1
|
Ma J, Chen W, Vaishnani DK, Wang C, Xue S, Yang Q, Tong Y, Lei N, Zhao Z, Ying F. Curcumin Analog J7 Attenuates Liver Fibrosis and Metabolic Dysregulation in a Rat Model of Type 2 Diabetes via Modulation of TGF-β/Smad and NF-κB/BCL-2/BAX Pathways. Drug Des Devel Ther 2025; 19:2411-2432. [PMID: 40190815 PMCID: PMC11971964 DOI: 10.2147/dddt.s511372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/23/2025] [Indexed: 04/09/2025] Open
Abstract
Objective To evaluate the therapeutic potential of the curcumin analog J7 in protecting the liver and regulating glucose and lipid metabolism in rats with type 2 diabetes. Methods Bioinformatics methods were used to identify signaling pathways linked to diabetic liver disease. Diabetic rats were treated with curcumin, low-dose J7, or high-dose J7, and liver function and fibrosis were assessed through biochemical analyses, histopathology, immunohistochemistry, and ELISA. Results J7 administration significantly improved lisver function, reduced fibrosis, and regulated metabolic profiles in diabetic rats. J7 downregulated TGF-β1, NF-κB p65, and BAX, while upregulating BCL-2, showing superior effects to traditional curcumin in reducing TGF-β1 and inhibiting α-SMA expression. Conclusion J7 demonstrates potential as a therapeutic agent for managing liver complications in type 2 diabetes, effectively attenuating liver fibrosis and regulating metabolism through the modulation of key signaling pathways and proteins.
Collapse
Affiliation(s)
- Jun Ma
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Wei Chen
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Deep K Vaishnani
- School of International Studies, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Congying Wang
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Shuman Xue
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Qiuqin Yang
- School of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Yuheng Tong
- School of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Ningjia Lei
- Pharmacy College, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Zhichao Zhao
- Department of Critical Care Medicine, Yuyao People’s Hospital, Yuyao, Zhejiang, 315400, People’s Republic of China
| | - Furong Ying
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| |
Collapse
|
2
|
Raju C, Sankaranarayanan K. Insights on post-translational modifications in fatty liver and fibrosis progression. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167659. [PMID: 39788217 DOI: 10.1016/j.bbadis.2025.167659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease [MASLD] is a pervasive multifactorial health burden. Post-translational modifications [PTMs] of amino acid residues in protein domains demonstrate pivotal roles for imparting dynamic alterations in the cellular micro milieu. The crux of identifying novel druggable targets relies on comprehensively studying the etiology of metabolic disorders. This review article presents how different chemical moieties of various PTMs like phosphorylation, methylation, ubiquitination, glutathionylation, neddylation, acetylation, SUMOylation, lactylation, crotonylation, hydroxylation, glycosylation, citrullination, S-sulfhydration and succinylation presents the cause-effect contribution towards the MASLD spectra. Additionally, the therapeutic prospects in the management of liver steatosis and hepatic fibrosis via targeting PTMs and regulatory enzymes are also encapsulated. This review seeks to understand the function of protein modifications in progression and promote the markers discovery of diagnostic, prognostic and drug targets towards MASLD management which could also halt the progression of a catalogue of related diseases.
Collapse
Affiliation(s)
- Chithra Raju
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology Campus, Anna University, Chrompet, Chennai 600 044, Tamil Nadu, India
| | - Kavitha Sankaranarayanan
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology Campus, Anna University, Chrompet, Chennai 600 044, Tamil Nadu, India.
| |
Collapse
|
3
|
Barovic M, Hahn JJ, Heinrich A, Adhikari T, Schwarz P, Mirtschink P, Funk A, Kabisch S, Pfeiffer AFH, Blüher M, Seissler J, Stefan N, Wagner R, Fritsche A, Jumpertz von Schwartzenberg R, Chlamydas S, Harb H, Mantzoros CS, Chavakis T, Schürmann A, Birkenfeld AL, Roden M, Solimena M, Bornstein SR, Perakakis N. Proteomic and Metabolomic Signatures in Prediabetes Progressing to Diabetes or Reversing to Normoglycemia Within 1 Year. Diabetes Care 2025; 48:405-415. [PMID: 39746149 DOI: 10.2337/dc24-1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE Progression of prediabetes to type 2 diabetes has been associated with β-cell dysfunction, whereas its remission to normoglycemia has been related to improvement of insulin sensitivity. To understand the mechanisms and identify potential biomarkers related to prediabetes trajectories, we compared the proteomics and metabolomics profile of people with prediabetes progressing to diabetes or reversing to normoglycemia within 1 year. RESEARCH DESIGN AND METHODS The fasting plasma concentrations of 1,389 proteins and the fasting, 30-min, and 120-min post-oral glucose tolerance test (OGTT) plasma concentrations of 152 metabolites were measured in up to 134 individuals with new-onset diabetes, prediabetes, or normal glucose tolerance. For 108 participants, the analysis was repeated with samples from 1 year before, when all had prediabetes. RESULTS The plasma concentrations of 14 proteins were higher in diabetes compared with normoglycemia in a population with prediabetes 1 year before, and they correlated with indices of insulin sensitivity. Higher levels of dicarbonyl/L-xylulose reductase and glutathione S-transferase A3 in the prediabetic state were associated with an increased risk of diabetes 1 year later. Pathway analysis pointed toward differences in immune response between diabetes and normoglycemia that were already recognizable in the prediabetic state 1 year prior at baseline. The area under the curve during OGTT of the concentrations of IDL particles, IDL apolipoprotein B, and IDL cholesterol was higher in new-onset diabetes compared with normoglycemia. The concentration of glutamate increased in prediabetes progressing to diabetes. CONCLUSIONS We identify new candidates associated with the progression of prediabetes to diabetes or its remission to normoglycemia. Pathways regulating the immune response are related to prediabetes trajectories.
