1
|
Habibalahi A, Anwer AG, Knab A, Grey ST, Goldys EM, Campbell JM. Multispectral autofluorescence for label free classification of immune cell type and activation/polarization status. Scand J Immunol 2025; 101:e70004. [PMID: 39924799 PMCID: PMC11808199 DOI: 10.1111/sji.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/21/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025]
Abstract
Evaluating immune status is a challenging and time-consuming process that involves analysing various biomarkers through numerous assays. The sensitive label-free technique of multispectral imaging of cell autofluorescence involves directly assessing the molecular composition of cells to gather biological information. Cells were cultured in RPMI 1640 modified media supplemented with penicillin-streptomycin and 10% foetal bovine serum at 37°C, with 5% CO2 and 95% humidity. Activation and differentiation was confirmed using immunofluorophores against relevant markers. Multispectral microscopy utilized defined spectral regions, which spanned the excitation (345-476 nm) and emission (414-675 nm) wavelength ranges. In total, 56 distinct spectral channels were applied. These channels cover the spectrum of several fluorophores notably NAD(P)H and flavins, whose concentrations depend on cellular metabolism. We identified distinct spectral signatures for characterizing cells from the Jurkat, Ramos, THP-1, and HL-60 immune cell lines. These signatures correspond to four major immune cell types: T cells (Lymphocytes), B cells (Lymphocytes), monocytes and neutrophils. Moreover, our investigation explored the potential identification of both activated and resting forms of these cells, including the discrimination of M0, M1 and M2 polarized macrophages. Classification accuracy ranged from 92% to 100% based on receiver operator characteristic area under the curve (ROC AUC) assessment. These results indicate that the multispectral evaluation of cell autofluorescence is applicable for characterization of immune status. This includes the assessment of cell types and their activation status, all achievable through a single non-invasive assay.
Collapse
Affiliation(s)
- Abbas Habibalahi
- Graduate School of Biomedical Engineering, Faculty of EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- ARC Centre of Excellence for Nanoscale BiophotonicsUniversity of New South WalesSydneyNew South WalesAustralia
| | - Ayad G. Anwer
- Graduate School of Biomedical Engineering, Faculty of EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- ARC Centre of Excellence for Nanoscale BiophotonicsUniversity of New South WalesSydneyNew South WalesAustralia
| | - Aline Knab
- Graduate School of Biomedical Engineering, Faculty of EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- ARC Centre of Excellence for Nanoscale BiophotonicsUniversity of New South WalesSydneyNew South WalesAustralia
| | - Shane T. Grey
- Transplantation Immunology LaboratoryGarvan Institute of Medical ResearchDarlinghurstNew South WalesAustralia
- Translation Science PillarGarvan Institute of Medical ResearchDarlinghurstNew South WalesAustralia
- School of Biotechnology and Biomolecular Sciences, Faculty of ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| | - Ewa M. Goldys
- Graduate School of Biomedical Engineering, Faculty of EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- ARC Centre of Excellence for Nanoscale BiophotonicsUniversity of New South WalesSydneyNew South WalesAustralia
| | - Jared M. Campbell
- Graduate School of Biomedical Engineering, Faculty of EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- ARC Centre of Excellence for Nanoscale BiophotonicsUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
2
|
Ronsley R, Bertrand KC, Song EZ, Timpanaro A, Choe M, Tlais D, Vitanza NA, Park JR. CAR T cell therapy for pediatric central nervous system tumors: a review of the literature and current North American trials. Cancer Metastasis Rev 2024; 43:1205-1216. [PMID: 39251462 PMCID: PMC11554695 DOI: 10.1007/s10555-024-10208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
Central nervous system (CNS) tumors are the leading cause of cancer-related death in children. Typical therapy for CNS tumors in children involves a combination of surgery, radiation, and chemotherapy. While upfront therapy is effective for many high-grade tumors, therapy at the time of relapse remains limited. Furthermore, for diffuse intrinsic pontine glioma (DIPG) and diffuse midline glioma (DMG), there are currently no curative therapies. Chimeric antigen receptor T (CAR T) cell therapy is a promising novel treatment avenue for these tumors. Here, we review the preclinical evidence for CAR T cell use in pediatric brain tumors, the preliminary clinical experience of CNS CAR T cell trials, toxicity associated with systemic and locoregional CAR T cell therapy for CNS tumors, challenges in disease response evaluation with CAR T cell therapy, and the knowledge gained from correlative biologic studies from these trials in the pediatric and young adult population.
