1
|
El Sobky SA, Fawzy IO, Ahmed MS, Ragheb M, Hamad MH, Bahaaeldin R, Fahim SA, Saad R, Khalil ZA, Mahmoud SH, Mostafa A, Ali MA, Sadek HA, El-Ekiaby N, Abdelaziz AI. Drug repurposing of argatroban, glimepiride and ranolazine shows anti-SARS-CoV-2 activity via diverse mechanisms. Heliyon 2025; 11:e41894. [PMID: 39968139 PMCID: PMC11834051 DOI: 10.1016/j.heliyon.2025.e41894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Despite the vast vaccination campaigns against SARS-CoV-2, vaccine-resistant variants have emerged, and COVID-19 is continuing to spread with the fear of emergence of new variants that are resistant to the currently available anti-viral drugs. Hence, there is an urgent need to discover potential host-directed - rather than virus-directed - therapies against COVID-19. SARS-CoV-2 enters host cells through binding of the viral spike (S)-protein to the host angiotensin-converting enzyme 2 (ACE2) receptor, rendering the viral port of entry an attractive therapeutic target. Accordingly, this study aimed to investigate FDA-approved drugs for their potential repurposing to inhibit the entry point of SARS-CoV-2. Accordingly, the FDA-approved drugs library was enrolled in docking simulations to identify drugs that bind to the Spike-ACE2 interface. The drugs list retrieved by the docking simulations was shortlisted to 19 drugs based on docking scores and safety profiles. These drugs were screened for their ability to prevent binding between ACE2 and S-protein using an ELISA-based Spike-ACE2 binding assay. Five drugs showed statistically significant inhibition of binding between ACE2 and S-protein, ranging from 4 % to 37 %. Of those five, argatroban, glimepiride and ranolazine showed potential antiviral activity at IC50 concentrations well below their CC50 assessed by the plaque assay. Their mode of antiviral action was then determined using the plaque assay with some modifications, which revealed that argatroban acted mainly through a direct virucidal mechanism, while glimepiride largely inhibited viral replication, and ranolazine exerted its antiviral impact primarily through inhibiting viral adsorption. In conclusion, this study has identified three FDA-approved drugs - argatroban, glimepiride and ranolazine - which could potentially be repurposed and used for the management of COVID-19.
Collapse
Affiliation(s)
| | - Injie O. Fawzy
- School of Medicine, Newgiza University (NGU), Giza, 12577, Egypt
| | - Mahmoud S. Ahmed
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Manon Ragheb
- School of Medicine, Newgiza University (NGU), Giza, 12577, Egypt
| | - Merna H.M. Hamad
- School of Medicine, Newgiza University (NGU), Giza, 12577, Egypt
| | - Rowan Bahaaeldin
- School of Medicine, Newgiza University (NGU), Giza, 12577, Egypt
| | - Salma A. Fahim
- School of Medicine, Newgiza University (NGU), Giza, 12577, Egypt
| | - Rana Saad
- School of Medicine, Newgiza University (NGU), Giza, 12577, Egypt
| | - Ziad A. Khalil
- School of Medicine, Newgiza University (NGU), Giza, 12577, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, 12622 Dokki, Giza, Egypt
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, 12622 Dokki, Giza, Egypt
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Hesham A. Sadek
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Molecular Biology, University of Texas, Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biophysics, University of Texas, Southwestern Medical Center, Dallas, TX, 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nada El-Ekiaby
- School of Medicine, Newgiza University (NGU), Giza, 12577, Egypt
| | | |
Collapse
|
2
|
Sun HJ, Lu QB, Zhu XX, Ni ZR, Su JB, Fu X, Chen G, Zheng GL, Nie XW, Bian JS. Pharmacology of Hydrogen Sulfide and Its Donors in Cardiometabolic Diseases. Pharmacol Rev 2024; 76:846-895. [PMID: 38866561 DOI: 10.1124/pharmrev.123.000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well known modification intricately associated with the pathogenesis of CMDs. This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies, including multiomics, intestinal microflora analysis, organoid, and single-cell sequencing techniques, are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assess the current literature to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. SIGNIFICANCE STATEMENT: This comprehensive review covers recent developments in H2S biology and pharmacology in cardiometabolic diseases CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Qing-Bo Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xue-Xue Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Zhang-Rong Ni
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jia-Bao Su
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guo Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guan-Li Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao-Wei Nie
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jin-Song Bian
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| |
Collapse
|
3
|
Samarelli F, Graziano G, Gambacorta N, Graps EA, Leonetti F, Nicolotti O, Altomare CD. Small Molecules for the Treatment of Long-COVID-Related Vascular Damage and Abnormal Blood Clotting: A Patent-Based Appraisal. Viruses 2024; 16:450. [PMID: 38543815 PMCID: PMC10976273 DOI: 10.3390/v16030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 05/23/2024] Open
Abstract
People affected by COVID-19 are exposed to, among others, abnormal clotting and endothelial dysfunction, which may result in deep vein thrombosis, cerebrovascular disorders, and ischemic and non-ischemic heart diseases, to mention a few. Treatments for COVID-19 include antiplatelet (e.g., aspirin, clopidogrel) and anticoagulant agents, but their impact on morbidity and mortality has not been proven. In addition, due to viremia-associated interconnected prothrombotic and proinflammatory events, anti-inflammatory drugs have also been investigated for their ability to mitigate against immune dysregulation due to the cytokine storm. By retrieving patent literature published in the last two years, small molecules patented for long-COVID-related blood clotting and hematological complications are herein examined, along with supporting evidence from preclinical and clinical studies. An overview of the main features and therapeutic potentials of small molecules is provided for the thromboxane receptor antagonist ramatroban, the pan-caspase inhibitor emricasan, and the sodium-hydrogen antiporter 1 (NHE-1) inhibitor rimeporide, as well as natural polyphenolic compounds.
Collapse
Affiliation(s)
- Francesco Samarelli
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Giovanni Graziano
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Nicola Gambacorta
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Elisabetta Anna Graps
- ARESS Puglia—Agenzia Regionale Strategica per la Salute ed il Sociale, I-70121 Bari, Italy;
| | - Francesco Leonetti
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Orazio Nicolotti
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | | |
Collapse
|
4
|
Carvalho MCDC, Araujo JKCP, da Silva AGCL, da Silva NS, de Araújo NK, Luchessi AD, Ribeiro KDDS, Silbiger VN. Retinol Levels and Severity of Patients with COVID-19. Nutrients 2023; 15:4642. [PMID: 37960295 PMCID: PMC10650184 DOI: 10.3390/nu15214642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 11/15/2023] Open
Abstract
The new coronavirus infection represents a serious threat to global health and economies. In this sense, it is paramount to know the nutritional factors that may be related to the prognosis of the disease. Evidence shows that vitamin A may play an important preventive and therapeutic role in supporting respiratory infections as in COVID-19. The aim of our study was to evaluate the association of vitamin A (retinol) status with the prognosis of the disease. A case-control study from a cohort study was conducted in Brazil between May and October 2020. The study population was chosen by convenience, consisting of participants diagnosed with COVID-19. Recruitment was carried out using different approaches, including through dissemination on social media and in four hospitals in the city of Natal/RN, Brazil, recruiting participants from the COVID-19 ward and hospitalized participants who tested positive for the disease. The participants were allocated into two groups according to severity, with a group of mild (n = 88) or critical (n = 106) patients and compared to a control group (selected before the pandemic, n = 46). The extraction of retinol serum was performed and analyzed using the high-performance liquid chromatography method (HPLC). The retinol level was calculated in mmol/L, and levels below 0.7 μmol/L (20 µg/dL) were considered to be a vitamin A deficiency. Our findings suggest that the participants with mild and critical COVID-19 had lower retinol levels compared to the healthy controls (p = 0.03). In addition, milder cases of COVID-19 were associated with increased symptoms and prolonged symptoms after 90 days since the beginning of infection. However, the survival analysis showed no association with higher cases of death among participants with vitamin A deficiency (p = 0.509). More studies are needed to understand how nutritional status, including vitamin A levels, can influence prognosis and is a risk factor for the development of long COVID syndrome.
Collapse
Affiliation(s)
- Maria Clara da Cruz Carvalho
- Graduate Program in Pharmaceutical Science, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | | | | | - Nayara Sousa da Silva
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil;
| | - Nathalia Kelly de Araújo
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Andre Ducati Luchessi
- Graduate Program in Pharmaceutical Science, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil;
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Karla Danielly da Silva Ribeiro
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Vivian Nogueira Silbiger
- Undergraduate Program of Nutrition, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil; (J.K.C.P.A.); (V.N.S.)
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil;
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| |
Collapse
|
5
|
Burnap SA, Ortega-Prieto AM, Jimenez-Guardeño JM, Ali H, Takov K, Fish M, Shankar-Hari M, Giacca M, Malim MH, Mayr M. Cross-Linking Mass Spectrometry Uncovers Interactions Between High-Density Lipoproteins and the SARS-CoV-2 Spike Glycoprotein. Mol Cell Proteomics 2023; 22:100600. [PMID: 37343697 PMCID: PMC10279469 DOI: 10.1016/j.mcpro.2023.100600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
High-density lipoprotein (HDL) levels are reduced in patients with coronavirus disease 2019 (COVID-19), and the extent of this reduction is associated with poor clinical outcomes. While lipoproteins are known to play a key role during the life cycle of the hepatitis C virus, their influence on coronavirus (CoV) infections is poorly understood. In this study, we utilize cross-linking mass spectrometry (XL-MS) to determine circulating protein interactors of the severe acute respiratory syndrome (SARS)-CoV-2 spike glycoprotein. XL-MS of plasma isolated from patients with COVID-19 uncovered HDL protein interaction networks, dominated by acute-phase serum amyloid proteins, whereby serum amyloid A2 was shown to bind to apolipoprotein (Apo) D. XL-MS on isolated HDL confirmed ApoD to interact with SARS-CoV-2 spike but not SARS-CoV-1 spike. Other direct interactions of SARS-CoV-2 spike upon HDL included ApoA1 and ApoC3. The interaction between ApoD and spike was further validated in cells using immunoprecipitation-MS, which uncovered a novel interaction between both ApoD and spike with membrane-associated progesterone receptor component 1. Mechanistically, XL-MS coupled with data-driven structural modeling determined that ApoD may interact within the receptor-binding domain of the spike. However, ApoD overexpression in multiple cell-based assays had no effect upon viral replication or infectivity. Thus, SARS-CoV-2 spike can bind to apolipoproteins on HDL, but these interactions do not appear to alter infectivity.
Collapse
Affiliation(s)
- Sean A Burnap
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK; The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK; King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK.
| | - Ana Maria Ortega-Prieto
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jose M Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Hashim Ali
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK; Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Kaloyan Takov
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Matthew Fish
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK; Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, UK
| | - Mauro Giacca
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK.
| |
Collapse
|
6
|
Durante W. Glutamine Deficiency Promotes Immune and Endothelial Cell Dysfunction in COVID-19. Int J Mol Sci 2023; 24:7593. [PMID: 37108759 PMCID: PMC10144995 DOI: 10.3390/ijms24087593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused the death of almost 7 million people worldwide. While vaccinations and new antiviral drugs have greatly reduced the number of COVID-19 cases, there remains a need for additional therapeutic strategies to combat this deadly disease. Accumulating clinical data have discovered a deficiency of circulating glutamine in patients with COVID-19 that associates with disease severity. Glutamine is a semi-essential amino acid that is metabolized to a plethora of metabolites that serve as central modulators of immune and endothelial cell function. A majority of glutamine is metabolized to glutamate and ammonia by the mitochondrial enzyme glutaminase (GLS). Notably, GLS activity is upregulated in COVID-19, favoring the catabolism of glutamine. This disturbance in glutamine metabolism may provoke immune and endothelial cell dysfunction that contributes to the development of severe infection, inflammation, oxidative stress, vasospasm, and coagulopathy, which leads to vascular occlusion, multi-organ failure, and death. Strategies that restore the plasma concentration of glutamine, its metabolites, and/or its downstream effectors, in conjunction with antiviral drugs, represent a promising therapeutic approach that may restore immune and endothelial cell function and prevent the development of occlusive vascular disease in patients stricken with COVID-19.