Collapse
Affiliation(s)
- Marko Barovic
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Joke Johanna Hahn
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Annett Heinrich
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Trishla Adhikari
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Peter Schwarz
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Peter Mirtschink
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases Partner Site Dresden, Dresden, Germany
| | - Alexander Funk
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases Partner Site Dresden, Dresden, Germany
| | - Stefan Kabisch
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas F H Pfeiffer
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Institute of Human Nutrition Potsdam-Rehbrücke, Brandenburg, Germany
| | - Matthias Blüher
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Medicine, Endocrinology and Nephrology, Universität Leipzig, Leipzig, Germany
| | - Jochen Seissler
- German Center for Diabetes Research, Neuherberg, Germany
- Diabetes Center, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Norbert Stefan
- German Center for Diabetes Research, Neuherberg, Germany
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine IV, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Robert Wagner
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Fritsche
- German Center for Diabetes Research, Neuherberg, Germany
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine IV, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Reiner Jumpertz von Schwartzenberg
- German Center for Diabetes Research, Neuherberg, Germany
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine IV, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | | | - Hani Harb
- Institute for Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
- Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases Partner Site Dresden, Dresden, Germany
| | - Annette Schürmann
- German Center for Diabetes Research, Neuherberg, Germany
- German Institute of Human Nutrition Potsdam-Rehbrücke, Brandenburg, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research, Neuherberg, Germany
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine IV, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Michael Roden
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michele Solimena
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Munich, University Hospital and Faculty of Medicine, Molecular Diabetology, Technische Universität Dresden, Dresden, Germany
| | - Stefan R Bornstein
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences, King's College London, London, U.K
| | - Nikolaos Perakakis
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
4
|
Wu Y, Li B, Xuan Y, Jiang Y, Chen J, Liao H, Feng J, Zhang J. Fluorofenidone alleviates cigarette smoke exposure-induced chronic lung injury by targeting ferroptosis. Sci Rep 2024; 14:32149. [PMID: 39738585 PMCID: PMC11686209 DOI: 10.1038/s41598-024-83998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common condition that poses significant health risks to humans. Pulmonary interstitial fibrosis (PIF) often manifests in advanced stages of COPD. Fluorofenidone (AKF) has a wide range of pharmacological effects, including anti-fibrotic, antioxidant, and anti-inflammatory effects. Therefore, this study aimed to assess the role of AKF in lung injury and its underlying mechanisms. The COPD mice model was constructed by cigarette smoke (CS) combined with lipopolysaccharide (LPS) treatment. The effect of AKF on COPD mice was evaluated by lung injury, lipid peroxidation, inflammatory factors, and the expression of ferroptosis markers. Furthermore, the normal human bronchial epithelial cell line, Beas-2B, was used to verify the mechanism underlying the association between ferroptosis and inflammation. AKF attenuated the cigarette smoke (CS)/LPS-induced inflammatory response in the mouse lungs. Additionally, AKF attenuated the CS/LPS-induced fibrosis response in the mouse lungs. AKF inhibits ferroptosis in lung tissues of CS/LPS-exposed mice. Furthermore, AKF suppressed the inflammatory response and ferroptosis in CSE-treated BEAS-2B cells via NF-κB signaling pathway. AKF can function as a novel ferroptosis inhibitor by inhibiting NF-κB to inhibit airway inflammation and fibrosis, providing a scientific basis for the use of AKF to prevent the progression of COPD and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuan Wu
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, Guangxi, 530007, China
- Department of General Medicine, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Binbin Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Yixuan Xuan
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Yu Jiang
- Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Jinping Chen
- Department of General Medicine, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Hong Liao
- Department of General Medicine, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Jihua Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
| | - Jianfeng Zhang
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, Guangxi, 530007, China.
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
| |
Collapse
|
5
|
Ruswandi YAR, Lesmana R, Rosdianto AM, Gunadi JW, Goenawan H, Zulhendri F. Understanding the Roles of Selenium on Thyroid Hormone-Induced Thermogenesis in Adipose Tissue. Biol Trace Elem Res 2024; 202:2419-2441. [PMID: 37758980 DOI: 10.1007/s12011-023-03854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Brown adipose tissue (BAT) and white adipose tissue (WAT) are known to regulate lipid metabolism. A lower amount of BAT compared to WAT, along with adipose tissue dysfunction, can result in obesity. Studies have shown that selenium supplementation protects against adipocyte dysfunction, decreases WAT triglycerides, and increases BAT triiodothyronine (T3). In this review, we discuss the relationship between selenium and lipid metabolism regulation through selenoprotein deiodinases and the role of deiodinases and thyroid hormones in the induction of adipose tissue thermogenesis. Upon 22 studies included in our review, we found that studies investigating the relationship between selenium and deiodinases demonstrated that selenium supplementation affects the iodothyronine deiodinase 2 (DIO2) protein and the expression of its associated gene, DIO2, proportionally. However, its effect on DIO1 is inconsistent while its effect on DIO3 activity is not detected. Studies have shown that the activity of deiodinases especially DIO2 protein and DIO2 gene expression is increased along with other browning markers upon white adipose tissue browning induction. Studies showed that thermogenesis is stimulated by the thyroid hormone T3 as its activity is correlated to the expression of other thermogenesis markers. A proposed mechanism of thermogenesis induction in selenium supplementation is by autophagy control. However, more studies are needed to establish the role of T3 and autophagy in adipose tissue thermogenesis, especially, since some studies have shown that thermogenesis can function even when T3 activity is lacking and studies related to autophagy in adipose tissue thermogenesis have contradictory results.
