1
|
Erskine F, Spensley K, Prendecki M, Santos E, Anand A, Altmann D, Willicombe M. The Effect of HLA Polymorphism on Immune Response to SARS-CoV-2 Vaccination Within an Infection-Naïve, Vulnerable Population With End-Stage Renal Disease. HLA 2025; 105:e70076. [PMID: 39991976 PMCID: PMC11848999 DOI: 10.1111/tan.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/24/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
HLA genes exhibit a high degree of polymorphism, contributing to genetic variability known to influence immune responses to infection. Here we investigate associations between HLA polymorphism and serological and T-lymphocyte responses to the BNT162b2 and ChAdOx1 SARS-CoV-2 vaccines within a population receiving maintenance haemodialysis (HD) for End-Stage Renal Disease (ESRD). Our primary objective was to identify HLA alleles associated with diminished serological and T-cellular responsiveness to vaccination. As a secondary objective, the associations between HLA type and COVID-19 disease outcomes were investigated using an independent ESRD cohort (n = 327). This aimed to determine if the alleles associated with poor vaccine response were also linked to unfavourable infection outcomes. In the main study, serum from 225 SARS-CoV-2 infection-naïve patients was HLA-typed using high-resolution Next Generation Sequencing, and serological titres were analysed for the presence of SARS-CoV-2 spike glycoprotein-specific antibodies after two doses of vaccination. A subset of patients (n = 33) was also tested for a T-lymphocyte response. Overall, 89% (n = 200) of patients seroconverted, but only 18% (n = 6) of the cellular response subgroup had a positive T-lymphocyte response. The HLA class II alleles DPB1*104:01, DRB1*04:03 and DRB1*14:04 and HLA class I alleles B*08:01 and B*18:01 were found to significantly correlate with seronegativity, and DQB1*06:01 correlated with serological responsiveness. We were unable to analyse the effect of HLA on disease outcome and T-lymphocyte response due to sample size limitations. Our results suggest pathways for further research and begin to elucidate the relationship between HLA polymorphism and immune responses in the vulnerable ESRD population.
Collapse
Affiliation(s)
- Fiona Erskine
- Imperial College London Department of Surgery and CancerLondonUK
| | - Katrina Spensley
- Imperial College London Department of Surgery and CancerLondonUK
| | - Maria Prendecki
- Imperial College London Department of Surgery and CancerLondonUK
- Imperial College Healthcare NHS TrustLondonUK
| | | | | | - Danny Altmann
- Imperial College London Department of Surgery and CancerLondonUK
| | - Michelle Willicombe
- Imperial College London Department of Surgery and CancerLondonUK
- Imperial College Healthcare NHS TrustLondonUK
| |
Collapse
|
2
|
Lukanov T, Mihaylova A, Al Hadra B, Lesichkova S, Georgieva A, Popov T, Krasteva Y, Mondeshki T, Naumova E. HLA-DQB1*05:03 is associated with an increased risk of COVID-19 progression in the Bulgarian population. Hum Immunol 2025; 86:111228. [PMID: 39755001 DOI: 10.1016/j.humimm.2024.111228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
The SARS-CoV-2 outbreak represents a global health problem. The different infection rates are heavily influenced by host genetic factors, such as variability in the HLA region. The aim of our study was to investigate whether certain HLA alleles in the Bulgarian population contribute to COVID-19 progression and their role in anti-SARS-CoV-2 immunity. We evaluated 76 patients diagnosed with COVID-19 and classified them according to severity as mild, moderate, and severe. Data from a population cohort (n = 539), representative of the Bulgarian population, was used for comparisons. We found that the HLA-DQB1*05:03 (OR = 3.13, pc = 0.0008) allele was significantly associated with COVID-19 severity. Several other class I and class II alleles showed a promising association with a predisposition to disease severity or a protective role in its progression. This is the first study to assess the association between HLA and COVID-19 progression in the Bulgarian population. Despite some limitations, our results suggest that certain HLA alleles play a role in the severity of SARS-CoV-2 infection and it would be interesting to further trace their effect in the context of long COVID.
Collapse
Affiliation(s)
- Tsvetelin Lukanov
- Medical University - Sofia, Medical Faculty, Department of Clinical Immunology, Bulgaria; University Hospital Alexandrovska, Clinic of Clinical Immunology and Stem Cell Bank, Bulgaria.
| | - Anastasiya Mihaylova
- University Hospital Alexandrovska, Clinic of Clinical Immunology and Stem Cell Bank, Bulgaria
| | - Bushra Al Hadra
- University Hospital Alexandrovska, Clinic of Clinical Immunology and Stem Cell Bank, Bulgaria
| | - Spaska Lesichkova
- Medical University - Sofia, Medical Faculty, Department of Clinical Immunology, Bulgaria; University Hospital Alexandrovska, Clinic of Clinical Immunology and Stem Cell Bank, Bulgaria
| | - Atanaska Georgieva
- University Hospital Alexandrovska, Clinic of Clinical Immunology and Stem Cell Bank, Bulgaria
| | - Tsvetan Popov
- University Hospital Alexandrovska, Clinic of Surgery, Bulgaria; Medical University - Sofia, Medical Faculty, Department of Surgery, Bulgaria
| | - Yana Krasteva
- University Hospital Alexandrovska, Clinic of Clinical Immunology and Stem Cell Bank, Bulgaria
| | - Tsanko Mondeshki
- Medical University - Sofia, Medical Faculty, Department of Propaedeutic of Internal Medicine, Bulgaria; University Hospital Alexandrovska, Clinic of Propaedeutic of Internal Medicine, Bulgaria
| | - Elissaveta Naumova
- Medical University - Sofia, Medical Faculty, Department of Clinical Immunology, Bulgaria; University Hospital Alexandrovska, Clinic of Clinical Immunology and Stem Cell Bank, Bulgaria
| |
Collapse
|
3
|
Mazzotti L, Borges de Souza P, Azzali I, Angeli D, Nanni O, Sambri V, Semprini S, Bravaccini S, Cerchione C, Gaimari A, Nicolini F, Ancarani V, Martinelli G, Pasetto A, Calderon H, Juan M, Mazza M. Exploring the Relationship Between Humoral and Cellular T Cell Responses Against SARS-CoV-2 in Exposed Individuals From Emilia Romagna Region and COVID-19 Severity. HLA 2025; 105:e70011. [PMID: 39807702 PMCID: PMC11731316 DOI: 10.1111/tan.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
COVID-19 remains a significant global health problem with uncertain long-term consequences for convalescents. We investigated the relationships between anti-N protein antibody levels, severe acute respiratory syndrome (SARS)-CoV-2-associated TCR repertoire parameters, HLA type and epidemiological information from three cohorts of 524 SARS-CoV-2-infected subjects subgrouped in acute phase, seronegative and seropositive convalescents from the Emilia Romagna region. Epidemiological information and anti-N antibody index were associated with TCR repertoire data. HLA type was inferred from TCR repertoire using the HLA3 tool and its association with clonal breadth (CB) and clonal depth (CD) was assessed. Age above 58 years, male and COVID-19 hospitalisation were significantly and independently associated with seropositivity (p = 0.004; p = 0.004; p = 0.04), suggesting an association between high antibody titres and symptoms' severity. As for the TCR repertoire analysis, we found no difference in CB among the cohorts, while CD was higher in seronegative than acute (p = 0.04). However, clustering analysis supported that seronegative patients are endowed with broader CB and deeper CD indicating a compensatory mechanism without effective seroconversion. The CD calculated on the TCRs associated with the single SARS-CoV-2 ORFs in convalescents is higher when compared to the acute. Lastly, we identified and reported on novel HLAs significantly associated with increased risk of hospitalisation such as HLA-C*07:02 carriers (OR = 3.9, CI = 1.1-13.4, p = 0.03) and on HLAs that associate significantly with lower or higher TCR repertoire parameters in a population exposed for the first time to SARS-CoV-2.
Collapse
Affiliation(s)
- Lucia Mazzotti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | | | - Irene Azzali
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Davide Angeli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Oriana Nanni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Vittorio Sambri
- Microbiology UnitThe Great Romagna Area Hub LaboratoryPievesestinaItaly
- DIMECBologna UniversityBolognaItaly
| | - Simona Semprini
- Microbiology UnitThe Great Romagna Area Hub LaboratoryPievesestinaItaly
| | - Sara Bravaccini
- Department of Medicine and SurgeryUniversity of Enna “Kore”EnnaItaly
| | - Claudio Cerchione
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Anna Gaimari
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Fabio Nicolini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Valentina Ancarani
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Giovanni Martinelli
- Department of Hematology and Sciences OncologyInstitute of Haematology “L. and A. Seràgnoli” S. Orsola, University Hospital in BolognaBolognaItaly
| | - Anna Pasetto
- Section for Cell TherapyRadiumhospitalet, Oslo University HospitalOsloNorway
- Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | - Hugo Calderon
- Department of ImmunologyCentre de Diagnòstic Biomèdic, Hospital Clínic of BarcelonaBarcelonaSpain
| | - Manel Juan
- Department of ImmunologyCentre de Diagnòstic Biomèdic, Hospital Clínic of BarcelonaBarcelonaSpain
| | - Massimiliano Mazza
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| |
Collapse
|
4
|
Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z, Zhang H, Wu S, Jin T. The molecular mechanisms of CD8 + T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions. Front Immunol 2024; 15:1468456. [PMID: 39450171 PMCID: PMC11499136 DOI: 10.3389/fimmu.2024.1468456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated. In this review, we described the association between HLA variants and different immune responses to SARS-CoV-2 infection, which may lead to varying COVID-19 outcomes. We also summarized the specific TCR repertoires triggered by certain SARS-CoV-2 CTL epitopes, which might explain the variations in disease outcomes among different patients. Importantly, we have highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell killing: disrupting peptide-MHC binding, TCR recognition, and antigen processing. This review provides valuable insights into the molecule mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to control the pandemic and prepare for future challenges.
Collapse
Affiliation(s)
- Shasha Deng
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Hu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunru Yang
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
Zheng K, Chong AY, Mentzer AJ. How could our genetics impact COVID-19 vaccine response? Expert Rev Clin Immunol 2024; 20:1027-1039. [PMID: 38676712 DOI: 10.1080/1744666x.2024.2346584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
INTRODUCTION The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has posed unprecedented global health challenges since its emergence in December 2019. The rapid availability of vaccines has been estimated to save millions of lives, but there is variation in how individuals respond to vaccines, influencing their effectiveness at an individual, and population level. AREAS COVERED This review focuses on human genetic factors influencing the immune response and effectiveness of vaccines, highlighting the importance of associations across the HLA locus. Genome-Wide Association Studies (GWAS) and other genetic association analyses have identified statistically significant associations between specific HLA alleles including HLA-DRB1*13, DBQ1*06, and A*03 impacting antibody responses and the risk of breakthrough infections post-vaccination. Relationships between these associations and potential mechanisms and links with risks of natural infection or disease are explored, and this review concludes by emphasizing how understanding the mechanisms of these genetic determinants may inform the development of tailored vaccination strategies. EXPERT OPINION Although complex, we believe these findings from the SARS-CoV2 pandemic offer a unique opportunity to understand the relationships between HLA and infection and vaccine response, with a goal of optimizing individual protection against COVID-19 in the ongoing pandemic, and possibly influencing wider vaccine development in the future.
Collapse
Affiliation(s)
- Keyi Zheng
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Amanda Y Chong
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
6
|
Cantisani R, Spreafico A, Marotta G. Asymptomatic SARS-CoV-2 infection: A possible role of platelet HLA class I expression level. Scand J Immunol 2024; 100:e13370. [PMID: 38584338 DOI: 10.1111/sji.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/30/2024] [Indexed: 04/09/2024]
Affiliation(s)
- Rocco Cantisani
- Department of Cellular Therapies, Hematology and Laboratory Medicine, University Hospital of Siena, Siena, Italy
| | - Adriano Spreafico
- Department of Cellular Therapies, Hematology and Laboratory Medicine, University Hospital of Siena, Siena, Italy
| | - Giuseppe Marotta
- Department of Cellular Therapies, Hematology and Laboratory Medicine, University Hospital of Siena, Siena, Italy
| |
Collapse
|
7
|
Hai NTT, Nhung VP, Tam NTT, Ngoc TTB, Thuong MTH, Dai HV, Duong NT, Hai NV, Ton ND, Thach PN, Ha NH. HLA alleles associated with susceptibility and severity of the COVID-19 in Vietnamese. Hum Immunol 2024; 85:110796. [PMID: 38580537 DOI: 10.1016/j.humimm.2024.110796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
The diversity of clinical manifestations in COVID-19 has been observed not only among individuals but also among various populations in globally. HLA molecules play a central role in physiology, protective immunity, and deleterious, disease-related autoimmune reactivity or overreaction. This study exploited the association between HLA frequencies and SARS-CoV-2 susceptibility and disease severity among the Vietnamese cohort (159 patients and 52 controls). A significant difference in frequency of both HLA class I and II in mild, moderate, and severe/fatal COVID-19 patients and negative exposure individuals - the controls were observed. Regarding SARS-CoV-2 sensitivity, HLA-A*03:01, 30:01, HLA-DQA1*01:02, DRB1*15:01, and DRB5*02:02 presented higher frequency in the control group compared with infected patients but DRB1 09:01 frequency was higher in infected patients. Regarding COVID-19 severity, HLA-F*01:01, 01:03 and DPA1*01:03 and 02:01, DPB1*04:01, DQA1*01:02, and DQB1*05:02 alleles were detected with higher frequency in severe patients but DOB*01:01, DRB1*05:01 and 09:01 had a significantly higher frequency in the mild group than remaining groups. Surprisingly, HLA-DQA1*01:02 and DRB1*09:01 alleles were identified with both inversely potential roles in protective function and severe risk. The obtained data herein will contribute to explore on the role of host genetic background in the pathology of COVID-19 disease.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Hai
- National Hospital for Tropical Diseases, Kim Chung, Dong Anh, Hanoi 10000, Viet Nam; Department of Biochemistry, Hanoi Medical University, 1 Ton That Tung, Dong Da, Hanoi 10000, Viet Nam
| | - Vu Phuong Nhung
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam
| | - Nguyen Thi Thanh Tam
- Department of Biochemistry, Hanoi Medical University, 1 Ton That Tung, Dong Da, Hanoi 10000, Viet Nam
| | - Tran Thi Bich Ngoc
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam
| | - Ma Thi Huyen Thuong
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam
| | - Ha Van Dai
- National Hospital for Tropical Diseases, Kim Chung, Dong Anh, Hanoi 10000, Viet Nam
| | - Nguyen Thuy Duong
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Nong Van Hai
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Nguyen Dang Ton
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Pham Ngoc Thach
- National Hospital for Tropical Diseases, Kim Chung, Dong Anh, Hanoi 10000, Viet Nam
| | - Nguyen Hai Ha
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam.