Collapse
Affiliation(s)
- Rebecca Ronsley
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kelsey C Bertrand
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Edward Z Song
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Andrea Timpanaro
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Michelle Choe
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Dana Tlais
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicholas A Vitanza
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Julie R Park
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA.
| |
Collapse
|
3
|
Xu C. CRISPR/Cas9-mediated knockout strategies for enhancing immunotherapy in breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8561-8601. [PMID: 38907847 DOI: 10.1007/s00210-024-03208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Breast cancer, a prevalent disease with significant mortality rates, often presents treatment challenges due to its complex genetic makeup. This review explores the potential of combining Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene knockout strategies with immunotherapeutic approaches to enhance breast cancer treatment. The CRISPR/Cas9 system, renowned for its precision in inducing genetic alterations, can target and eliminate specific cancer cells, thereby minimizing off-target effects. Concurrently, immunotherapy, which leverages the immune system's power to combat cancer, has shown promise in treating breast cancer. By integrating these two strategies, we can potentially augment the effectiveness of immunotherapies by knocking out genes that enable cancer cells to evade the immune system. However, safety considerations, such as off-target effects and immune responses, necessitate careful evaluation. Current research endeavors aim to optimize these strategies and ascertain the most effective methods to stimulate the immune response. This review provides novel insights into the integration of CRISPR/Cas9-mediated knockout strategies and immunotherapy, a promising avenue that could revolutionize breast cancer treatment as our understanding of the immune system's interplay with cancer deepens.
Collapse
Affiliation(s)
- Chenchen Xu
- Department of Gynecology and Obstetrics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
4
|
Balasamy S, Atchudan R, Arya S, Gunasekaran BM, Nesakumar N, Sundramoorthy AK. Cortisol: Biosensing and detection strategies. Clin Chim Acta 2024; 562:119888. [PMID: 39059481 DOI: 10.1016/j.cca.2024.119888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Cortisol, a crucial steroid hormone synthesized by the adrenal glands, has diverse impacts on multiple physiological processes, such as metabolism, immune function, and stress management. Disruption in cortisol levels can result in conditions like Cushing's syndrome and Addison's disease. This review provides an in-depth exploration of cortisol, covering its structure, various forms in the body, detection methodologies, and emerging trends in cancer treatment and detection. Various techniques for cortisol detection, including electrochemical, chromatographic, and immunoassay methods were discussed and highlighted for their merits and applications. Electrochemical immunosensing emerges as a promising approach, which offered high sensitivity and low detection limits. Moreover, the review delves into the intricate relationship between cortisol and cancer, emphasizing cortisol's role in cancer progression and treatment outcomes. Lastly, the utilization of biomarkers, in-silico modeling, and machine learning for electrochemical cortisol detection were explored, which showcased innovative strategies for stress monitoring and healthcare advancement.