Collapse
Affiliation(s)
- William Durante
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
7
|
Pezeshkian W, Grünewald F, Narykov O, Lu S, Arkhipova V, Solodovnikov A, Wassenaar TA, Marrink SJ, Korkin D. Molecular architecture and dynamics of SARS-CoV-2 envelope by integrative modeling. Structure 2023; 31:492-503.e7. [PMID: 36870335 DOI: 10.1016/j.str.2023.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023]
Abstract
Despite tremendous efforts, the exact structure of SARS-CoV-2 and related betacoronaviruses remains elusive. SARS-CoV-2 envelope is a key structural component of the virion that encapsulates viral RNA. It is composed of three structural proteins, spike, membrane (M), and envelope, which interact with each other and with the lipids acquired from the host membranes. Here, we developed and applied an integrative multi-scale computational approach to model the envelope structure of SARS-CoV-2 with near atomistic detail, focusing on studying the dynamic nature and molecular interactions of its most abundant, but largely understudied, M protein. The molecular dynamics simulations allowed us to test the envelope stability under different configurations and revealed that the M dimers agglomerated into large, filament-like, macromolecular assemblies with distinct molecular patterns. These results are in good agreement with current experimental data, demonstrating a generic and versatile approach to model the structure of a virus de novo.
Collapse
Affiliation(s)
- Weria Pezeshkian
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands; Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Fabian Grünewald
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands
| | - Oleksandr Narykov
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Senbao Lu
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | | | | | - Tsjerk A Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands; Institute for Life Science and Technology, Hanze University of Applied Sciences, 9747AS Groningen, the Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands.
| | - Dmitry Korkin
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, USA; Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
| |
Collapse
|
8
|
Atoum MF, Padma KR, Don KR. Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e131577. [PMID: 36915406 PMCID: PMC10007998 DOI: 10.5812/ijpr-131577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/23/2022] [Accepted: 12/17/2022] [Indexed: 01/22/2023]
Abstract
CONTEXT The whole universe is facing a coronavirus catastrophe, and prompt treatment for the health crisis is primarily significant. The primary way to improve health conditions in this battle is to boost our immunity and alter our diet patterns. A common bulb veggie used to flavor cuisine is garlic. Compounds in the plant that are physiologically active are present, contributing to its pharmacological characteristics. Among several food items with nutritional value and immunity improvement, garlic stood predominant and more resourceful natural antibiotic with a broad spectrum of antiviral potency against diverse viruses. However, earlier reports have depicted its efficacy in the treatment of a variety of viral illnesses. Nonetheless, there is no information on its antiviral activities and underlying molecular mechanisms. OBJECTIVES The bioactive compounds in garlic include organosulfur (allicin and alliin) and flavonoid (quercetin) compounds. These compounds have shown immunomodulatory effects and inhibited attachment of coronavirus to the angiotensin-converting enzyme 2 (ACE2) receptor and the Mpro of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Further, we have discussed the contradictory impacts of garlic used as a preventive measure against the novel coronavirus. METHOD The GC/MS analysis revealed 18 active chemicals, including 17 organosulfur compounds in garlic. Using the molecular docking technique, we report for the first time the inhibitory effect of the under-consideration compounds on the host receptor ACE2 protein in the human body, providing a crucial foundation for understanding individual compound coronavirus resistance on the main protease protein of SARS-CoV-2. Allyl disulfide and allyl trisulfide, which make up the majority of the compounds in garlic, exhibit the most potent activity. RESULTS Conventional medicine has proven its efficiency from ancient times. Currently, our article's prime spotlight was on the activity of Allium sativum on the relegation of viral load and further highlighted artificial intelligence technology to study the attachment of the allicin compound to the SARS-CoV-2 receptor to reveal its efficacy. CONCLUSIONS The COVID-19 pandemic has triggered interest among researchers to conduct future research on molecular docking with clinical trials before releasing salutary remedies against the deadly malady.
Collapse
Affiliation(s)
- Manar Fayiz Atoum
- Faculty of Applied Health Sciences, Hashemite University, Zarqa, Jordan
| | - Kanchi Ravi Padma
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam (Women’s) University, Tirupati, India
| | - Kanchi Ravi Don
- Department of Oral Pathology and Microbiology, Bharath Institute of Higher Education and Research, Sree Balaji Dental College and Hospital, Chennai, India
| |
Collapse
|
9
|
Oza PP, Kashfi K. Utility of NO and H 2S donating platforms in managing COVID-19: Rationale and promise. Nitric Oxide 2022; 128:72-102. [PMID: 36029975 PMCID: PMC9398942 DOI: 10.1016/j.niox.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023]
Abstract
Viral infections are a continuing global burden on the human population, underscored by the ramifications of the COVID-19 pandemic. Current treatment options and supportive therapies for many viral infections are relatively limited, indicating a need for alternative therapeutic approaches. Virus-induced damage occurs through direct infection of host cells and inflammation-related changes. Severe cases of certain viral infections, including COVID-19, can lead to a hyperinflammatory response termed cytokine storm, resulting in extensive endothelial damage, thrombosis, respiratory failure, and death. Therapies targeting these complications are crucial in addition to antiviral therapies. Nitric oxide and hydrogen sulfide are two endogenous gasotransmitters that have emerged as key signaling molecules with a broad range of antiviral actions in addition to having anti-inflammatory properties and protective functions in the vasculature and respiratory system. The enhancement of endogenous nitric oxide and hydrogen sulfide levels thus holds promise for managing both early-stage and later-stage viral infections, including SARS-CoV-2. Using SARS-CoV-2 as a model for similar viral infections, here we explore the current evidence regarding nitric oxide and hydrogen sulfide's use to limit viral infection, resolve inflammation, and reduce vascular and pulmonary damage.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
10
|
Koike A, Becker F, Sennhenn P, Kim J, Zhang J, Hannus S, Brehm K. Targeting Echinococcus multilocularis PIM kinase for improving anti-parasitic chemotherapy. PLoS Negl Trop Dis 2022; 16:e0010483. [PMID: 36190997 PMCID: PMC9560627 DOI: 10.1371/journal.pntd.0010483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/13/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The potentially lethal zoonosis alveolar echinococcosis (AE) is caused by the metacestode larval stage of the tapeworm Echinococcus multilocularis. Current AE treatment options are limited and rely on surgery as well as on chemotherapy involving benzimidazoles (BZ). BZ treatment, however, is mostly parasitostatic only, must be given for prolonged time periods, and is associated with adverse side effects. Novel treatment options are thus urgently needed. METHODOLOGY/PRINCIPAL FINDINGS By applying a broad range of kinase inhibitors to E. multilocularis stem cell cultures we identified the proto-oncogene PIM kinase as a promising target for anti-AE chemotherapy. The gene encoding the respective E. multilocularis ortholog, EmPim, was characterized and in situ hybridization assays indicated its expression in parasite stem cells. By yeast two-hybrid assays we demonstrate interaction of EmPim with E. multilocularis CDC25, indicating an involvement of EmPim in parasite cell cycle regulation. Small molecule compounds SGI-1776 and CX-6258, originally found to effectively inhibit human PIM kinases, exhibited detrimental effects on in vitro cultured parasite metacestode vesicles and prevented the formation of mature vesicles from parasite stem cell cultures. To improve compound specificity for EmPim, we applied a high throughput in silico modelling approach, leading to the identification of compound Z196138710. When applied to in vitro cultured metacestode vesicles and parasite cell cultures, Z196138710 proved equally detrimental as SGI-1776 and CX-6258 but displayed significantly reduced toxicity towards human HEK293T and HepG2 cells. CONCLUSIONS/SIGNIFICANCE Repurposing of kinase inhibitors initially designed to affect mammalian kinases for helminth disease treatment is often hampered by adverse side effects of respective compounds on human cells. Here we demonstrate the utility of high throughput in silico approaches to design small molecule compounds of higher specificity for parasite cells. We propose EmPim as a promising target for respective approaches towards AE treatment.
Collapse
Affiliation(s)
- Akito Koike
- University of Würzburg, Institute of Hygiene and Microbiology, Consultant Laboratory for Echinococcosis, Würzburg, Germany
| | | | | | - Jason Kim
- Immuneering Corporation, Cambridge, Massachusetts, United States of America
| | - Jenny Zhang
- Immuneering Corporation, Cambridge, Massachusetts, United States of America
| | | | - Klaus Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Consultant Laboratory for Echinococcosis, Würzburg, Germany
| |
Collapse
|
11
|
Foshati S, Mirjalili F, Rezazadegan M, Fakoorziba F, Amani R. Antioxidants and clinical outcomes of patients with coronavirus disease 2019: A systematic review of observational and interventional studies. Food Sci Nutr 2022; 10:FSN33034. [PMID: 36245940 PMCID: PMC9538172 DOI: 10.1002/fsn3.3034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a newly emerging viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Oxidative stress appears to be a prominent contributor to the pathogenicity of SARS-CoV-2. Therefore, we carried out a systematic review of human observational and interventional studies to investigate the role of some antioxidants such as vitamins A, E, D, and C, selenium, zinc, and α-lipoic acid in the main clinical outcomes of subjects with COVID-19. Google Scholar, Cochrane Library, Web of Science, Scopus, and Medline were searched using Medical Subject Headings (MeSH) and non-MeSH terms without restrictions. Finally, 36 studies for vitamins C and D, selenium, and zinc were included in this systematic review; however, no eligible studies were found for vitamins A and E as well as α-lipoic acid. The results showed the promising role of vitamin C in inflammation, Horowitz index, and mortality; vitamin D in disease manifestations and severity, inflammatory markers, lung involvement, ventilation requirement, hospitalization, intensive care unit (ICU) admission, and mortality; selenium in cure rate and mortality; and zinc in ventilation requirement, hospitalization, ICU admission, biomarkers of inflammation and bacterial infection, and disease complications. In conclusion, it seems that antioxidants, especially vitamins C and D, selenium, and zinc, can improve multiple COVID-19 clinical outcomes. Nevertheless, more studies are necessary to affirm these results.
Collapse
Affiliation(s)
- Sahar Foshati
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Fatemeh Mirjalili
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Mahsa Rezazadegan
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| | | | - Reza Amani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
12
|
Torrington E. Bioinformaticians: the hidden heroes of the COVID-19 pandemic. Biotechniques 2022; 72:171-174. [PMID: 35378999 PMCID: PMC9248021 DOI: 10.2144/btn-2022-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
As the COVID-19 pandemic continues to evolve, we explore how bioinformatics has paved the path to this point.
Collapse
|
13
|
Lee SH, Pandya RK, Hussain JS, Lau RJ, Chambers EAB, Geng A, Jin BX, Zhou O, Wu T, Barr L, Junop M. Perceptions of using infographics for scientific communication on social media for COVID-19 topics: a survey study. J Vis Commun Med 2022; 45:39-47. [PMID: 35341427 DOI: 10.1080/17453054.2021.2020625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Navigating for accurate information, especially health- and science-related content, on social media has been challenging during the COVID-19 pandemic. Although infographics are a popular medium for simplifying text-based information into visual components, their usefulness during a global health crisis has not been explored. The study aims to explore the perceptions of infographics in conveying scientific information related to COVID-19 on social media. Following a social media campaign that published COVID-19 related infographics from May to August 2020, a cross-sectional survey was administered to social media users, primarily students from Western University. Several questions asked respondents to make comparisons with written articles when reporting their perceptions of infographics. Seventy-three percent of students from 361 responses belonged to health-related academic backgrounds. Seventy-two percent felt more likely to share infographics than written articles on social media due to the visual appeal. Nearly 90% felt it was easier to navigate through complicated science and that more scientists should use infographics on social media. Educational background did not influence the perceived usefulness of infographics in understanding scientific information. Infographics are perceived favourably in conveying scientific information about COVID-19 on social media. Findings from this study can inform communication strategies during a pandemic and, more broadly, global crises.