| |
Collapse
|
8
|
Naidoo L, Arumugam T, Ramsuran V. Narrative Review Explaining the Role of HLA-A, -B, and -C Molecules in COVID-19 Disease in and around Africa. Infect Dis Rep 2024; 16:380-406. [PMID: 38667755 PMCID: PMC11049896 DOI: 10.3390/idr16020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) has left a devasting effect on various regions globally. Africa has exceptionally high rates of other infectious diseases, such as tuberculosis (TB), human immunodeficiency virus (HIV), and malaria, and was not impacted by COVID-19 to the extent of other continents Globally, COVID-19 has caused approximately 7 million deaths and 700 million infections thus far. COVID-19 disease severity and susceptibility vary among individuals and populations, which could be attributed to various factors, including the viral strain, host genetics, environment, lifespan, and co-existing conditions. Host genetics play a substantial part in COVID-19 disease severity among individuals. Human leukocyte antigen (HLA) was previously been shown to be very important across host immune responses against viruses. HLA has been a widely studied gene region for various disease associations that have been identified. HLA proteins present peptides to the cytotoxic lymphocytes, which causes an immune response to kill infected cells. The HLA molecule serves as the central region for infectious disease association; therefore, we expect HLA disease association with COVID-19. Therefore, in this narrative review, we look at the HLA gene region, particularly, HLA class I, to understand its role in COVID-19 disease.
Collapse
Affiliation(s)
- Lisa Naidoo
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
9
|
Abolnezhadian F, Iranparast S, Shohan M, Shokati Eshkiki Z, Hamed M, Seyedtabib M, Nashibi R, Assarehzadegan MA, Mard SA, Shayesteh AA, Neisi N, Makvandi M, Alavi SM, Shariati G. Evaluation the frequencies of HLA alleles in moderate and severe COVID-19 patients in Iran: A molecular HLA typing study. Heliyon 2024; 10:e28528. [PMID: 38590857 PMCID: PMC10999921 DOI: 10.1016/j.heliyon.2024.e28528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/16/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 was first reported in December 2019 and it has spread globally ever since. The HLA system is crucial in directing anti-viral immunity and recent studies are investigating the possible involvement of the HLA genes on the severity of immune inflammation in different phases of COVID-19. Methods In this cross-sectional study, peripheral blood-extracted genomic DNAs of 109 COVID-19 patients and 70 healthy controls were genotyped for different alleles of HLA-A, HLA-B, and HLA-DRB1 loci using sequence-specific primer PCR method. Results The results indicated that frequencies of HLA-DRB1*11:01 and HLA-DRB1*04:03 were significantly higher in severe patients rather than moderates (p: <0.001 and 0.004, respectively). Also, it was observed that HLA-DRB1*04:01 was more frequent in moderate patients and healthy controls (p:0.002). In addition, HLA-B*07:35, and HLA-DRB1*07:01 showed higher frequencies in patients compared with controls (p: 0.031 and 0.003 respectively). Inversely, due to the higher frequencies of HLA-B*51:01 (p:0.027), HLA-DRB1*11:05 (p:0.003), HLA-DRB1*13:05 (p:0.022), and HLA-DRB1*14:01 (p:0.006) in healthy individuals rather than patients, they may be associated with COVID-19 resistance. Conclusion The results show that, based on the population differences, the type of alleles related to the severity of COVID-19 is different, which should be clarified by designing large-scale studies in order to develop HLA-based treatments and vaccines.
Collapse
Affiliation(s)
- Farhad Abolnezhadian
- Department of Pediatrics, Abuzar Children's Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Iranparast
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Shohan
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahtab Hamed
- Immunobiology Center of Pasteur Medical Laboratory, Ahvaz, Iran
| | - Maryam Seyedtabib
- Department of Biostatistics & Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roohangiz Nashibi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Ali Assarehzadegan
- Immunology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mard
- Physiology Research Center, Research Institute for Infectious Diseases of Digestive System and Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Shayesteh
- Alimentary Tract Research Center, Imam Khomeini Hospital Clinical Research Development Unit, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niloofar Neisi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Manoochehr Makvandi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mohammad Alavi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Shariati
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Vică ML, Dobreanu M, Curocichin G, Matei HV, Bâlici Ș, Vușcan ME, Chiorean AD, Nicula GZ, Pavel Mironescu DC, Leucuța DC, Teodoru CA, Siserman CV. The Influence of HLA Polymorphisms on the Severity of COVID-19 in the Romanian Population. Int J Mol Sci 2024; 25:1326. [PMID: 38279325 PMCID: PMC10816224 DOI: 10.3390/ijms25021326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
In this study, we aimed to investigate whether specific HLA alleles found in patients from Romania and the Republic of Moldova were associated with the severity of COVID-19 infection and its associated mortality. We analyzed the HLA alleles at the -A, -B, -C, -DRB1, and -DQB1 loci in a cohort of 130 individuals with severe and extremely severe forms of COVID-19, including 44 individuals who died. We compared these findings to a control group consisting of individuals who had either not been diagnosed with COVID-19 or had experienced mild forms of the disease. Using multivariate logistic regression models, we discovered that the B*27 and B*50 alleles were associated with an increased susceptibility to developing a severe form of COVID-19. The A*33 and C*15 alleles showed potential for offering protection against the disease. Furthermore, we identified two protective alleles (A*03 and DQB1*02) against the development of extremely severe forms of COVID-19. By utilizing score statistics, we established a statistically significant association between haplotypes and disease severity (p = 0.021). In summary, this study provides evidence that HLA genotype plays a role in influencing the clinical outcome of COVID-19 infection.
Collapse
Affiliation(s)
- Mihaela Laura Vică
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Minodora Dobreanu
- Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
- Department of Laboratory Medicine, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Târgu Mureș, Romania
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Târgu Mureș, Romania
| | - Ghenadie Curocichin
- Department of Family Medicine, “Nicolae Testemițanu” State University of Medicine and Pharmacy, MD-2004 Chișinău, Moldova;
| | - Horea Vladi Matei
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Ștefana Bâlici
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
| | - Mihaela Elvira Vușcan
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Alin Dan Chiorean
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Emergency Clinical Hospital for Children, 400370 Cluj-Napoca, Romania
| | - Gheorghe Zsolt Nicula
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
| | - Daniela Cristina Pavel Mironescu
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Daniel Corneliu Leucuța
- Department of Medical Informatics and Biostatistics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Cosmin Adrian Teodoru
- Clinical Surgical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
| | - Costel Vasile Siserman
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
- Department of Legal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Sharma N, Sharma G, Toor D. Plausible Influence of HLA Class I and Class II Diversity on SARS-CoV-2 Vulnerability. Crit Rev Immunol 2024; 44:31-40. [PMID: 37947070 DOI: 10.1615/critrevimmunol.2023049920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) caused the global coronavirus disease 2019 (COVID-19) pandemic, which adversely affected almost all aspects of human life and resulted in the loss of millions of lives, while affecting nearly 0.67 billion people worldwide. SARS-CoV-2 still poses a challenge to the healthcare system as there are more than 200,000 active cases of COVID-19 around the globe. Epidemiological data suggests that the magnitude of morbidity and mortality due to COVID-19 was low in a few geographical regions and was unpredictably higher in a few regions. The genetic diversity of different geographical regions might explain the sporadic prevalence of the disease. In this context, human leukocyte antigens (HLA) represent the most polymorphic gene-dense region of the human genome and serve as an excellent mini-genome model for evaluating population genetic diversity in the context of susceptibility and progression of various diseases. In this review, we highlight the plausible influence of HLA in susceptibility, severity, immune response, and designing of epitope-based vaccines for COVID-19. Further, there is a need for extensive investigations for illustration and clarification of the functional impact of HLA class I and II alleles in the pathogenesis and progression of SARS-CoV-2.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Gaurav Sharma
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Devinder Toor
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, Uttar Pradesh, India
| |
Collapse
|
12
|
Hoseinnezhad T, Soltani N, Ziarati S, Behboudi E, Mousavi MJ. The role of HLA genetic variants in COVID-19 susceptibility, severity, and mortality: A global review. J Clin Lab Anal 2024; 38:e25005. [PMID: 38251811 PMCID: PMC10829690 DOI: 10.1002/jcla.25005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic has had a profound global impact, with variations in susceptibility, severity, and mortality rates across different regions. While many factors can contribute to the spread and impact of the disease, specifically human leukocyte antigen (HLA) genetic variants have emerged as potential contributors to COVID-19 outcomes. METHODS In this comprehensive narrative review, we conducted a thorough literature search to identify relevant studies investigating the association between HLA genetic variants and COVID-19 outcomes. Additionally, we analyzed allelic frequency data from diverse populations to assess differences in COVID-19 incidence and severity. RESULTS Our review provides insights into the immunological mechanisms involving HLA-mediated responses to COVID-19 and highlights potential research directions and therapeutic interventions. We found evidence suggesting that certain HLA alleles, such as HLA-A02, may confer a lower risk of COVID-19, while others, like HLA-C04, may increase the risk of severe symptoms and mortality. Furthermore, our analysis of allele frequency distributions revealed significant variations among different populations. CONCLUSION Considering host genetic variations, particularly HLA genetic variants, is crucial for understanding COVID-19 susceptibility and severity. These findings have implications for personalized treatment and interventions based on an individual's genetic profile. However, further research is needed to unravel the precise mechanisms underlying the observed associations and explore the potential for targeted therapies or preventive measures based on HLA genetic variants.
Collapse
Affiliation(s)
- Taraneh Hoseinnezhad
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Hematology, School of Para-Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Nasrin Soltani
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Hematology, School of Para-Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sarina Ziarati
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Emad Behboudi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, School of Para-Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
13
|
Farias TD, Brugiapaglia S, Croci S, Magistroni P, Curcio C, Zguro K, Fallerini C, Fava F, Pettini F, Kichula KM, Pollock NR, Font-Porterias N, Palmer WH, Marin WM, Baldassarri M, Bruttini M, Hollenbach JA, Hendricks AE, Meloni I, Novelli F, Renieri A, Furini S, Norman PJ, Amoroso A. HLA-DPB1*13:01 associates with enhanced, and KIR2DS4*001 with diminished protection from developing severe COVID-19. HLA 2024; 103:e15251. [PMID: 37850268 PMCID: PMC10873037 DOI: 10.1111/tan.15251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/22/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
Extreme polymorphism of HLA and killer-cell immunoglobulin-like receptors (KIR) differentiates immune responses across individuals. Additional to T cell receptor interactions, subsets of HLA class I act as ligands for inhibitory and activating KIR, allowing natural killer (NK) cells to detect and kill infected cells. We investigated the impact of HLA and KIR polymorphism on the severity of COVID-19. High resolution HLA class I and II and KIR genotypes were determined from 403 non-hospitalized and 1575 hospitalized SARS-CoV-2 infected patients from Italy collected in 2020. We observed that possession of the activating KIR2DS4*001 allotype is associated with severe disease, requiring hospitalization (OR = 1.48, 95% CI 1.20-1.85, pc = 0.017), and this effect is greater in individuals homozygous for KIR2DS4*001 (OR = 3.74, 95% CI 1.75-9.29, pc = 0.003). We also observed the HLA class II allotype, HLA-DPB1*13:01 protects SARS-CoV-2 infected patients from severe disease (OR = 0.49, 95% CI 0.33-0.74, pc = 0.019). These association analyses were replicated using logistic regression with sex and age as covariates. Autoantibodies against IFN-α associated with COVID-19 severity were detected in 26% of 156 hospitalized patients tested. HLA-C*08:02 was more frequent in patients with IFN-α autoantibodies than those without, and KIR3DL1*01502 was only present in patients lacking IFN-α antibodies. These findings suggest that KIR and HLA polymorphism is integral in determining the clinical outcome following SARS-CoV-2 infection, by influencing the course both of innate and adaptive immunity.