Collapse
Affiliation(s)
- Yasmin Anissa R Ruswandi
- Graduate School of Master Program in Anti-Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia.
| | - Aziiz Mardanarian Rosdianto
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia
- Veterinary Medicine Study Program, Faculty of Medicine, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
| | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Hanna Goenawan
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia
| | - Felix Zulhendri
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
- Kebun Efi, Kabanjahe, 22171, North Sumatra, Indonesia
| |
Collapse
|
6
|
Sun C, Lan F, Zhou Q, Guo X, Jin J, Wen C, Guo Y, Hou Z, Zheng J, Wu G, Li G, Yan Y, Li J, Ma Q, Yang N. Mechanisms of hepatic steatosis in chickens: integrated analysis of the host genome, molecular phenomics and gut microbiome. Gigascience 2024; 13:giae023. [PMID: 38837944 PMCID: PMC11152177 DOI: 10.1093/gigascience/giae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 01/14/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Hepatic steatosis is the initial manifestation of abnormal liver functions and often leads to liver diseases such as nonalcoholic fatty liver disease in humans and fatty liver syndrome in animals. In this study, we conducted a comprehensive analysis of a large chicken population consisting of 705 adult hens by combining host genome resequencing; liver transcriptome, proteome, and metabolome analysis; and microbial 16S ribosomal RNA gene sequencing of each gut segment. The results showed the heritability (h2 = 0.25) and duodenal microbiability (m2 = 0.26) of hepatic steatosis were relatively high, indicating a large effect of host genetics and duodenal microbiota on chicken hepatic steatosis. Individuals with hepatic steatosis had low microbiota diversity and a decreased genetic potential to process triglyceride output from hepatocytes, fatty acid β-oxidation activity, and resistance to fatty acid peroxidation. Furthermore, we revealed a molecular network linking host genomic variants (GGA6: 5.59-5.69 Mb), hepatic gene/protein expression (PEMT, phosphatidyl-ethanolamine N-methyltransferase), metabolite abundances (folate, S-adenosylmethionine, homocysteine, phosphatidyl-ethanolamine, and phosphatidylcholine), and duodenal microbes (genus Lactobacillus) to hepatic steatosis, which could provide new insights into the regulatory mechanism of fatty liver development.
Collapse
Affiliation(s)
- Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Fangren Lan
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Qianqian Zhou
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Xiaoli Guo
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Jiaming Jin
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Yanxin Guo
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Zhuocheng Hou
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Jiangxia Zheng
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Guiqin Wu
- Beijing Engineering Research Centre of Layer,
Beijing 101206, China
| | - Guangqi Li
- Beijing Engineering Research Centre of Layer,
Beijing 101206, China
| | - Yiyuan Yan
- Beijing Engineering Research Centre of Layer,
Beijing 101206, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Qiugang Ma
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| |
Collapse
|
7
|
Rodriguez-Ramiro I, Pastor-Fernández A, López-Aceituno JL, Garcia-Dominguez E, Sierra-Ramirez A, Valverde AM, Martinez-Pastor B, Efeyan A, Gomez-Cabrera MC, Viña J, Fernandez-Marcos PJ. Pharmacological and genetic increases in liver NADPH levels ameliorate NASH progression in female mice. Free Radic Biol Med 2024; 210:448-461. [PMID: 38036067 DOI: 10.1016/j.freeradbiomed.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the fastest growing liver diseases worldwide, and oxidative stress is one of NASH main key drivers. Nicotinamide adenine dinucleotide phosphate (NADPH) is the ultimate donor of reductive power to a number of antioxidant defences. Here, we explored the potential of increasing NADPH levels to prevent NASH progression. We used nicotinamide riboside (NR) supplementation or a G6PD-tg mouse line harbouring an additional copy of the human G6PD gene. In a NASH mouse model induced by feeding mice a methionine-choline deficient (MCD) diet for three weeks, both tools increased the hepatic levels of NADPH and ameliorated the NASH phenotype induced by the MCD intervention, but only in female mice. Boosting NADPH levels in females increased the liver expression of the antioxidant genes Gsta3, Sod1 and Txnrd1 in NR-treated mice, or of Gsr for G6PD-tg mice. Both strategies significantly reduced hepatic lipid peroxidation. NR-treated female mice showed a reduction of steatosis accompanied by a drop of the hepatic triglyceride levels, that was not observed in G6PD-tg mice. NR-treated mice tended to reduce their lobular inflammation, showed a reduction of the NK cell population and diminished transcription of the damage marker Lcn2. G6PD-tg female mice exhibited a reduction of their lobular inflammation and hepatocyte ballooning induced by the MCD diet, that was related to a reduction of the monocyte-derived macrophage population and the Tnfa, Ccl2 and Lcn2 gene expression. As conclusion, boosting hepatic NADPH levels attenuated the oxidative lipid damage and the exhausted antioxidant gene expression specifically in female mice in two different models of NASH, preventing the progression of the inflammatory process and hepatic injury.
Collapse
Affiliation(s)
- Ildefonso Rodriguez-Ramiro
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain; Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| | - Andrés Pastor-Fernández
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain
| | - José Luis López-Aceituno
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain
| | - Esther Garcia-Dominguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Aranzazu Sierra-Ramirez
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain
| | - Angela M Valverde
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, E28029, Spain; Centro de Investigaciones Biomédicas en Red de Diabetes y Enfermedades Metabólicas Asociadas, ISCIII, Spain
| | - Bárbara Martinez-Pastor
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Pablo J Fernandez-Marcos
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain.
| |
Collapse
|
8
|
Markitantova Y, Fokin A, Boguslavsky D, Simirskii V, Kulikov A. Molecular Signatures Integral to Natural Reprogramming in the Pigment Epithelium Cells after Retinal Detachment in Pleurodeles waltl. Int J Mol Sci 2023; 24:16940. [PMID: 38069262 PMCID: PMC10707686 DOI: 10.3390/ijms242316940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The reprogramming of retinal pigment epithelium (RPE) cells into retinal cells (transdifferentiation) lies in the bases of retinal regeneration in several Urodela. The identification of the key genes involved in this process helps with looking for approaches to the prevention and treatment of RPE-related degenerative diseases of the human retina. The purpose of our study was to examine the transcriptome changes at initial stages of RPE cell reprogramming in adult newt Pleurodeles waltl. RPE was isolated from the eye samples of day 0, 4, and 7 after experimental surgical detachment of the neural retina and was used for a de novo transcriptome assembly through the RNA-Seq method. A total of 1019 transcripts corresponding to the differently expressed genes have been revealed in silico: the 83 increased the expression at an early stage, and 168 increased the expression at a late stage of RPE reprogramming. We have identified up-regulation of classical early response genes, chaperones and co-chaperones, genes involved in the regulation of protein biosynthesis, suppressors of oncogenes, and EMT-related genes. We revealed the growth in the proportion of down-regulated ribosomal and translation-associated genes. Our findings contribute to revealing the molecular mechanism of RPE reprogramming in Urodela.