Collapse
Affiliation(s)
- Seung Heyck Lee
- Schulich School of Medicine & Dentistry, Western University, London, Canada
| | | | - Junayd Sajid Hussain
- Schulich School of Medicine & Dentistry, Western University, London, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | | | - Emily Anne Brock Chambers
- Richard Ivey School of Business, Western University, London, Canada.,Faculty of Information and Media Studies, Western University, London, Canada
| | - Apple Geng
- Schulich School of Medicine & Dentistry, Western University, London, Canada
| | - Bernie Xiong Jin
- Schulich School of Medicine & Dentistry, Western University, London, Canada
| | - Oliver Zhou
- Schulich School of Medicine & Dentistry, Western University, London, Canada
| | - Tingting Wu
- Schulich School of Medicine & Dentistry, Western University, London, Canada
| | - Lauren Barr
- Department of Sociology, Western University, London, Canada
| | - Murray Junop
- Schulich School of Medicine & Dentistry, Western University, London, Canada
| |
Collapse
|
14
|
Premeaux TA, Yeung ST, Bukhari Z, Bowler S, Alpan O, Gupta R, Ndhlovu LC. Emerging Insights on Caspases in COVID-19 Pathogenesis, Sequelae, and Directed Therapies. Front Immunol 2022; 13:842740. [PMID: 35265086 PMCID: PMC8899608 DOI: 10.3389/fimmu.2022.842740] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/01/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a significant global health emergency with new variants in some cases evading current therapies and approved vaccines. COVID-19 presents with a broad spectrum of acute and long-term manifestations. Severe COVID-19 is characterized by dysregulated cytokine release profile, dysfunctional immune responses, and hypercoagulation with a high risk of progression to multi-organ failure and death. Unraveling the fundamental immunological processes underlying the clinical manifestations of COVID-19 is vital for the identification and design of more effective therapeutic interventions for individuals at the highest risk of severe outcomes. Caspases are expressed in both immune and non-immune cells and mediate inflammation and cell death, including apoptosis and pyroptosis. Here we review accumulating evidence defining the importance of the expression and activity of caspase family members following SARS-CoV-2 infection and disease. Research suggests SARS-CoV-2 infection is linked to the function of multiple caspases, both mechanistically in vitro as well as in observational studies of individuals with severe COVID-19, which may further the impact on disease severity. We also highlight immunological mechanisms that occur in severe COVID-19 pathology upstream and downstream of activated caspase pathways, including innate recognition receptor signaling, inflammasomes, and other multiprotein complex assembly, inflammatory mediators IL-1β and IL-18, and apoptotic and pyroptotic cell death. Finally, we illuminate discriminate and indiscriminate caspase inhibitors that have been identified for clinical use that could emerge as potential therapeutic interventions that may benefit clinical efforts to prevent or ameliorate severe COVID-19.
Collapse
Affiliation(s)
- Thomas A. Premeaux
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Stephen T. Yeung
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Zaheer Bukhari
- Department of Pathology, The State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
| | - Scott Bowler
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Oral Alpan
- Immunopathogenesis Section, Amerimmune, Fairfax, VA, United States
| | - Raavi Gupta
- Department of Pathology, The State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
15
|
Dugbartey GJ, Alornyo KK, Ohene BO, Boima V, Antwi S, Sener A. Renal consequences of the novel coronavirus disease 2019 (COVID-19) and hydrogen sulfide as a potential therapy. Nitric Oxide 2022; 120:16-25. [PMID: 35032641 PMCID: PMC8755416 DOI: 10.1016/j.niox.2022.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is a global pandemic which is primarily considered a respiratory illness. However, emerging reports show that the virus exhibits both pulmonary and extra-pulmonary manifestations in humans, with the kidney as a major extra-pulmonary target due to its abundant expression of angiotensin-converting enzyme 2 and transmembrane protease serine 2, which facilitate entry of the virus into cells. Acute kidney injury has become prevalent in COVID-19 patients without prior any history of kidney dysfunction. In addition, the virus also worsens kidney conditions and increases mortality of COVID-19 patients with pre-existing chronic kidney disease, renal cancer, diabetic nephropathy, end-stage kidney disease as well as dialysis and kidney transplant patients. In the search for antiviral agents for the treatment of COVID-19, hydrogen sulfide (H2S), the third established member of gasotransmitter family, is emerging as a potential candidate, possessing important therapeutic properties including antiviral, anti-inflammatory, anti-thrombotic and antioxidant properties. A recent clinical study revealed higher serum H2S levels in survivors of COVID-19 pneumonia with reduced interleukin-6 levels compared to fatal cases. In this review, we summarize the global impact of COVID-19 on kidney conditions and discuss the emerging role of H2S as a potential COVID-19 therapy.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Bright O Ohene
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Vincent Boima
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Sampson Antwi
- Department of Child Health, School of Medical Sciences, Kwame Nkrumah University of Science and Technology and Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Alp Sener
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-organ Transplant Program, London Health Sciences Center, Ontario, Canada; Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
16
|
Plassmeyer M, Alpan O, Corley MJ, Premeaux TA, Lillard K, Coatney P, Vaziri T, Michalsky S, Pang APS, Bukhari Z, Yeung ST, Evering TH, Naughton G, Latterich M, Mudd P, Spada A, Rindone N, Loizou D, Ulrik Sønder S, Ndhlovu LC, Gupta R. Caspases and therapeutic potential of caspase inhibitors in moderate-severe SARS-CoV-2 infection and long COVID. Allergy 2022; 77:118-129. [PMID: 33993490 PMCID: PMC8222863 DOI: 10.1111/all.14907] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND COVID-19 can present with lymphopenia and extraordinary complex multiorgan pathologies that can trigger long-term sequela. AIMS Given that inflammasome products, like caspase-1, play a role in the pathophysiology of a number of co-morbid conditions, we investigated caspases across the spectrum of COVID-19 disease. MATERIALS & METHODS We assessed transcriptional states of multiple caspases and using flow cytometry, the expression of active caspase-1 in blood cells from COVID-19 patients in acute and convalescent stages of disease. Non-COVID-19 subject presenting with various comorbid conditions served as controls. RESULTS Single-cell RNA-seq data of immune cells from COVID-19 patients showed a distinct caspase expression pattern in T cells, neutrophils, dendritic cells, and eosinophils compared with controls. Caspase-1 was upregulated in CD4+ T-cells from hospitalized COVID-19 patients compared with unexposed controls. Post-COVID-19 patients with lingering symptoms (long-haulers) also showed upregulated caspase-1activity in CD4+ T-cells that ex vivo was attenuated with a select pan-caspase inhibitor. We observed elevated caspase-3/7levels in red blood cells from COVID-19 patients compared with controls that was reduced following caspase inhibition. DISCUSSION Our preliminary results suggest an exuberant caspase response in COVID-19 that may facilitate immune-related pathological processes leading to severe outcomes. Further clinical correlations of caspase expression in different stages of COVID-19 will be needed. CONCLUSION Pan-caspase inhibition could emerge as a therapeutic strategy to ameliorate or prevent severe COVID-19.
Collapse
Affiliation(s)
| | | | - Michael J. Corley
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine New York City NY USA
| | - Thomas A. Premeaux
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine New York City NY USA
| | | | | | | | | | - Alina P. S. Pang
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine New York City NY USA
| | - Zaheer Bukhari
- S.U.N.Y. Downstate Health Sciences University Brooklyn NY USA
| | - Stephen T. Yeung
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine New York City NY USA
| | - Teresa H. Evering
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine New York City NY USA
| | | | | | - Philip Mudd
- Department of Emergency Medicine Washington University School of Medicine Saint Louis MO USA
| | | | | | | | | | - Lishomwa C. Ndhlovu
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine New York City NY USA
| | - Raavi Gupta
- S.U.N.Y. Downstate Health Sciences University Brooklyn NY USA
| |
Collapse
|
17
|
Khan MS, Yousafi Q, Bibi S, Azhar M, Ihsan A. Bioinformatics-Based Approaches to Study Virus-Host Interactions During SARS-CoV-2 Infection. Methods Mol Biol 2022; 2452:197-212. [PMID: 35554909 DOI: 10.1007/978-1-0716-2111-0_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As the knowledge of biomolecules is increasing from the last decades, it is helping the researchers to understand the unsolved issues regarding virology. Recent technologies in high-throughput sequencing are providing the swift generation of SARS-CoV-2 genomic data with the basic inside of viral infection. Owing to various virus-host protein interactions, high-throughput technologies are unable to provide complete details of viral pathogenesis. Identifying the virus-host protein interactions using bioinformatics approaches can assist in understanding the mechanism of SARS-CoV-2 infection and pathogenesis. In this chapter, recent integrative bioinformatics approaches are discussed to help the virologists and computational biologists in the identification of structurally similar proteins of human and SARS-CoV-2 virus, and to predict the potential of virus-host interactions. Considering experimental and time limitations for effective viral drug development, computational aided drug design (CADD) can reduce the gap between drug prediction and development. More research with respect to evolutionary solutions could be helpful to make a new pipeline for virus-host protein-protein interactions and provide more understanding to disclose the cases of host switch, and also expand the virulence of the pathogen and host range in developing viral infections.
Collapse
Affiliation(s)
- Muhammad Saad Khan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Qudsia Yousafi
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Shabana Bibi
- Yunnan Herbal Laboratory, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, China
| | - Muhammad Azhar
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan.
| |
Collapse
|
18
|
Matsuyama T, Yoshinaga SK, Shibue K, Mak TW. Comorbidity-associated glutamine deficiency is a predisposition to severe COVID-19. Cell Death Differ 2021; 28:3199-3213. [PMID: 34663907 PMCID: PMC8522258 DOI: 10.1038/s41418-021-00892-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 vaccinations have greatly reduced COVID-19 cases, but we must continue to develop our understanding of the nature of the disease and its effects on human immunity. Previously, we suggested that a dysregulated STAT3 pathway following SARS-Co-2 infection ultimately leads to PAI-1 activation and cascades of pathologies. The major COVID-19-associated metabolic risks (old age, hypertension, cardiovascular diseases, diabetes, and obesity) share high PAI-1 levels and could predispose certain groups to severe COVID-19 complications. In this review article, we describe the common metabolic profile that is shared between all of these high-risk groups and COVID-19. This profile not only involves high levels of PAI-1 and STAT3 as previously described, but also includes low levels of glutamine and NAD+, coupled with overproduction of hyaluronan (HA). SARS-CoV-2 infection exacerbates this metabolic imbalance and predisposes these patients to the severe pathophysiologies of COVID-19, including the involvement of NETs (neutrophil extracellular traps) and HA overproduction in the lung. While hyperinflammation due to proinflammatory cytokine overproduction has been frequently documented, it is recently recognized that the immune response is markedly suppressed in some cases by the expansion and activity of MDSCs (myeloid-derived suppressor cells) and FoxP3+ Tregs (regulatory T cells). The metabolomics profiles of severe COVID-19 patients and patients with advanced cancer are similar, and in high-risk patients, SARS-CoV-2 infection leads to aberrant STAT3 activation, which promotes a cancer-like metabolism. We propose that glutamine deficiency and overproduced HA is the central metabolic characteristic of COVID-19 and its high-risk groups. We suggest the usage of glutamine supplementation and the repurposing of cancer drugs to prevent the development of severe COVID-19 pneumonia.