Collapse
Affiliation(s)
- Ticiana D.J. Farias
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Laboratory of Tumor Immunology Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
| | - Susanna Croci
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Paola Magistroni
- Immunogenetics and Transplant Biology, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
| | - Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Laboratory of Tumor Immunology Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
| | - Kristina Zguro
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Chiara Fallerini
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Francesca Fava
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, 53100, Italy
| | - Francesco Pettini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, 53100, Italy
| | - Katherine M. Kichula
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Nicholas R. Pollock
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Neus Font-Porterias
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - William H. Palmer
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Wesley M. Marin
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Mirella Bruttini
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, 53100, Italy
| | - Jill A. Hollenbach
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Audrey E. Hendricks
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Mathematical and Statistical Sciences, and Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Ilaria Meloni
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Laboratory of Tumor Immunology Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
- Molecular Biotechnology Center, University of Turin, Turin, 10126, Italy
| | | | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, 53100, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, 53100, Italy
| | - Simone Furini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Antonio Amoroso
- Immunogenetics and Transplant Biology, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
- Department of Medical Sciences, University of Turin, Turin, 10126, Italy
| |
Collapse
|
14
|
Wang X, Zhang J, Guo P, Guo Y, Yang X, Liu M, Zhang D, Guo Y, Zhan J, Cai K, Zhou J, Dong S, Liu J. Rare peptide anchors of HLA class I alleles contribute to the COVID-19 disease severity and T cell memory. BIOSAFETY AND HEALTH 2023; 5:355-362. [PMID: 40078747 PMCID: PMC11895035 DOI: 10.1016/j.bsheal.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 01/02/2025] Open
Abstract
Understanding how human leukocyte antigen (HLA) polymorphism affects both the susceptibility and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection will help to identify individuals at higher risk to better manage and prioritize vaccination at the clinical level and explain the differences in epidemic trends in different regions at the epidemiological level. This study compared the frequencies of HLA class I alleles (HLA-A, B) in 214 coronavirus disease 2019 (COVID-19) patients with different disease severity and 35 healthy controls and analyzed the correlations between specific HLA alleles and disease severity and T cell memory. The results showed no significant difference in HLA allele frequencies between COVID-19 patients and healthy controls (P > 0.05). The allele HLA-B*13:02 was significantly correlated with the disease severity of COVID-19 patients (P = 0.006). After adjustment for age and disease severity, the T cell responses of COVID-19 convalescents with the allele HLA-B*40:01 may be lower at six months (P = 0.044) and 12 months (P = 0.069). Moreover, these results may be due to their rare peptide anchors by analyzing the binding peptide motifs of these HLA alleles. The study may be valuable for investigating the potential association of specific HLA alleles with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xin Wang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Jie Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Peipei Guo
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yuanyuan Guo
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Xiaonan Yang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Maoshun Liu
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Danni Zhang
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yaxin Guo
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Jianbo Zhan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Kun Cai
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Jikun Zhou
- Shijiazhuang Fifth Hospital, Shijiazhuang 050011, China
| | - Shaobo Dong
- Macheng Center for Disease Control and Prevention, Huanggang 438300, China
| | - Jun Liu
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| |
Collapse
|
15
|
Boquett JA, Vianna FSL, Fagundes NJR, Schroeder L, Barbian M, Zagonel-Oliveira M, Andreis TF, Pôrto LCMS, Chies JAB, Schuler-Faccini L, Ashton-Prolla P, Rosset C. HLA haplotypes and differential regional mortality caused by COVID-19 in Brazil: an ecological study based on a large bone marrow donor bank dataset. AN ACAD BRAS CIENC 2023; 95:e20220801. [PMID: 37851747 DOI: 10.1590/0001-3765202320220801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 10/20/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) mortality rates varied among the states of Brazil during the course of the pandemics. The human leukocyte antigen (HLA) is a critical component of the antigen presentation pathway. Individuals with different HLA genotypes may trigger different immune responses against pathogens, which could culminate in different COVID-19 responses. HLA genotypes are variable, especially in the highly admixed Brazilian population. In this ecological study, we aimed to investigate the correlation between HLA haplotypes and the different regional distribution of COVID-19 mortality in Brazil. HLA data was obtained from 4,148,713 individuals registered in The Brazilian Voluntary Bone Marrow Donors Registry. COVID-19 data was retrieved from epidemiological bulletins issued by State Health Secretariats via Brazil's Ministry of Health from February/2020 to July/2022. We found a positive significant correlation between the HLA-A*01~B*08~DRB1*03 haplotype and COVID-19 mortality rates when we analyzed data from 26 states and the Federal District. This result indicates that the HLA-A*01~B*08~DRB1*03 haplotype may represent an additional risk factor for dying due to COVID-19. This haplotype should be further studied in other populations for a better understanding of the variation in COVID-19 outcomes across the world.
Collapse
Affiliation(s)
- Juliano André Boquett
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Rua Ramiro Barcelos, 2400, Santa Cecília, 90035-002 Porto Alegre, RS, Brazil
| | - Fernanda S L Vianna
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Rua Ramiro Barcelos, 2350, Santa Cecília, 90035-903 Porto Alegre, RS, Brazil
| | - Nelson J R Fagundes
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Lucas Schroeder
- Programa de Pós-Graduação em Computação Aplicada, Universidade do Vale do Rio dos Sinos, Laboratório de Visualização Avançada (VIZLab), Avenida Unisinos, 950, Cristo Rei, 93022-750 São Leopoldo, RS, Brazil
| | - Marcia Barbian
- Universidade Federal do Rio Grande do Sul, Departamento de Estatística, Instituto de Matemática e Estatística, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Marcelo Zagonel-Oliveira
- Programa de Pós-Graduação em Computação Aplicada, Universidade do Vale do Rio dos Sinos, Laboratório de Visualização Avançada (VIZLab), Avenida Unisinos, 950, Cristo Rei, 93022-750 São Leopoldo, RS, Brazil
| | - Tiago F Andreis
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Rua Ramiro Barcelos, 2350, Santa Cecília, 90035-903 Porto Alegre, RS, Brazil
| | - Luis Cristóvão M S Pôrto
- Universidade Estadual do Rio de Janeiro, Laboratório de Histocompatibilidade e Criopreservação, Rua São Francisco Xavier, 524, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - José Artur B Chies
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Lavinia Schuler-Faccini
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Rua Ramiro Barcelos, 2400, Santa Cecília, 90035-002 Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Rua Ramiro Barcelos, 2350, Santa Cecília, 90035-903 Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (iNaGeMP), Rua Ramiro Barcelos, 2350, Santa Cecília, 90035-903 Porto Alegre, RS, Brazil
| | - Patricia Ashton-Prolla
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Rua Ramiro Barcelos, 2350, Santa Cecília, 90035-903 Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Rua Ramiro Barcelos, 2350, Santa Cecília, 90035-903 Porto Alegre, RS, Brazil
| | - Clévia Rosset
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Rua Ramiro Barcelos, 2350, Santa Cecília, 90035-903 Porto Alegre, RS, Brazil
| |
Collapse
|
16
|
Tay GK, Alnaqbi H, Chehadeh S, Peramo B, Mustafa F, Rizvi TA, Mahboub BH, Uddin M, Alkaabi N, Alefishat E, Jelinek HF, Alsafar H. HLA class I associations with the severity of COVID-19 disease in the United Arab Emirates. PLoS One 2023; 18:e0285712. [PMID: 37708194 PMCID: PMC10501655 DOI: 10.1371/journal.pone.0285712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/29/2023] [Indexed: 09/16/2023] Open
Abstract
SARS-CoV-2 appears to induce diverse innate and adaptive immune responses, resulting in different clinical manifestations of COVID-19. Due to their function in presenting viral peptides and initiating the adaptive immune response, certain Human Leucocyte Antigen (HLA) alleles may influence the susceptibility to severe SARS-CoV-2 infection. In this study, 92 COVID-19 patients from 15 different nationalities, with mild (n = 30), moderate (n = 35), and severe (n = 27) SARS-CoV-2 infection, living in the United Arab Emirates (UAE) were genotyped for the Class I HLA -A, -C, and -B alleles using next-generation sequencing (NGS) between the period of May 2020 to June 2020. Alleles and inferred haplotype frequencies in the hospitalized patient group (those with moderate to severe disease, n = 62) were compared to non-hospitalized patients (mild or asymptomatic, n = 30). An interesting trend was noted between the severity of COVID-19 and the HLA-C*04 (P = 0.0077) as well as HLA-B*35 (P = 0.0051) alleles. The class I haplotype HLA-C*04-B*35 was also significantly associated (P = 0.0049). The involvement of inflammation, HLA-C*04, and HLA-B*35 in COVID-19 severity highlights the potential roles of both the adaptive and innate immune responses against SARS-CoV-2. Both alleles have been linked to several respiratory diseases, including pulmonary arterial hypertension along with infections caused by the coronavirus and influenza. This study, therefore, supports the potential use of HLA testing in prioritizing public healthcare interventions for patients at risk of COVID-19 infection and disease progression, in addition to providing personalized immunotherapeutic targets.
Collapse
Affiliation(s)
- Guan K. Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Psychiatry, UWA Medical School, The University of Western Australia, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Halima Alnaqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sarah Chehadeh
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | | | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Tahir A. Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam H. Mahboub
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pulmonary Medicine, Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Maimunah Uddin
- Department of Pediatric Infectious Disease, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Nawal Alkaabi
- Department of Pediatric Infectious Disease, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Eman Alefishat
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Herbert F. Jelinek
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center of Heath Engineering Innovation, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | | |
Collapse
|
17
|
Mora-Buch R, Tomás-Marín M, Enrich E, Antón-Iborra M, Martorell L, Valdivia E, Lara-de-León AG, Aran G, Piron M, Querol S, Rudilla F. Virus-Specific T Cells From Cryopreserved Blood During an Emergent Virus Outbreak for a Potential Off-the-Shelf Therapy. Transplant Cell Ther 2023; 29:572.e1-572.e13. [PMID: 37290691 DOI: 10.1016/j.jtct.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
During the first outbreak of an emergent virus, methods need to be developed to rapidly establish suitable therapies for patients with high risk of severe disease caused by the pathogen. Considering the importance of the T-cell response in controlling viral infections, adoptive cell therapy with virus-specific T cells has been used as a safe and effective antiviral prophylaxis and treatment for immunocompromised patients. The main objective of this study was to establish an effective and safe method to cryostore whole blood as starting material and to adapt a T-cell activation and expansion protocol to generate an off-the-shelf antiviral therapeutic option. Additionally, we studied how memory T-cell phenotype, clonality based on T-cell receptor, and antigen specificity could condition characteristics of the final expanded T-cell product. Twenty-nine healthy blood donors were selected from a database of convalescent plasma donors with a confirmed history of SARS-CoV-2 infection. Blood was processed using a fully automated, clinical-grade, and 2-step closed system. Eight cryopreserved bags were advanced to the second phase of the protocol to obtain purified mononucleated cells. We adapted the T-cell activation and expansion protocol, without specialized antigen-presenting cells or presenting molecular structures, in a G-Rex culture system with IL-2, IL-7, and IL-15 cytokine stimulation. The adapted protocol successfully activated and expanded virus-specific T cells to generate a T-cell therapeutic product. We observed no major impact of post-symptom onset time of donation on the initial memory T-cell phenotype or clonotypes resulting in minor differences in the final expanded T-cell product. We showed that antigen competition in the expansion of T-cell clones affected the T-cell clonality based on the T-cell receptor β repertoire. We demonstrated that good manufacturing practice of blood preprocessing and cryopreserving is a successful procedure to obtain an initial cell source able to activate and expand without a specialized antigen-presenting agent. Our 2-step blood processing allowed recruitment of the cell donors independently of the expansion cell protocol timing, facilitating donor, staff, and facility needs. Moreover, the resulting virus-specific T cells could be also banked for further use, notably maintaining viability and antigen specificity after cryopreservation.
Collapse
Affiliation(s)
- Rut Mora-Buch
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain; Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain.
| | - Maria Tomás-Marín
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain; Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Emma Enrich
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain; Immunogenetics and Histocompatibility Laboratory, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| | - Mireia Antón-Iborra
- Immunogenetics and Histocompatibility Laboratory, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain; Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Lluís Martorell
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| | - Elena Valdivia
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| | - Ana Gabriela Lara-de-León
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain; Immunogenetics Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gemma Aran
- Cell Laboratory, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| | - Maria Piron
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain; Transfusion Safety Laboratory, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| | - Sergi Querol
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain; Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Francesc Rudilla
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain; Immunogenetics and Histocompatibility Laboratory, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain.
| |
Collapse
|
18
|
Gerencer M, McGuffin LJ. Are the integrin binding motifs within SARS CoV-2 spike protein and MHC class II alleles playing the key role in COVID-19? Front Immunol 2023; 14:1177691. [PMID: 37492575 PMCID: PMC10364474 DOI: 10.3389/fimmu.2023.1177691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/22/2023] [Indexed: 07/27/2023] Open
Abstract
The previous studies on the RGD motif (aa403-405) within the SARS CoV-2 spike (S) protein receptor binding domain (RBD) suggest that the RGD motif binding integrin(s) may play an important role in infection of the host cells. We also discussed the possible role of two other integrin binding motifs that are present in S protein: LDI (aa585-587) and ECD (661-663), the motifs used by some other viruses in the course of infection. The MultiFOLD models for protein structure analysis have shown that the ECD motif is clearly accessible in the S protein, whereas the RGD and LDI motifs are partially accessible. Furthermore, the amino acids that are present in Epstein-Barr virus protein (EBV) gp42 playing very important role in binding to the HLA-DRB1 molecule and in the subsequent immune response evasion, are also present in the S protein heptad repeat-2. Our MultiFOLD model analyses have shown that these amino acids are clearly accessible on the surface in each S protein chain as monomers and in the homotrimer complex and bind to HLA-DRB1 β chain. Therefore, they may have the identical role in SARS CoV-2 immune evasion as in EBV infection. The prediction analyses of the MHC class II binding peptides within the S protein have shown that the RGD motif is present in the core 9-mer peptide IRGDEVRQI within the two HLA-DRB1*03:01 and HLA-DRB3*01.01 strong binding 15-mer peptides suggesting that RGD motif may be the potential immune epitope. Accordingly, infected HLA-DRB1*03:01 or HLA-DRB3*01.01 positive individuals may develop high affinity anti-RGD motif antibodies that react with the RGD motif in the host proteins, like fibrinogen, thrombin or von Willebrand factor, affecting haemostasis or participating in autoimmune disorders.