Collapse
Affiliation(s)
- Sesuraj Balasamy
- Centre for Nano-Biosensors, Department of Prosthodontics and Materials Science, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu, Jammu and Kashmir 180006, India
| | - Balu Mahendran Gunasekaran
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Noel Nesakumar
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics and Materials Science, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
5
|
To KKW, Huang Z, Zhang H, Ashby CR, Fu L. Utilizing non-coding RNA-mediated regulation of ATP binding cassette (ABC) transporters to overcome multidrug resistance to cancer chemotherapy. Drug Resist Updat 2024; 73:101058. [PMID: 38277757 DOI: 10.1016/j.drup.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Multidrug resistance (MDR) is one of the primary factors that produces treatment failure in patients receiving cancer chemotherapy. MDR is a complex multifactorial phenomenon, characterized by a decrease or abrogation of the efficacy of a wide spectrum of anticancer drugs that are structurally and mechanistically distinct. The overexpression of the ATP-binding cassette (ABC) transporters, notably ABCG2 and ABCB1, are one of the primary mediators of MDR in cancer cells, which promotes the efflux of certain chemotherapeutic drugs from cancer cells, thereby decreasing or abolishing their therapeutic efficacy. A number of studies have suggested that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a pivotal role in mediating the upregulation of ABC transporters in certain MDR cancer cells. This review will provide updated information about the induction of ABC transporters due to the aberrant regulation of ncRNAs in cancer cells. We will also discuss the measurement and biological profile of circulating ncRNAs in various body fluids as potential biomarkers for predicting the response of cancer patients to chemotherapy. Sequence variations, such as alternative polyadenylation of mRNA and single nucleotide polymorphism (SNPs) at miRNA target sites, which may indicate the interaction of miRNA-mediated gene regulation with genetic variations to modulate the MDR phenotype, will be reviewed. Finally, we will highlight novel strategies that could be used to modulate ncRNAs and circumvent ABC transporter-mediated MDR.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Zoufang Huang
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Hang Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
6
|
Derbal Y. Adaptive Cancer Therapy in the Age of Generative Artificial Intelligence. Cancer Control 2024; 31:10732748241264704. [PMID: 38897721 PMCID: PMC11189021 DOI: 10.1177/10732748241264704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
Therapeutic resistance is a major challenge facing the design of effective cancer treatments. Adaptive cancer therapy is in principle the most viable approach to manage cancer's adaptive dynamics through drug combinations with dose timing and modulation. However, there are numerous open issues facing the clinical success of adaptive therapy. Chief among these issues is the feasibility of real-time predictions of treatment response which represent a bedrock requirement of adaptive therapy. Generative artificial intelligence has the potential to learn prediction models of treatment response from clinical, molecular, and radiomics data about patients and their treatments. The article explores this potential through a proposed integration model of Generative Pre-Trained Transformers (GPTs) in a closed loop with adaptive treatments to predict the trajectories of disease progression. The conceptual model and the challenges facing its realization are discussed in the broader context of artificial intelligence integration in oncology.
Collapse
Affiliation(s)
- Youcef Derbal
- Ted Rogers School of Information Technology Management, Toronto Metropolitan University, Toronto, ON, Canada
| |
Collapse
|
7
|
Sun Q, Hong Z, Zhang C, Wang L, Han Z, Ma D. Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal Transduct Target Ther 2023; 8:320. [PMID: 37635168 PMCID: PMC10460796 DOI: 10.1038/s41392-023-01522-4] [Citation(s) in RCA: 211] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/11/2023] [Accepted: 05/28/2023] [Indexed: 08/29/2023] Open
Abstract
Immune-checkpoint inhibitors (ICBs), in addition to targeting CTLA-4, PD-1, and PD-L1, novel targeting LAG-3 drugs have also been approved in clinical application. With the widespread use of the drug, we must deeply analyze the dilemma of the agents and seek a breakthrough in the treatment prospect. Over the past decades, these agents have demonstrated dramatic efficacy, especially in patients with melanoma and non-small cell lung cancer (NSCLC). Nonetheless, in the field of a broad concept of solid tumours, non-specific indications, inseparable immune response and side effects, unconfirmed progressive disease, and complex regulatory networks of immune resistance are four barriers that limit its widespread application. Fortunately, the successful clinical trials of novel ICB agents and combination therapies, the advent of the era of oncolytic virus gene editing, and the breakthrough of the technical barriers of mRNA vaccines and nano-delivery systems have made remarkable breakthroughs currently. In this review, we enumerate the mechanisms of each immune checkpoint targets, associations between ICB with tumour mutation burden, key immune regulatory or resistance signalling pathways, the specific clinical evidence of the efficacy of classical targets and new targets among different tumour types and put forward dialectical thoughts on drug safety. Finally, we discuss the importance of accurate triage of ICB based on recent advances in predictive biomarkers and diagnostic testing techniques.
