and decreased colony formation). In addition, miR-29b-3p was found to directly target Wnt1-inducible-signaling protein 1 (WISP1). Inhibition of WISP1 facilitated the mitochondrial apoptosis pathway through suppressing Bcl-XL expression while activating caspase-3 and poly (ADP-ribose) polymerase (PARP). The results indicated that miR-29b-3p was a radiosensitizing miRNAs and could enhance radiosensitivity of LNCaP cells by targeting WISP1. These findings suggested a novel treatment to overcome radioresistance in prostate cancer patients, especially those with higher levels of the WISP1 expression.
Collapse
Affiliation(s)
- Aihong Mao
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jinzhou Tang
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Deping Tang
- School of Chemical & Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Fang Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Shiqi Liao
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Hongxia Yuan
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Caiping Tian
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiaojun Xia
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, China.,Gansu Provincial Cancer Hospital, Lanzhou, China
| |
Collapse
|
28
|
Donma MM, Güngör ZE, Yılmaz A, Guzel S, Donma O. Assessment of Iron Metabolism-Related Parameters in Obese Children. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2019. [DOI: 10.34172/ajmb.2019.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Objectives: The aim of the study was to assess the possible associations among biochemical parameters that may be correlated with the possible mechanisms of iron metabolism in healthy children with normal body mass index (BMI), along with morbid obese (MO) children with and without metabolic syndrome (MetS). Methods: To this end, children aged 6-18 years with no history of any acute or chronic diseases were selected as the population of this prospective case-control study. Thirty MO children (with BMI higher than 99th percentile and without MetS findings), 28 MO children (with BMI higher than 99th percentile and with MetS), and 30 healthy children (with BMI values between 15th and 85th percentiles) participated in the study. Then, anthropometric measurements were recorded, followed by performing the complete blood count and serum iron profile. In addition, ferritin, transferrin, hepcidin, irisin, ferroportin, brain-derived neurotrophic factor (BDNF), WISP1, and PTP1/fortilin levels were measured using ELISA. Finally, statistical analyses were performed and P<0.05 was considered as the level of statistical significance. Results: Significant differences were obtained among the groups regarding anthropometric measurements, blood pressures, triacylglycerols, and high-density lipoprotein cholesterol levels. Further, there was a tendency toward an iron deficiency in both MO groups while an increase in ferritin levels was significant in the MetS group. However, BDNF, hepcidin, and ferroportin demonstrated no significant difference among the groups. Eventually, although the above-mentioned parameters were statistically insignificant, fortilin levels indicated a gradual decrease whereas irisin levels represented an increase from control group toward morbid obesity and MetS. Conclusion: In our study, obesity severity and the tendency toward iron deficiency were in accordance with each other. Particularly, different WISP-1 levels in the groups may help predict future complications, along with its use in diagnosing obesity.
Collapse
Affiliation(s)
- Mustafa Metin Donma
- Department of Pediatrics, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Zeynep Ersöz Güngör
- Ministry of Health, Hayrabolu State Hospital, Department of Pediatrics; Tekirdag, Turkey
| | - Ahsen Yılmaz
- Department of Biochemistry, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Savas Guzel
- Department of Biochemistry, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Orkide Donma
- Department of Medical Biochemistry, Cerrahpasa Medical Faculty, Istanbul University Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
29
|
Qi L, Yao Y, Zhang T, Feng F, Zhou C, Xu X, Sun C. A four-mRNA model to improve the prediction of breast cancer prognosis. Gene 2019; 721:144100. [PMID: 31493508 DOI: 10.1016/j.gene.2019.144100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Breast cancer (BRCA) is the most prevalent cancer that threatens female health. A growing body of evidence has demonstrated the non-negligible effects of messenger RNAs (mRNAs) on biological processes involved in cancers; however, there is no definite conclusion regarding the role of mRNAs in predicting the prognosis of BRCA patients. MATERIALS AND METHODS We systematically screened the mRNA expression landscape and clinical data of samples from the Cancer Genome Atlas (TCGA). Univariate Cox analysis and robust likelihood-based survival analysis were conducted to identify key mRNAs associated with BRCA. Furthermore, risk scores based on multivariate Cox analysis divided the training set into high-risk and low-risk groups. ROC analysis determined the optimal cut-off point for patient classification of risk levels. The prognostic model was additionally validated in the testing set and complete dataset. Finally, we plotted the survival curves for the mRNAs used in our model. RESULTS We obtained the original expression data of 13,617 mRNAs from a total of 1088 samples. After comprehensive survival analysis, the four-mRNA (ACSL1, OTUD3, PKD1L2, and WISP1) prognosis risk assessment model was constructed. Furthermore, the area under cure (AUC) was 0.834, indicating that the model was meaningful and reasonable. In each dataset, analysis based on the four-mRNA signature risk score indicated that the survival status of the group with high risk score was worse than that of the group with low risk scores. Patients with strong mRNA expression of OTUD3, PKD1L2, and WISP1 tended to have good prognosis, whereas patients with high ACSL1 expression tended to have poor prognosis. CONCLUSION In summary, we constructed a four-mRNA prognosis risk assessment model for BRCA. The newly developed model offers more possibilities for assessing prognosis and guiding the selection of better treatment strategies for BRCA.
Collapse
Affiliation(s)
- Lingyu Qi
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Yan Yao
- College of First Clinical Medicine, Weifang Medical University, Weifang 261041, Shandong Province, China
| | - Tingting Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Fubin Feng
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong Province, China
| | - Chao Zhou
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong Province, China
| | - Xia Xu
- Pharmacy Department, Shandong Chest Hospital, Jinan 250014, Shandong Province, China
| | - Changgang Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China; Department of Oncology, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China..
| |
Collapse
|