Collapse
Affiliation(s)
- Toshifumi Matsuyama
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | | | - Kimitaka Shibue
- Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Immunology, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Pathology, University of Hong Kong, Hong Kong, Pok Fu Lam, 999077, Hong Kong
| |
Collapse
|
19
|
Tayara H, Abdelbaky I, To Chong K. Recent omics-based computational methods for COVID-19 drug discovery and repurposing. Brief Bioinform 2021; 22:6355836. [PMID: 34423353 DOI: 10.1093/bib/bbab339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/09/2021] [Indexed: 12/22/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the main reason for the increasing number of deaths worldwide. Although strict quarantine measures were followed in many countries, the disease situation is still intractable. Thus, it is needed to utilize all possible means to confront this pandemic. Therefore, researchers are in a race against the time to produce potential treatments to cure or reduce the increasing infections of COVID-19. Computational methods are widely proving rapid successes in biological related problems, including diagnosis and treatment of diseases. Many efforts in recent months utilized Artificial Intelligence (AI) techniques in the context of fighting the spread of COVID-19. Providing periodic reviews and discussions of recent efforts saves the time of researchers and helps to link their endeavors for a faster and efficient confrontation of the pandemic. In this review, we discuss the recent promising studies that used Omics-based data and utilized AI algorithms and other computational tools to achieve this goal. We review the established datasets and the developed methods that were basically directed to new or repurposed drugs, vaccinations and diagnosis. The tools and methods varied depending on the level of details in the available information such as structures, sequences or metabolic data.
Collapse
Affiliation(s)
- Hilal Tayara
- School of international Engineering and Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ibrahim Abdelbaky
- Artificial Intelligence Department, Faculty of Computers and Artificial Intelligence, Benha University, Banha 13518, Egypt
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea.,Advances Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
20
|
Ali Qaba MAM, Saleem MK, Ali Qaba NK, Alani MA, Ahmed MM, Sabry SM. Assessment of Inhaled Hydrogen Sulfide in Suppressing Deterioration in Patients With COVID-19. Shock 2021; 56:868-869. [PMID: 34652343 PMCID: PMC8518203 DOI: 10.1097/shk.0000000000001722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 11/25/2022]
Affiliation(s)
| | | | - Nahla Kh Ali Qaba
- Trainning and Development Center Ninawa Health Directorate Mosul, Iraq
| | - Muataz A Alani
- Alkhansaa Teaching Hospital, Ninawa Health Directorate, Mosul, Iraq
| | - Muna Muneer Ahmed
- Department of Family and Community Medicine, College of Medicine, University of Mosul, Mosul, Iraq
| | - Salih M Sabry
- Al-Shifa Hospital, Ninawa Health Directorate, Mosul, Iraq
| |
Collapse
|
21
|
Pires C. A Systematic Review on the Contribution of Artificial Intelligence in the Development of Medicines for COVID-2019. J Pers Med 2021; 11:jpm11090926. [PMID: 34575703 PMCID: PMC8465965 DOI: 10.3390/jpm11090926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
Background: COVID-2019 pandemic lead to a raised interest on the development of new treatments through Artificial Intelligence (AI). Aim: to carry out a systematic review on the development of repurposed drugs against COVID-2019 through the application of AI. Methods: The Systematic Reviews and Meta-Analyses (PRISMA) checklist was applied. Keywords: [“Artificial intelligence” and (COVID or SARS) and (medicine or drug)]. Databases: PubMed®, DOAJ and SciELO. Cochrane Library was additionally screened to identify previous published reviews on the same topic. Results: From the 277 identified records [PubMed® (n = 157); DOAJ (n = 119) and SciELO (n = 1)], 27 studies were included. Among other, the selected studies on new treatments against COVID-2019 were classified, as follows: studies with in-vitro and/or clinical data; association of known drugs; and other studies related to repurposing of drugs. Conclusion: Diverse potentially repurposed drugs against COVID-2019 were identified. The repurposed drugs were mainly from antivirals, antibiotics, anticancer, anti-inflammatory, and Angiotensin-converting enzyme 2 (ACE2) groups, although diverse other pharmacologic groups were covered. AI was a suitable tool to quickly analyze large amounts of data or to estimate drug repurposing against COVID-2019.
Collapse
Affiliation(s)
- Carla Pires
- CBIOS, Escola de Ciências e Tecnologias da Saúde, Universidade Lusófona's Research Center for Biosciences and Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| |
Collapse
|
22
|
Rahbar Saadat Y, Hosseiniyan Khatibi SM, Zununi Vahed S, Ardalan M. Host Serine Proteases: A Potential Targeted Therapy for COVID-19 and Influenza. Front Mol Biosci 2021; 8:725528. [PMID: 34527703 PMCID: PMC8435734 DOI: 10.3389/fmolb.2021.725528] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/11/2021] [Indexed: 12/23/2022] Open
Abstract
The ongoing pandemic illustrates limited therapeutic options for controlling SARS-CoV-2 infections, calling a need for additional therapeutic targets. The viral spike S glycoprotein binds to the human receptor angiotensin-converting enzyme 2 (ACE2) and then is activated by the host proteases. Based on the accessibility of the cellular proteases needed for SARS-S activation, SARS-CoV-2 entrance and activation can be mediated by endosomal (such as cathepsin L) and non-endosomal pathways. Evidence indicates that in the non-endosomal pathway, the viral S protein is cleaved by the furin enzyme in infected host cells. To help the virus enter efficiently, the S protein is further activated by the serine protease 2 (TMPRSS2), provided that the S has been cleaved by furin previously. In this review, important roles for host proteases within host cells will be outlined in SARS-CoV-2 infection and antiviral therapeutic strategies will be highlighted. Although there are at least five highly effective vaccines at this time, the appearance of the new viral mutations demands the development of therapeutic agents. Targeted inhibition of host proteases can be used as a therapeutic approach for viral infection.
Collapse
|
23
|
Bansal P, Kumar R, Singh J, Dhanda S. In silico molecular docking of SARS-CoV-2 surface proteins with microbial non-ribosomal peptides: identification of potential drugs. ACTA ACUST UNITED AC 2021; 12:177-184. [PMID: 34456530 PMCID: PMC8385692 DOI: 10.1007/s42485-021-00072-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022]
Abstract
Outbreak of COVID-19 by SARS-CoV-2 infection caused severe acute respiratory syndrome that has been declared a public health emergency of international concern. To control infections, there is urgent need to develop an effective therapeutic strategy. COVID-19 viral spike glycoprotein and proteases play major role in viral entry and mediating virus replication and spread and thus can serve as potential antiviral drug target. Being highly specific, efficacious and safe, peptides hold their place in therapeutics. In present study, molecular docking of 21 pharmacologically active non ribosomal peptides (NRPs) from marine microbes with SARS-CoV-2 spike glycoprotein and papain such as protease was done. Dactinomycin, Tyrocidine A and Gramicidin S showed highest binding interaction with target proteins. The binding affinity of Dactinomycin and Gramicidin S docked with SARS-CoV-2 spike glycoprotein was - 12.4 kcal/mol and - 11.4 kcal/mol, respectively. This suggested their potential to destabilize SARS spike protein binding with human host ACE2 receptor and thus hindering viral entry to the cells. Binding affinity of Tyrocidine A and Gramicidin S with SARS-CoV-2 papain-like protease was - 13.1 kcal/mol and - 11.4 kcal/mol, respectively which might be inhibited COVID-19 by acting on the protease. Gramicidin S showed same binding affinity for both target proteins and thus expected to be most potent. Based on the binding energy score, it was suggested that these pharmacologically active NRPs are potential molecules to be tested against SARS-CoV-2 and used to develop effective antiviral drugs.
Collapse
Affiliation(s)
- Poonam Bansal
- Department of Biochemistry, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Raman Kumar
- Department of Biochemistry, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Jasbir Singh
- Department of Biochemistry, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Suman Dhanda
- Department of Biochemistry, Kurukshetra University, Kurukshetra, 136119 Haryana India
| |
Collapse
|
24
|
Elebesunu EE, Oke GI, Adebisi YA, Nsofor IM. COVID-19 calls for health systems strengthening in Africa: A case of Nigeria. Int J Health Plann Manage 2021; 36:2035-2043. [PMID: 34350637 PMCID: PMC8426817 DOI: 10.1002/hpm.3296] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/13/2021] [Accepted: 07/27/2021] [Indexed: 01/19/2023] Open
Abstract
The COVID‐19 pandemic has proven the need for countries worldwide to implement strategies that promote health systems strengthening and ensure epidemic preparedness. Many African countries are burdened by fragile healthcare systems, hence, this paper emphasises the need for African policymakers to improve healthcare quality in their countries. Through a brief review of various online literatures concerning health systems strengthening in Africa, this paper focuses on the nature of healthcare in Nigeria amidst the COVID‐19 pandemic. The major stress areas include COVID‐19 testing capacity, health workforce, infection prevention and control, health information and surveillance systems, health insurance, public‐private partnerships, and governance. The COVID‐19 pandemic has amplified several challenges ravaging Africa's already fragile healthcare systems, leaving the health sectors of most African countries ill‐prepared to deal with the pandemic. If Nigeria and many other African countries had invested sufficiently in strengthening their healthcare systems prior to COVID‐19, their pandemic response efforts would have been more effective. Health systems strengthening is necessary to ensure steady progress toward universal health coverage and global health security. Through health systems strengthening, Nigeria and other African countries can greatly improve their infection prevention and control measures.
Collapse
|
25
|
Shah H, Shah S, Tanwar S, Gupta R, Kumar N. Fusion of AI techniques to tackle COVID-19 pandemic: models, incidence rates, and future trends. MULTIMEDIA SYSTEMS 2021; 28:1189-1222. [PMID: 34276140 PMCID: PMC8275905 DOI: 10.1007/s00530-021-00818-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/29/2021] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic is rapidly spreading across the globe and infected millions of people that take hundreds of thousands of lives. Over the years, the role of Artificial intelligence (AI) has been on the rise as its algorithms are getting more and more accurate and it is thought that its role in strengthening the existing healthcare system will be the most profound. Moreover, the pandemic brought an opportunity to showcase AI and healthcare integration potentials as the current infrastructure worldwide is overwhelmed and crumbling. Due to AI's flexibility and adaptability, it can be used as a tool to tackle COVID-19. Motivated by these facts, in this paper, we surveyed how the AI techniques can handle the COVID-19 pandemic situation and present the merits and demerits of these techniques. This paper presents a comprehensive end-to-end review of all the AI-techniques that can be used to tackle all areas of the pandemic. Further, we systematically discuss the issues of the COVID-19, and based on the literature review, we suggest their potential countermeasures using AI techniques. In the end, we analyze various open research issues and challenges associated with integrating the AI techniques in the COVID-19.