Collapse
Affiliation(s)
- Qian Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Cong Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liangliang Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
8
|
Nisnboym M, Vincze SR, Xiong Z, Sneiderman CT, Raphael RA, Li B, Jaswal AP, Sever RE, Day KE, LaToche JD, Foley LM, Karimi H, Hitchens TK, Agnihotri S, Hu B, Rajasundaram D, Anderson CJ, Blumenthal DT, Pearce TM, Uttam S, Nedrow JR, Panigrahy A, Pollack IF, Lieberman FS, Drappatz J, Raphael I, Edwards WB, Kohanbash G. Immuno-PET Imaging of CD69 Visualizes T-Cell Activation and Predicts Survival Following Immunotherapy in Murine Glioblastoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:1173-1188. [PMID: 37426447 PMCID: PMC10324623 DOI: 10.1158/2767-9764.crc-22-0434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/19/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Immunotherapy may be promising for the treatment of some patients with GBM; however, there is a need for noninvasive neuroimaging techniques to predict immunotherapeutic responses. The effectiveness of most immunotherapeutic strategies requires T-cell activation. Therefore, we aimed to evaluate an early marker of T-cell activation, CD69, for its use as an imaging biomarker of response to immunotherapy for GBM. Herein, we performed CD69 immunostaining on human and mouse T cells following in vitro activation and post immune checkpoint inhibitors (ICI) in an orthotopic syngeneic mouse glioma model. CD69 expression on tumor-infiltrating leukocytes was assessed using single-cell RNA sequencing (scRNA-seq) data from patients with recurrent GBM receiving ICI. Radiolabeled CD69 Ab PET/CT imaging (CD69 immuno-PET) was performed on GBM-bearing mice longitudinally to quantify CD69 and its association with survival following immunotherapy. We show CD69 expression is upregulated upon T-cell activation and on tumor-infiltrating lymphocytes (TIL) in response to immunotherapy. Similarly, scRNA-seq data demonstrated elevated CD69 on TILs from patients with ICI-treated recurrent GBM as compared with TILs from control cohorts. CD69 immuno-PET studies showed a significantly higher tracer uptake in the tumors of ICI-treated mice compared with controls. Importantly, we observed a positive correlation between survival and CD69 immuno-PET signals in immunotherapy-treated animals and established a trajectory of T-cell activation by virtue of CD69-immuno-PET measurements. Our study supports the potential use of CD69 immuno-PET as an immunotherapy response assessment imaging tool for patients with GBM. Significance Immunotherapy may hold promise for the treatment of some patients with GBM. There is a need to assess therapy responsiveness to allow the continuation of effective treatment in responders and to avoid ineffective treatment with potential adverse effects in the nonresponders. We demonstrate that noninvasive PET/CT imaging of CD69 may allow early detection of immunotherapy responsiveness in patients with GBM.
Collapse
Affiliation(s)
- Michal Nisnboym
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Sarah R. Vincze
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Zujian Xiong
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Chaim T. Sneiderman
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rebecca A. Raphael
- Department of Computational and Systems Biology, UPMC Hillman Cancer Center, Cancer Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bo Li
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ambika P. Jaswal
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - ReidAnn E. Sever
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kathryn E. Day
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Joseph D. LaToche
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Lesley M. Foley
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Hanieh Karimi
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - T. Kevin Hitchens
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sameer Agnihotri
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Baoli Hu
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dhivyaa Rajasundaram
- Division of Health Informatics, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Deborah T. Blumenthal
- Neuro-oncology Division, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Thomas M. Pearce
- Division of Neuropathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shikhar Uttam
- Department of Computational and Systems Biology, UPMC Hillman Cancer Center, Cancer Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessie R. Nedrow
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Ashok Panigrahy
- Department of Radiology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ian F. Pollack
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Frank S. Lieberman
- Neuro-oncology Program, Division of Hematology/Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Jan Drappatz
- Neuro-oncology Program, Division of Hematology/Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Itay Raphael
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wilson B. Edwards
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Gary Kohanbash
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Jalaludin I, Lubman DM, Kim J. A guide to mass spectrometric analysis of extracellular vesicle proteins for biomarker discovery. MASS SPECTROMETRY REVIEWS 2023; 42:844-872. [PMID: 34747512 DOI: 10.1002/mas.21749] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Exosomes (small extracellular vesicles) in living organisms play an important role in processes such as cell proliferation or intercellular communication. Recently, exosomes have been extensively investigated for biomarker discoveries for various diseases. An important aspect of exosome analysis involves the development of enrichment methods that have been introduced for successful isolation of exosomes. These methods include ultracentrifugation, size exclusion chromatography, polyethylene glycol-based precipitation, immunoaffinity-based enrichment, ultrafiltration, and asymmetric flow field-flow fractionation among others. To confirm the presence of exosomes, various characterization methods have been utilized such as Western blot analysis, atomic force microscopy, electron microscopy, optical methods, zeta potential, visual inspection, and mass spectrometry. Recent advances in high-resolution separations, high-performance mass spectrometry and comprehensive proteome databases have all contributed to the successful analysis of exosomes from patient samples. Herein we review various exosome enrichment methods, characterization methods, and recent trends of exosome investigations using mass spectrometry-based approaches for biomarker discovery.