Collapse
Affiliation(s)
| | | | | | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Y.M.); (A.K.)
| | | |
Collapse
|
9
|
Xu T, Cui J, Xu R, Cao J, Guo MY. Microplastics induced inflammation and apoptosis via ferroptosis and the NF-κB pathway in carp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106659. [PMID: 37586228 DOI: 10.1016/j.aquatox.2023.106659] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Microplastics (MPs), a new class of pollutant that threatens aquatic biodiversity, are becoming increasingly prevalent around the world. Fish growth may be severely inhibited by microplastics, resulting in severe mortality. Exposure to microplastics increases the likelihood of intestinal injuries, but the underlying mechanisms remain equivocal. The objective of this study was to investigate the potential toxic mechanisms underlying microplastic-induced intestinal injury in fish and to assist researchers in identifying novel therapeutic targets. In this study, a model of carp exposed to microplastics was established successfully. Histological observation showed that exposure to polyethylene microplastics caused damage to the intestinal mucosal surface and a significant increase in goblet cells, which aggregated on the surface of the mucosa. The mucosal layer was observed to fall off. Lymphocytes in the intestinal wall proliferated and aggregated. TUNEL staining showed that apoptosis occurred in the group exposed to microplastics. The qPCR results showed that the expression of Ferroptosis apoptotic factors COX-2 and ACSL4 was upregulated, while the expression of TFRC, FIH1, SLC7A11, and GPX4 was downregulated. The NF-κB pathway (p-p65, IκBα), inflammatory cytokines (TNF-α, IL-8, IL-6) and apoptosis genes (Bax, Caspase3) were upregulated. Semi-quantitative detection of related proteins by Western blotting was consistent with the gene expression results. In addition, the ELISA assay showed that lipid peroxidation and inflammatory cytokines (TNF-α, IL-1β, IL-6) were increased in the microplastic exposed group. To conclude, lipid peroxidation induced by microplastics activates the NF-κB pathway and causes ferroptosis, ultimately resulting in intestinal damage and cellular apoptosis.
Collapse
Affiliation(s)
- Tianchao Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jie Cui
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ran Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Meng-Yao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Zheng Y, Xie L, Yang D, Luo K, Li X. Small-molecule natural plants for reversing liver fibrosis based on modulation of hepatic stellate cells activation: An update. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154721. [PMID: 36870824 DOI: 10.1016/j.phymed.2023.154721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Liver fibrosis (LF) is a trauma repair process carried out by the liver in response to various acute and chronic liver injuries. Its primary pathological characteristics are excessive proliferation and improper dismissal of the extracellular matrix, and if left untreated, it will progress into cirrhosis, liver cancer, and other diseases. Hepatic stellate cells (HSCs) activation is intimately associated to the onset of LF, and it is anticipated that addressing HSCs proliferation can reverse LF. Plant-based small-molecule medications have anti-LF properties, and their mechanisms of action involve suppression of extracellular matrix abnormally accumulating as well as anti-inflammation and anti-oxidative stress. New targeting HSC agents will therefore be needed to provide a potential curative response. PURPOSE The most recent HSC routes and small molecule natural plants that target HSC described domestically and internationally in recent years were examined in this review. METHODS The data was looked up using resources including ScienceDirect, CNKI, Web of Science, and PubMed. Keyword searches for information on hepatic stellate cells included "liver fibrosis", "natural plant", "hepatic stellate cells", "adverse reaction", "toxicity", etc. RESULTS: We discovered that plant monomers can target and control various pathways to prevent the activation and proliferation of HSC and promote the apoptosis of HSC in order to achieve the anti-LF effect in this work by compiling the plant monomers that influence many common pathways of HSC in recent years. It demonstrates the wide-ranging potential of plant monomers targeting different routes to combat LF, with a view to supplying new concepts and new strategies for natural plant therapy of LF as well as research and development of novel pharmaceuticals. The investigation of kaempferol, physalin B, and other plant monomers additionally motivated researchers to focus on the structure-activity link between the main chemicals and LF. CONCLUSION The creation of novel pharmaceuticals can benefit greatly from the use of natural components. They are often harmless for people, non-target creatures, and the environment because they are found in nature, and they can be employed as the starting chemicals for the creation of novel medications. Natural plants are valuable resources for creating new medications with fresh action targets because they feature original and distinctive action mechanisms.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
11
|
Differential Analysis of Key Proteins Related to Fibrosis and Inflammation in Soluble Egg Antigen of Schistosoma mansoni at Different Infection Times. Pathogens 2023; 12:pathogens12030441. [PMID: 36986363 PMCID: PMC10054402 DOI: 10.3390/pathogens12030441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Schistosomiasis is a major global health problem. Schistosomes secrete antigens into the host tissue that bind to chemokines or inhibit immune cell receptors, regulating the immune responses to allow schistosome development. However, the detailed mechanism of chronic schistosome infection-induced liver fibrosis, including the relationship between secreted soluble egg antigen (SEA) and hepatic stellate cell (HSC) activation, is still unknown. We used mass spectrometry to identify the SEA protein sequences from different infection weeks. In the 10th and 12th infection weeks, we focused on the SEA components and screened out the special protein components, particularly fibrosis- and inflammation-related protein sequences. Our results have identified heat shock proteins, phosphorylation-associated enzymes, or kinases, such as Sm16, GSTA3, GPCRs, EF1-α, MMP7, and other proteins linked to schistosome-induced liver fibrosis. After sorting, we found many special proteins related to fibrosis and inflammation, but studies proving their association with schistosomiasis infection are limited. Follow-up studies on MICOS, MATE1, 14-3-3 epsilon, and CDCP1 are needed. We treated the LX-2 cells with the SEA from the 8th, 10th, and 12th infection weeks to test HSC activation. In a trans-well cell model in which PBMCs and HSCs were co-cultured, the SEA could significantly induce TGF-β secretion, especially from the 12th week of infection. Our data also showed that TGF-β secreted by PBMC after the SEA treatment activates LX-2 and upregulates hepatic fibrotic markers α-SMA and collagen 1. Based on these results, the CUB domain-containing protein 1 (CDCP1) screened at the 12th infection week could be investigated further. This study clarifies the trend of immune mechanism variation in the different stages of schistosome infection. However, how egg-induced immune response transformation causes liver tissue fibrosis needs to be studied further.