Collapse
Affiliation(s)
- Het Shah
- Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad, India
| | - Saiyam Shah
- Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad, India
| | - Sudeep Tanwar
- Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad, India
| | - Rajesh Gupta
- Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad, India
| | - Neeraj Kumar
- Department of Computer Science Engineering, Thapar Institute of Engineering and Technology, Deemed to be University, Patiala, India
- School of Computer Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand India
- King Abdul Aziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Mortaz E, Bezemer G, Alipoor SD, Varahram M, Mumby S, Folkerts G, Garssen J, Adcock IM. Nutritional Impact and Its Potential Consequences on COVID-19 Severity. Front Nutr 2021; 8:698617. [PMID: 34291074 PMCID: PMC8287001 DOI: 10.3389/fnut.2021.698617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Background: During late 2019 a viral disease due to a novel coronavirus was reported in Wuhan, China, which rapidly developed into an exploding pandemic and poses a severe threat to human health all over the world. Until now (May 2021), there are insufficient treatment options for the management of this global disease and shortage of vaccines. Important aspects that help to defeat coronavirus infection seems to be having a healthy, strong, and resilient immune system. Nutrition and metabolic disorders, such as obesity and diabetes play a crucial role on the community health situation in general and especially during this new pandemic. There seems to be an enormous impact of lifestyle, metabolic disorders, and immune status on coronavirus disease 2019 (COVID-19) severity and recovery. For this reason, it is important to consider the impact of lifestyle and the consumption of well-defined healthy diets during the pandemic. Aims: In this review, we summarise recent findings on the effect of nutrition on COVID-19 susceptibility and disease severity and treatment. Understanding how specific dietary features might help to improve the public health strategies to reduce the rate and severity of COVID-19.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gillina Bezemer
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Impact Station, Hilversum, Netherlands
| | - Shamila D. Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Varahram
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharon Mumby
- Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Center of Excellence Immunology, Nutricia Research, Utrecht, Netherlands
| | - Ian M. Adcock
- Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Alam S, Kamal TB, Sarker MMR, Zhou JR, Rahman SMA, Mohamed IN. Therapeutic Effectiveness and Safety of Repurposing Drugs for the Treatment of COVID-19: Position Standing in 2021. Front Pharmacol 2021; 12:659577. [PMID: 34220503 PMCID: PMC8243370 DOI: 10.3389/fphar.2021.659577] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19, transmitted by SARS-CoV-2, is one of the most serious pandemic situations in the history of mankind, and has already infected a huge population across the globe. This horrendously contagious viral outbreak was first identified in China and within a very short time it affected the world's health, transport, economic, and academic sectors. Despite the recent approval of a few anti-COVID-19 vaccines, their unavailability and insufficiency along with the lack of other potential therapeutic options are continuing to worsen the situation, with valuable lives continuing to be lost. In this situation, researchers across the globe are focusing on repurposing prospective drugs and prophylaxis such as favipiravir, remdesivir, chloroquine, hydroxychloroquine, ivermectin, lopinavir-ritonavir, azithromycin, doxycycline, ACEIs/ARBs, rivaroxaban, and protease inhibitors, which were preliminarily based on in vitro and in vivo pharmacological and toxicological study reports followed by clinical applications. Based on available preliminary data derived from limited clinical trials, the US National Institute of Health (NIH) and USFDA also recommended a few drugs to be repurposed i.e., hydroxychloroquine, remdesivir, and favipiravir. However, World Health Organization later recommended against the use of chloroquine, hydroxychloroquine, remdesivir, and lopinavir/ritonavir in the treatment of COVID-19 infections. Combining basic knowledge of viral pathogenesis and pharmacodynamics of drug molecules as well as in silico approaches, many drug candidates have been investigated in clinical trials, some of which have been proven to be partially effective against COVID-19, and many of the other drugs are currently under extensive screening. The repurposing of prospective drug candidates from different stages of evaluation can be a handy wellspring in COVID-19 management and treatment along with approved anti-COVID-19 vaccines. This review article combined the information from completed clinical trials, case series, cohort studies, meta-analyses, and retrospective studies to focus on the current status of repurposing drugs in 2021.
Collapse
Affiliation(s)
- Safaet Alam
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | | | - Md. Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
- Pharmacology and Toxicology Research Division, Health Med Science Research Limited, Dhaka, Bangladesh
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - S. M. Abdur Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Isa Naina Mohamed
- Pharmacology Department, Medical Faculty, Universiti Kebangsaan Malaysia (The National University of Malaysia), Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Bassetti M, Corcione S, Dettori S, Lombardi A, Lupia T, Vena A, De Rosa FG, Gori A, Giacobbe DR. Antiviral treatment selection for SARS-CoV-2 pneumonia. Expert Rev Respir Med 2021; 15:985-992. [PMID: 33962524 PMCID: PMC8146295 DOI: 10.1080/17476348.2021.1927719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Therapy of coronavirus disease 2019 (COVID-19) involves evolving algorithms that include drugs aimed at reducing disease progression by counteracting two different, but intertwined processes: (i) the damage caused by the virus (with antivirals); (ii) the damage caused by a dysregulated host response (with immunomodulatory agents). AREAS COVERED Herein, we discuss the available evidence on the efficacy and safety of antiviral agents employed over the past months for the treatment of COVID-19, and the reasons to be considered for antiviral selection. EXPERT OPINION The available evidence from randomized controlled trials (RCT) currently discourages the use of lopinavir/ritonavir, hydroxychloroquine, and interferons, which did not show improved efficacy compared to standard care or placebo. Regarding remdesivir, the current body of evidence may conditionally support its use in COVID-19 patients requiring oxygen supplementation but still not requiring invasive mechanical ventilation. Finally, neutralizing monoclonal antibodies have been proven efficacious in reducing the risk of severe disease development if administered early in the course of the disease to patients at risk of progression. The results of the ongoing RCT will certainly be crucial to further improve our understanding of the optimal place in therapy of antiviral agents for COVID-19.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences, University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | - Silvia Corcione
- Department of Medical Sciences, University of Turin, Infectious Diseases, City of Health and Sciences, Turin, Italy
| | - Silvia Dettori
- Department of Health Sciences, University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | - Andrea Lombardi
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Tommaso Lupia
- Department of Medical Sciences, University of Turin, Infectious Diseases, City of Health and Sciences, Turin, Italy
| | - Antonio Vena
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | - Francesco Giuseppe De Rosa
- Department of Medical Sciences, University of Turin, Infectious Diseases, City of Health and Sciences, Turin, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences, University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| |
Collapse
|
29
|
Bajad NG, Rayala S, Gutti G, Sharma A, Singh M, Kumar A, Singh SK. Systematic review on role of structure based drug design (SBDD) in the identification of anti-viral leads against SARS-Cov-2. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100026. [PMID: 34870145 PMCID: PMC8120892 DOI: 10.1016/j.crphar.2021.100026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/26/2022] Open
Abstract
The outbreak of existing public health distress is threatening the entire world with emergence and rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The novel coronavirus disease 2019 (COVID-19) is mild in most people. However, in some elderly people with co-morbid conditions, it may progress to pneumonia, acute respiratory distress syndrome (ARDS) and multi organ dysfunction leading to death. COVID-19 has caused global panic in the healthcare sector and has become one of the biggest threats to the global economy. Drug discovery researchers are expected to contribute rapidly than ever before. The complete genome sequence of coronavirus had been reported barely a month after the identification of first patient. Potential drug targets to combat and treat the coronavirus infection have also been explored. The iterative structure-based drug design (SBDD) approach could significantly contribute towards the discovery of new drug like molecules for the treatment of COVID-19. The existing antivirals and experiences gained from SARS and MERS outbreaks may pave way for identification of potential drug molecules using the approach. SBDD has gained momentum as the essential tool for faster and costeffective lead discovery of antivirals in the past. The discovery of FDA approved human immunodeficiency virus type 1 (HIV-1) inhibitors represent the foremost success of SBDD. This systematic review provides an overview of the novel coronavirus, its pathology of replication, role of structure based drug design, available drug targets and recent advances in in-silico drug discovery for the prevention of COVID-19. SARSCoV- 2 main protease, RNA dependent RNA polymerase (RdRp) and spike (S) protein are the potential targets, which are currently explored for the drug development.
Collapse
Affiliation(s)
- Nilesh Gajanan Bajad
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Swetha Rayala
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gopichand Gutti
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Anjali Sharma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ashok Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| |
Collapse
|
30
|
Aguilar-Lemarroy A, López-Uribe A, Sánchez-Corona J, Jave-Suárez LF. Severe acute respiratory syndrome coronavirus 2 ORF3a induces the expression of ACE2 in oral and pulmonary epithelial cells and the food supplement Vita Deyun ® diminishes this effect. Exp Ther Med 2021; 21:485. [PMID: 33790994 PMCID: PMC8005676 DOI: 10.3892/etm.2021.9916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has become a serious global health problem and numerous studies are currently being conducted to improve understanding of the components of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, as well as to identify solutions that mitigate the effects of COVID-19 symptoms. The nutritional supplement Vita Deyun® is composed of silymarin, glutathione, vitamin C and selenium. Studies of its individual components have demonstrated their benefits as anti-inflammatory agents, antioxidants and enhancers of the immune response. Therefore, the present study aimed to evaluate the in vitro effects of Vita Deyun on the expression of angiotensin-converting enzyme 2 (ACE2) in diverse cell lines, as well as in the presence or absence of the SARS-CoV-2 open reading frame (ORF)3a protein. Through reverse transcription-quantitative PCR, the use of viral particles containing SARS-CoV-2 ORF3a and bioinformatics analysis via the National Center for Biotechnology Information databases, ACE2 was determined to be highly expressed in oral and skin epithelial cells, with a lower expression observed in lung cells. Notably, the expression of SARS-CoV-2 ORF3a increased the level of ACE2 expression and Vita Deyun treatment diminished this effect. In addition, Vita Deyun treatment markedly decreased interleukin-18 mRNA levels. The combination of phytonutrients in Vita Deyun may help to boost the immune system and could reduce the effects of COVID-19. Ongoing clinical studies are required to provide evidence of the efficacy of Vita Deyun.
Collapse
Affiliation(s)
- Adriana Aguilar-Lemarroy
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - Apolinar López-Uribe
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - José Sánchez-Corona
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - Luis Felipe Jave-Suárez
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| |
Collapse
|
31
|
Akhtar S, Das JK, Ismail T, Wahid M, Saeed W, Bhutta ZA. Nutritional perspectives for the prevention and mitigation of COVID-19. Nutr Rev 2021; 79:289-300. [PMID: 33570583 PMCID: PMC7454773 DOI: 10.1093/nutrit/nuaa063] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
Worldwide, there is an array of clinical trials under way to evaluate treatment options against coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2. Concurrently, several nutritional therapies and alternative supportive treatments are also being used and tested to reduce the mortality associated with acute respiratory distress in patients with COVID-19. In the context of COVID-19, improved nutrition that includes micronutrient supplementation to augment the immune system has been recognized as a viable approach to both prevent and alleviate the severity of the infection. The potential role of micronutrients as immune-boosting agents is particularly relevant for low- and middle-income countries, which already have an existing high burden of undernutrition and micronutrient deficiencies. A systematic literature review was performed to identify nutritional interventions that might prevent or aid in the recovery from COVID-19. The PubMed, ScienceDirect, Cochrane, Scopus, Web of Science, and Google Scholar databases were searched electronically from February to April 2020. All abstracts and full-text articles were examined for their relevance to this review. The information gathered was collated under various categories. Deficiencies of micronutrients, especially vitamins A, B complex, C, and D, zinc, iron, and selenium, are common among vulnerable populations in general and among COVID-19 patients in particular and could plausibly increase the risk of mortality. Judicious use of need-based micronutrient supplementation, alongside existing micronutrient fortification programs, is warranted in the current global pandemic, especially in low- and middle-income economies.
Collapse
Affiliation(s)
- Saeed Akhtar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Jai K Das
- Division of Woman and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Tariq Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Muqeet Wahid
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Wisha Saeed
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Zulfiqar A Bhutta
- Centre of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan, and the Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Name JJ, Vasconcelos AR, Souza ACR, Fávaro WJ. Vitamin D, zinc and glutamine: Synergistic action with OncoTherad immunomodulator in interferon signaling and COVID‑19 (Review). Int J Mol Med 2021; 47:11. [PMID: 33448317 PMCID: PMC7834962 DOI: 10.3892/ijmm.2021.4844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in December, 2019 in Wuhan, China. Since then, it has continued to spread rapidly in numerous countries, while the search for effective therapeutic options persists. Coronaviruses, including SARS-CoV-2, are known to suppress and evade the antiviral responses of the host organism mediated by interferon (IFN), a family of cytokines that plays an important role in antiviral defenses associated with innate immunity, and has been used therapeutically for chronic viral diseases and cancer. On the other hand, OncoTherad, a safe and effective immunotherapeutic agent in the treatment of non-muscle invasive bladder cancer (NMIBC), increases IFN signaling and has been shown to be a promising therapeutic approach for COVID-19 in a case report that described the rapid recovery of a 78-year-old patient with NMIBC with comorbidities. The present review discusses the possible synergistic action of OncoTherad with vitamin D, zinc and glutamine, nutrients that have been shown to facilitate immune responses mediated by IFN signaling, as well as the potential of this combination as a therapeutic option for COVID-19.