Collapse
Affiliation(s)
- Iqbal Jalaludin
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Sharma T, Nisar S, Masoodi T, Macha MA, Uddin S, Akil AAS, Pandita TK, Singh M, Bhat AA. Current and emerging biomarkers in ovarian cancer diagnosis; CA125 and beyond. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:85-114. [PMID: 36707207 DOI: 10.1016/bs.apcsb.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ovarian cancer (OC) is one of the most common causes of cancer-related death in women worldwide. Its five-year survival rates are worse than the two most common gynecological cancers, cervical and endometrial. This is because it is asymptomatic in the early stages and usually detected in the advanced metastasized stage. Thus, survival is increasingly dependent on timely diagnosis. The delay in detection is contributed partly by the occurrence of non-specific clinical symptoms in the early stages and the lack of effective biomarkers and detection approaches. This underlines the need for biomarker identification and clinical validation, enabling earlier diagnosis, effective prognosis, and response to therapy. Apart from the traditional diagnostic biomarkers for OC, several new biomarkers have been delineated using advanced high-throughput molecular approaches in recent years. They are currently being clinically evaluated for their true diagnostic potential. In this chapter, we document the commonly utilized traditional screening markers and recently identified emerging biomarkers in OC diagnosis, focusing on secretory and protein biomarkers. We also briefly reviewed the recent advances and prospects in OC diagnosis.
Collapse
Affiliation(s)
- Tarang Sharma
- Department of Medical Oncology, Dr. B.R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sabah Nisar
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Cancer immunology and genetics, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Jammu and Kashmir, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Ammira Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, United States
| | - Mayank Singh
- Department of Medical Oncology, Dr. B.R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
11
|
Lyng H, Skipar K, Hompland T. Targeted Therapy on the Screen: Do We Hit the Target? Clin Cancer Res 2022; 28:5233-5234. [PMID: 36240006 DOI: 10.1158/1078-0432.ccr-22-2707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023]
Abstract
A phase II trial, investigating whether the antidiabetic drug metformin could reduce hypoxia in cervical cancer, used imaging to preselect patients and test the biological hypothesis behind the drug effect. This trial design would be of importance for the implementation of targeted treatment in the clinic. See related article by Han et al., p. 5263.
Collapse
Affiliation(s)
- Heidi Lyng
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| | - Kjersti Skipar
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Oncology, Telemark Hospital Trust, Skien, Norway.,Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Tord Hompland
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Liu X, Pan L, Wang K, Pan W, Li N, Tang B. Imaging strategies for monitoring the immune response. Chem Sci 2022; 13:12957-12970. [PMID: 36425502 PMCID: PMC9667917 DOI: 10.1039/d2sc03446h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/05/2022] [Indexed: 08/11/2023] Open
Abstract
Real-time monitoring of the immune response can be used to evaluate the immune status of the body and to distinguish immune responders and non-responders, so as to better guide immunotherapy. Through direct labelling of immune cells and imaging specific biomarkers of different cells, the activation status of immune cells and immunosuppressive status of tumor cells can be visualized. The immunotherapeutic regimen can then be adjusted accordingly in a timely manner to improve the efficacy of immunotherapy. In this review, various imaging methods, immune-related imaging probes, current challenges and opportunities are summarized and discussed.