Collapse
Affiliation(s)
| | - Liam J. McGuffin
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
19
|
Yazdanparast S, Bakhtiyaridovvombaygi M, Mikanik F, Ahmadi R, Ghorbani M, Mansoorian MR, Mansoorian M, Chegni H, Moshari J, Gharehbaghian A. Spotlight on contributory role of host immunogenetic profiling in SARS-CoV-2 infection: Susceptibility, severity, mortality, and vaccine effectiveness. Life Sci 2023:121907. [PMID: 37394094 DOI: 10.1016/j.lfs.2023.121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The SARS-CoV-2 virus has spread continuously worldwide, characterized by various clinical symptoms. The immune system responds to SARS-CoV-2 infection by producing Abs and secreting cytokines. Recently, numerous studies have highlighted that immunogenetic factors perform a putative role in COVID-19 pathogenesis and implicate vaccination effectiveness. AIM This review summarizes the relevant articles and evaluates the significance of mutation and polymorphism in immune-related genes regarding susceptibility, severity, mortality, and vaccination effectiveness of COVID-19. Furthermore, the correlation between host immunogenetic and SARS-CoV-2 reinfection is discussed. METHOD A comprehensive search was conducted to identify relevant articles using five databases until January 2023, which resulted in 105 total articles. KEY FINDINGS Taken to gather this review summarized that: (a) there is a plausible correlation between immune-related genes and COVID-19 outcomes, (b) the HLAs, cytokines, chemokines, and other immune-related genes expression profiles can be a prognostic factor in COVID-19-infected patients, and (c) polymorphisms in immune-related genes have been associated with the effectiveness of vaccination. SIGNIFICANCE Regarding the importance of mutation and polymorphisms in immune-related genes in COVID-19 outcomes, modulating candidate genes is expected to help clinical decisions, patient outcomes management, and innovative therapeutic approach development. In addition, the manipulation of host immunogenetics is hypothesized to induce more robust cellular and humoral immune responses, effectively increase the efficacy of vaccines, and subsequently reduce the incidence rates of reinfection-associated COVID-19.
Collapse
Affiliation(s)
- Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Ahmadi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Ghorbani
- Laboratory Hematology and Transfusion Medicine, Department of Pathology, Faculty Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | | | - Mozhgan Mansoorian
- Nursing Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Chegni
- Department of Immunology, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalil Moshari
- School of Medicine, Gonabad University of Medical Science, Gonabad, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Talotta R. Molecular Mimicry and HLA Polymorphisms May Drive Autoimmunity in Recipients of the BNT-162b2 mRNA Vaccine: A Computational Analysis. Microorganisms 2023; 11:1686. [PMID: 37512859 PMCID: PMC10384367 DOI: 10.3390/microorganisms11071686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND After the start of the worldwide COVID-19 vaccination campaign, there were increased reports of autoimmune diseases occurring de novo after vaccination. This in silico analysis aimed to investigate the presence of protein epitopes encoded by the BNT-162b2 mRNA vaccine, one of the most widely administered COVID-19 vaccines, which could induce autoimmunity in predisposed individuals. METHODS The FASTA sequence of the protein encoded by the BNT-162b2 vaccine served as the key input to the Immune Epitope Database and Analysis Resource. Linear peptides with 90% BLAST homology were selected, and T-cell, B-cell, and MHC-ligand assays without MHC restriction were searched and analyzed. HLA disease associations were screened on the HLA-SPREAD platform by selecting only positive markers. RESULTS By 7 May 2023, a total of 5693 epitopes corresponding to 21 viral but also human proteins were found. The latter included CHL1, ENTPD1, MEAF6, SLC35G2, and ZFHX2. Importantly, some autoepitopes may be presented by HLA alleles positively associated with various immunological diseases. CONCLUSIONS The protein product of the BNT-162b2 mRNA vaccine contains immunogenic epitopes that may trigger autoimmune phenomena in predisposed individuals through a molecular mimicry mechanism. Genotyping for HLA alleles may help identify individuals at risk. However, further wet-lab studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital "G. Martino", 98124 Messina, Italy
| |
Collapse
|
21
|
Haq IU, Krukiewicz K, Tayyab H, Khan I, Khan M, Yahya G, Cavalu S. Molecular Understanding of ACE-2 and HLA-Conferred Differential Susceptibility to COVID-19: Host-Directed Insights Opening New Windows in COVID-19 Therapeutics. J Clin Med 2023; 12:jcm12072645. [PMID: 37048725 PMCID: PMC10095019 DOI: 10.3390/jcm12072645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The genetic variants of HLAs (human leukocyte antigens) play a crucial role in the virus–host interaction and pathology of COVID-19. The genetic variants of HLAs not only influence T cell immune responses but also B cell immune responses by presenting a variety of peptide fragments of invading pathogens. Peptide cocktail vaccines produced by using various conserved HLA-A2 epitopes provoke substantial specific CD8+ T cell responses in experimental animals. The HLA profiles vary among individuals and trigger different T cell-mediated immune responses in COVID-19 infections. Those with HLA-C*01 and HLA-B*44 are highly susceptible to the disease. However, HLA-A*02:01, HLA-DR*03:01, and HLA-Cw*15:02 alleles show resistance to SARS infection. Understanding the genetic association of HLA with COVID-19 susceptibility and severity is important because it can help in studying the transmission of COVID-19 and its physiopathogenesis. The HLA-C*01 and B*44 allele pathways can be studied to gain insight into disease transmission and physiopathogenesis. Therefore, integrating HLA testing is suggested in the ongoing pandemic, which will help in the rapid identification of highly susceptible populations worldwide and possibly acclimate vaccine development. Therefore, understanding the correlation between HLA and SARS-CoV-2 is critical in opening new insights into COVID-19 therapeutics, based on previous studies conducted.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Joint Doctoral School, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Hamnah Tayyab
- Department of Internal Medicine, King Edward Medical College, Lahore 54000, Pakistan
| | - Imran Khan
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
22
|
Wolday D, Fung CYJ, Morgan G, Casalino S, Frangione E, Taher J, Lerner-Ellis JP. HLA Variation and SARS-CoV-2 Specific Antibody Response. Viruses 2023; 15:906. [PMID: 37112884 PMCID: PMC10143129 DOI: 10.3390/v15040906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Differences in SARS-CoV-2-specific immune responses have been observed between individuals following natural infection or vaccination. In addition to already known factors, such as age, sex, COVID-19 severity, comorbidity, vaccination status, hybrid immunity, and duration of infection, inter-individual variations in SARS-CoV-2 immune responses may, in part, be explained by structural differences brought about by genetic variation in the human leukocyte antigen (HLA) molecules responsible for the presentation of SARS-CoV-2 antigens to T effector cells. While dendritic cells present peptides with HLA class I molecules to CD8+ T cells to induce cytotoxic T lymphocyte responses (CTLs), they present peptides with HLA class II molecules to T follicular helper cells to induce B cell differentiation followed by memory B cell and plasma cell maturation. Plasma cells then produce SARS-CoV-2-specific antibodies. Here, we review published data linking HLA genetic variation or polymorphisms with differences in SARS-CoV-2-specific antibody responses. While there is evidence that heterogeneity in antibody response might be related to HLA variation, there are conflicting findings due in part to differences in study designs. We provide insight into why more research is needed in this area. Elucidating the genetic basis of variability in the SARS-CoV-2 immune response will help to optimize diagnostic tools and lead to the development of new vaccines and therapeutics against SARS-CoV-2 and other infectious diseases.
Collapse
Affiliation(s)
- Dawit Wolday
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Chun Yiu Jordan Fung
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Gregory Morgan
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Selina Casalino
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Erika Frangione
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Jennifer Taher
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Jordan P. Lerner-Ellis
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| |
Collapse
|
23
|
Yang G, Wang J, Sun P, Qin J, Yang X, Chen D, Zhang Y, Zhong N, Wang Z. SARS-CoV-2 epitope-specific T cells: Immunity response feature, TCR repertoire characteristics and cross-reactivity. Front Immunol 2023; 14:1146196. [PMID: 36969254 PMCID: PMC10036809 DOI: 10.3389/fimmu.2023.1146196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
The devastating COVID-19 pandemic caused by SARS-CoV-2 and multiple variants or subvariants remains an ongoing global challenge. SARS-CoV-2-specific T cell responses play a critical role in early virus clearance, disease severity control, limiting the viral transmission and underpinning COVID-19 vaccine efficacy. Studies estimated broad and robust T cell responses in each individual recognized at least 30 to 40 SARS-CoV-2 antigen epitopes and associated with COVID-19 clinical outcome. Several key immunodominant viral proteome epitopes, including S protein- and non-S protein-derived epitopes, may primarily induce potent and long-lasting antiviral protective effects. In this review, we summarized the immune response features of immunodominant epitope-specific T cells targeting different SRAS-CoV-2 proteome structures after infection and vaccination, including abundance, magnitude, frequency, phenotypic features and response kinetics. Further, we analyzed the epitopes immunodominance hierarchy in combination with multiple epitope-specific T cell attributes and TCR repertoires characteristics, and discussed the significant implications of cross-reactive T cells toward HCoVs, SRAS-CoV-2 and variants of concern, especially Omicron. This review may be essential for mapping the landscape of T cell responses toward SARS-CoV-2 and optimizing the current vaccine strategy.
Collapse
Affiliation(s)
- Gang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Guangzhou Laboratory, Guangzhou, China
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Junxiang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ping Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jian Qin
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiaoyun Yang
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Daxiang Chen
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Nanshan Zhong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhongfang Wang
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
24
|
Bayani F, Hashkavaei NS, Arjmand S, Rezaei S, Uskoković V, Alijanianzadeh M, Uversky VN, Ranaei Siadat SO, Mozaffari-Jovin S, Sefidbakht Y. An overview of the vaccine platforms to combat COVID-19 with a focus on the subunit vaccines. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:32-49. [PMID: 36801471 PMCID: PMC9938630 DOI: 10.1016/j.pbiomolbio.2023.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus that has caused the recent coronavirus disease (COVID-19) global pandemic. The current approved COVID-19 vaccines have shown considerable efficiency against hospitalization and death. However, the continuation of the pandemic for more than two years and the likelihood of new strain emergence despite the global rollout of vaccination highlight the immediate need for the development and improvement of vaccines. mRNA, viral vector, and inactivated virus vaccine platforms were the first members of the worldwide approved vaccine list. Subunit vaccines. which are vaccines based on synthetic peptides or recombinant proteins, have been used in lower numbers and limited countries. The unavoidable advantages of this platform, including safety and precise immune targeting, make it a promising vaccine with wider global use in the near future. This review article summarizes the current knowledge on different vaccine platforms, focusing on the subunit vaccines and their clinical trial advancements against COVID-19.
Collapse
Affiliation(s)
- Fatemeh Bayani
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Shokouh Rezaei
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA; TardigradeNano LLC, Irvine, CA, 92604, USA
| | - Mahdi Alijanianzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | | | - Sina Mozaffari-Jovin
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
25
|
Lin F, Lin X, Fu B, Xiong Y, Zaky MY, Wu H. Functional studies of HLA and its role in SARS-CoV-2: Stimulating T cell response and vaccine development. Life Sci 2023; 315:121374. [PMID: 36621539 PMCID: PMC9815883 DOI: 10.1016/j.lfs.2023.121374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
In the biological immune process, the major histocompatibility complex (MHC) plays an indispensable role in the expression of HLA molecules in the human body when viral infection activates the T-cell response to remove the virus. Since the first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 2019, how to address and prevent SARS-CoV-2 has become a common problem facing all mankind. The T-cell immune response activated by MHC peptides is a way to construct a defense line and reduce the transmission and harm of the virus. Presentation of SARS-CoV-2 antigen is associated with different types of HLA phenotypes, and different HLA phenotypes induce different immune responses. The prediction of SARS-CoV-2 mutation information and the design of vaccines based on HLAs can effectively activate autoimmunity and cope with virus mutations, which can provide some references for the prevention and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Feng Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt; Department of Oncology and Department of Biomedical and Clinical Science, Faculty of Medicine, Linköping University, Sweden
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| |
Collapse
|
26
|
The Search of Association of HLA Class I and Class II Alleles with COVID-19 Mortality in the Russian Cohort. Int J Mol Sci 2023; 24:ijms24043068. [PMID: 36834479 PMCID: PMC9960097 DOI: 10.3390/ijms24043068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
HLA genes play a pivotal role in the immune response via presenting the pathogen peptides on the cell surface in a host organism. Here, we studied the association of HLA allele variants of class I (loci A, B, C) and class II (loci DRB1, DQB1, DPB1) genes with the outcome of COVID-19 infection. We performed high-resolution sequencing of class HLA I and class II genes based on the sample population of 157 patients who died from COVID-19 and 76 patients who survived despite severe symptoms. The results were further compared with HLA genotype frequencies in the control population represented by 475 people from the Russian population. Although the obtained data revealed no significant differences between the samples at a locus level, they allowed one to uncover a set of notable alleles potentially contributing to the COVID-19 outcome. Our results did not only confirm the previously discovered fatal role of age or association of DRB1*01:01:01G and DRB1*01:02:01G alleles with severe symptoms and survival, but also allowed us to single out the DQB1*05:03:01G allele and B*14:02:01G~C*08:02:01G haplotype, which were associated with survival. Our findings showed that not only separate allele, but also their haplotype, could serve as potential markers of COVID-19 outcome and be used during triage for hospital admission.