Collapse
Affiliation(s)
- José João Name
- Kilyos Assessoria, Cursos e Palestras (Kilyos Nutrition), São Paulo, SP 01311‑100, Brazil
| | - Andrea Rodrigues Vasconcelos
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP 05508‑000, Brazil
| | | | - Wagner José Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, University of Campinas, Campinas, SP 13083‑970, Brazil
| |
Collapse
|
33
|
Syeda HB, Syed M, Sexton KW, Syed S, Begum S, Syed F, Prior F, Yu F. Role of Machine Learning Techniques to Tackle the COVID-19 Crisis: Systematic Review. JMIR Med Inform 2021; 9:e23811. [PMID: 33326405 PMCID: PMC7806275 DOI: 10.2196/23811] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment plans. Artificial Intelligence (AI)-based technologies have played a substantial role in solving complex problems, and several organizations have been swift to adopt and customize these technologies in response to the challenges posed by the COVID-19 pandemic. OBJECTIVE The objective of this study was to conduct a systematic review of the literature on the role of AI as a comprehensive and decisive technology to fight the COVID-19 crisis in the fields of epidemiology, diagnosis, and disease progression. METHODS A systematic search of PubMed, Web of Science, and CINAHL databases was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify all potentially relevant studies published and made available online between December 1, 2019, and June 27, 2020. The search syntax was built using keywords specific to COVID-19 and AI. RESULTS The search strategy resulted in 419 articles published and made available online during the aforementioned period. Of these, 130 publications were selected for further analyses. These publications were classified into 3 themes based on AI applications employed to combat the COVID-19 crisis: Computational Epidemiology, Early Detection and Diagnosis, and Disease Progression. Of the 130 studies, 71 (54.6%) focused on predicting the COVID-19 outbreak, the impact of containment policies, and potential drug discoveries, which were classified under the Computational Epidemiology theme. Next, 40 of 130 (30.8%) studies that applied AI techniques to detect COVID-19 by using patients' radiological images or laboratory test results were classified under the Early Detection and Diagnosis theme. Finally, 19 of the 130 studies (14.6%) that focused on predicting disease progression, outcomes (ie, recovery and mortality), length of hospital stay, and number of days spent in the intensive care unit for patients with COVID-19 were classified under the Disease Progression theme. CONCLUSIONS In this systematic review, we assembled studies in the current COVID-19 literature that utilized AI-based methods to provide insights into different COVID-19 themes. Our findings highlight important variables, data types, and available COVID-19 resources that can assist in facilitating clinical and translational research.
Collapse
Affiliation(s)
- Hafsa Bareen Syeda
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mahanazuddin Syed
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kevin Wayne Sexton
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Health Policy and Management, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shorabuddin Syed
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Salma Begum
- Department of Information Technology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Farhanuddin Syed
- College of Medicine, Shadan Institute of Medical Sciences, Hyderabad, India
| | - Fred Prior
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Feliciano Yu
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
34
|
Liu PR, Lu L, Zhang JY, Huo TT, Liu SX, Ye ZW. Application of Artificial Intelligence in Medicine: An Overview. Curr Med Sci 2021; 41:1105-1115. [PMID: 34874486 PMCID: PMC8648557 DOI: 10.1007/s11596-021-2474-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Artificial intelligence (AI) is a new technical discipline that uses computer technology to research and develop the theory, method, technique, and application system for the simulation, extension, and expansion of human intelligence. With the assistance of new AI technology, the traditional medical environment has changed a lot. For example, a patient's diagnosis based on radiological, pathological, endoscopic, ultrasonographic, and biochemical examinations has been effectively promoted with a higher accuracy and a lower human workload. The medical treatments during the perioperative period, including the preoperative preparation, surgical period, and postoperative recovery period, have been significantly enhanced with better surgical effects. In addition, AI technology has also played a crucial role in medical drug production, medical management, and medical education, taking them into a new direction. The purpose of this review is to introduce the application of AI in medicine and to provide an outlook of future trends.
Collapse
Affiliation(s)
- Peng-ran Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Lin Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Jia-yao Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Tong-tong Huo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Song-xiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zhe-wei Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
35
|
Tayarani N MH. Applications of artificial intelligence in battling against covid-19: A literature review. CHAOS, SOLITONS, AND FRACTALS 2021; 142:110338. [PMID: 33041533 PMCID: PMC7532790 DOI: 10.1016/j.chaos.2020.110338] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 05/14/2023]
Abstract
Colloquially known as coronavirus, the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), that causes CoronaVirus Disease 2019 (COVID-19), has become a matter of grave concern for every country around the world. The rapid growth of the pandemic has wreaked havoc and prompted the need for immediate reactions to curb the effects. To manage the problems, many research in a variety of area of science have started studying the issue. Artificial Intelligence is among the area of science that has found great applications in tackling the problem in many aspects. Here, we perform an overview on the applications of AI in a variety of fields including diagnosis of the disease via different types of tests and symptoms, monitoring patients, identifying severity of a patient, processing covid-19 related imaging tests, epidemiology, pharmaceutical studies, etc. The aim of this paper is to perform a comprehensive survey on the applications of AI in battling against the difficulties the outbreak has caused. Thus we cover every way that AI approaches have been employed and to cover all the research until the writing of this paper. We try organize the works in a way that overall picture is comprehensible. Such a picture, although full of details, is very helpful in understand where AI sits in current pandemonium. We also tried to conclude the paper with ideas on how the problems can be tackled in a better way and provide some suggestions for future works.
Collapse
Affiliation(s)
- Mohammad-H Tayarani N
- Biocomputation Group, School of Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom
| |
Collapse
|
36
|
Kangabam R, Sahoo S, Ghosh A, Roy R, Silla Y, Misra N, Suar M. Next-generation computational tools and resources for coronavirus research: From detection to vaccine discovery. Comput Biol Med 2021; 128:104158. [PMID: 33301953 PMCID: PMC7705366 DOI: 10.1016/j.compbiomed.2020.104158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
The COVID-19 pandemic has affected 215 countries and territories around the world with 60,187,347 coronavirus cases and 17,125,719 currently infected patients confirmed as of the November 25, 2020. Currently, many countries are working on developing new vaccines and therapeutic drugs for this novel virus strain, and a few of them are in different phases of clinical trials. The advancement in high-throughput sequence technologies, along with the application of bioinformatics, offers invaluable knowledge on genomic characterization and molecular pathogenesis of coronaviruses. Recent multi-disciplinary studies using bioinformatics methods like sequence-similarity, phylogenomic, and computational structural biology have provided an in-depth understanding of the molecular and biochemical basis of infection, atomic-level recognition of the viral-host receptor interaction, functional annotation of important viral proteins, and evolutionary divergence across different strains. Additionally, various modern immunoinformatic approaches are also being used to target the most promiscuous antigenic epitopes from the SARS-CoV-2 proteome for accelerating the vaccine development process. In this review, we summarize various important computational tools and databases available for systematic sequence-structural study on coronaviruses. The features of these public resources have been comprehensively discussed, which may help experimental biologists with predictive insights useful for ongoing research efforts to find therapeutics against the infectious COVID-19 disease.
Collapse
Affiliation(s)
- Rajiv Kangabam
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, 751024, India
| | - Susrita Sahoo
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, 751024, India
| | - Arpan Ghosh
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, 751024, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, 751024, India
| | - Riya Roy
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, 751024, India
| | - Yumnam Silla
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, India
| | - Namrata Misra
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, 751024, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, 751024, India
| | - Mrutyunjay Suar
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, 751024, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, 751024, India.
| |
Collapse
|
37
|
Krishnamoorthy P, Raj AS, Roy S, Kumar NS, Kumar H. Comparative transcriptome analysis of SARS-CoV, MERS-CoV, and SARS-CoV-2 to identify potential pathways for drug repurposing. Comput Biol Med 2021; 128:104123. [PMID: 33260034 PMCID: PMC7683955 DOI: 10.1016/j.compbiomed.2020.104123] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
The ongoing COVID-19 pandemic caused by the coronavirus, SARS-CoV-2, has already caused in excess of 1.25 million deaths worldwide, and the number is increasing. Knowledge of the host transcriptional response against this virus and how the pathways are activated or suppressed compared to other human coronaviruses (SARS-CoV, MERS-CoV) that caused outbreaks previously can help in the identification of potential drugs for the treatment of COVID-19. Hence, we used time point meta-analysis to investigate available SARS-CoV and MERS-CoV in-vitro transcriptome datasets in order to identify the significant genes and pathways that are dysregulated at each time point. The subsequent over-representation analysis (ORA) revealed that several pathways are significantly dysregulated at each time point after both SARS-CoV and MERS-CoV infection. We also performed gene set enrichment analyses of SARS-CoV and MERS-CoV with that of SARS-CoV-2 at the same time point and cell line, the results of which revealed that common pathways are activated and suppressed in all three coronaviruses. Furthermore, an analysis of an in-vivo transcriptomic dataset of COVID-19 patients showed that similar pathways are enriched to those identified in the earlier analyses. Based on these findings, a drug repurposing analysis was performed to identify potential drug candidates for combating COVID-19.
Collapse
Affiliation(s)
- Pandikannan Krishnamoorthy
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India
| | - Athira S Raj
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India
| | - Swagnik Roy
- Microbiology Department, Zoram Medical College, Falkawn, Mizoram, 796005, India
| | | | - Himanshu Kumar
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India; Laboratory of Host Defense, WPI Immunology, Frontier Research Centre, Osaka University, Osaka, 5650871, Japan.
| |
Collapse
|
38
|
Malik YS, Sircar S, Bhat S, Ansari MI, Pande T, Kumar P, Mathapati B, Balasubramanian G, Kaushik R, Natesan S, Ezzikouri S, El Zowalaty ME, Dhama K. How artificial intelligence may help the Covid-19 pandemic: Pitfalls and lessons for the future. Rev Med Virol 2020; 31:1-11. [PMID: 33476063 PMCID: PMC7883226 DOI: 10.1002/rmv.2205] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/16/2022]
Abstract
The clinical severity, rapid transmission and human losses due to coronavirus disease 2019 (Covid‐19) have led the World Health Organization to declare it a pandemic. Traditional epidemiological tools are being significantly complemented by recent innovations especially using artificial intelligence (AI) and machine learning. AI‐based model systems could improve pattern recognition of disease spread in populations and predictions of outbreaks in different geographical locations. A variable and a minimal amount of data are available for the signs and symptoms of Covid‐19, allowing a composite of maximum likelihood algorithms to be employed to enhance the accuracy of disease diagnosis and to identify potential drugs. AI‐based forecasting and predictions are expected to complement traditional approaches by helping public health officials to select better response and preparedness measures against Covid‐19 cases. AI‐based approaches have helped address the key issues but a significant impact on the global healthcare industry is yet to be achieved. The capability of AI to address the challenges may make it a key player in the operation of healthcare systems in future. Here, we present an overview of the prospective applications of the AI model systems in healthcare settings during the ongoing Covid‐19 pandemic.