Collapse
|
12
|
Li G, Peng L, Wu M, Zhao Y, Cheng Z, Li G. Appropriate level of cuproptosis may be involved in alleviating pulmonary fibrosis. Front Immunol 2022; 13:1039510. [PMID: 36601107 PMCID: PMC9806118 DOI: 10.3389/fimmu.2022.1039510] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Objective Cuproptosis is a newly discovered form of programmed cell death that has not been studied in pulmonary fibrosis. The purpose of the present study was to explore the relationship between cuproptosis and pulmonary fibrosis. Methods Single-cell sequencing (scRNA-seq) data for human and mouse pulmonary fibrosis were obtained online from Gene Expression Omnibus (GEO) database. First, fibroblast lineage was identified and extracted using the Seurat toolkit. The pathway was then evaluated via Gene Set Enrichment Analyses (GSEA), while transcription factor activity was analyzed using DoRothEA. Next, fibroblast differentiation trajectory was inferred via Monocle software and changes in gene expression patterns during fibroblast activation were explored through gene dynamics analysis. The trajectory was then divided into three cell states in pseudotime order and the expression level of genes related to cuproptosis promotion in each cell state was evaluated, in addition to genes related to copper export and buffering and key genes in cellular metabolic pathways. Results In the mouse model of pulmonary fibrosis induced by bleomycin, the genes related to cuproptosis promotion, such as Fdx1, Lias, Dld, Pdha1, Pdhb, Dlat, and Lipt1, were gradually down-regulated in the process of fibroblast differentiation from resting fibroblast to myofibroblast. Consistently, the same results were obtained via analysis of scRNA-seq data for human pulmonary fibrosis. In addition, genes related to copper ion export and buffering gradually increased with the activation of fibroblasts. Metabolism reprogramming was also observed, while fibroblast activation and tricarboxylic acid(TCA) cycle and lipid metabolism were gradually down-regulated and mitochondrial metabolism was gradually up-regulated. Conclusion The present study is the first to reveal a negative correlation between cuproptosis and fibrosis, suggesting that an appropriate cuproptosis level may be involved in inhibiting fibroblast activation. This may provide a new method for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Guoxing Li
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Lihua Peng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Mingjun Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yipin Zhao
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhe Cheng
- Department of Cardiology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Gang Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China,Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China,*Correspondence: Gang Li,
| |
Collapse
|
13
|
Li J, Jiang Y, Dai Q, Yu Y, Lv X, Zhang Y, Liao X, Ao L, Hu G, Meng J, Peng Z, Tao L, Xie Y. Protective effects of mefunidone on ischemia-reperfusion injury/Folic acid-induced acute kidney injury. Front Pharmacol 2022; 13:1043945. [PMID: 36506525 PMCID: PMC9727196 DOI: 10.3389/fphar.2022.1043945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is one of the most common causes of acute kidney injury (AKI). It poses a significant threat to public health, and effective therapeutic drugs are lacking. Mefunidone (MFD) is a new pyridinone drug that exerts a significant protective effect on diabetic nephropathy and the unilateral ureteral obstruction (UUO) model in our previous study. However, the effects of mefunidone on ischemia-reperfusion injury-induced acute kidney injury remain unknown. In this study, we investigated the protective effect of mefunidone against ischemia-reperfusion injury-induced acute kidney injury and explored the underlying mechanism. These results revealed that mefunidone exerted a protective effect against ischemia-reperfusion injury-induced acute kidney injury. In an ischemia-reperfusion injury-induced acute kidney injury model, treatment with mefunidone significantly protected the kidney by relieving kidney tubular injury, suppressing oxidative stress, and inhibiting kidney tubular epithelial cell apoptosis. Furthermore, we found that mefunidone reduced mitochondrial damage, regulated mitochondrial-related Bax/bcl2/cleaved-caspase3 apoptotic protein expression, and protected mitochondrial electron transport chain complexes III and V levels both in vivo and in vitro, along with a protective effect on mitochondrial membrane potential in vitro. Given that folic acid (FA)-induced acute kidney injury is a classic model, we used this model to further validate the efficacy of mefunidone in acute kidney injury and obtained the same conclusion. Based on the above results, we conclude that mefunidone has potential protective and therapeutic effects in both ischemia-reperfusion injury- and folic acid-induced acute kidney injury.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Lab of Organ Fibrosis, Changsha, China,National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, China
| | - Yupeng Jiang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Lab of Organ Fibrosis, Changsha, China,National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, China,Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Dai
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yue Yu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Lv
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Liyun Ao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jie Meng
- Hunan Key Lab of Organ Fibrosis, Changsha, China,Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Lab of Organ Fibrosis, Changsha, China,National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Lab of Organ Fibrosis, Changsha, China,National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Lab of Organ Fibrosis, Changsha, China,National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Yanyun Xie,
| |
Collapse
|
14
|
Komarov IV, Tolstanova G, Kuznietsova H, Dziubenko N, Yanchuk PI, Shtanova LY, Veselsky SP, Garmanchuk LV, Khranovska N, Gorbach O, Dovbynchuk T, Borysko P, Babii O, Schober T, Ulrich AS, Afonin S. Towards in vivo photomediated delivery of anticancer peptides: Insights from pharmacokinetic and -dynamic data. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112479. [PMID: 35660309 DOI: 10.1016/j.jphotobiol.2022.112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
An in vivo study of a photoswitchable cytotoxic peptide LMB040 has been undertaken on a chemically induced hepatocellular carcinoma model in immunocompetent rats. We analysed the pharmacokinetic profile of the less toxic photoform ("ring-closed" dithienylethene) of the compound in tumors, plasma, and healthy liver. Accordingly, the peptide can reach a tumor concentration sufficiently high to exert a cytotoxic effect upon photoconversion into the more active ("ring-open") photoform. Tissue morphology, histology, redox state of the liver, and hepatic biochemical parameters in blood serum were analysed upon treatment with (i) the less active photoform, (ii) the in vivo light-activated alternative photoform, and (iii) compared with a reference chemotherapeutic 5-fluorouracil. We found that application of the less toxic form followed by a delayed in vivo photoconversion into the more toxic ring-open form of LMB040 led to a higher overall survival of the animals, and signs of enhanced immune response were observed compared to the untreated animals.