Collapse
|
27
|
Arab F, Mollazadeh S, Ghayourbabaei F, Moghbeli M, Saburi E. The role of HLA genotypes in understanding the pathogenesis of severe COVID-19. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023; 24:14. [PMID: 36718139 PMCID: PMC9878497 DOI: 10.1186/s43042-023-00392-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused human tragedy through the global spread of the viral pathogen SARS-CoV-2. Although the underlying factors for the severity of COVID-19 in different people are still unknown, several gene variants can be used as predictors of disease severity, particularly variations in viral receptor genes such as angiotensin-converting enzyme 2 (ACE2) or major histocompatibility complex (MHC) genes. The reaction of the immune system, as the most important defense strategy in the case of viruses, plays a decisive role. The innate immune system is important both as a primary line of defense and as a trigger of the acquired immune response. The HLA-mediated acquired immune response is linked to the acquired immune system. In various diseases, it has been shown that genetic alterations in components of the immune system can play a crucial role in how the body responds to pathogens, especially viruses. One of the most important host genetic factors is the human leukocyte antigen (HLA) profile, which includes HLA classes I and II and may be symbolic of the diversity of immune response and genetic predisposition in disease progression. COVID-19 will have direct contact with the acquired immune system as an intracellular pathogen after exposure to the proteasome and its components through class I HLA. Therefore, it is assumed that in different genotypes of the HLA-I class, an undesirable supply causes an insufficient activation of the immune system. Insufficient binding of antigen delivered by class I HLA to host lymphocytes results in uncertain identification and insufficient activation of the acquired immune system. The absence of secretion of immune cytokines such as interferons, which play an important role in controlling viral infection in the early stages, is a complication of this event. Understanding the allelic diversity of HLA in people infected with coronavirus compared with uninfected people of one race not only allows identification of people with HLA susceptible to COVID-19 but also provides better insight into the behavior of the virus, which helps to take effective preventive and curative measures earlier.
Collapse
Affiliation(s)
- Fatemeh Arab
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farnaz Ghayourbabaei
- Department of Biology, Faculty of Sciences, University of Ferdowsi, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Shkurnikov M, Nersisyan S, Averinskaya D, Chekova M, Polyakov F, Titov A, Doroshenko D, Vechorko V, Tonevitsky A. HLA-A*01:01 allele diminishing in COVID-19 patients population associated with non-structural epitope abundance in CD8+ T-cell repertoire. PeerJ 2023; 11:e14707. [PMID: 36691482 PMCID: PMC9864130 DOI: 10.7717/peerj.14707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
In mid-2021, the SARS-CoV-2 Delta variant caused the third wave of the COVID-19 pandemic in several countries worldwide. The pivotal studies were aimed at studying changes in the efficiency of neutralizing antibodies to the spike protein. However, much less attention was paid to the T-cell response and the presentation of virus peptides by MHC-I molecules. In this study, we compared the features of the HLA-I genotype in symptomatic patients with COVID-19 in the first and third waves of the pandemic. As a result, we could identify the diminishing of carriers of the HLA-A*01:01 allele in the third wave and demonstrate the unique properties of this allele. Thus, HLA-A*01:01-binding immunoprevalent epitopes are mostly derived from ORF1ab. A set of epitopes from ORF1ab was tested, and their high immunogenicity was confirmed. Moreover, analysis of the results of single-cell phenotyping of T-cells in recovered patients showed that the predominant phenotype in HLA-A*01:01 carriers is central memory T-cells. The predominance of T-lymphocytes of this phenotype may contribute to forming long-term T-cell immunity in carriers of this allele. Our results can be the basis for highly effective vaccines based on ORF1ab peptides.
Collapse
Affiliation(s)
- Maxim Shkurnikov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Institute of Molecular Biology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
- Armenian Bioinformatics Institute (ABI), Yerevan, Armenia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Darya Averinskaya
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Milena Chekova
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Fedor Polyakov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Aleksei Titov
- National Research Center for Hematology, Moscow, Russia
| | | | | | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
29
|
Karuppiah B, Chinniah R, Pandi S, Sevak V, Ravi PM, Thadakanathan D. Immunogenetic landscape of COVID-19 infections related neurological complications. COVID-19 IN ALZHEIMER'S DISEASE AND DEMENTIA 2023:133-146. [DOI: 10.1016/b978-0-443-15256-6.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
30
|
Lemieux W, Perreault J, Leiva-Torres GA, Baillargeon N, Yanez JC, Chevrier MC, Richard L, Lewin A, Trépanier P. HLA and red blood cell antigen genotyping in SARS-CoV-2 convalescent plasma donors. Future Virol 2023; 18:10.2217/fvl-2022-0058. [PMID: 36844192 PMCID: PMC9941981 DOI: 10.2217/fvl-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 01/11/2023] [Indexed: 02/22/2023]
Abstract
Aim: More data is required regarding the association between HLA allele and red blood cell (RBC) antigen expression in regard to SARS-CoV-2 infection and COVID-19 susceptibility. Methods: ABO, RhD, 37 other RBC antigens and HLA-A, B, C, DRB1, DQB1 and DPB1 were determined using high throughput platforms in 90 Caucasian convalescent plasma donors. Results: The AB group was significantly increased (1.5×, p = 0.018) and some HLA alleles were found to be significantly overrepresented (HLA-B*44:02, C*05:01, DPB1*04:01, DRB1*04:01 and DRB1*07:01) or underrepresented (A*01:01, B51:01 and DPB1*04:02) in convalescent individuals compared with the local bone marrow registry population. Conclusion: Our study of infection-susceptible but non-hospitalized Caucasian COVID-19 patients contributes to the global understanding of host genetic factors associated with SARS-CoV-2 infection and severity.
Collapse
Affiliation(s)
- William Lemieux
- Héma-Québec, Medical Affairs & Innovation, Québec City & Montréal, Québec, G1V 5G3, Canada
| | - Josée Perreault
- Héma-Québec, Medical Affairs & Innovation, Québec City & Montréal, Québec, G1V 5G3, Canada
| | | | - Nadia Baillargeon
- Héma-Québec, Transfusion Medicine, Québec City & Montréal, Québec, H4R 2W7, Canada
| | | | | | - Lucie Richard
- Héma-Québec, Transfusion Medicine, Québec City & Montréal, Québec, H4R 2W7, Canada
| | - Antoine Lewin
- Héma-Québec, Medical Affairs & Innovation, Québec City & Montréal, Québec, G1V 5G3, Canada
| | - Patrick Trépanier
- Héma-Québec, Medical Affairs & Innovation, Québec City & Montréal, Québec, G1V 5G3, Canada
| |
Collapse
|
31
|
Ferraresi A, Isidoro C. Will Omics Biotechnologies Save Us from Future Pandemics? Lessons from COVID-19 for Vaccinomics and Adversomics. Biomedicines 2022; 11:52. [PMID: 36672560 PMCID: PMC9855897 DOI: 10.3390/biomedicines11010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The COVID-19 pandemic had cross-cutting impacts on planetary health, quotidian life, and society. Mass vaccination with the current gene-based vaccines has helped control the pandemic but unfortunately it has not shown effectiveness in preventing the spread of the virus. In addition, not all individuals respond to these vaccines, while others develop adverse reactions that cannot be neglected. It is also a fact that some individuals are more susceptible to infection while others develop effective immunization post-infection. We note here that the person-to-person and population variations in vaccine efficacy and side effects have been studied in the field of vaccinomics long before the COVID-19 pandemic. Additionally, the field of adversomics examines the mechanisms of individual differences in the side effects of health interventions. In this review, we discuss the potential of a multi-omics approach for comprehensive profiling of the benefit/risk ratios of vaccines. Vaccinomics and adversomics stand to benefit planetary health and contribute to the prevention of future pandemics in the 21st century by offering precision guidance to clinical trials as well as promoting precision use of vaccines in ways that proactively respond to individual and population differences in their efficacy and safety. This vision of pandemic prevention based on personalized instead of mass vaccination also calls for equity in access to precision vaccines and diagnostics that support a vision and practice of vaccinomics and adversomics in planetary health.
Collapse
Affiliation(s)
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
32
|
Fischer JC, Balz V, Jazmati D, Bölke E, Freise NF, Keitel V, Feldt T, Jensen BEO, Bode J, Lüdde T, Häussinger D, Adams O, Schneider EM, Enczmann J, Rox JM, Hermsen D, Schulze-Bosse K, Kindgen-Milles D, Knoefel WT, van Griensven M, Haussmann J, Tamaskovics B, Plettenberg C, Scheckenbach K, Corradini S, Pedoto A, Maas K, Schmidt L, Grebe O, Esposito I, Ehrhardt A, Peiper M, Buhren BA, Calles C, Stöhr A, Gerber PA, Lichtenberg A, Schelzig H, Flaig Y, Rezazadeh A, Budach W, Matuschek C. Prognostic markers for the clinical course in the blood of patients with SARS-CoV-2 infection. Eur J Med Res 2022; 27:255. [PMID: 36411478 PMCID: PMC9676819 DOI: 10.1186/s40001-022-00864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The presentation of peptides and the subsequent immune response depend on the MHC characteristics and influence the specificity of the immune response. Several studies have found an association between HLA variants and differential COVID-19 outcomes and have shown that HLA genotypes are associated with differential immune responses against SARS-CoV-2, particularly in severely ill patients. Information, whether HLA haplotypes are associated with the severity or length of the disease in moderately diseased individuals is absent. METHODS Next-generation sequencing-based HLA typing was performed in 303 female and 231 male non-hospitalized North Rhine Westphalian patients infected with SARS-CoV2 during the first and second wave. For HLA-Class I, we obtained results from 528 patients, and for HLA-Class II from 531. In those patients, who became ill between March 2020 and January 2021, the 22 most common HLA-Class I (HLA-A, -B, -C) or HLA-Class II (HLA -DRB1/3/4, -DQA1, -DQB1) haplotypes were determined. The identified HLA haplotypes as well as the presence of a CCR5Δ32 mutation and number of O and A blood group alleles were associated to disease severity and duration of the disease. RESULTS The influence of the HLA haplotypes on disease severity and duration was more pronounced than the influence of age, sex, or ABO blood group. These associations were sex dependent. The presence of mutated CCR5 resulted in a longer recovery period in males. CONCLUSION The existence of certain HLA haplotypes is associated with more severe disease.
Collapse
Affiliation(s)
- Johannes C. Fischer
- grid.14778.3d0000 0000 8922 7789Institute for Transplant Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Vera Balz
- grid.14778.3d0000 0000 8922 7789Institute for Transplant Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Danny Jazmati
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Edwin Bölke
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Noemi F. Freise
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Verena Keitel
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Torsten Feldt
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Björn-Erik Ole Jensen
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Johannes Bode
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Tom Lüdde
- grid.14778.3d0000 0000 8922 7789Institute for Virology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Dieter Häussinger
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Ortwin Adams
- grid.14778.3d0000 0000 8922 7789Institute for Virology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - E. Marion Schneider
- grid.410712.10000 0004 0473 882XDivision of Experimental Anesthesiology, University Hospital Ulm, Ulm, Germany
| | - Jürgen Enczmann
- grid.14778.3d0000 0000 8922 7789Institute for Transplant Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Jutta M. Rox
- grid.14778.3d0000 0000 8922 7789Institute for Transplant Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Derik Hermsen
- grid.14778.3d0000 0000 8922 7789Central Institute for Laboratory Diagnostics and Clinical Chemistry, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Karin Schulze-Bosse
- grid.14778.3d0000 0000 8922 7789Central Institute for Laboratory Diagnostics and Clinical Chemistry, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Detlef Kindgen-Milles
- grid.14778.3d0000 0000 8922 7789Department of Anesthesiology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Wolfram Trudo Knoefel
- grid.14778.3d0000 0000 8922 7789Department of Surgery and Interdisciplinary Surgical Intensive Care Unit, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Martijn van Griensven
- grid.5012.60000 0001 0481 6099Department cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jan Haussmann
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Balint Tamaskovics
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Christian Plettenberg
- grid.14778.3d0000 0000 8922 7789Department of Ear, Nose and Throat Disease, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Kathrin Scheckenbach
- grid.14778.3d0000 0000 8922 7789Department of Ear, Nose and Throat Disease, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Stefanie Corradini
- grid.5252.00000 0004 1936 973XDepartment of Radiation Oncology, LMU University of Munich, Munich, Germany
| | - Alessia Pedoto
- grid.51462.340000 0001 2171 9952Department of Anesthesiology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Kitti Maas
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Livia Schmidt
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Olaf Grebe
- Department of Cardiology and Rhythmology, Petrus Hospital, Wuppertal, Germany
| | - Irene Esposito
- grid.14778.3d0000 0000 8922 7789Institute of Pathology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Anja Ehrhardt
- grid.412581.b0000 0000 9024 6397Institute of Virology, University of Witten/Herdecke, Witten, Germany
| | - Matthias Peiper
- grid.14778.3d0000 0000 8922 7789Medical Faculty, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Bettina Alexandra Buhren
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Christian Calles
- grid.14778.3d0000 0000 8922 7789Coordination Center for Clinical Studies, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Andreas Stöhr
- grid.14778.3d0000 0000 8922 7789Coordination Center for Clinical Studies, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Peter Arne Gerber
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Artur Lichtenberg
- grid.14778.3d0000 0000 8922 7789Department of Cardiac Surgery, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Hubert Schelzig
- grid.14778.3d0000 0000 8922 7789Department of Vascular Surgery, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Yechan Flaig
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Amir Rezazadeh
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Wilfried Budach
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Christiane Matuschek
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
33
|
Ji XS, Chen B, Ze B, Zhou WH. Human genetic basis of severe or critical illness in COVID-19. Front Cell Infect Microbiol 2022; 12:963239. [PMID: 36204639 PMCID: PMC9530247 DOI: 10.3389/fcimb.2022.963239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to considerable morbidity and mortality worldwide. The clinical manifestation of COVID-19 ranges from asymptomatic or mild infection to severe or critical illness, such as respiratory failure, multi-organ dysfunction or even death. Large-scale genetic association studies have indicated that genetic variations affecting SARS-CoV-2 receptors (angiotensin-converting enzymes, transmembrane serine protease-2) and immune components (Interferons, Interleukins, Toll-like receptors and Human leukocyte antigen) are critical host determinants related to the severity of COVID-19. Genetic background, such as 3p21.31 and 9q34.2 loci were also identified to influence outcomes of COVID-19. In this review, we aimed to summarize the current literature focusing on human genetic factors that may contribute to the observed diversified severity of COVID-19. Enhanced understanding of host genetic factors and viral interactions of SARS-CoV-2 could provide scientific bases for personalized preventive measures and precision medicine strategies.