Collapse
Affiliation(s)
- Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India.,College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Sudipta Bhat
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Mohd Ikram Ansari
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Tripti Pande
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University, Noida, Uttar Pradesh, India
| | - Basavaraj Mathapati
- Polio Virus Group, Microbial Containment Complex, I.C.M.R. National Institute of Virology, Pune, Maharashtra, India
| | - Ganesh Balasubramanian
- Laboratory Division, Indian Council of Medical Research -National Institute of Epidemiology, Ministry of Health & Family Welfare, Chennai, Tamil Nadu, India
| | - Rahul Kaushik
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Kanagawa, Japan
| | | | - Sayeh Ezzikouri
- Viral Hepatitis Laboratory, Virology Unit, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Mohamed E El Zowalaty
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE.,Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
39
|
Abstract
Human factor Xa (FXa) is a serine protease of the common coagulation pathway. FXa is known to activate prothrombin to thrombin, which eventually leads to the formation of cross-linked blood clots. While this process is important in maintaining hemostasis, excessive thrombin generation results in a host of thrombotic conditions. FXa has also been linked to inflammation via protease-activated receptors. Together, coagulopathy and inflammation have been implicated in the pathogenesis of viral infections, including the current coronavirus pandemic. Direct FXa inhibitors have been shown to possess anti-inflammatory and antiviral effects, in addition to their established anticoagulant activity. This review summarizes the pharmacological activities of direct FXa inhibitors, their pharmacokinetics, potential drug–drug interactions and adverse effects, and the details of clinical trials involving direct FXa inhibitors in coronavirus disease 2019 (COVID-19) patients.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125-1089, USA.
| |
Collapse
|
40
|
Asadzadeh A, Pakkhoo S, Saeidabad MM, Khezri H, Ferdousi R. Information technology in emergency management of COVID-19 outbreak. INFORMATICS IN MEDICINE UNLOCKED 2020; 21:100475. [PMID: 33204821 PMCID: PMC7661942 DOI: 10.1016/j.imu.2020.100475] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
Emergency management of the emerging infectious disease outbreak is critical for public health threats. Currently, control of the COVID-19 outbreak is an international concern and has become a crucial challenge in many countries. This article reviews significant information technologyIT) applications in emergency management of COVID-19 by considering the prevention/mitigation, preparedness, response, and recovery phases of the crisis. This review was conducted using MEDLINE PubMed), Embase, IEEE, and Google Scholar. Expert opinions were collected to show existence gaps, useful technologies for each phase of emergency management, and future direction. Results indicated that various IT-based systems such as surveillance systems, artificial intelligence, computational methods, Internet of things, remote sensing sensor, online service, and GIS geographic information system) could have different outbreak management applications, especially in response phases. Information technology was applied in several aspects, such as increasing the accuracy of diagnosis, early detection, ensuring healthcare providers' safety, decreasing workload, saving time and cost, and drug discovery. We categorized these applications into four core topics, including diagnosis and prediction, treatment, protection, and management goals, which were confirmed by five experts. Without applying IT, the control and management of the crisis could be difficult on a large scale. For reducing and improving the hazard effect of disaster situations, the role of IT is inevitable. In addition to the response phase, communities should be considered to use IT capabilities in prevention, preparedness, and recovery phases. It is expected that IT will have an influential role in the recovery phase of COVID-19. Providing IT infrastructure and financial support by the governments should be more considered in facilitating IT capabilities.
Collapse
Affiliation(s)
- Afsoon Asadzadeh
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Pakkhoo
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Mirzaei Saeidabad
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hero Khezri
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Citi V, Martelli A, Brancaleone V, Brogi S, Gojon G, Montanaro R, Morales G, Testai L, Calderone V. Anti-inflammatory and antiviral roles of hydrogen sulfide: Rationale for considering H 2 S donors in COVID-19 therapy. Br J Pharmacol 2020; 177:4931-4941. [PMID: 32783196 PMCID: PMC7436626 DOI: 10.1111/bph.15230] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/19/2020] [Accepted: 08/02/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-Cov-2 demands rapid, safe and effective therapeutic options. In the last decades, the endogenous gasotransmitter hydrogen sulfide (H2 S) has emerged as modulator of several biological functions and its deficiency has been associated with different disorders. Therefore, many H2 S-releasing agents have been developed as potential therapeutic tools for diseases related with impaired H2 S production and/or activity. Some of these compounds are in advanced clinical trials. Presently, the pivotal role of H2 S in modulating the inflammatory response and pro-inflammatory cytokine cascade is well recognized, and the usefulness of some H2 S-donors for the treatment of acute lung inflammation has been reported. Recent data is elucidating several mechanisms of action, which may account for antiviral effects of H2 S. Noteworthy, some preliminary clinical results suggest an inverse relationship between endogenous H2 S levels and severity of COVID-19. Therefore, repurposing of H2 S-releasing drugs may be a potential therapeutic opportunity for treatment of COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
| | | | | | - Simone Brogi
- Department of PharmacyUniversity of PisaPisaItaly
| | | | | | | | - Lara Testai
- Department of PharmacyUniversity of PisaPisaItaly
| | | |
Collapse
|
42
|
Abbaspour Kasgari H, Moradi S, Shabani AM, Babamahmoodi F, Davoudi Badabi AR, Davoudi L, Alikhani A, Hedayatizadeh Omran A, Saeedi M, Merat S, Wentzel H, Garratt A, Levi J, Simmons B, Hill A, Tirgar Fakheri H. Evaluation of the efficacy of sofosbuvir plus daclatasvir in combination with ribavirin for hospitalized COVID-19 patients with moderate disease compared with standard care: a single-centre, randomized controlled trial. J Antimicrob Chemother 2020; 75:3373-3378. [PMID: 32812025 PMCID: PMC7454669 DOI: 10.1093/jac/dkaa332] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/03/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND New therapeutic options are urgently needed to tackle the novel coronavirus disease 2019 (COVID-19). Repurposing existing pharmaceuticals provides an immediate treatment opportunity. We assessed the efficacy of sofosbuvir and daclatasvir with ribavirin for treating patients with COVID-19. METHODS This was a single-centre, randomized controlled trial in adults with moderate COVID-19 admitted to the Ghaem Shahr Razi Hospital in Mazandaran Province, Iran. Patients were randomly assigned to 400 mg sofosbuvir, 60 mg daclatasvir and 1200 mg ribavirin (intervention group) or to standard care (control group). The primary endpoint of this study was length of hospital stay. This study is registered by IRCT.ir under the ID: IRCT20200328046886N1. RESULTS Between 20 March 2020 and 8 April 2020, 48 patients were recruited; 24 patients were randomly assigned to the intervention group and 24 to the control group. The median duration of hospital stay was 6 days in both groups (P = 0.398). The number of ICU admissions in the sofosbuvir/daclatasvir/ribavirin group was not significantly lower than the control group (0 versus 4, P = 0.109). There was no difference in the number of deaths between the groups (0 versus 3, P = 0.234). The cumulative incidence of recovery was higher in the sofosbuvir/daclatasvir/ribavirin arm (Gray's P = 0.033). CONCLUSIONS This randomized trial was too small to make definitive conclusions. There were trends in favour of the sofosbuvir/daclatasvir/ribavirin arm for recovery and lower death rates. However, there was an imbalance in the baseline characteristics between the arms. Larger randomized trials should be conducted to investigate this treatment further.
Collapse
Affiliation(s)
- Hamideh Abbaspour Kasgari
- Department of Clinical Pharmacy, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Siavash Moradi
- Education Development Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Mohammad Shabani
- Department of Clinical Pharmacy, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farhang Babamahmoodi
- Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Davoudi Badabi
- Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Lotfollah Davoudi
- Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Alikhani
- Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Akbar Hedayatizadeh Omran
- Gastrointestinal Cancer Research Center, Cancer Research Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Research Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahin Merat
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hannah Wentzel
- School of Public Health, Imperial College London, London, UK
| | - Anna Garratt
- Cardiff and Vale University Health Board, Cardiff, UK
| | - Jacob Levi
- Accident and Emergency Department, Homerton University Hospital NHS Trust, London, UK
| | - Bryony Simmons
- Department of Infectious Disease, Imperial College London, London, UK
| | - Andrew Hill
- Department of Translational Medicine, University of Liverpool, UK
| | - Hafez Tirgar Fakheri
- Gut and Liver Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
43
|
Owji H, Negahdaripour M, Hajighahramani N. Immunotherapeutic approaches to curtail COVID-19. Int Immunopharmacol 2020; 88:106924. [PMID: 32877828 PMCID: PMC7441891 DOI: 10.1016/j.intimp.2020.106924] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
COVID-19, the disease induced by the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has imposed an unpredictable burden on the world. Drug repurposing has been employed to rapidly find a cure; but despite great efforts, no drug or vaccine is presently available for treating or prevention of COVID-19. Apart from antivirals, immunotherapeutic strategies are suggested considering the role of the immune response as the host defense against the virus, and the fact that SARS-CoV-2 suppresses interferon induction as an immune evasion strategy. Active immunization through vaccines, interferon administration, passive immunotherapy by convalescent plasma or synthesized monoclonal and polyclonal antibodies, as well as immunomodulatory drugs, are different immunotherapeutic approaches that will be mentioned in this review. The focus would be on passive immunotherapeutic interventions. Interferons might be helpful in some stages. Vaccine development has been followed with unprecedented speed. Some of these vaccines have been advanced to human clinical trials. Convalescent plasma therapy is already practiced in many countries to help save the lives of severely ill patients. Different antibodies that target various steps of SARS-CoV-2 pathogenesis or the associated immune responses are also proposed. For treating the cytokine storm induced at a late stage of the disease in some patients, immune modulation through JAK inhibitors, corticosteroids, and some other cognate classes are evaluated. Given the changing pattern of cytokine induction and immune responses throughout the COVID-19 disease course, different adapted approaches are needed to help patients. Gaining more knowledge about the detailed pathogenesis of SARS-CoV-2, its interplay with the immune system, and viral-mediated responses are crucial to identify efficient preventive and therapeutic approaches. A systemic approach seems essential in this regard.
Collapse
Affiliation(s)
- Hajar Owji
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nasim Hajighahramani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
44
|
Bojarska J, Remko M, Breza M, Madura I, Fruziński A, Wolf WM. A Proline-Based Tectons and Supramolecular Synthons for Drug Design 2.0: A Case Study of ACEI. Pharmaceuticals (Basel) 2020; 13:E338. [PMID: 33114370 PMCID: PMC7692516 DOI: 10.3390/ph13110338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022] Open
Abstract
Proline is a unique, endogenous amino acid, prevalent in proteins and essential for living organisms. It is appreciated as a tecton for the rational design of new bio-active substances. Herein, we present a short overview of the subject. We analyzed 2366 proline-derived structures deposited in the Cambridge Structure Database, with emphasis on the angiotensin-converting enzyme inhibitors. The latter are the first-line antihypertensive and cardiological drugs. Their side effects prompt a search for improved pharmaceuticals. Characterization of tectons (molecular building blocks) and the resulting supramolecular synthons (patterns of intermolecular interactions) involving proline derivatives, as presented in this study, may be useful for in silico molecular docking and macromolecular modeling studies. The DFT, Hirshfeld surface and energy framework methods gave considerable insight into the nature of close inter-contacts and supramolecular topology. Substituents of proline entity are important for the formation and cooperation of synthons. Tectonic subunits contain proline moieties characterized by diverse ionization states: -N and -COOH(-COO-), -N+ and -COOH(-COO-), -NH and -COOH(-COO-), -NH+ and -COOH(-COO-), and -NH2+ and -COOH(-COO-). Furthermore, pharmacological profiles of ACE inhibitors and their impurities were determined via an in silico approach. The above data were used to develop comprehensive classification, which may be useful in further drug design studies.
Collapse
Affiliation(s)
- Joanna Bojarska
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (A.F.); (W.M.W.)
| | - Milan Remko
- Remedika, Luzna 9, 85104 Bratislava, Slovakia;
| | - Martin Breza
- Department of Physical Chemistry, Slovak Technical University, Radlinskeho 9, SK-81237 Bratislava, Slovakia;
| | - Izabela Madura
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
| | - Andrzej Fruziński
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (A.F.); (W.M.W.)
| | - Wojciech M. Wolf
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (A.F.); (W.M.W.)
| |
Collapse
|
45
|
Aliter KF, Al-Horani RA. Thrombin Inhibition by Argatroban: Potential Therapeutic Benefits in COVID-19. Cardiovasc Drugs Ther 2020; 35:195-203. [PMID: 32870433 PMCID: PMC7459262 DOI: 10.1007/s10557-020-07066-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 12/15/2022]
Abstract
Thrombin is a trypsin-like serine protease with multiple physiological functions. Its role in coagulation and thrombosis is well-established. Nevertheless, thrombin also plays a major role in inflammation by activating protease-activated receptors. In addition, thrombin is also involved in angiogenesis, fibrosis, and viral infections. Considering the pathogenesis of COVID-19 pandemic, thrombin inhibitors may exert multiple potential therapeutic benefits including antithrombotic, anti-inflammatory, and antiviral activities. In this review, we describe the clinical features of COVID-19, the thrombin’s roles in various pathologies, and the potential of argatroban in COVID-19 patients. Argatroban is a synthetic, small molecule, direct, competitive, and selective inhibitor of thrombin. It is approved to parenterally prevent and/or treat heparin-induced thrombocytopenia in addition to other thrombotic conditions. Argatroban also possesses anti-inflammatory and antiviral activities and has a well-established pharmacokinetics profile. It also appears to lack a significant risk of drug–drug interactions with therapeutics currently being evaluated for COVID-19. Thus, argatroban presents a substantial promise in treating severe cases of COVID-19; however, this promise is yet to be established in randomized, controlled clinical trials.