Collapse
Affiliation(s)
- Igor V Komarov
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; Lumobiotics, Karlsruhe, Germany; Enamine, Kyiv, Ukraine.
| | | | - Halyna Kuznietsova
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; Enamine, Kyiv, Ukraine
| | | | | | | | | | | | | | | | | | | | - Oleg Babii
- Lumobiotics, Karlsruhe, Germany; Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tim Schober
- Lumobiotics, Karlsruhe, Germany; Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology, Karlsruhe, Germany; Institute of Organic Chemistry of Karlsruhe KIT, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany..
| | - Sergii Afonin
- Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
15
|
Tan Z, Si Y, Yu Y, Ding J, Huang L, Xu Y, Zhang H, Lu Y, Wang C, Yu B, Yuan L. Yi-Shen-Hua-Shi Granule Alleviates Adriamycin-Induced Glomerular Fibrosis by Suppressing the BMP2/Smad Signaling Pathway. Front Pharmacol 2022; 13:917428. [PMID: 35784691 PMCID: PMC9240271 DOI: 10.3389/fphar.2022.917428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common clinical condition with manifestations of nephrotic syndrome and fibrosis of the glomeruli and interstitium. Yi-Shen-Hua-Shi (YSHS) granule has been shown to have a good effect in alleviating nephrotic syndrome (NS) in clinical and in animal models of FSGS, but whether it can alleviate renal fibrosis in FSGS and its mechanism and targets are not clear. In this study, we explored the anti-fibrotic effect and the targets of the YSHS granule in an adriamycin (ADR)-induced FSGS model and found that the YSHS granule significantly improved the renal function of ADR-induced FSGS model mice and also significantly reduced the deposition of collagen fibers and the expression of mesenchymal cell markers FN, vimentin, and α-SMA in the glomeruli of ADR-induced FSGS mice, suggesting that the YSHS granule inhibited the fibrosis of sclerotic glomeruli. Subsequently, a network pharmacology-based approach was used to identify the potential targets of the YSHS granule for the alleviation of glomerulosclerosis in FSGS, and the results showed that the YSHS granule down-regulated the expressions of BMP2, GSTA1, GATS3, BST1, and S100A9 and up-regulated the expressions of TTR and GATM in ADR-induced FSGS model mice. We also proved that the YSHS granule inhibited the fibrosis in the glomeruli of ADR-induced FSGS model mice through the suppression of the BMP2/Smad signaling pathway.
Collapse
Affiliation(s)
- Zhuojing Tan
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yachen Si
- Department of Internal Medicine, No. 944 Hospital of Joint Logistics Support Force, Jiuquan, China
| | - Yan Yu
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiarong Ding
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Linxi Huang
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ying Xu
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hongxia Zhang
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yihan Lu
- Nanjing Medical University, Nanjing, China
| | - Chao Wang
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
- *Correspondence: Li Yuan, ; Bing Yu, ; Chao Wang,
| | - Bing Yu
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
- *Correspondence: Li Yuan, ; Bing Yu, ; Chao Wang,
| | - Li Yuan
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Li Yuan, ; Bing Yu, ; Chao Wang,
| |
Collapse
|
16
|
Liu Z, Zhou S, Zhang Y, Zhao M. Rat bone marrow mesenchymal stem cells (BMSCs) inhibit liver fibrosis by activating GSK3β and inhibiting the Wnt3a/β-catenin pathway. Infect Agent Cancer 2022; 17:17. [PMID: 35440002 PMCID: PMC9017036 DOI: 10.1186/s13027-022-00432-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Background Bone marrow mesenchymal stem cells (BMSCs) can effectively alleviate liver fibrosis, which is a pathological injury caused by various chronic liver diseases. This study aimed to investigate the antifibrotic effects of BMSCs and elucidate the underlying mechanism by which BMSCs affect liver fibrosis in vitro and in vivo. Methods After the rat liver fibrosis model was induced by continuous injection of carbon tetrachloride (CCl4), BMSCs were administered for 4 weeks, and histopathological analysis and liver function tests were performed. T6 hepatic stellate cells (HSC-T6 cells) were stimulated by TGF-β1, and the activation and proliferation of cells were analyzed by CCK-8 assays, flow cytometry, real-time PCR, western blotting and enzyme-linked immunosorbent assay (ELISA). Results Our data demonstrated that BMSCs effectively reduced the accumulation of collagen, enhanced liver functionality and ameliorated liver fibrosis in vivo. BMSCs increased the sub-G1 population in HSC-T6 cells. In addition, coculture with BMSCs reduced the expression of α-SMA, collagen I, cyclin-D1, and c-Myc in HSC-T6 cells and activated the phosphorylation of GSK3β. The GSK3β inhibitor SB216763 reversed the effect of BMSCs. The Wnt/β-catenin signalling pathway was involved in BMSC-mediated inhibition of HSC-T6 cell activation. Conclusions Our data suggested that BMSCs exerted antifibrotic effects by activating the expression of GSK3β and inhibiting the Wnt3a/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Zhaoguo Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.,Liuzhou Worker's Hospital, Liuzhou, Guangxi Province, China
| | - Song Zhou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ya Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ming Zhao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China. .,Department of Organ Transplantation, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, Guangdong Province, China.