Collapse
Affiliation(s)
- Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Limeng Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Kaiye Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
13
|
Ma X, Chan TA. Solving the puzzle of what makes immunotherapies work. Trends Cancer 2022; 8:890-900. [PMID: 35933298 PMCID: PMC10109520 DOI: 10.1016/j.trecan.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023]
Abstract
The rapid adoption of immune checkpoint blockade (ICB) therapies has led to a need to understand the mechanistic drivers of efficacy and the identification of novel biomarkers that enrich for patients who benefit from ICB therapy. Here, we provide a perspective on emerging biomarker candidates, their underlying biological mechanisms, and how they may fit into the current landscape of ICB biomarkers. We discuss new frameworks to identify and evaluate biomarker candidates and review the opportunities and challenges of utilizing biomarker-derived models to facilitate the development of new immunotherapies.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA; Case Western School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
14
|
Raufaste-Cazavieille V, Santiago R, Droit A. Multi-omics analysis: Paving the path toward achieving precision medicine in cancer treatment and immuno-oncology. Front Mol Biosci 2022; 9:962743. [PMID: 36304921 PMCID: PMC9595279 DOI: 10.3389/fmolb.2022.962743] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The acceleration of large-scale sequencing and the progress in high-throughput computational analyses, defined as omics, was a hallmark for the comprehension of the biological processes in human health and diseases. In cancerology, the omics approach, initiated by genomics and transcriptomics studies, has revealed an incredible complexity with unsuspected molecular diversity within a same tumor type as well as spatial and temporal heterogeneity of tumors. The integration of multiple biological layers of omics studies brought oncology to a new paradigm, from tumor site classification to pan-cancer molecular classification, offering new therapeutic opportunities for precision medicine. In this review, we will provide a comprehensive overview of the latest innovations for multi-omics integration in oncology and summarize the largest multi-omics dataset available for adult and pediatric cancers. We will present multi-omics techniques for characterizing cancer biology and show how multi-omics data can be combined with clinical data for the identification of prognostic and treatment-specific biomarkers, opening the way to personalized therapy. To conclude, we will detail the newest strategies for dissecting the tumor immune environment and host–tumor interaction. We will explore the advances in immunomics and microbiomics for biomarker identification to guide therapeutic decision in immuno-oncology.
Collapse
Affiliation(s)
| | - Raoul Santiago
- CHU de Québec Research Center, Université Laval, Québec, QC, Canada
- Division of Pediatric Hematology-Oncology, Centre Hospitalier Universitaire de L’Université Laval, Charles Bruneau Cancer Center, Québec, QC, Canada
- *Correspondence: Raoul Santiago, ; Arnaud Droit,
| | - Arnaud Droit
- CHU de Québec Research Center, Université Laval, Québec, QC, Canada
- *Correspondence: Raoul Santiago, ; Arnaud Droit,
| |
Collapse
|
15
|
Zhou J. Editorial: Combinatory Approaches of Epigenetic Regulators in T Cell-Based Immunotherapy. Front Genet 2022; 13:914907. [PMID: 35747603 PMCID: PMC9211430 DOI: 10.3389/fgene.2022.914907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
|
16
|
Nobashi TW, Mayer AT, Xiao Z, Chan CT, Chaney AM, James ML, Gambhir SS. Whole-body PET Imaging of T-cell Response to Glioblastoma. Clin Cancer Res 2021; 27:6445-6456. [PMID: 34548318 DOI: 10.1158/1078-0432.ccr-21-1412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunotherapy is a promising approach for many oncological malignancies, including glioblastoma, however, there are currently no available tools or biomarkers to accurately assess whole-body immune responses in patients with glioblastoma treated with immunotherapy. Here, the utility of OX40, a costimulatory molecule mainly expressed on activated effector T cells known to play an important role in eliminating cancer cells, was evaluated as a PET imaging biomarker to quantify and track response to immunotherapy. EXPERIMENTAL DESIGN A subcutaneous vaccination approach of CpG oligodeoxynucleotide, OX40 mAb, and tumor lysate at a remote site in a murine orthotopic glioma model was developed to induce activation of T cells distantly while monitoring their distribution in stimulated lymphoid organs with respect to observed therapeutic effects. To detect OX40-positive T cells, we utilized our in-house-developed 89Zr-DFO-OX40 mAb and in vivo PET/CT imaging. RESULTS ImmunoPET with 89Zr-DFO-OX40 mAb revealed strong OX40-positive responses with high specificity, not only in the nearest lymph node from vaccinated area (mean, 20.8%ID/cc) but also in the spleen (16.7%ID/cc) and the tumor draining lymph node (11.4%ID/cc). When the tumor was small (<106 p/sec/cm2/sr in bioluminescence imaging), a high number of responders and percentage shrinkage in tumor signal was indicated after only a single cycle of vaccination. CONCLUSIONS The results highlight the promise of clinically translating cancer vaccination as a potential glioma therapy, as well as the benefits of monitoring efficacy of these treatments using immunoPET imaging of T-cell activation.