Collapse
Affiliation(s)
- Xiao-Shan Ji
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bin Chen
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bi Ze
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Wen-Hao Zhou
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|
34
|
Olafsdottir TA, Bjarnadottir K, Norddahl GL, Halldorsson GH, Melsted P, Gunnarsdottir K, Ivarsdottir E, Olafsdottir T, Arnthorsson AO, Theodors F, Eythorsson E, Helgason D, Eggertsson HP, Masson G, Bjarnadottir S, Saevarsdottir S, Runolfsdottir HL, Olafsson I, Saemundsdottir J, Sigurdsson MI, Ingvarsson RF, Palsson R, Thorgeirsson G, Halldorsson BV, Holm H, Kristjansson M, Sulem P, Thorsteinsdottir U, Jonsdottir I, Gudbjartsson DF, Stefansson K. HLA alleles, disease severity, and age associate with T-cell responses following infection with SARS-CoV-2. Commun Biol 2022; 5:914. [PMID: 36068292 PMCID: PMC9446630 DOI: 10.1038/s42003-022-03893-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/25/2022] [Indexed: 12/12/2022] Open
Abstract
Memory T-cell responses following SARS-CoV-2 infection have been extensively investigated but many studies have been small with a limited range of disease severity. Here we analyze SARS-CoV-2 reactive T-cell responses in 768 convalescent SARS-CoV-2-infected (cases) and 500 uninfected (controls) Icelanders. The T-cell responses are stable three to eight months after SARS-CoV-2 infection, irrespective of disease severity and even those with the mildest symptoms induce broad and persistent T-cell responses. Robust CD4+ T-cell responses are detected against all measured proteins (M, N, S and S1) while the N protein induces strongest CD8+ T-cell responses. CD4+ T-cell responses correlate with disease severity, humoral responses and age, whereas CD8+ T-cell responses correlate with age and functional antibodies. Further, CD8+ T-cell responses associate with several class I HLA alleles. Our results, provide new insight into HLA restriction of CD8+ T-cell immunity and other factors contributing to heterogeneity of T-cell responses following SARS-CoV-2 infection. A study of 768 convalescent SARS CoV-2-infected and 500 uninfected Icelanders reveals broad and stable T-cell responses 3-8 months from infection. HLA alleles, disease severity, and age contribute to the heterogeneity of cellular immunity.
Collapse
Affiliation(s)
| | | | | | | | - Pall Melsted
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - Elias Eythorsson
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Dadi Helgason
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | - Sólveig Bjarnadottir
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Saedis Saevarsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Medicine, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Hrafnhildur L Runolfsdottir
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Isleifur Olafsson
- Clinical Laboratory Services, Diagnostics and Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Martin I Sigurdsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Perioperative Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Ragnar F Ingvarsson
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Runolfur Palsson
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Science and Engineering, Reykjavik University, Reykjavík, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Mar Kristjansson
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland. .,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
35
|
Ishak A, Mehendale M, AlRawashdeh MM, Sestacovschi C, Sharath M, Pandav K, Marzban S. The association of COVID-19 severity and susceptibility and genetic risk factors: A systematic review of the literature. Gene 2022; 836:146674. [PMID: 35714803 PMCID: PMC9195407 DOI: 10.1016/j.gene.2022.146674] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND COVID-19 is associated with several risk factors such as distinct ethnicities (genetic ancestry), races, sexes, age, pre-existing comorbidities, smoking, and genetics. The authors aim to evaluate the correlation between variability in the host genetics and the severity and susceptibility towards COVID-19 in this study. METHODS Following the PRISMA guidelines, we retrieved all the relevant articles published until September 15, 2021, from two online databases: PubMed and Scopus. FINDINGS High-risk HLA haplotypes, higher expression of ACE polymorphisms, and several genes of cellular proteases such as TMPRSS2, FURIN, TLL-1 increase the risk of susceptibility and severity of COVID-19. In addition, upregulation of several genes encoding for both innate and acquired immune systems proteins, mainly CCR5, IFNs, TLR, DPPs, and TNF, positively correlate with COVID-19 severity. However, reduced expression or polymorphisms in genes affecting TLR and IFNλ increase COVID-19 severity. CONCLUSION Higher expression, polymorphisms, mutations, and deletions of several genes are linked with the susceptibility, severity, and clinical outcomes of COVID-19. Early treatment and vaccination of individuals with genetic predisposition could help minimize the severity and mortality associated with COVID-19.
Collapse
Affiliation(s)
- Angela Ishak
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA.
| | - Meghana Mehendale
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Mousa M AlRawashdeh
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA; European University Cyprus - School of Medicine, Nicosia, Cyprus
| | - Cristina Sestacovschi
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Medha Sharath
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA; Bangalore Medical College and Research Institute, Bangalore, Karnataka, India
| | - Krunal Pandav
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Sima Marzban
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| |
Collapse
|
36
|
De Marco C, Veneziano C, Massacci A, Pallocca M, Marascio N, Quirino A, Barreca GS, Giancotti A, Gallo L, Lamberti AG, Quaresima B, Santamaria G, Biamonte F, Scicchitano S, Trecarichi EM, Russo A, Torella D, Quattrone A, Torti C, Matera G, De Filippo C, Costanzo FS, Viglietto G. Dynamics of Viral Infection and Evolution of SARS-CoV-2 Variants in the Calabria Area of Southern Italy. Front Microbiol 2022; 13:934993. [PMID: 35966675 PMCID: PMC9366435 DOI: 10.3389/fmicb.2022.934993] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we report on the results of SARS-CoV-2 surveillance performed in an area of Southern Italy for 12 months (from March 2021 to February 2022). To this study, we have sequenced RNA from 609 isolates. We have identified circulating VOCs by Sanger sequencing of the S gene and defined their genotypes by whole-genome NGS sequencing of 157 representative isolates. Our results indicated that B.1 and Alpha were the only circulating lineages in Calabria in March 2021; while Alpha remained the most common variant between April 2021 and May 2021 (90 and 73%, respectively), we observed a concomitant decrease in B.1 cases and appearance of Gamma cases (6 and 21%, respectively); C.36.3 and Delta appeared in June 2021 (6 and 3%, respectively); Delta became dominant in July 2021 while Alpha continued to reduce (46 and 48%, respectively). In August 2021, Delta became the only circulating variant until the end of December 2021. As of January 2022, Omicron emerged and took over Delta (72 and 28%, respectively). No patient carrying Beta, Iota, Mu, or Eta variants was identified in this survey. Among the genomes identified in this study, some were distributed all over Europe (B1_S477N, Alpha_L5F, Delta_T95, Delta_G181V, and Delta_A222V), some were distributed in the majority of Italian regions (B1_S477N, B1_Q675H, Delta_T95I and Delta_A222V), and some were present mainly in Calabria (B1_S477N_T29I, B1_S477N_T29I_E484Q, Alpha_A67S, Alpha_A701S, and Alpha_T724I). Prediction analysis of the effects of mutations on the immune response (i.e., binding to class I MHC and/or recognition of T cells) indicated that T29I in B.1 variant; A701S in Alpha variant; and T19R in Delta variant were predicted to impair binding to class I MHC whereas the mutations A67S identified in Alpha; E484K identified in Gamma; and E156G and ΔF157/R158 identified in Delta were predicted to impair recognition by T cells. In conclusion, we report on the results of SARS-CoV-2 surveillance in Regione Calabria in the period between March 2021 and February 2022, identified variants that were enriched mainly in Calabria, and predicted the effects of identified mutations on host immune response.
Collapse
Affiliation(s)
- Carmela De Marco
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
- Carmela De Marco
| | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
| | - Alice Massacci
- UOSD Biostatistics, Bioinformatics, and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Matteo Pallocca
- UOSD Biostatistics, Bioinformatics, and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nadia Marascio
- Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Angela Quirino
- Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | | | | | - Luigia Gallo
- “Mater Domini” University Hospital, Catanzaro, Italy
| | | | - Barbara Quaresima
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
| | - Stefania Scicchitano
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- “Mater Domini” University Hospital, Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Alessandro Russo
- “Mater Domini” University Hospital, Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, “Magna Graecia” University, Catanzaro, Italy
| | - Carlo Torti
- “Mater Domini” University Hospital, Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Giovanni Matera
- Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | | | - Francesco Saverio Costanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
- *Correspondence: Giuseppe Viglietto
| |
Collapse
|
37
|
Antonio EC, Meireles MR, Bragatte MADS, Vieira GF. Viral immunogenic footprints conferring T cell cross-protection to SARS-CoV-2 and its variants. Front Immunol 2022; 13:931372. [PMID: 35967415 PMCID: PMC9366040 DOI: 10.3389/fimmu.2022.931372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
COVID-19 brought scenes from sci-fi movies into real life. Infected individuals include asymptomatic cases to severe disease leading to death, suggesting the involvement of the genetic constitution of populations and pathogens contributing to differential individuals' outcomes. To investigate shared immunogenic features between SARS-CoV-2 targets and other coronaviruses, we modeled their peptides in 3D structures of HLA-A*02:01 (pMHC), comparing their molecular surfaces These structures were also compared with a panel of epitopes from unrelated viruses, looking for potential triggers conferring cross-protection in uninfected individuals. As expected, SARS-CoV 1 and 2 peptides share molecular and physicochemical features, providing an explanation for the verified experimental immunogenicity among them. Surprisingly, even discordant sequences from human coronaviruses 229E, OC43 and epitopes from unrelated viruses involved in endemic human infections exhibit similar fingerprints of immunogenicity with SARS-CoV-2 peptides. The same approach indicates a conserved CD8+ T cell recognition between Wuhan SARS-CoV-2 sequences and altered peptides from Variants of Concern. Examination of structural data over epitope sequence analysis here could explain how previous infections may produce a heterologous immunity response in a global scale against emergent diseases such as Covid-19, mitigating its full lethal potential, and paves the way for the development of wide spectrum vaccine development.
Collapse
Affiliation(s)
- Eduardo Cheuiche Antonio
- Post Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariana Rost Meireles
- Post Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Gustavo Fioravanti Vieira
- Post Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post Graduation Program in Health and Human Development, Universidade La Salle Canoas, Canoas, Brazil
| |
Collapse
|
38
|
Hu S, Shao Z, Ni W, Sun P, Qiao J, Wan H, Huang Y, Liu X, Zhai H, Xiao M, Sun B. The KIR2DL2/HLA-C1C1 Gene Pairing Is Associated With an Increased Risk of SARS-CoV-2 Infection. Front Immunol 2022; 13:919110. [PMID: 35874712 PMCID: PMC9301464 DOI: 10.3389/fimmu.2022.919110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
SARS-CoV-2 is the causative agent for the global COVID-19 pandemic; however, the interaction between virus and host is not well characterized. Natural killer cells play a key role in the early phase of the antiviral response, and their primary functions are dependent on signaling through the killer cell immunoglobulin-like receptor (KIR). This study measured the association between KIR/HLA class I ligand pairings and the occurrence and development of COVID-19. DNA of blood samples from 257 COVID-19 patients were extracted and used to detect KIR and HLA-C gene frequencies using single strain sequence-specific primer (SSP) PCR. The frequency of these genes was compared among 158 individuals with mild COVID-19, 99 with severe disease, and 98 healthy controls. The frequencies of KIR2DL2 (P=0.04, OR=1.707), KIR2DS3 (P=0.047, OR=1.679), HLA-C1C1 (P<0.001, OR=3.074) and the KIR2DL2/HLA-C1C1 pairing (P=0.038, OR=2.126) were significantly higher in the COVID-19 patients than the healthy controls. At the same time, the frequency of KIR2DL3+KIR2DL2-/HLA-C1+Others+ was lower in COVID-19 patients than in healthy individuals (P=0.004, OR=0.477). These results suggest that the protective effect of KIR2DL3 against SARS-CoV-2 infection is related to the absence of the KIR2DL2 gene. This study found no correlation between the frequencies of these genes and COVID-19 pathogenesis. Global statistical analysis revealed that the incidence of COVID-19 infection was higher in geographic regions with a high frequency of KIR2DL2. Together these results suggest that the KIR2DL2/HLA-C1C1 gene pairing may be a risk factor for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Song Hu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Zuoyu Shao
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hepatic Disease Institute, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Wei Ni
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hepatic Disease Institute, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Pan Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Hepatic Disease Institute, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Jialu Qiao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Hexing Wan
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Yi Huang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xiaolong Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Haoyang Zhai
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Mingzhong Xiao
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hepatic Disease Institute, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
- *Correspondence: Binlian Sun, ; Mingzhong Xiao,
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- *Correspondence: Binlian Sun, ; Mingzhong Xiao,
| |
Collapse
|
39
|
Suslova TA, Vavilov MN, Belyaeva SV, Evdokimov AV, Stashkevich DS, Galkin A, Kofiadi IA. Distribution of HLA-A, -B, -C, -DRB1, -DQB1, -DPB1 allele frequencies in patients with COVID-19 bilateral pneumonia in Russians, living in the Chelyabinsk region (Russia). Hum Immunol 2022; 83:547-550. [PMID: 35525710 PMCID: PMC9046060 DOI: 10.1016/j.humimm.2022.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/06/2022] [Accepted: 04/23/2022] [Indexed: 12/14/2022]
Abstract
In this population-based case-control study conducted in the Chelyabinsk region of Russia, we examined the distribution of HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1, in a group of 100 patients with confirmed COVID-19 bilateral pneumonia. Typing was performed by NGS and statistical calculations were carried out with the Arlequin program. HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1 alleles were compared between patients with COVID-19 and 99 healthy controls. We identified that COVID-19 susceptibility is associated with alleles and genotypes rs9277534A (disequilibrium with HLA-DPB1*02:01, -02:02, -04:01, -04:02, -17:01 alleles) with low expression of protein products HLA-DPB1 (pc < 0.028) and homozygosity at HLA-C*04 (p = 0.024, pc = 0.312). Allele HLA-A*01:01 was decreased in a group of patients with severe forms of bilateral pneumonia, and therefore it may be considered as a protective factor for the development of severe symptoms of COVID-19 (p = 0.009, pc = 0.225). Our studies provide further evidence for the functional association between HLA genes and COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexander Galkin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Ilya A Kofiadi
- Pirogov Russian National Reseach Medical University, Moscow, Russia
| |
Collapse
|
40
|
Nicholson MW, Huang CY, Wang JY, Ting CY, Cheng YC, Chan DZH, Lee YC, Hsu CC, Hsu YH, Chang CMC, Hsieh ML, Cheng YY, Lin YL, Chen CH, Wu YT, Hacker TA, Wu JC, Kamp TJ, Hsieh PCH. Cardio- and Neurotoxicity of Selected Anti-COVID-19 Drugs. Pharmaceuticals (Basel) 2022; 15:ph15060765. [PMID: 35745684 PMCID: PMC9231250 DOI: 10.3390/ph15060765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022] Open
Abstract
Since December 2019, the novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected ~435 million people and caused ~6 million related deaths as of March 2022. To combat COVID-19, there have been many attempts to repurpose FDA-approved drugs or revive old drugs. However, many of the current treatment options have been known to cause adverse drug reactions. We employed a population-based drug screening platform using 13 human leukocyte antigen (HLA) homozygous human induced pluripotent cell (iPSC) lines to assess the cardiotoxicity and neurotoxicity of the first line of anti-COVID-19 drugs. We also infected iPSC-derived cells to understand the viral infection of cardiomyocytes and neurons. We found that iPSC-derived cardiomyocytes express the ACE2 receptor which correlated with a higher infection of the SARS-CoV-2 virus (r = 0.86). However, we were unable to detect ACE2 expression in neurons which correlated with a low infection rate. We then assessed the toxicity of anti-COVID-19 drugs and identified two cardiotoxic compounds (remdesivir and arbidol) and four neurotoxic compounds (arbidol, remdesivir, hydroxychloroquine, and chloroquine). These data show that this platform can quickly and easily be employed to further our understanding of cell-specific infection and identify drug toxicity of potential treatment options helping clinicians better decide on treatment options.