| |
Collapse
|
17
|
Wang Y, Xiao X, Wang X, Guo F, Wang X. Identification of differentially expressed long noncoding RNAs and pathways in liver tissues from rats with hepatic fibrosis. PLoS One 2021; 16:e0258194. [PMID: 34597331 PMCID: PMC8486097 DOI: 10.1371/journal.pone.0258194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/21/2021] [Indexed: 11/19/2022] Open
Abstract
To identify long non-coding RNAs (lncRNAs) and their potential roles in hepatic fibrosis in rat liver issues induced by CCl4, lncRNAs and genes were analyzed in fibrotic rat liver tissues by RNA sequencing and verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Differentially expressed (DE) lncRNAs (DE-lncRNAs) and genes were subjected to bioinformatics analysis and used to construct a co-expression network. We identified 10 novel DE-lncRNAs that were downregulated during the hepatic fibrosis process. The cis target gene of DE-lncRNA, XLOC118358, was Met, and the cis target gene of the other nine DE-lncRNAs, XLOC004600, XLOC004605, XLOC004610, XLOC004611, XLOC004568, XLOC004580 XLOC004598, XLOC004601, and XLOC004602 was Nox4. The results of construction of a pathway-DEG co-expression network show that lncRNA-Met and lncRNAs-Nox4 were involved in oxidation-reduction processes and PI3K/Akt signaling pathway. Our results identified 10 DE-lncRNAs related to hepatic fibrosis, and the potential roles of DE-lncRNAs and target genes in hepatic fibrosis might provide new therapeutic strategies for hepatic fibrosis.
Collapse
Affiliation(s)
- Yan Wang
- Department of Traditional Chinese Medicine, The Fifth People’s Hospital Affiliated to Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiong Xiao
- Department of Traditional Chinese Medicine, The Fifth People’s Hospital Affiliated to Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- Department of Liver Disease, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Feng Guo
- Department of Liver Disease, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Xiaozhong Wang
- Department of Liver Disease, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| |
Collapse
|
18
|
Jiang F, Wang T, Li S, Jiang Y, Chen Z, Liu W. Effect of Fluorofenidone Against Paraquat-Induced Pulmonary Fibrosis Based on Metabolomics and Network Pharmacology. Med Sci Monit 2021; 27:e930166. [PMID: 33790218 PMCID: PMC8023277 DOI: 10.12659/msm.930166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/29/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Fluorofenidone (AKF-PD) is an anti-fibrotic small-molecule compound. Its mechanism of action on paraquat (PQ)-induced pulmonary fibrosis is still unclear. MATERIAL AND METHODS Forty-eight SD rats were divided into 4 groups: control group, PQ group, PQ+AKF-PD group, and AKF-PD group. The pathological changes of lung tissues were observed by Masson and HE staining. The UPLC-QTOF-MS analysis was performed to detect the differences in metabolites among groups, then the possible mechanisms of the anti-pulmonary fibrosis effects of fluorofenidone were further revealed by network pharmacology analysis. Biological methods were used to verify the results of the network pharmacology analysis. RESULTS The results showed that fluorofenidone treatment significantly alleviated paraquat-induced pulmonary fibrosis. Metabolomics analysis showed that 18 metabolites were disordered in the serum of paraquat-poisoned rats, of which 13 were restored following fluorofenidone treatment. Network pharmacology analysis showed that the drug screened a total of 12 targets and mainly involved multiple signaling pathways and metabolic pathways to jointly exert anti-pulmonary fibrosis effects. Autophagy is the main pathway of fluorofenidone in treatment pulmonary fibrosis. The western blot results showed that fluorofenidone upregulated the expression of LC3-II/I and E-cadherin, and downregulated the expression of p62, alpha-SMA, and TGF-ß1, which validated that fluorofenidone could inhibit the development of paraquat-induced pulmonary fibrosis by increasing autophagy. CONCLUSIONS In conclusion, metabolomics combined with network pharmacology research strategy revealed that fluorofenidone has a multi-target and multi-path mechanism of action in the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Feiya Jiang
- Department of Pharmacy, The First Hospital Affiliated with Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Tongtong Wang
- Department of Pharmacy, The First Hospital Affiliated with Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Sha Li
- Department of Pharmacy, Changsha Stomatological Hospital, Changsha, Hunan, China (mainland)
| | - Yu Jiang
- Emergency Medical Research Institute, Hunan Provincial People's Hospital, Changsha, Hunan, China (mainland)
| | - Zhuo Chen
- Xiangya College of Pharmacy, Central South University, Changsha, Hunan, China (mainland)
| | - Wen Liu
- Department of Pharmacy, The First Hospital Affiliated with Hunan Normal University, Changsha, Hunan, China (mainland)
| |
Collapse
|
19
|
Zhao Z, He B, Cai Q, Zhang P, Peng X, Zhang Y, Xie H, Wang X. A model of twenty-three metabolic-related genes predicting overall survival for lung adenocarcinoma. PeerJ 2020; 8:e10008. [PMID: 33024640 PMCID: PMC7520091 DOI: 10.7717/peerj.10008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/31/2020] [Indexed: 01/27/2023] Open
Abstract
Background The highest rate of cancer-related deaths worldwide is from lung adenocarcinoma (LUAD) annually. Metabolism was associated with tumorigenesis and cancer development. Metabolic-related genes may be important biomarkers and metabolic therapeutic targets for LUAD. Materials and Methods In this study, the gleaned cohort included LUAD RNA-SEQ data from the Cancer Genome Atlas (TCGA) and corresponding clinical data (n = 445). The training cohort was utilized to model construction, and data from the Gene Expression Omnibus (GEO, GSE30219 cohort, n = 83; GEO, GSE72094, n = 393) were regarded as a testing cohort and utilized for validation. First, we used a lasso-penalized Cox regression analysis to build a new metabolic-related signature for predicting the prognosis of LUAD patients. Next, we verified the metabolic gene model by survival analysis, C-index, receiver operating characteristic (ROC) analysis. Univariate and multivariate Cox regression analyses were utilized to verify the gene signature as an independent prognostic factor. Finally, we constructed a nomogram and performed gene set enrichment analysis to facilitate subsequent clinical applications and molecular mechanism analysis. Result Patients with higher risk scores showed significantly associated with poorer survival. We also verified the signature can work as an independent prognostic factor for LUAD survival. The nomogram showed better clinical application performance for LUAD patient prognostic prediction. Finally, KEGG and GO pathways enrichment analyses suggested several especially enriched pathways, which may be helpful for us investigative the underlying mechanisms.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Boxue He