Collapse
Affiliation(s)
- Kholoud F Aliter
- Department of Chemistry, School of STEM, Dillard University, New Orleans, LA, 70122, USA
| | - Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125-1089, USA.
| |
Collapse
|
46
|
Keshavarzi Arshadi A, Webb J, Salem M, Cruz E, Calad-Thomson S, Ghadirian N, Collins J, Diez-Cecilia E, Kelly B, Goodarzi H, Yuan JS. Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development. Front Artif Intell 2020; 3:65. [PMID: 33733182 PMCID: PMC7861281 DOI: 10.3389/frai.2020.00065] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/17/2020] [Indexed: 12/31/2022] Open
Abstract
SARS-COV-2 has roused the scientific community with a call to action to combat the growing pandemic. At the time of this writing, there are as yet no novel antiviral agents or approved vaccines available for deployment as a frontline defense. Understanding the pathobiology of COVID-19 could aid scientists in their discovery of potent antivirals by elucidating unexplored viral pathways. One method for accomplishing this is the leveraging of computational methods to discover new candidate drugs and vaccines in silico. In the last decade, machine learning-based models, trained on specific biomolecules, have offered inexpensive and rapid implementation methods for the discovery of effective viral therapies. Given a target biomolecule, these models are capable of predicting inhibitor candidates in a structural-based manner. If enough data are presented to a model, it can aid the search for a drug or vaccine candidate by identifying patterns within the data. In this review, we focus on the recent advances of COVID-19 drug and vaccine development using artificial intelligence and the potential of intelligent training for the discovery of COVID-19 therapeutics. To facilitate applications of deep learning for SARS-COV-2, we highlight multiple molecular targets of COVID-19, inhibition of which may increase patient survival. Moreover, we present CoronaDB-AI, a dataset of compounds, peptides, and epitopes discovered either in silico or in vitro that can be potentially used for training models in order to extract COVID-19 treatment. The information and datasets provided in this review can be used to train deep learning-based models and accelerate the discovery of effective viral therapies.
Collapse
Affiliation(s)
- Arash Keshavarzi Arshadi
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Julia Webb
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Milad Salem
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, United States
| | | | | | - Niloofar Ghadirian
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - Jennifer Collins
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | | | | | - Hani Goodarzi
- Department of Biochemistry and Biophysics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Jiann Shiun Yuan
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
47
|
Latif S, Usman M, Manzoor S, Iqbal W, Qadir J, Tyson G, Castro I, Razi A, Boulos MNK, Weller A, Crowcroft J. Leveraging Data Science to Combat COVID-19: A Comprehensive Review. IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 2020; 1:85-103. [PMID: 37982070 PMCID: PMC8545032 DOI: 10.1109/tai.2020.3020521] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/07/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2023]
Abstract
COVID-19, an infectious disease caused by the SARS-CoV-2 virus, was declared a pandemic by the World Health Organisation (WHO) in March 2020. By mid-August 2020, more than 21 million people have tested positive worldwide. Infections have been growing rapidly and tremendous efforts are being made to fight the disease. In this paper, we attempt to systematise the various COVID-19 research activities leveraging data science, where we define data science broadly to encompass the various methods and tools-including those from artificial intelligence (AI), machine learning (ML), statistics, modeling, simulation, and data visualization-that can be used to store, process, and extract insights from data. In addition to reviewing the rapidly growing body of recent research, we survey public datasets and repositories that can be used for further work to track COVID-19 spread and mitigation strategies. As part of this, we present a bibliometric analysis of the papers produced in this short span of time. Finally, building on these insights, we highlight common challenges and pitfalls observed across the surveyed works. We also created a live resource repository at https://github.com/Data-Science-and-COVID-19/Leveraging-Data-Science-To-Combat-COVID-19-A-Comprehensive-Review that we intend to keep updated with the latest resources including new papers and datasets.
Collapse
Affiliation(s)
- Siddique Latif
- University of Southern QueenslandSpringfieldQueensland4300Australia
- Distributed Sensing Systems Group, Data61CSIROPullenvaleQLD4069Australia
| | - Muhammad Usman
- Seoul National UniversitySeoul08700South Korea
- Center for Artificial Intelligence in Medicine and Imaging, HealthHub Company Ltd.Seoul06524South Korea
| | - Sanaullah Manzoor
- Center for Artificial Intelligence in Medicine and Imaging, HealthHub Company Ltd.Seoul06524South Korea
| | - Waleed Iqbal
- Information Technology UniversityPunjab5400Pakistan
| | | | - Gareth Tyson
- Queen Mary University of LondonLondonE1 4NSU.K.
- Queen Mary University of LondonLondonE1 4NSU.K.
| | | | | | - Maged N. Kamel Boulos
- Turner Institute for Brain and Mental Health & Monash Biomedical Imaging, Monash UniversityMelbourne3800Australia
| | - Adrian Weller
- the School of Information Management, Sun Yat-sen UniversityGuangzhou510006China
- University of CambridgeCambridgeCB2 1PZU.K.
| | - Jon Crowcroft
- Alan Turing InstituteLondonNW1 2DBU.K.
- University of CambridgeCambridgeCB2 1TNU.K.
| |
Collapse
|
48
|
Rinchai D, Syed Ahamed Kabeer B, Toufiq M, Tatari-Calderone Z, Deola S, Brummaier T, Garand M, Branco R, Baldwin N, Alfaki M, Altman MC, Ballestrero A, Bassetti M, Zoppoli G, De Maria A, Tang B, Bedognetti D, Chaussabel D. A modular framework for the development of targeted Covid-19 blood transcript profiling panels. J Transl Med 2020; 18:291. [PMID: 32736569 PMCID: PMC7393249 DOI: 10.1186/s12967-020-02456-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Covid-19 morbidity and mortality are associated with a dysregulated immune response. Tools are needed to enhance existing immune profiling capabilities in affected patients. Here we aimed to develop an approach to support the design of targeted blood transcriptome panels for profiling the immune response to SARS-CoV-2 infection. METHODS We designed a pool of candidates based on a pre-existing and well-characterized repertoire of blood transcriptional modules. Available Covid-19 blood transcriptome data was also used to guide this process. Further selection steps relied on expert curation. Additionally, we developed several custom web applications to support the evaluation of candidates. RESULTS As a proof of principle, we designed three targeted blood transcript panels, each with a different translational connotation: immunological relevance, therapeutic development relevance and SARS biology relevance. CONCLUSION Altogether the work presented here may contribute to the future expansion of immune profiling capabilities via targeted profiling of blood transcript abundance in Covid-19 patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Tobias Brummaier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | - Nicole Baldwin
- Baylor Institute for Immunology Research and Baylor Research Institute, Dallas, TX, USA
| | | | - Matthew C Altman
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
- Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alberto Ballestrero
- Department of Internal Medicine, Università degli Studi di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Bassetti
- Division of Infectious and Tropical Diseases, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Gabriele Zoppoli
- Department of Internal Medicine, Università degli Studi di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea De Maria
- Division of Infectious and Tropical Diseases, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Benjamin Tang
- Nepean Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Davide Bedognetti
- Sidra Medicine, Doha, Qatar
- Department of Internal Medicine, Università degli Studi di Genova, Genoa, Italy
| | | |
Collapse
|
49
|
Yamamoto M, Kiso M, Sakai-Tagawa Y, Iwatsuki-Horimoto K, Imai M, Takeda M, Kinoshita N, Ohmagari N, Gohda J, Semba K, Matsuda Z, Kawaguchi Y, Kawaoka Y, Inoue JI. The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner. Viruses 2020; 12:E629. [PMID: 32532094 PMCID: PMC7354595 DOI: 10.3390/v12060629] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022] Open
Abstract
Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an effective concentration (EC)50 around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. On the other hand, a significantly higher dose (EC50 around 30 mM) was required for VeroE6/TMPRSS2 cells, where the TMPRSS2-independent but cathepsin-dependent endosomal infection pathway likely predominates. Together, our study shows that nafamostat mesylate potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and also inhibits SARS-CoV-2 infection in vitro in a cell-type-dependent manner. These findings, together with accumulated clinical data regarding nafamostat's safety, make it a likely candidate drug to treat COVID-19.
Collapse
Affiliation(s)
- Mizuki Yamamoto
- Research Center for Asian Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (M.Y.); (J.G.); (Z.M.); (Y.K.)
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (M.K.); (Y.S.-T.); (K.I.-H.); (M.I.); (Y.K.)
| | - Yuko Sakai-Tagawa
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (M.K.); (Y.S.-T.); (K.I.-H.); (M.I.); (Y.K.)
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (M.K.); (Y.S.-T.); (K.I.-H.); (M.I.); (Y.K.)
| | - Masaki Imai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (M.K.); (Y.S.-T.); (K.I.-H.); (M.I.); (Y.K.)
| | - Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan;
| | - Noriko Kinoshita
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (N.K.); (N.O.)
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (N.K.); (N.O.)
| | - Jin Gohda
- Research Center for Asian Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (M.Y.); (J.G.); (Z.M.); (Y.K.)
| | - Kentaro Semba
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan;
| | - Zene Matsuda
- Research Center for Asian Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (M.Y.); (J.G.); (Z.M.); (Y.K.)
| | - Yasushi Kawaguchi
- Research Center for Asian Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (M.Y.); (J.G.); (Z.M.); (Y.K.)
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (M.K.); (Y.S.-T.); (K.I.-H.); (M.I.); (Y.K.)
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Jun-ichiro Inoue
- Research Center for Asian Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (M.Y.); (J.G.); (Z.M.); (Y.K.)
- Senior Professor Office, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
50
|
De Vita S, Chini MG, Lauro G, Bifulco G. Accelerating the repurposing of FDA-approved drugs against coronavirus disease-19 (COVID-19). RSC Adv 2020; 10:40867-40875. [PMID: 35519188 PMCID: PMC9057693 DOI: 10.1039/d0ra09010g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
The recent release of the main protein structures belonging to SARS CoV-2, responsible for the coronavirus disease-19 (COVID-19), strongly pushed for identifying valuable drug treatments. With this aim, we show a repurposing study on FDA-approved drugs applying a new computational protocol and introducing a novel parameter called IVSratio. Starting with a virtual screening against three SARS CoV-2 targets (main protease, papain-like protease, spike protein), the top-ranked molecules were reassessed combining the Inverse Virtual Screening novel approach and MM-GBSA calculations. Applying this protocol, a list of drugs was identified against the three investigated targets. Also, the top-ranked selected compounds on each target (rutin vs. main protease, velpatasvir vs. papain-like protease, lomitapide vs. spike protein) were further tested with molecular dynamics simulations to confirm the promising binding modes, obtaining encouraging results such as high stability of the complex during the simulation and a good protein–ligand interaction network involving some important residues of each target. Moreover, the recent outcomes highlighting the inhibitory activity of quercetin, a natural compound strictly related to rutin, on the SARS-CoV-2 main protease, strengthened the applicability of the proposed workflow. New computational protocol applied to a repurposing campaign against SARS-CoV-2.![]()
Collapse
Affiliation(s)
- Simona De Vita
- Department of Pharmacy
- University of Salerno
- Fisciano 84084
- Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory
- University of Molise
- 86090 Pesche (IS)
- Italy
| | - Gianluigi Lauro
- Department of Pharmacy
- University of Salerno
- Fisciano 84084
- Italy
| | | |
Collapse
|