Collapse
Affiliation(s)
| | - Ching-Ying Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Jyun-Yuan Wang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chien-Yu Ting
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Che Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Darien Z H Chan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Chan Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Ching-Chuan Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Hung Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Cindy M C Chang
- Cardiovascular Physiology Core Facility, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Marvin L Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Cardiovascular Physiology Core Facility, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yuan-Yuan Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Ying-Ta Wu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Timothy A Hacker
- Cardiovascular Physiology Core Facility, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Timothy J Kamp
- Department of Medicine and Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Medicine and Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Institute of Clinical Medicine, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
41
|
Gutiérrez-Bautista JF, Rodriguez-Nicolas A, Rosales-Castillo A, López-Ruz MÁ, Martín-Casares AM, Fernández-Rubiales A, Anderson P, Garrido F, Ruiz-Cabello F, López-Nevot MÁ. Study of HLA-A, -B, -C, -DRB1 and -DQB1 polymorphisms in COVID-19 patients. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:421-427. [PMID: 34475005 PMCID: PMC8384756 DOI: 10.1016/j.jmii.2021.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Human leukocyte antigen (HLA) plays an important role in immune responses to infections, especially in the development of acquired immunity. Given the high degree of polymorphisms that HLA molecules present, some will be more or less effective in controlling SARS-CoV-2 infection. We wanted to analyze whether certain polymorphisms may be involved in the protection or susceptibility to COVID-19. METHODS We studied the polymorphisms in HLA class I (HLA-A, -B and -C) and II (HLA-DRB1 and HLA-DQB1) molecules in 450 patients who required hospitalization for COVID-19, creating one of the largest HLA-typed patient cohort to date. RESULTS Our results show that there is no relationship between HLA polymorphisms or haplotypes and susceptibility or protection to COVID-19. CONCLUSION Our results may contribute to resolve the contradictory data on the role of HLA polymorphisms in COVID-19 infection.
Collapse
Affiliation(s)
- Juan Francisco Gutiérrez-Bautista
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de Las Nieves, Granada, Spain; Programa de Doctorado en Biomedicina, University of Granada, Spain.
| | - Antonio Rodriguez-Nicolas
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de Las Nieves, Granada, Spain.
| | | | - Miguel Ángel López-Ruz
- Servicio de Enfermedades Infecciosas, Hospital Universitario Virgen de Las Nieves, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Departamento de Medicina, University of Granada, Granada, Spain.
| | | | - Alonso Fernández-Rubiales
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de Las Nieves, Granada, Spain.
| | - Per Anderson
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de Las Nieves, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| | - Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de Las Nieves, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Departamento Bioquímica, Biología Molecular e Inmunología III, University of Granada, Granada, Spain.
| | - Francisco Ruiz-Cabello
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de Las Nieves, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Departamento Bioquímica, Biología Molecular e Inmunología III, University of Granada, Granada, Spain.
| | - Miguel Ángel López-Nevot
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de Las Nieves, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Departamento Bioquímica, Biología Molecular e Inmunología III, University of Granada, Granada, Spain.
| |
Collapse
|
42
|
Nguyen A, Yusufali T, Hollenbach JA, Nellore A, Thompson RF. Minimal observed impact of HLA genotype on hospitalization and severity of SARS-CoV-2 infection. HLA 2022; 99:607-613. [PMID: 35118818 PMCID: PMC10464832 DOI: 10.1111/tan.14574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022]
Abstract
HLA is a critical component of the viral antigen presentation pathway. We investigated the relationship between the severity of SARS-CoV-2 disease and HLA type in 3235 individuals with confirmed SARS-CoV-2 infection. We found only the DPB1 locus to be associated with the binary outcome of whether an individual developed any COVID-19 symptoms. The number of peptides predicted to bind to an HLA allele had no significant relationship with disease severity both when stratifying individuals by ancestry or age and in a pooled analysis. Overall, at the population level, we found HLA type is significantly less predictive of COVID-19 disease severity than certain demographic factors and clinical comorbidities.
Collapse
Affiliation(s)
- Austin Nguyen
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Tasneem Yusufali
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Jill A Hollenbach
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Abhinav Nellore
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Department of Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Reid F Thompson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
- Division of Hospital and Specialty Medicine, VA Portland Healthcare System, Portland, Oregon, USA
| |
Collapse
|
43
|
Avetyan D, Hakobyan S, Nikoghosyan M, Ghukasyan L, Khachatryan G, Sirunyan T, Muradyan N, Zakharyan R, Chavushyan A, Hayrapetyan V, Hovhannisyan A, Mohamed Bakhash SA, Jerome KR, Roychoudhury P, Greninger AL, Niazyan L, Davidyants M, Melik-Andreasyan G, Sargsyan S, Nersisyan L, Arakelyan A. Molecular Analysis of SARS-CoV-2 Lineages in Armenia. Viruses 2022; 14:1074. [PMID: 35632815 PMCID: PMC9142918 DOI: 10.3390/v14051074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
The sequencing of SARS-CoV-2 provides essential information on viral evolution, transmission, and epidemiology. In this paper, we performed the whole-genome sequencing of SARS-CoV-2 using nanopore and Illumina sequencing to describe the circulation of the virus lineages in Armenia. The analysis of 145 full genomes identified six clades (19A, 20A, 20B, 20I, 21J, and 21K) and considerable intra-clade PANGO lineage diversity. Phylodynamic and transmission analysis allowed to attribute specific clades as well as infer their importation routes. Thus, the first two waves of positive case increase were caused by the 20B clade, the third peak caused by the 20I (Alpha), while the last two peaks were caused by the 21J (Delta) and 21K (Omicron) variants. The functional analyses of mutations in sequences largely affected epitopes associated with protective HLA loci and did not cause the loss of the signal in PCR tests targeting ORF1ab and N genes as confirmed by RT-PCR. We also compared the performance of nanopore and Illumina short-read sequencing and showed the utility of nanopore sequencing as an efficient and affordable alternative for large-scale molecular epidemiology research. Thus, our paper describes new data on the genomic diversity of SARS-CoV-2 variants in Armenia in the global context of the virus molecular genomic surveillance.
Collapse
Affiliation(s)
- Diana Avetyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
| | - Siras Hakobyan
- Bioinformatics Group, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia;
- Armenian Bioinformatics Institute, Yerevan 0014, Armenia;
| | - Maria Nikoghosyan
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
- Bioinformatics Group, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia;
| | - Lilit Ghukasyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
| | - Gisane Khachatryan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
| | - Tamara Sirunyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
| | - Nelli Muradyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
| | - Roksana Zakharyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
| | - Andranik Chavushyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Davidyants Laboratories, Yerevan 0054, Armenia
| | - Varduhi Hayrapetyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
| | - Anahit Hovhannisyan
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia
| | - Shah A. Mohamed Bakhash
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98102, USA; (S.A.M.B.); (K.R.J.); (P.R.); (A.L.G.)
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98102, USA; (S.A.M.B.); (K.R.J.); (P.R.); (A.L.G.)
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98102, USA; (S.A.M.B.); (K.R.J.); (P.R.); (A.L.G.)
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98102, USA; (S.A.M.B.); (K.R.J.); (P.R.); (A.L.G.)
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lyudmila Niazyan
- NORK Infection Clinical Hospital, MoH RA, Yerevan 0047, Armenia; (L.N.); (M.D.)
| | - Mher Davidyants
- NORK Infection Clinical Hospital, MoH RA, Yerevan 0047, Armenia; (L.N.); (M.D.)
| | - Gayane Melik-Andreasyan
- National Center of Disease Control and Prevention, Ministry of Health RA, Yerevan 0025, Armenia; (G.M.-A.); (S.S.)
| | - Shushan Sargsyan
- National Center of Disease Control and Prevention, Ministry of Health RA, Yerevan 0025, Armenia; (G.M.-A.); (S.S.)
| | - Lilit Nersisyan
- Armenian Bioinformatics Institute, Yerevan 0014, Armenia;
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Solna, Sweden
| | - Arsen Arakelyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
- Bioinformatics Group, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia;
- Armenian Bioinformatics Institute, Yerevan 0014, Armenia;
| |
Collapse
|
44
|
Mocci S, Littera R, Tranquilli S, Provenzano A, Mascia A, Cannas F, Lai S, Giuressi E, Chessa L, Angioni G, Campagna M, Firinu D, Del Zompo M, La Nasa G, Perra A, Giglio S. A Protective HLA Extended Haplotype Outweighs the Major COVID-19 Risk Factor Inherited From Neanderthals in the Sardinian Population. Front Immunol 2022; 13:891147. [PMID: 35514995 PMCID: PMC9063452 DOI: 10.3389/fimmu.2022.891147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Sardinia has one of the lowest incidences of hospitalization and related mortality in Europe and yet a very high frequency of the Neanderthal risk locus variant on chromosome 3 (rs35044562), considered to be a major risk factor for a severe SARS-CoV-2 disease course. We evaluated 358 SARS-CoV-2 patients and 314 healthy Sardinian controls. One hundred and twenty patients were asymptomatic, 90 were pauci-symptomatic, 108 presented a moderate disease course and 40 were severely ill. All patients were analyzed for the Neanderthal-derived genetic variants reported as being protective (rs1156361) or causative (rs35044562) for severe illness. The β°39 C>T Thalassemia variant (rs11549407), HLA haplotypes, KIR genes, KIRs and their HLA class I ligand combinations were also investigated. Our findings revealed an increased risk for severe disease in Sardinian patients carrying the rs35044562 high risk variant [OR 5.32 (95% CI 2.53 - 12.01), p = 0.000]. Conversely, the protective effect of the HLA-A*02:01, B*18:01, DRB*03:01 three-loci extended haplotype in the Sardinian population was shown to efficiently contrast the high risk of a severe and devastating outcome of the infection predicted for carriers of the Neanderthal locus [OR 15.47 (95% CI 5.8 - 41.0), p < 0.0001]. This result suggests that the balance between risk and protective immunogenetic factors plays an important role in the evolution of COVID-19. A better understanding of these mechanisms may well turn out to be the biggest advantage in the race for the development of more efficient drugs and vaccines.