Collapse
Affiliation(s)
- Tomomi W Nobashi
- Department of Radiology, Stanford University, Stanford, California.
| | - Aaron T Mayer
- Department of Radiology, Stanford University, Stanford, California. .,Department of Bioengineering, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.,Bio-X Program at Stanford, Stanford University, Stanford, California
| | - Zunyu Xiao
- Department of Radiology, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.,Molecular Imaging Research Center of Harbin Medical University, Harbin, China
| | - Carmel T Chan
- Department of Radiology, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Aisling M Chaney
- Department of Radiology, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Michelle L James
- Department of Radiology, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University, Stanford, California.,Department of Bioengineering, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.,Bio-X Program at Stanford, Stanford University, Stanford, California.,Department of Materials Science and Engineering, Stanford University, Stanford, California.,Canary Center at Stanford, Stanford University, Stanford, California
| |
Collapse
|
17
|
Xu L, Wang Y, Ma Y, Huan S, Song G. Monitoring Immunotherapy With Optical Molecular Imaging. ChemMedChem 2021; 16:2547-2557. [PMID: 33949786 DOI: 10.1002/cmdc.202100260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 01/17/2023]
Abstract
Immunotherapy is an effective way to mobilize the body's own immune system to confront tumor cells. However, the efficacy of immunotherapy is affected by tumor heterogeneity, and the low therapeutic response to immunotherapy may lead to negative outcomes, which reinforces the urgency for early benefit predictors. Evaluating the infiltration of immune cells in solid tumors and metabolism changes of tumors provide potential response targets for monitoring immune response. Non-invasive imaging identifying prognostic biomarkers can select the beneficiaries of targeted immunotherapy from non-responses. Quantitative biomarkers may eventually improve the cancer management, help customize individual treatment plans and predict the treatment outcomes. In this review, we summarize the non-invasive optical molecular imaging methods for monitoring immunotherapy. With the combination of imaging and immunotherapy, the prediction of immunotherapy response may promote the development of precision medicine.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Youjuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yuan Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
18
|
Lone SN, Bhat AA, Wani NA, Karedath T, Hashem S, Nisar S, Singh M, Bagga P, Das BC, Bedognetti D, Reddy R, Frenneaux MP, El-Rifai W, Siddiqi MA, Haris M, Macha MA. miRNAs as novel immunoregulators in cancer. Semin Cell Dev Biol 2021; 124:3-14. [PMID: 33926791 DOI: 10.1016/j.semcdb.2021.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The immune system is a well-known vital regulator of tumor growth, and one of the main hallmarks of cancer is evading the immune system. Immune system deregulation can lead to immune surveillance evasion, sustained cancer growth, proliferation, and metastasis. Tumor-mediated disruption of the immune system is accomplished by different mechanisms that involve extensive crosstalk with the immediate microenvironment, which includes endothelial cells, immune cells, and stromal cells, to create a favorable tumor niche that facilitates the development of cancer. The essential role of non-coding RNAs such as microRNAs (miRNAs) in the mechanism of cancer cell immune evasion has been highlighted in recent studies. miRNAs are small non-coding RNAs that regulate a wide range of post-transcriptional gene expression in a cell. Recent studies have focused on the function that miRNAs play in controlling the expression of target proteins linked to immune modulation. Studies show that miRNAs modulate the immune response in cancers by regulating the expression of different immune-modulatory molecules associated with immune effector cells, such as macrophages, dendritic cells, B-cells, and natural killer cells, as well as those present in tumor cells and the tumor microenvironment. This review explores the relationship between miRNAs, their altered patterns of expression in tumors, immune modulation, and the functional control of a wide range of immune cells, thereby offering detailed insights on the crosstalk of tumor-immune cells and their use as prognostic markers or therapeutic agents.
Collapse
Affiliation(s)
- Saife N Lone
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | - Ajaz A Bhat
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Nissar A Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | | | - Sheema Hashem
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Puneet Bagga
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bhudev Chandra Das
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Uttar Pradesh, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar; Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | | | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mushtaq A Siddiqi
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India
| | - Mohammad Haris
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India.
| |
Collapse
|