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Qidong Cai
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Xiong Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Yuqian Zhang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Hui Xie
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Peng F, Tian Y, Ma J, Xu Z, Wang S, Tang M, Lei J, Gong G, Jiang Y. CAT1 silencing inhibits TGF-β1-induced mouse hepatic stellate cell activation in vitro and hepatic fibrosis in vivo. Cytokine 2020; 136:155288. [PMID: 32980687 DOI: 10.1016/j.cyto.2020.155288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
Abstract
Hepatic fibrosis is characterized by abnormal accumulation of extracellular matrix (ECM). Hepatic stellate cells (HSCs) are the primary cells that produce ECM in response to hepatic injury, and transforming growth factor-beta (TGF-β) has been regarded as the central stimulus responsible for HSC-mediated ECM production. In the present study, we attempted to identify a critical factor in HSC activation and the underlying mechanism. By analyzing online microarray expression profiles, we found that the expression of high-affinity cationic amino acid transporter 1 (CAT1) was upregulated in hepatic fibrosis models and activated HSCs. We isolated and identified mouse HSCs (MHSCs) and found that in these cells, CAT1 was most highly upregulated by TGF-β1 stimulation in both time- and dose-dependent manners. In vitro, CAT1 overexpression further enhanced, while CAT1 silencing inhibited, the effect of TGF-β1 in promoting MHSC activation. In vivo, CAT1 silencing significantly improved the hepatic fibrosis induced by both CCl4 and non-alcoholic fatty liver disease (NAFLD). In summary, CAT1 was significantly upregulated in TGF-β1-activated MHSCs and mice with hepatic fibrosis. CAT1 silencing inhibited TGF-β1-induced MHSC activation in vitro and fibrogenic changes in vivo. CAT1 is a promising target for hepatic fibrosis treatment that requites further investigation in human cells and clinical practice.
Collapse
Affiliation(s)
- Feng Peng
- Liver Diseases Research Center, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yi Tian
- Liver Diseases Research Center, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jing Ma
- Liver Diseases Research Center, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhenyu Xu
- Liver Diseases Research Center, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Sujuan Wang
- Liver Diseases Research Center, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Min Tang
- Liver Diseases Research Center, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jianhua Lei
- Liver Diseases Research Center, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Guozhong Gong
- Liver Diseases Research Center, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yongfang Jiang
- Liver Diseases Research Center, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
21
|
Zheng H, Yang Z, Xin Z, Yang Y, Yu Y, Cui J, Liu H, Chen F. Glycogen synthase kinase-3β: a promising candidate in the fight against fibrosis. Theranostics 2020; 10:11737-11753. [PMID: 33052244 PMCID: PMC7545984 DOI: 10.7150/thno.47717] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Fibrosis exists in almost all organs/tissues of the human body, plays an important role in the occurrence and development of diseases and is also a hallmark of the aging process. However, there is no effective prevention or therapeutic method for fibrogenesis. As a serine/threonine (Ser/Thr)-protein kinase, glycogen synthase kinase-3β (GSK-3β) is a vital signaling mediator that participates in a variety of biological events and can inhibit extracellular matrix (ECM) accumulation and the epithelial-mesenchymal transition (EMT) process, thereby exerting its protective role against the fibrosis of various organs/tissues, including the heart, lung, liver, and kidney. Moreover, we further present the upstream regulators and downstream effectors of the GSK-3β pathway during fibrosis and comprehensively summarize the roles of GSK-3β in the regulation of fibrosis and provide several potential targets for research. Collectively, the information reviewed here highlights recent advances vital for experimental research and clinical development, illuminating the possibility of GSK-3β as a novel therapeutic target for the management of tissue fibrosis in the future.
Collapse
Affiliation(s)
- Hanxue Zheng
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zhenlong Xin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yuan Yu
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jihong Cui
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Hongbo Liu
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Fulin Chen
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| |
Collapse
|
22
|
Chen H, Gan Q, Yang C, Peng X, Qin J, Qiu S, Jiang Y, Tu S, He Y, Li S, Yang H, Tao L, Peng Y. Correction to: A novel role of glutathione S-transferase A3 in inhibiting hepatic stellate cell activation and rat hepatic fibrosis. J Transl Med 2020; 18:182. [PMID: 32354374 PMCID: PMC7191682 DOI: 10.1186/s12967-020-02346-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Haihua Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Qixin Gan
- Department of Radiology, Zhuzhou Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, 412000, China
| | - Congying Yang
- Department of Endoscopic Medical Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, China
| | - Xiongqun Peng
- Department of Gastroenterology, Changsha Central Hospital, 161 South Shaoshan Road, Changsha, 410004, China
| | - Jiao Qin
- Department of Nephropathy, Changsha Central Hospital, 161 South Shaoshan Road, Changsha, 410004, China
| | - Sisi Qiu
- Department of Ultrasonography, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Yanzhi Jiang
- Department of Gastroenterology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Sha Tu
- Department of Gastroenterology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Ying He
- Department of Gastroenterology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Shenglan Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| | - Lijian Tao
- Department of Nephropathy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Yu Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|