Collapse
Affiliation(s)
- Stefano Mocci
- Medical Genetics Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Roberto Littera
- Medical Genetics Unit, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Cagliari, Italy
- Association for the Advancement of Research on Transplantation O.d.V., Non Profit Organisation, Cagliari, Italy
| | - Stefania Tranquilli
- Medical Genetics Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Aldesia Provenzano
- Medical Genetics Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Alessia Mascia
- Medical Genetics Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Federica Cannas
- Medical Genetics Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Sara Lai
- Medical Genetics Unit, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Cagliari, Italy
| | - Erika Giuressi
- Medical Genetics Unit, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Cagliari, Italy
| | - Luchino Chessa
- Association for the Advancement of Research on Transplantation O.d.V., Non Profit Organisation, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Liver Unit, Department of Internal Medicine, University Hospital of Cagliari, Cagliari, Italy
| | - Goffredo Angioni
- Structure of Infectious Diseases Unit, SS Trinità Hospital, Cagliari, Italy
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Maria Del Zompo
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giorgio La Nasa
- Hematology Unit, Businco Hospital, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Andrea Perra
- Association for the Advancement of Research on Transplantation O.d.V., Non Profit Organisation, Cagliari, Italy
- Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Sabrina Giglio
- Medical Genetics Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Medical Genetics Unit, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Cagliari, Italy
- Centre for Research University Services (CeSAR, Centro Servizi di Ateneo per la Ricerca), University of Cagliari, Monserrato, Italy
| |
Collapse
|
45
|
Hernández-Doño S, Sánchez-González RA, Trujillo-Vizuet MG, Zamudio-Castellanos FY, García-Silva R, Bulos-Rodríguez P, Vazquez-Guzmán CA, Cárdenas-Ramos X, de León Rodríguez D, Elías F, Domínguez-Arevillaga S, Pérez-Tirado JM, Vera-Lastra OL, Granados J, Sepúlveda-Delgado J. Protective HLA alleles against severe COVID-19: HLA-A*68 as an ancestral protection allele in Tapachula-Chiapas, Mexico. Clin Immunol 2022; 238:108990. [PMID: 35395388 PMCID: PMC8982524 DOI: 10.1016/j.clim.2022.108990] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/13/2022] [Accepted: 03/25/2022] [Indexed: 11/03/2022]
Abstract
HLA is a polymorphic antigen presenter which has provided valuable information on the susceptibility of populations to viruses. Therefore, the study of HLA can reveal specific susceptibility or resistance alleles to severe COVID-19 in an ethnically dependent manner. This pilot study investigated HLA alleles associated with COVID-19 severity in Tapachula, Chiapas, Mexico. A total of 146 Mexican Mestizos were typed for HLA class I and II using PCR-SSP. The patients were classified according to the outcome (death or improvement) and the infection's severity (mild or severe). In addition, a group of exposed uninfected individuals was included. HLA-A*68 was found to be a protective allele against the severe infection and fatal outcome; pC = 0.03, OR = 0.4, 95% CI =0.20-0.86, and pC =0.009, OR = 0.3, 95% CI =0.13-0.71 respectively. HLA-DRB1*03 also appears to be a protective factor against fatal outcome pC = 0.009, OR = 0.1, 95%IC = 0.01-0.66; however, the low frequency of this allele in the studied population limits the statistical power. The severity and fatal outcome of COVID-19 patients in Tapachula, Chiapas depend more on the lack of resistance than susceptibility HLA alleles.
Collapse
Affiliation(s)
- Susana Hernández-Doño
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | | - Rafael García-Silva
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Pedro Bulos-Rodríguez
- Department of Internal Medicine, Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Chiapas, Mexico
| | - Carlos A Vazquez-Guzmán
- Department of Internal Medicine, Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Chiapas, Mexico
| | | | - Diana de León Rodríguez
- Facultad de Medicina Humana Campus IV, Universidad Autónoma de Chiapas, Mexico; Becario de la Dirección General de Calidad y Educación en Salud, Secretaría de Salud, Mexico
| | - Fabiola Elías
- Facultad de Medicina Humana Campus IV, Universidad Autónoma de Chiapas, Mexico
| | | | | | - Olga Lidia Vera-Lastra
- Department of Internal Medicine, Hospital de Especialidades, Centro Médico la Raza, Chile
| | - Julio Granados
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jesús Sepúlveda-Delgado
- Research Division, Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Chiapas, Mexico.
| |
Collapse
|
46
|
Crocchiolo R, Gallina AM, Pani A, Campisi D, Cento V, Sacchi N, Miotti V, Gagliardi OM, D'Amico F, Vismara C, Cornacchini G, Lando G, Cuppari I, Scaglione F, Rossini S. Polymorphism of the HLA system and weak antibody response to BNT162b2 mRNA vaccine. HLA 2022; 99:183-191. [PMID: 35025131 DOI: 10.1111/tan.14546] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/30/2022]
Abstract
The polymorphism of the HLA system has been extensively studied in COVID-19 infection, however there are no data about the role of HLA on vaccine response. We report here the HLA-A, -B, -C, and DRB1 allelic frequencies of n = 111 individuals after BNT162b2 mRNA vaccine, selected on the basis of lower antibody levels (<5% percentile) after the second dose among a total of n = 2569 vaccinees, and compare them with the frequencies of a reference population. We found that differences in the frequencies of the alleles HLA-A*03:01, A*33:03, B*58:01 and at least one haplotype (HLA-A*24:02~C*07:01~B*18:01~DRB1*11:04) are associated with a weaker antibody response after vaccination, together with the age of vaccinees. Our results might suggest a role played by some HLA alleles or haplotypes in antibody production after the BNT162b2 mRNA vaccine, giving insights into the tracking of potentially susceptible individuals across populations. Further studies are needed to better define our exploratory findings and dissect the role of HLA polymorphism on response to anti-COVID-19 vaccines.
Collapse
Affiliation(s)
- Roberto Crocchiolo
- Servizio di Immunoematologia e Medicina Trasfusionale, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Anna Maria Gallina
- Italian Bone Marrow Donor Registry, E. O. Ospedali Galliera, Genoa, Italy
| | - Arianna Pani
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Chemical-Clinical and Microbiological Analyses, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Daniela Campisi
- Chemical-Clinical and Microbiological Analyses, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Valeria Cento
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Chemical-Clinical and Microbiological Analyses, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Nicoletta Sacchi
- Italian Bone Marrow Donor Registry, E. O. Ospedali Galliera, Genoa, Italy
| | - Valeria Miotti
- Laboratory of Immunogenetics, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Oscar Matteo Gagliardi
- Postgraduate School of Clinical Pharmacology and Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Federico D'Amico
- Department of Infectious Diseases Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Chiara Vismara
- Chemical-Clinical and Microbiological Analyses, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giorgia Cornacchini
- Servizio di Immunoematologia e Medicina Trasfusionale, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giuliana Lando
- Servizio di Immunoematologia e Medicina Trasfusionale, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Irene Cuppari
- Servizio di Immunoematologia e Medicina Trasfusionale, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Francesco Scaglione
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Chemical-Clinical and Microbiological Analyses, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Silvano Rossini
- Servizio di Immunoematologia e Medicina Trasfusionale, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
47
|
Ertosun MG, Özkan Ö, Darbaş Ş, Özel D, BİLGE U, Sayin Ekinci N, Yilmaz VT, Uçar F, Koçak H, Özkan Ö. The relationship between COVID-19 and HLA in kidney transplant recipients, an evaluation of predictive and prognostic factors. Clin Transplant 2022; 36:e14525. [PMID: 34726292 PMCID: PMC8646315 DOI: 10.1111/ctr.14525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The purpose of this study was to determine the predictive and prognostic factors for COVID-19 infection and its relationship with human leukocyte antigen (HLA) in kidney transplant recipients. MATERIAL AND METHOD Three hundred fifty kidney transplant recipients were included in the study. Recipients were divided into two groups: COVID-19(+) (n = 100) and control (n = 250). The relationships between HLA frequencies, COVID-19 infection, and prognostic factors (age, donor type, immunosuppression protocol, etc.) were then evaluated. Logistic regression analysis, heatmap, and decision tree methods were used to determine predictive and prognostic factors. The study was performed retrospectively. RESULTS Advanced age and deceased transplantation emerged as predictive of SARS-CoV-2 infection, while the presence of HLA-A*11, the HLA match ratio, and high-dose tacrolimus were identified as prognostic factors in kidney transplant recipients. HLA-A10, HLA-B*13, HLA-B22, and HLA-B*55 were shown to be associated with SARS-CoV-2 infection at univariate analysis, and HLA-B*57, HLA-DRB1*11, and HLA-DRB1*13 at logistic regression analysis. CONCLUSION HLA-A10, HLA-B*13, HLA-B*55, HLA-B*57, HLA-DRB1*11, and HLA-DRB1*13 were identified for the first time in the literature associated with SARS-CoV-2 infection in kidney transplant recipients.
Collapse
Affiliation(s)
- Mustafa Gökhan Ertosun
- Department of Plastic, Reconstructive, and Aesthetic SurgeryAkdeniz University School of MedicineAntalyaTurkey
- Tissue Typing and Transplantation LaboratoryAkdeniz University HospitalAntalyaTurkey
| | - Özlenen Özkan
- Department of Plastic, Reconstructive, and Aesthetic SurgeryAkdeniz University School of MedicineAntalyaTurkey
| | - Şule Darbaş
- Tissue Typing and Transplantation LaboratoryAkdeniz University HospitalAntalyaTurkey
| | - Deniz Özel
- Statistical ConsultingApplication and Research CenterAkdeniz UniversityAntalyaTurkey
| | - Uğur BİLGE
- Department of Biostatistics and Medical InformaticsFaculty of MedicineAkdeniz UniversityAntalyaTurkey
| | - Nurten Sayin Ekinci
- Tissue Typing and Transplantation LaboratoryAkdeniz University HospitalAntalyaTurkey
| | - Vural Taner Yilmaz
- Department of Internal Medicine Division of NephrologyAkdeniz University School of MedicineAntalyaTurkey
| | - Fahri Uçar
- Tissue Typing and Transplantation LaboratoryAkdeniz University HospitalAntalyaTurkey
- Department of Medical Biology and GeneticsAkdeniz University School of MedicineAntalyaTurkey
| | - Hüseyin Koçak
- Department of Internal Medicine Division of NephrologyAkdeniz University School of MedicineAntalyaTurkey
| | - Ömer Özkan
- Department of Plastic, Reconstructive, and Aesthetic SurgeryAkdeniz University School of MedicineAntalyaTurkey
| |
Collapse
|
48
|
James LM, Georgopoulos AP. At the Root of 3 “Long” Diseases: Persistent Antigens Inflicting Chronic Damage on the Brain and Other Organs in Gulf War Illness, Long-COVID-19, and Chronic Fatigue Syndrome. Neurosci Insights 2022; 17:26331055221114817. [PMID: 35910083 PMCID: PMC9335483 DOI: 10.1177/26331055221114817] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/28/2022] [Indexed: 12/16/2022] Open
Abstract
Several foreign antigens such as those derived from viruses and bacteria have been linked to long-term deleterious effects on the brain and other organs; yet, health outcomes subsequent to foreign antigen exposure vary depending in large part on the host’s immune system, in general, and on human leukocyte antigen (HLA) composition, in particular. Here we first provide a brief description of 3 conditions characterized by persistent long-term symptoms, namely long-COVID-19, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and Gulf War Illness (GWI), followed by a brief overview of the role of HLA in the immune response to foreign antigens. We then discuss our Persistent Antigen (PA) hypothesis and highlight associations between antigen persistence due to HLA-antigen incongruence and chronic health conditions in general and the 3 “long” diseases above in particular. This review is not intended to cover the breadth and depth of symptomatology of those diseases but is specifically focused on the hypothesis that the presence of persistent antigens underlies their pathogenesis.
Collapse
Affiliation(s)
- Lisa M James
- Department of Veterans Affairs Health Care System, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- Department of Veterans Affairs Health Care System, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
49
|
Abdelhafiz AS, Ali A, Fouda MA, Sayed DM, Kamel MM, Kamal LM, Khalil MA, Bakry RM. HLA-B*15 predicts survival in Egyptian patients with COVID-19. Hum Immunol 2022; 83:10-16. [PMID: 34607724 PMCID: PMC8485223 DOI: 10.1016/j.humimm.2021.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/30/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023]
Abstract
Genetic differences among individuals could affect the clinical presentations and outcomes of COVID-19. Human Leukocyte Antigens are associated with COVID-19 susceptibility, severity, and prognosis. This study aimed to identify HLA-B and -C genotypes among 69 Egyptian patients with COVID-19 and correlate them with disease outcomes and other clinical and laboratory data. HLA-B and -C typing was performed using Luminex-based HLA typing kits. Forty patients (58%) had severe COVID-19; 55% of these patients died, without reported mortality in the moderate group. The alleles associated with severe COVID-19 were HLA-B*41, -B*42, -C*16, and -C*17, whereas HLA-B*15, -C*7, and -C*12 were significantly associated with protection against mortality. Regression analysis showed that HLA-B*15 was the only allele associated with predicted protection against mortality, where the likelihood of survival increased with HLA-B*15 (P < 0.001). Patient survival was less likely to occur with higher total leukocytic count, ferritin, and creatinine levels. This study provides interesting insights into the association between HLA class I alleles and protection from or severity of COVID-19 through immune response modulation. This is the first study to investigate this relationship in Egyptian patients. More studies are needed to understand how HLA class I alleles interact and affect Cytotoxic T lymphocytes and natural killer cell function.
Collapse
Affiliation(s)
- Ahmed Samir Abdelhafiz
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Asmaa Ali
- Department of Pulmonary Medicine, Abbassia Chest Hospital, MOH, Cairo, Egypt
| | - Merhan A Fouda
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Douaa M Sayed
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Mahmoud M Kamel
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Lamyaa Mohamed Kamal
- Department of Clinical and Chemical Pathology, Elsahel Teaching Hospital, MOH, Cairo, Egypt
| | - Mahmoud Ali Khalil
- Department of Tropical Medicine and Infectious Disease, Imbaba Fever Hospital, MOH, Cairo, Egypt
| | - Rania M Bakry
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
50
|
Singh H, Nema R, Kumar A. Genomic, proteomic biomarkers and risk factors associated with COVID-19. ADVANCED BIOSENSORS FOR VIRUS DETECTION 2022:95-111. [DOI: 10.1016/b978-0-12-824494-4.00018-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|